|  | //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the code for emitting atomic operations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGCall.h" | 
|  | #include "CGRecordLayout.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "TargetInfo.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/CodeGen/CGFunctionInfo.h" | 
|  | #include "clang/Frontend/FrontendDiagnostic.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | namespace { | 
|  | class AtomicInfo { | 
|  | CodeGenFunction &CGF; | 
|  | QualType AtomicTy; | 
|  | QualType ValueTy; | 
|  | uint64_t AtomicSizeInBits; | 
|  | uint64_t ValueSizeInBits; | 
|  | CharUnits AtomicAlign; | 
|  | CharUnits ValueAlign; | 
|  | TypeEvaluationKind EvaluationKind; | 
|  | bool UseLibcall; | 
|  | LValue LVal; | 
|  | CGBitFieldInfo BFI; | 
|  | public: | 
|  | AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) | 
|  | : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), | 
|  | EvaluationKind(TEK_Scalar), UseLibcall(true) { | 
|  | assert(!lvalue.isGlobalReg()); | 
|  | ASTContext &C = CGF.getContext(); | 
|  | if (lvalue.isSimple()) { | 
|  | AtomicTy = lvalue.getType(); | 
|  | if (auto *ATy = AtomicTy->getAs<AtomicType>()) | 
|  | ValueTy = ATy->getValueType(); | 
|  | else | 
|  | ValueTy = AtomicTy; | 
|  | EvaluationKind = CGF.getEvaluationKind(ValueTy); | 
|  |  | 
|  | uint64_t ValueAlignInBits; | 
|  | uint64_t AtomicAlignInBits; | 
|  | TypeInfo ValueTI = C.getTypeInfo(ValueTy); | 
|  | ValueSizeInBits = ValueTI.Width; | 
|  | ValueAlignInBits = ValueTI.Align; | 
|  |  | 
|  | TypeInfo AtomicTI = C.getTypeInfo(AtomicTy); | 
|  | AtomicSizeInBits = AtomicTI.Width; | 
|  | AtomicAlignInBits = AtomicTI.Align; | 
|  |  | 
|  | assert(ValueSizeInBits <= AtomicSizeInBits); | 
|  | assert(ValueAlignInBits <= AtomicAlignInBits); | 
|  |  | 
|  | AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits); | 
|  | ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits); | 
|  | if (lvalue.getAlignment().isZero()) | 
|  | lvalue.setAlignment(AtomicAlign); | 
|  |  | 
|  | LVal = lvalue; | 
|  | } else if (lvalue.isBitField()) { | 
|  | ValueTy = lvalue.getType(); | 
|  | ValueSizeInBits = C.getTypeSize(ValueTy); | 
|  | auto &OrigBFI = lvalue.getBitFieldInfo(); | 
|  | auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment()); | 
|  | AtomicSizeInBits = C.toBits( | 
|  | C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1) | 
|  | .alignTo(lvalue.getAlignment())); | 
|  | auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldPointer()); | 
|  | auto OffsetInChars = | 
|  | (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) * | 
|  | lvalue.getAlignment(); | 
|  | VoidPtrAddr = CGF.Builder.CreateConstGEP1_64( | 
|  | VoidPtrAddr, OffsetInChars.getQuantity()); | 
|  | auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | 
|  | VoidPtrAddr, | 
|  | CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(), | 
|  | "atomic_bitfield_base"); | 
|  | BFI = OrigBFI; | 
|  | BFI.Offset = Offset; | 
|  | BFI.StorageSize = AtomicSizeInBits; | 
|  | BFI.StorageOffset += OffsetInChars; | 
|  | LVal = LValue::MakeBitfield(Address(Addr, lvalue.getAlignment()), | 
|  | BFI, lvalue.getType(), lvalue.getBaseInfo(), | 
|  | lvalue.getTBAAInfo()); | 
|  | AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned); | 
|  | if (AtomicTy.isNull()) { | 
|  | llvm::APInt Size( | 
|  | /*numBits=*/32, | 
|  | C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity()); | 
|  | AtomicTy = | 
|  | C.getConstantArrayType(C.CharTy, Size, nullptr, ArrayType::Normal, | 
|  | /*IndexTypeQuals=*/0); | 
|  | } | 
|  | AtomicAlign = ValueAlign = lvalue.getAlignment(); | 
|  | } else if (lvalue.isVectorElt()) { | 
|  | ValueTy = lvalue.getType()->castAs<VectorType>()->getElementType(); | 
|  | ValueSizeInBits = C.getTypeSize(ValueTy); | 
|  | AtomicTy = lvalue.getType(); | 
|  | AtomicSizeInBits = C.getTypeSize(AtomicTy); | 
|  | AtomicAlign = ValueAlign = lvalue.getAlignment(); | 
|  | LVal = lvalue; | 
|  | } else { | 
|  | assert(lvalue.isExtVectorElt()); | 
|  | ValueTy = lvalue.getType(); | 
|  | ValueSizeInBits = C.getTypeSize(ValueTy); | 
|  | AtomicTy = ValueTy = CGF.getContext().getExtVectorType( | 
|  | lvalue.getType(), lvalue.getExtVectorAddress() | 
|  | .getElementType()->getVectorNumElements()); | 
|  | AtomicSizeInBits = C.getTypeSize(AtomicTy); | 
|  | AtomicAlign = ValueAlign = lvalue.getAlignment(); | 
|  | LVal = lvalue; | 
|  | } | 
|  | UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( | 
|  | AtomicSizeInBits, C.toBits(lvalue.getAlignment())); | 
|  | } | 
|  |  | 
|  | QualType getAtomicType() const { return AtomicTy; } | 
|  | QualType getValueType() const { return ValueTy; } | 
|  | CharUnits getAtomicAlignment() const { return AtomicAlign; } | 
|  | uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } | 
|  | uint64_t getValueSizeInBits() const { return ValueSizeInBits; } | 
|  | TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } | 
|  | bool shouldUseLibcall() const { return UseLibcall; } | 
|  | const LValue &getAtomicLValue() const { return LVal; } | 
|  | llvm::Value *getAtomicPointer() const { | 
|  | if (LVal.isSimple()) | 
|  | return LVal.getPointer(); | 
|  | else if (LVal.isBitField()) | 
|  | return LVal.getBitFieldPointer(); | 
|  | else if (LVal.isVectorElt()) | 
|  | return LVal.getVectorPointer(); | 
|  | assert(LVal.isExtVectorElt()); | 
|  | return LVal.getExtVectorPointer(); | 
|  | } | 
|  | Address getAtomicAddress() const { | 
|  | return Address(getAtomicPointer(), getAtomicAlignment()); | 
|  | } | 
|  |  | 
|  | Address getAtomicAddressAsAtomicIntPointer() const { | 
|  | return emitCastToAtomicIntPointer(getAtomicAddress()); | 
|  | } | 
|  |  | 
|  | /// Is the atomic size larger than the underlying value type? | 
|  | /// | 
|  | /// Note that the absence of padding does not mean that atomic | 
|  | /// objects are completely interchangeable with non-atomic | 
|  | /// objects: we might have promoted the alignment of a type | 
|  | /// without making it bigger. | 
|  | bool hasPadding() const { | 
|  | return (ValueSizeInBits != AtomicSizeInBits); | 
|  | } | 
|  |  | 
|  | bool emitMemSetZeroIfNecessary() const; | 
|  |  | 
|  | llvm::Value *getAtomicSizeValue() const { | 
|  | CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); | 
|  | return CGF.CGM.getSize(size); | 
|  | } | 
|  |  | 
|  | /// Cast the given pointer to an integer pointer suitable for atomic | 
|  | /// operations if the source. | 
|  | Address emitCastToAtomicIntPointer(Address Addr) const; | 
|  |  | 
|  | /// If Addr is compatible with the iN that will be used for an atomic | 
|  | /// operation, bitcast it. Otherwise, create a temporary that is suitable | 
|  | /// and copy the value across. | 
|  | Address convertToAtomicIntPointer(Address Addr) const; | 
|  |  | 
|  | /// Turn an atomic-layout object into an r-value. | 
|  | RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot, | 
|  | SourceLocation loc, bool AsValue) const; | 
|  |  | 
|  | /// Converts a rvalue to integer value. | 
|  | llvm::Value *convertRValueToInt(RValue RVal) const; | 
|  |  | 
|  | RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal, | 
|  | AggValueSlot ResultSlot, | 
|  | SourceLocation Loc, bool AsValue) const; | 
|  |  | 
|  | /// Copy an atomic r-value into atomic-layout memory. | 
|  | void emitCopyIntoMemory(RValue rvalue) const; | 
|  |  | 
|  | /// Project an l-value down to the value field. | 
|  | LValue projectValue() const { | 
|  | assert(LVal.isSimple()); | 
|  | Address addr = getAtomicAddress(); | 
|  | if (hasPadding()) | 
|  | addr = CGF.Builder.CreateStructGEP(addr, 0); | 
|  |  | 
|  | return LValue::MakeAddr(addr, getValueType(), CGF.getContext(), | 
|  | LVal.getBaseInfo(), LVal.getTBAAInfo()); | 
|  | } | 
|  |  | 
|  | /// Emits atomic load. | 
|  | /// \returns Loaded value. | 
|  | RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, | 
|  | bool AsValue, llvm::AtomicOrdering AO, | 
|  | bool IsVolatile); | 
|  |  | 
|  | /// Emits atomic compare-and-exchange sequence. | 
|  | /// \param Expected Expected value. | 
|  | /// \param Desired Desired value. | 
|  | /// \param Success Atomic ordering for success operation. | 
|  | /// \param Failure Atomic ordering for failed operation. | 
|  | /// \param IsWeak true if atomic operation is weak, false otherwise. | 
|  | /// \returns Pair of values: previous value from storage (value type) and | 
|  | /// boolean flag (i1 type) with true if success and false otherwise. | 
|  | std::pair<RValue, llvm::Value *> | 
|  | EmitAtomicCompareExchange(RValue Expected, RValue Desired, | 
|  | llvm::AtomicOrdering Success = | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, | 
|  | llvm::AtomicOrdering Failure = | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, | 
|  | bool IsWeak = false); | 
|  |  | 
|  | /// Emits atomic update. | 
|  | /// \param AO Atomic ordering. | 
|  | /// \param UpdateOp Update operation for the current lvalue. | 
|  | void EmitAtomicUpdate(llvm::AtomicOrdering AO, | 
|  | const llvm::function_ref<RValue(RValue)> &UpdateOp, | 
|  | bool IsVolatile); | 
|  | /// Emits atomic update. | 
|  | /// \param AO Atomic ordering. | 
|  | void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, | 
|  | bool IsVolatile); | 
|  |  | 
|  | /// Materialize an atomic r-value in atomic-layout memory. | 
|  | Address materializeRValue(RValue rvalue) const; | 
|  |  | 
|  | /// Creates temp alloca for intermediate operations on atomic value. | 
|  | Address CreateTempAlloca() const; | 
|  | private: | 
|  | bool requiresMemSetZero(llvm::Type *type) const; | 
|  |  | 
|  |  | 
|  | /// Emits atomic load as a libcall. | 
|  | void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, | 
|  | llvm::AtomicOrdering AO, bool IsVolatile); | 
|  | /// Emits atomic load as LLVM instruction. | 
|  | llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile); | 
|  | /// Emits atomic compare-and-exchange op as a libcall. | 
|  | llvm::Value *EmitAtomicCompareExchangeLibcall( | 
|  | llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, | 
|  | llvm::AtomicOrdering Success = | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, | 
|  | llvm::AtomicOrdering Failure = | 
|  | llvm::AtomicOrdering::SequentiallyConsistent); | 
|  | /// Emits atomic compare-and-exchange op as LLVM instruction. | 
|  | std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( | 
|  | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, | 
|  | llvm::AtomicOrdering Success = | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, | 
|  | llvm::AtomicOrdering Failure = | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, | 
|  | bool IsWeak = false); | 
|  | /// Emit atomic update as libcalls. | 
|  | void | 
|  | EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, | 
|  | const llvm::function_ref<RValue(RValue)> &UpdateOp, | 
|  | bool IsVolatile); | 
|  | /// Emit atomic update as LLVM instructions. | 
|  | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, | 
|  | const llvm::function_ref<RValue(RValue)> &UpdateOp, | 
|  | bool IsVolatile); | 
|  | /// Emit atomic update as libcalls. | 
|  | void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, | 
|  | bool IsVolatile); | 
|  | /// Emit atomic update as LLVM instructions. | 
|  | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, | 
|  | bool IsVolatile); | 
|  | }; | 
|  | } | 
|  |  | 
|  | Address AtomicInfo::CreateTempAlloca() const { | 
|  | Address TempAlloca = CGF.CreateMemTemp( | 
|  | (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy | 
|  | : AtomicTy, | 
|  | getAtomicAlignment(), | 
|  | "atomic-temp"); | 
|  | // Cast to pointer to value type for bitfields. | 
|  | if (LVal.isBitField()) | 
|  | return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | 
|  | TempAlloca, getAtomicAddress().getType()); | 
|  | return TempAlloca; | 
|  | } | 
|  |  | 
|  | static RValue emitAtomicLibcall(CodeGenFunction &CGF, | 
|  | StringRef fnName, | 
|  | QualType resultType, | 
|  | CallArgList &args) { | 
|  | const CGFunctionInfo &fnInfo = | 
|  | CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args); | 
|  | llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); | 
|  | llvm::FunctionCallee fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName); | 
|  | auto callee = CGCallee::forDirect(fn); | 
|  | return CGF.EmitCall(fnInfo, callee, ReturnValueSlot(), args); | 
|  | } | 
|  |  | 
|  | /// Does a store of the given IR type modify the full expected width? | 
|  | static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, | 
|  | uint64_t expectedSize) { | 
|  | return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); | 
|  | } | 
|  |  | 
|  | /// Does the atomic type require memsetting to zero before initialization? | 
|  | /// | 
|  | /// The IR type is provided as a way of making certain queries faster. | 
|  | bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { | 
|  | // If the atomic type has size padding, we definitely need a memset. | 
|  | if (hasPadding()) return true; | 
|  |  | 
|  | // Otherwise, do some simple heuristics to try to avoid it: | 
|  | switch (getEvaluationKind()) { | 
|  | // For scalars and complexes, check whether the store size of the | 
|  | // type uses the full size. | 
|  | case TEK_Scalar: | 
|  | return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); | 
|  | case TEK_Complex: | 
|  | return !isFullSizeType(CGF.CGM, type->getStructElementType(0), | 
|  | AtomicSizeInBits / 2); | 
|  |  | 
|  | // Padding in structs has an undefined bit pattern.  User beware. | 
|  | case TEK_Aggregate: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | bool AtomicInfo::emitMemSetZeroIfNecessary() const { | 
|  | assert(LVal.isSimple()); | 
|  | llvm::Value *addr = LVal.getPointer(); | 
|  | if (!requiresMemSetZero(addr->getType()->getPointerElementType())) | 
|  | return false; | 
|  |  | 
|  | CGF.Builder.CreateMemSet( | 
|  | addr, llvm::ConstantInt::get(CGF.Int8Ty, 0), | 
|  | CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(), | 
|  | LVal.getAlignment().getQuantity()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, | 
|  | Address Dest, Address Ptr, | 
|  | Address Val1, Address Val2, | 
|  | uint64_t Size, | 
|  | llvm::AtomicOrdering SuccessOrder, | 
|  | llvm::AtomicOrdering FailureOrder, | 
|  | llvm::SyncScope::ID Scope) { | 
|  | // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. | 
|  | llvm::Value *Expected = CGF.Builder.CreateLoad(Val1); | 
|  | llvm::Value *Desired = CGF.Builder.CreateLoad(Val2); | 
|  |  | 
|  | llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( | 
|  | Ptr.getPointer(), Expected, Desired, SuccessOrder, FailureOrder, | 
|  | Scope); | 
|  | Pair->setVolatile(E->isVolatile()); | 
|  | Pair->setWeak(IsWeak); | 
|  |  | 
|  | // Cmp holds the result of the compare-exchange operation: true on success, | 
|  | // false on failure. | 
|  | llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0); | 
|  | llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1); | 
|  |  | 
|  | // This basic block is used to hold the store instruction if the operation | 
|  | // failed. | 
|  | llvm::BasicBlock *StoreExpectedBB = | 
|  | CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn); | 
|  |  | 
|  | // This basic block is the exit point of the operation, we should end up | 
|  | // here regardless of whether or not the operation succeeded. | 
|  | llvm::BasicBlock *ContinueBB = | 
|  | CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); | 
|  |  | 
|  | // Update Expected if Expected isn't equal to Old, otherwise branch to the | 
|  | // exit point. | 
|  | CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB); | 
|  |  | 
|  | CGF.Builder.SetInsertPoint(StoreExpectedBB); | 
|  | // Update the memory at Expected with Old's value. | 
|  | CGF.Builder.CreateStore(Old, Val1); | 
|  | // Finally, branch to the exit point. | 
|  | CGF.Builder.CreateBr(ContinueBB); | 
|  |  | 
|  | CGF.Builder.SetInsertPoint(ContinueBB); | 
|  | // Update the memory at Dest with Cmp's value. | 
|  | CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); | 
|  | } | 
|  |  | 
|  | /// Given an ordering required on success, emit all possible cmpxchg | 
|  | /// instructions to cope with the provided (but possibly only dynamically known) | 
|  | /// FailureOrder. | 
|  | static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, | 
|  | bool IsWeak, Address Dest, Address Ptr, | 
|  | Address Val1, Address Val2, | 
|  | llvm::Value *FailureOrderVal, | 
|  | uint64_t Size, | 
|  | llvm::AtomicOrdering SuccessOrder, | 
|  | llvm::SyncScope::ID Scope) { | 
|  | llvm::AtomicOrdering FailureOrder; | 
|  | if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) { | 
|  | auto FOS = FO->getSExtValue(); | 
|  | if (!llvm::isValidAtomicOrderingCABI(FOS)) | 
|  | FailureOrder = llvm::AtomicOrdering::Monotonic; | 
|  | else | 
|  | switch ((llvm::AtomicOrderingCABI)FOS) { | 
|  | case llvm::AtomicOrderingCABI::relaxed: | 
|  | case llvm::AtomicOrderingCABI::release: | 
|  | case llvm::AtomicOrderingCABI::acq_rel: | 
|  | FailureOrder = llvm::AtomicOrdering::Monotonic; | 
|  | break; | 
|  | case llvm::AtomicOrderingCABI::consume: | 
|  | case llvm::AtomicOrderingCABI::acquire: | 
|  | FailureOrder = llvm::AtomicOrdering::Acquire; | 
|  | break; | 
|  | case llvm::AtomicOrderingCABI::seq_cst: | 
|  | FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent; | 
|  | break; | 
|  | } | 
|  | if (isStrongerThan(FailureOrder, SuccessOrder)) { | 
|  | // Don't assert on undefined behavior "failure argument shall be no | 
|  | // stronger than the success argument". | 
|  | FailureOrder = | 
|  | llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder); | 
|  | } | 
|  | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, | 
|  | FailureOrder, Scope); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Create all the relevant BB's | 
|  | llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, | 
|  | *SeqCstBB = nullptr; | 
|  | MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn); | 
|  | if (SuccessOrder != llvm::AtomicOrdering::Monotonic && | 
|  | SuccessOrder != llvm::AtomicOrdering::Release) | 
|  | AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn); | 
|  | if (SuccessOrder == llvm::AtomicOrdering::SequentiallyConsistent) | 
|  | SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn); | 
|  |  | 
|  | llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn); | 
|  |  | 
|  | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB); | 
|  |  | 
|  | // Emit all the different atomics | 
|  |  | 
|  | // MonotonicBB is arbitrarily chosen as the default case; in practice, this | 
|  | // doesn't matter unless someone is crazy enough to use something that | 
|  | // doesn't fold to a constant for the ordering. | 
|  | CGF.Builder.SetInsertPoint(MonotonicBB); | 
|  | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, | 
|  | Size, SuccessOrder, llvm::AtomicOrdering::Monotonic, Scope); | 
|  | CGF.Builder.CreateBr(ContBB); | 
|  |  | 
|  | if (AcquireBB) { | 
|  | CGF.Builder.SetInsertPoint(AcquireBB); | 
|  | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, | 
|  | Size, SuccessOrder, llvm::AtomicOrdering::Acquire, Scope); | 
|  | CGF.Builder.CreateBr(ContBB); | 
|  | SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), | 
|  | AcquireBB); | 
|  | SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), | 
|  | AcquireBB); | 
|  | } | 
|  | if (SeqCstBB) { | 
|  | CGF.Builder.SetInsertPoint(SeqCstBB); | 
|  | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, Scope); | 
|  | CGF.Builder.CreateBr(ContBB); | 
|  | SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), | 
|  | SeqCstBB); | 
|  | } | 
|  |  | 
|  | CGF.Builder.SetInsertPoint(ContBB); | 
|  | } | 
|  |  | 
|  | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, | 
|  | Address Ptr, Address Val1, Address Val2, | 
|  | llvm::Value *IsWeak, llvm::Value *FailureOrder, | 
|  | uint64_t Size, llvm::AtomicOrdering Order, | 
|  | llvm::SyncScope::ID Scope) { | 
|  | llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; | 
|  | llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; | 
|  |  | 
|  | switch (E->getOp()) { | 
|  | case AtomicExpr::AO__c11_atomic_init: | 
|  | case AtomicExpr::AO__opencl_atomic_init: | 
|  | llvm_unreachable("Already handled!"); | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: | 
|  | emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, | 
|  | FailureOrder, Size, Order, Scope); | 
|  | return; | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: | 
|  | emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, | 
|  | FailureOrder, Size, Order, Scope); | 
|  | return; | 
|  | case AtomicExpr::AO__atomic_compare_exchange: | 
|  | case AtomicExpr::AO__atomic_compare_exchange_n: { | 
|  | if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) { | 
|  | emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr, | 
|  | Val1, Val2, FailureOrder, Size, Order, Scope); | 
|  | } else { | 
|  | // Create all the relevant BB's | 
|  | llvm::BasicBlock *StrongBB = | 
|  | CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn); | 
|  | llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn); | 
|  | llvm::BasicBlock *ContBB = | 
|  | CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); | 
|  |  | 
|  | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB); | 
|  | SI->addCase(CGF.Builder.getInt1(false), StrongBB); | 
|  |  | 
|  | CGF.Builder.SetInsertPoint(StrongBB); | 
|  | emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, | 
|  | FailureOrder, Size, Order, Scope); | 
|  | CGF.Builder.CreateBr(ContBB); | 
|  |  | 
|  | CGF.Builder.SetInsertPoint(WeakBB); | 
|  | emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, | 
|  | FailureOrder, Size, Order, Scope); | 
|  | CGF.Builder.CreateBr(ContBB); | 
|  |  | 
|  | CGF.Builder.SetInsertPoint(ContBB); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case AtomicExpr::AO__c11_atomic_load: | 
|  | case AtomicExpr::AO__opencl_atomic_load: | 
|  | case AtomicExpr::AO__atomic_load_n: | 
|  | case AtomicExpr::AO__atomic_load: { | 
|  | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); | 
|  | Load->setAtomic(Order, Scope); | 
|  | Load->setVolatile(E->isVolatile()); | 
|  | CGF.Builder.CreateStore(Load, Dest); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_store: | 
|  | case AtomicExpr::AO__opencl_atomic_store: | 
|  | case AtomicExpr::AO__atomic_store: | 
|  | case AtomicExpr::AO__atomic_store_n: { | 
|  | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); | 
|  | llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); | 
|  | Store->setAtomic(Order, Scope); | 
|  | Store->setVolatile(E->isVolatile()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_exchange: | 
|  | case AtomicExpr::AO__opencl_atomic_exchange: | 
|  | case AtomicExpr::AO__atomic_exchange_n: | 
|  | case AtomicExpr::AO__atomic_exchange: | 
|  | Op = llvm::AtomicRMWInst::Xchg; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_add_fetch: | 
|  | PostOp = llvm::Instruction::Add; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_add: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_add: | 
|  | case AtomicExpr::AO__atomic_fetch_add: | 
|  | Op = llvm::AtomicRMWInst::Add; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_sub_fetch: | 
|  | PostOp = llvm::Instruction::Sub; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_sub: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_sub: | 
|  | case AtomicExpr::AO__atomic_fetch_sub: | 
|  | Op = llvm::AtomicRMWInst::Sub; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_min: | 
|  | case AtomicExpr::AO__atomic_fetch_min: | 
|  | Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Min | 
|  | : llvm::AtomicRMWInst::UMin; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_max: | 
|  | case AtomicExpr::AO__atomic_fetch_max: | 
|  | Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Max | 
|  | : llvm::AtomicRMWInst::UMax; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_and_fetch: | 
|  | PostOp = llvm::Instruction::And; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_and: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_and: | 
|  | case AtomicExpr::AO__atomic_fetch_and: | 
|  | Op = llvm::AtomicRMWInst::And; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_or_fetch: | 
|  | PostOp = llvm::Instruction::Or; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_or: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_or: | 
|  | case AtomicExpr::AO__atomic_fetch_or: | 
|  | Op = llvm::AtomicRMWInst::Or; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_xor_fetch: | 
|  | PostOp = llvm::Instruction::Xor; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__atomic_fetch_xor: | 
|  | Op = llvm::AtomicRMWInst::Xor; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_nand_fetch: | 
|  | PostOp = llvm::Instruction::And; // the NOT is special cased below | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__atomic_fetch_nand: | 
|  | Op = llvm::AtomicRMWInst::Nand; | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); | 
|  | llvm::AtomicRMWInst *RMWI = | 
|  | CGF.Builder.CreateAtomicRMW(Op, Ptr.getPointer(), LoadVal1, Order, Scope); | 
|  | RMWI->setVolatile(E->isVolatile()); | 
|  |  | 
|  | // For __atomic_*_fetch operations, perform the operation again to | 
|  | // determine the value which was written. | 
|  | llvm::Value *Result = RMWI; | 
|  | if (PostOp) | 
|  | Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); | 
|  | if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) | 
|  | Result = CGF.Builder.CreateNot(Result); | 
|  | CGF.Builder.CreateStore(Result, Dest); | 
|  | } | 
|  |  | 
|  | // This function emits any expression (scalar, complex, or aggregate) | 
|  | // into a temporary alloca. | 
|  | static Address | 
|  | EmitValToTemp(CodeGenFunction &CGF, Expr *E) { | 
|  | Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); | 
|  | CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), | 
|  | /*Init*/ true); | 
|  | return DeclPtr; | 
|  | } | 
|  |  | 
|  | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest, | 
|  | Address Ptr, Address Val1, Address Val2, | 
|  | llvm::Value *IsWeak, llvm::Value *FailureOrder, | 
|  | uint64_t Size, llvm::AtomicOrdering Order, | 
|  | llvm::Value *Scope) { | 
|  | auto ScopeModel = Expr->getScopeModel(); | 
|  |  | 
|  | // LLVM atomic instructions always have synch scope. If clang atomic | 
|  | // expression has no scope operand, use default LLVM synch scope. | 
|  | if (!ScopeModel) { | 
|  | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, | 
|  | Order, CGF.CGM.getLLVMContext().getOrInsertSyncScopeID("")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle constant scope. | 
|  | if (auto SC = dyn_cast<llvm::ConstantInt>(Scope)) { | 
|  | auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID( | 
|  | CGF.CGM.getLangOpts(), ScopeModel->map(SC->getZExtValue()), | 
|  | Order, CGF.CGM.getLLVMContext()); | 
|  | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, | 
|  | Order, SCID); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle non-constant scope. | 
|  | auto &Builder = CGF.Builder; | 
|  | auto Scopes = ScopeModel->getRuntimeValues(); | 
|  | llvm::DenseMap<unsigned, llvm::BasicBlock *> BB; | 
|  | for (auto S : Scopes) | 
|  | BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn); | 
|  |  | 
|  | llvm::BasicBlock *ContBB = | 
|  | CGF.createBasicBlock("atomic.scope.continue", CGF.CurFn); | 
|  |  | 
|  | auto *SC = Builder.CreateIntCast(Scope, Builder.getInt32Ty(), false); | 
|  | // If unsupported synch scope is encountered at run time, assume a fallback | 
|  | // synch scope value. | 
|  | auto FallBack = ScopeModel->getFallBackValue(); | 
|  | llvm::SwitchInst *SI = Builder.CreateSwitch(SC, BB[FallBack]); | 
|  | for (auto S : Scopes) { | 
|  | auto *B = BB[S]; | 
|  | if (S != FallBack) | 
|  | SI->addCase(Builder.getInt32(S), B); | 
|  |  | 
|  | Builder.SetInsertPoint(B); | 
|  | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, | 
|  | Order, | 
|  | CGF.getTargetHooks().getLLVMSyncScopeID(CGF.CGM.getLangOpts(), | 
|  | ScopeModel->map(S), | 
|  | Order, | 
|  | CGF.getLLVMContext())); | 
|  | Builder.CreateBr(ContBB); | 
|  | } | 
|  |  | 
|  | Builder.SetInsertPoint(ContBB); | 
|  | } | 
|  |  | 
|  | static void | 
|  | AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args, | 
|  | bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy, | 
|  | SourceLocation Loc, CharUnits SizeInChars) { | 
|  | if (UseOptimizedLibcall) { | 
|  | // Load value and pass it to the function directly. | 
|  | CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy); | 
|  | int64_t SizeInBits = CGF.getContext().toBits(SizeInChars); | 
|  | ValTy = | 
|  | CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false); | 
|  | llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(), | 
|  | SizeInBits)->getPointerTo(); | 
|  | Address Ptr = Address(CGF.Builder.CreateBitCast(Val, IPtrTy), Align); | 
|  | Val = CGF.EmitLoadOfScalar(Ptr, false, | 
|  | CGF.getContext().getPointerType(ValTy), | 
|  | Loc); | 
|  | // Coerce the value into an appropriately sized integer type. | 
|  | Args.add(RValue::get(Val), ValTy); | 
|  | } else { | 
|  | // Non-optimized functions always take a reference. | 
|  | Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)), | 
|  | CGF.getContext().VoidPtrTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) { | 
|  | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); | 
|  | QualType MemTy = AtomicTy; | 
|  | if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) | 
|  | MemTy = AT->getValueType(); | 
|  | llvm::Value *IsWeak = nullptr, *OrderFail = nullptr; | 
|  |  | 
|  | Address Val1 = Address::invalid(); | 
|  | Address Val2 = Address::invalid(); | 
|  | Address Dest = Address::invalid(); | 
|  | Address Ptr = EmitPointerWithAlignment(E->getPtr()); | 
|  |  | 
|  | if (E->getOp() == AtomicExpr::AO__c11_atomic_init || | 
|  | E->getOp() == AtomicExpr::AO__opencl_atomic_init) { | 
|  | LValue lvalue = MakeAddrLValue(Ptr, AtomicTy); | 
|  | EmitAtomicInit(E->getVal1(), lvalue); | 
|  | return RValue::get(nullptr); | 
|  | } | 
|  |  | 
|  | CharUnits sizeChars, alignChars; | 
|  | std::tie(sizeChars, alignChars) = getContext().getTypeInfoInChars(AtomicTy); | 
|  | uint64_t Size = sizeChars.getQuantity(); | 
|  | unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth(); | 
|  |  | 
|  | bool Oversized = getContext().toBits(sizeChars) > MaxInlineWidthInBits; | 
|  | bool Misaligned = (Ptr.getAlignment() % sizeChars) != 0; | 
|  | bool UseLibcall = Misaligned | Oversized; | 
|  |  | 
|  | if (UseLibcall) { | 
|  | CGM.getDiags().Report(E->getBeginLoc(), diag::warn_atomic_op_misaligned) | 
|  | << !Oversized; | 
|  | } | 
|  |  | 
|  | llvm::Value *Order = EmitScalarExpr(E->getOrder()); | 
|  | llvm::Value *Scope = | 
|  | E->getScopeModel() ? EmitScalarExpr(E->getScope()) : nullptr; | 
|  |  | 
|  | switch (E->getOp()) { | 
|  | case AtomicExpr::AO__c11_atomic_init: | 
|  | case AtomicExpr::AO__opencl_atomic_init: | 
|  | llvm_unreachable("Already handled above with EmitAtomicInit!"); | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_load: | 
|  | case AtomicExpr::AO__opencl_atomic_load: | 
|  | case AtomicExpr::AO__atomic_load_n: | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_load: | 
|  | Dest = EmitPointerWithAlignment(E->getVal1()); | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_store: | 
|  | Val1 = EmitPointerWithAlignment(E->getVal1()); | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_exchange: | 
|  | Val1 = EmitPointerWithAlignment(E->getVal1()); | 
|  | Dest = EmitPointerWithAlignment(E->getVal2()); | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: | 
|  | case AtomicExpr::AO__atomic_compare_exchange_n: | 
|  | case AtomicExpr::AO__atomic_compare_exchange: | 
|  | Val1 = EmitPointerWithAlignment(E->getVal1()); | 
|  | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) | 
|  | Val2 = EmitPointerWithAlignment(E->getVal2()); | 
|  | else | 
|  | Val2 = EmitValToTemp(*this, E->getVal2()); | 
|  | OrderFail = EmitScalarExpr(E->getOrderFail()); | 
|  | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n || | 
|  | E->getOp() == AtomicExpr::AO__atomic_compare_exchange) | 
|  | IsWeak = EmitScalarExpr(E->getWeak()); | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_fetch_add: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_sub: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_add: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_sub: | 
|  | if (MemTy->isPointerType()) { | 
|  | // For pointer arithmetic, we're required to do a bit of math: | 
|  | // adding 1 to an int* is not the same as adding 1 to a uintptr_t. | 
|  | // ... but only for the C11 builtins. The GNU builtins expect the | 
|  | // user to multiply by sizeof(T). | 
|  | QualType Val1Ty = E->getVal1()->getType(); | 
|  | llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); | 
|  | CharUnits PointeeIncAmt = | 
|  | getContext().getTypeSizeInChars(MemTy->getPointeeType()); | 
|  | Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); | 
|  | auto Temp = CreateMemTemp(Val1Ty, ".atomictmp"); | 
|  | Val1 = Temp; | 
|  | EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty)); | 
|  | break; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__atomic_fetch_add: | 
|  | case AtomicExpr::AO__atomic_fetch_sub: | 
|  | case AtomicExpr::AO__atomic_add_fetch: | 
|  | case AtomicExpr::AO__atomic_sub_fetch: | 
|  | case AtomicExpr::AO__c11_atomic_store: | 
|  | case AtomicExpr::AO__c11_atomic_exchange: | 
|  | case AtomicExpr::AO__opencl_atomic_store: | 
|  | case AtomicExpr::AO__opencl_atomic_exchange: | 
|  | case AtomicExpr::AO__atomic_store_n: | 
|  | case AtomicExpr::AO__atomic_exchange_n: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_and: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_or: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_and: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_or: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_min: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_max: | 
|  | case AtomicExpr::AO__atomic_fetch_and: | 
|  | case AtomicExpr::AO__atomic_fetch_or: | 
|  | case AtomicExpr::AO__atomic_fetch_xor: | 
|  | case AtomicExpr::AO__atomic_fetch_nand: | 
|  | case AtomicExpr::AO__atomic_and_fetch: | 
|  | case AtomicExpr::AO__atomic_or_fetch: | 
|  | case AtomicExpr::AO__atomic_xor_fetch: | 
|  | case AtomicExpr::AO__atomic_nand_fetch: | 
|  | case AtomicExpr::AO__atomic_fetch_min: | 
|  | case AtomicExpr::AO__atomic_fetch_max: | 
|  | Val1 = EmitValToTemp(*this, E->getVal1()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | QualType RValTy = E->getType().getUnqualifiedType(); | 
|  |  | 
|  | // The inlined atomics only function on iN types, where N is a power of 2. We | 
|  | // need to make sure (via temporaries if necessary) that all incoming values | 
|  | // are compatible. | 
|  | LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy); | 
|  | AtomicInfo Atomics(*this, AtomicVal); | 
|  |  | 
|  | Ptr = Atomics.emitCastToAtomicIntPointer(Ptr); | 
|  | if (Val1.isValid()) Val1 = Atomics.convertToAtomicIntPointer(Val1); | 
|  | if (Val2.isValid()) Val2 = Atomics.convertToAtomicIntPointer(Val2); | 
|  | if (Dest.isValid()) | 
|  | Dest = Atomics.emitCastToAtomicIntPointer(Dest); | 
|  | else if (E->isCmpXChg()) | 
|  | Dest = CreateMemTemp(RValTy, "cmpxchg.bool"); | 
|  | else if (!RValTy->isVoidType()) | 
|  | Dest = Atomics.emitCastToAtomicIntPointer(Atomics.CreateTempAlloca()); | 
|  |  | 
|  | // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . | 
|  | if (UseLibcall) { | 
|  | bool UseOptimizedLibcall = false; | 
|  | switch (E->getOp()) { | 
|  | case AtomicExpr::AO__c11_atomic_init: | 
|  | case AtomicExpr::AO__opencl_atomic_init: | 
|  | llvm_unreachable("Already handled above with EmitAtomicInit!"); | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_fetch_add: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_add: | 
|  | case AtomicExpr::AO__atomic_fetch_add: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_and: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_and: | 
|  | case AtomicExpr::AO__atomic_fetch_and: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_or: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_or: | 
|  | case AtomicExpr::AO__atomic_fetch_or: | 
|  | case AtomicExpr::AO__atomic_fetch_nand: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_sub: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_sub: | 
|  | case AtomicExpr::AO__atomic_fetch_sub: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_min: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_max: | 
|  | case AtomicExpr::AO__atomic_fetch_xor: | 
|  | case AtomicExpr::AO__atomic_add_fetch: | 
|  | case AtomicExpr::AO__atomic_and_fetch: | 
|  | case AtomicExpr::AO__atomic_nand_fetch: | 
|  | case AtomicExpr::AO__atomic_or_fetch: | 
|  | case AtomicExpr::AO__atomic_sub_fetch: | 
|  | case AtomicExpr::AO__atomic_xor_fetch: | 
|  | case AtomicExpr::AO__atomic_fetch_min: | 
|  | case AtomicExpr::AO__atomic_fetch_max: | 
|  | // For these, only library calls for certain sizes exist. | 
|  | UseOptimizedLibcall = true; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_load: | 
|  | case AtomicExpr::AO__atomic_store: | 
|  | case AtomicExpr::AO__atomic_exchange: | 
|  | case AtomicExpr::AO__atomic_compare_exchange: | 
|  | // Use the generic version if we don't know that the operand will be | 
|  | // suitably aligned for the optimized version. | 
|  | if (Misaligned) | 
|  | break; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_load: | 
|  | case AtomicExpr::AO__c11_atomic_store: | 
|  | case AtomicExpr::AO__c11_atomic_exchange: | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: | 
|  | case AtomicExpr::AO__opencl_atomic_load: | 
|  | case AtomicExpr::AO__opencl_atomic_store: | 
|  | case AtomicExpr::AO__opencl_atomic_exchange: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: | 
|  | case AtomicExpr::AO__atomic_load_n: | 
|  | case AtomicExpr::AO__atomic_store_n: | 
|  | case AtomicExpr::AO__atomic_exchange_n: | 
|  | case AtomicExpr::AO__atomic_compare_exchange_n: | 
|  | // Only use optimized library calls for sizes for which they exist. | 
|  | // FIXME: Size == 16 optimized library functions exist too. | 
|  | if (Size == 1 || Size == 2 || Size == 4 || Size == 8) | 
|  | UseOptimizedLibcall = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | CallArgList Args; | 
|  | if (!UseOptimizedLibcall) { | 
|  | // For non-optimized library calls, the size is the first parameter | 
|  | Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), | 
|  | getContext().getSizeType()); | 
|  | } | 
|  | // Atomic address is the first or second parameter | 
|  | // The OpenCL atomic library functions only accept pointer arguments to | 
|  | // generic address space. | 
|  | auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) { | 
|  | if (!E->isOpenCL()) | 
|  | return V; | 
|  | auto AS = PT->castAs<PointerType>()->getPointeeType().getAddressSpace(); | 
|  | if (AS == LangAS::opencl_generic) | 
|  | return V; | 
|  | auto DestAS = getContext().getTargetAddressSpace(LangAS::opencl_generic); | 
|  | auto T = V->getType(); | 
|  | auto *DestType = T->getPointerElementType()->getPointerTo(DestAS); | 
|  |  | 
|  | return getTargetHooks().performAddrSpaceCast( | 
|  | *this, V, AS, LangAS::opencl_generic, DestType, false); | 
|  | }; | 
|  |  | 
|  | Args.add(RValue::get(CastToGenericAddrSpace( | 
|  | EmitCastToVoidPtr(Ptr.getPointer()), E->getPtr()->getType())), | 
|  | getContext().VoidPtrTy); | 
|  |  | 
|  | std::string LibCallName; | 
|  | QualType LoweredMemTy = | 
|  | MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy; | 
|  | QualType RetTy; | 
|  | bool HaveRetTy = false; | 
|  | llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; | 
|  | switch (E->getOp()) { | 
|  | case AtomicExpr::AO__c11_atomic_init: | 
|  | case AtomicExpr::AO__opencl_atomic_init: | 
|  | llvm_unreachable("Already handled!"); | 
|  |  | 
|  | // There is only one libcall for compare an exchange, because there is no | 
|  | // optimisation benefit possible from a libcall version of a weak compare | 
|  | // and exchange. | 
|  | // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, | 
|  | //                                void *desired, int success, int failure) | 
|  | // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired, | 
|  | //                                  int success, int failure) | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: | 
|  | case AtomicExpr::AO__atomic_compare_exchange: | 
|  | case AtomicExpr::AO__atomic_compare_exchange_n: | 
|  | LibCallName = "__atomic_compare_exchange"; | 
|  | RetTy = getContext().BoolTy; | 
|  | HaveRetTy = true; | 
|  | Args.add( | 
|  | RValue::get(CastToGenericAddrSpace( | 
|  | EmitCastToVoidPtr(Val1.getPointer()), E->getVal1()->getType())), | 
|  | getContext().VoidPtrTy); | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(), | 
|  | MemTy, E->getExprLoc(), sizeChars); | 
|  | Args.add(RValue::get(Order), getContext().IntTy); | 
|  | Order = OrderFail; | 
|  | break; | 
|  | // void __atomic_exchange(size_t size, void *mem, void *val, void *return, | 
|  | //                        int order) | 
|  | // T __atomic_exchange_N(T *mem, T val, int order) | 
|  | case AtomicExpr::AO__c11_atomic_exchange: | 
|  | case AtomicExpr::AO__opencl_atomic_exchange: | 
|  | case AtomicExpr::AO__atomic_exchange_n: | 
|  | case AtomicExpr::AO__atomic_exchange: | 
|  | LibCallName = "__atomic_exchange"; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | MemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | // void __atomic_store(size_t size, void *mem, void *val, int order) | 
|  | // void __atomic_store_N(T *mem, T val, int order) | 
|  | case AtomicExpr::AO__c11_atomic_store: | 
|  | case AtomicExpr::AO__opencl_atomic_store: | 
|  | case AtomicExpr::AO__atomic_store: | 
|  | case AtomicExpr::AO__atomic_store_n: | 
|  | LibCallName = "__atomic_store"; | 
|  | RetTy = getContext().VoidTy; | 
|  | HaveRetTy = true; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | MemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | // void __atomic_load(size_t size, void *mem, void *return, int order) | 
|  | // T __atomic_load_N(T *mem, int order) | 
|  | case AtomicExpr::AO__c11_atomic_load: | 
|  | case AtomicExpr::AO__opencl_atomic_load: | 
|  | case AtomicExpr::AO__atomic_load: | 
|  | case AtomicExpr::AO__atomic_load_n: | 
|  | LibCallName = "__atomic_load"; | 
|  | break; | 
|  | // T __atomic_add_fetch_N(T *mem, T val, int order) | 
|  | // T __atomic_fetch_add_N(T *mem, T val, int order) | 
|  | case AtomicExpr::AO__atomic_add_fetch: | 
|  | PostOp = llvm::Instruction::Add; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_add: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_add: | 
|  | case AtomicExpr::AO__atomic_fetch_add: | 
|  | LibCallName = "__atomic_fetch_add"; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | LoweredMemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | // T __atomic_and_fetch_N(T *mem, T val, int order) | 
|  | // T __atomic_fetch_and_N(T *mem, T val, int order) | 
|  | case AtomicExpr::AO__atomic_and_fetch: | 
|  | PostOp = llvm::Instruction::And; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_and: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_and: | 
|  | case AtomicExpr::AO__atomic_fetch_and: | 
|  | LibCallName = "__atomic_fetch_and"; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | MemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | // T __atomic_or_fetch_N(T *mem, T val, int order) | 
|  | // T __atomic_fetch_or_N(T *mem, T val, int order) | 
|  | case AtomicExpr::AO__atomic_or_fetch: | 
|  | PostOp = llvm::Instruction::Or; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_or: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_or: | 
|  | case AtomicExpr::AO__atomic_fetch_or: | 
|  | LibCallName = "__atomic_fetch_or"; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | MemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | // T __atomic_sub_fetch_N(T *mem, T val, int order) | 
|  | // T __atomic_fetch_sub_N(T *mem, T val, int order) | 
|  | case AtomicExpr::AO__atomic_sub_fetch: | 
|  | PostOp = llvm::Instruction::Sub; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_sub: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_sub: | 
|  | case AtomicExpr::AO__atomic_fetch_sub: | 
|  | LibCallName = "__atomic_fetch_sub"; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | LoweredMemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | // T __atomic_xor_fetch_N(T *mem, T val, int order) | 
|  | // T __atomic_fetch_xor_N(T *mem, T val, int order) | 
|  | case AtomicExpr::AO__atomic_xor_fetch: | 
|  | PostOp = llvm::Instruction::Xor; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__atomic_fetch_xor: | 
|  | LibCallName = "__atomic_fetch_xor"; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | MemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | case AtomicExpr::AO__atomic_fetch_min: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_min: | 
|  | LibCallName = E->getValueType()->isSignedIntegerType() | 
|  | ? "__atomic_fetch_min" | 
|  | : "__atomic_fetch_umin"; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | LoweredMemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | case AtomicExpr::AO__atomic_fetch_max: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_max: | 
|  | LibCallName = E->getValueType()->isSignedIntegerType() | 
|  | ? "__atomic_fetch_max" | 
|  | : "__atomic_fetch_umax"; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | LoweredMemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | // T __atomic_nand_fetch_N(T *mem, T val, int order) | 
|  | // T __atomic_fetch_nand_N(T *mem, T val, int order) | 
|  | case AtomicExpr::AO__atomic_nand_fetch: | 
|  | PostOp = llvm::Instruction::And; // the NOT is special cased below | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__atomic_fetch_nand: | 
|  | LibCallName = "__atomic_fetch_nand"; | 
|  | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), | 
|  | MemTy, E->getExprLoc(), sizeChars); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (E->isOpenCL()) { | 
|  | LibCallName = std::string("__opencl") + | 
|  | StringRef(LibCallName).drop_front(1).str(); | 
|  |  | 
|  | } | 
|  | // Optimized functions have the size in their name. | 
|  | if (UseOptimizedLibcall) | 
|  | LibCallName += "_" + llvm::utostr(Size); | 
|  | // By default, assume we return a value of the atomic type. | 
|  | if (!HaveRetTy) { | 
|  | if (UseOptimizedLibcall) { | 
|  | // Value is returned directly. | 
|  | // The function returns an appropriately sized integer type. | 
|  | RetTy = getContext().getIntTypeForBitwidth( | 
|  | getContext().toBits(sizeChars), /*Signed=*/false); | 
|  | } else { | 
|  | // Value is returned through parameter before the order. | 
|  | RetTy = getContext().VoidTy; | 
|  | Args.add(RValue::get(EmitCastToVoidPtr(Dest.getPointer())), | 
|  | getContext().VoidPtrTy); | 
|  | } | 
|  | } | 
|  | // order is always the last parameter | 
|  | Args.add(RValue::get(Order), | 
|  | getContext().IntTy); | 
|  | if (E->isOpenCL()) | 
|  | Args.add(RValue::get(Scope), getContext().IntTy); | 
|  |  | 
|  | // PostOp is only needed for the atomic_*_fetch operations, and | 
|  | // thus is only needed for and implemented in the | 
|  | // UseOptimizedLibcall codepath. | 
|  | assert(UseOptimizedLibcall || !PostOp); | 
|  |  | 
|  | RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args); | 
|  | // The value is returned directly from the libcall. | 
|  | if (E->isCmpXChg()) | 
|  | return Res; | 
|  |  | 
|  | // The value is returned directly for optimized libcalls but the expr | 
|  | // provided an out-param. | 
|  | if (UseOptimizedLibcall && Res.getScalarVal()) { | 
|  | llvm::Value *ResVal = Res.getScalarVal(); | 
|  | if (PostOp) { | 
|  | llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal(); | 
|  | ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1); | 
|  | } | 
|  | if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) | 
|  | ResVal = Builder.CreateNot(ResVal); | 
|  |  | 
|  | Builder.CreateStore( | 
|  | ResVal, | 
|  | Builder.CreateBitCast(Dest, ResVal->getType()->getPointerTo())); | 
|  | } | 
|  |  | 
|  | if (RValTy->isVoidType()) | 
|  | return RValue::get(nullptr); | 
|  |  | 
|  | return convertTempToRValue( | 
|  | Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()), | 
|  | RValTy, E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || | 
|  | E->getOp() == AtomicExpr::AO__opencl_atomic_store || | 
|  | E->getOp() == AtomicExpr::AO__atomic_store || | 
|  | E->getOp() == AtomicExpr::AO__atomic_store_n; | 
|  | bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || | 
|  | E->getOp() == AtomicExpr::AO__opencl_atomic_load || | 
|  | E->getOp() == AtomicExpr::AO__atomic_load || | 
|  | E->getOp() == AtomicExpr::AO__atomic_load_n; | 
|  |  | 
|  | if (isa<llvm::ConstantInt>(Order)) { | 
|  | auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); | 
|  | // We should not ever get to a case where the ordering isn't a valid C ABI | 
|  | // value, but it's hard to enforce that in general. | 
|  | if (llvm::isValidAtomicOrderingCABI(ord)) | 
|  | switch ((llvm::AtomicOrderingCABI)ord) { | 
|  | case llvm::AtomicOrderingCABI::relaxed: | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::Monotonic, Scope); | 
|  | break; | 
|  | case llvm::AtomicOrderingCABI::consume: | 
|  | case llvm::AtomicOrderingCABI::acquire: | 
|  | if (IsStore) | 
|  | break; // Avoid crashing on code with undefined behavior | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::Acquire, Scope); | 
|  | break; | 
|  | case llvm::AtomicOrderingCABI::release: | 
|  | if (IsLoad) | 
|  | break; // Avoid crashing on code with undefined behavior | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::Release, Scope); | 
|  | break; | 
|  | case llvm::AtomicOrderingCABI::acq_rel: | 
|  | if (IsLoad || IsStore) | 
|  | break; // Avoid crashing on code with undefined behavior | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::AcquireRelease, Scope); | 
|  | break; | 
|  | case llvm::AtomicOrderingCABI::seq_cst: | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, Scope); | 
|  | break; | 
|  | } | 
|  | if (RValTy->isVoidType()) | 
|  | return RValue::get(nullptr); | 
|  |  | 
|  | return convertTempToRValue( | 
|  | Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo( | 
|  | Dest.getAddressSpace())), | 
|  | RValTy, E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | // Long case, when Order isn't obviously constant. | 
|  |  | 
|  | // Create all the relevant BB's | 
|  | llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, | 
|  | *ReleaseBB = nullptr, *AcqRelBB = nullptr, | 
|  | *SeqCstBB = nullptr; | 
|  | MonotonicBB = createBasicBlock("monotonic", CurFn); | 
|  | if (!IsStore) | 
|  | AcquireBB = createBasicBlock("acquire", CurFn); | 
|  | if (!IsLoad) | 
|  | ReleaseBB = createBasicBlock("release", CurFn); | 
|  | if (!IsLoad && !IsStore) | 
|  | AcqRelBB = createBasicBlock("acqrel", CurFn); | 
|  | SeqCstBB = createBasicBlock("seqcst", CurFn); | 
|  | llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); | 
|  |  | 
|  | // Create the switch for the split | 
|  | // MonotonicBB is arbitrarily chosen as the default case; in practice, this | 
|  | // doesn't matter unless someone is crazy enough to use something that | 
|  | // doesn't fold to a constant for the ordering. | 
|  | Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); | 
|  | llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); | 
|  |  | 
|  | // Emit all the different atomics | 
|  | Builder.SetInsertPoint(MonotonicBB); | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::Monotonic, Scope); | 
|  | Builder.CreateBr(ContBB); | 
|  | if (!IsStore) { | 
|  | Builder.SetInsertPoint(AcquireBB); | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::Acquire, Scope); | 
|  | Builder.CreateBr(ContBB); | 
|  | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), | 
|  | AcquireBB); | 
|  | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), | 
|  | AcquireBB); | 
|  | } | 
|  | if (!IsLoad) { | 
|  | Builder.SetInsertPoint(ReleaseBB); | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::Release, Scope); | 
|  | Builder.CreateBr(ContBB); | 
|  | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release), | 
|  | ReleaseBB); | 
|  | } | 
|  | if (!IsLoad && !IsStore) { | 
|  | Builder.SetInsertPoint(AcqRelBB); | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::AcquireRelease, Scope); | 
|  | Builder.CreateBr(ContBB); | 
|  | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel), | 
|  | AcqRelBB); | 
|  | } | 
|  | Builder.SetInsertPoint(SeqCstBB); | 
|  | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, | 
|  | llvm::AtomicOrdering::SequentiallyConsistent, Scope); | 
|  | Builder.CreateBr(ContBB); | 
|  | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), | 
|  | SeqCstBB); | 
|  |  | 
|  | // Cleanup and return | 
|  | Builder.SetInsertPoint(ContBB); | 
|  | if (RValTy->isVoidType()) | 
|  | return RValue::get(nullptr); | 
|  |  | 
|  | assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits()); | 
|  | return convertTempToRValue( | 
|  | Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo( | 
|  | Dest.getAddressSpace())), | 
|  | RValTy, E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | Address AtomicInfo::emitCastToAtomicIntPointer(Address addr) const { | 
|  | unsigned addrspace = | 
|  | cast<llvm::PointerType>(addr.getPointer()->getType())->getAddressSpace(); | 
|  | llvm::IntegerType *ty = | 
|  | llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); | 
|  | return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace)); | 
|  | } | 
|  |  | 
|  | Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const { | 
|  | llvm::Type *Ty = Addr.getElementType(); | 
|  | uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty); | 
|  | if (SourceSizeInBits != AtomicSizeInBits) { | 
|  | Address Tmp = CreateTempAlloca(); | 
|  | CGF.Builder.CreateMemCpy(Tmp, Addr, | 
|  | std::min(AtomicSizeInBits, SourceSizeInBits) / 8); | 
|  | Addr = Tmp; | 
|  | } | 
|  |  | 
|  | return emitCastToAtomicIntPointer(Addr); | 
|  | } | 
|  |  | 
|  | RValue AtomicInfo::convertAtomicTempToRValue(Address addr, | 
|  | AggValueSlot resultSlot, | 
|  | SourceLocation loc, | 
|  | bool asValue) const { | 
|  | if (LVal.isSimple()) { | 
|  | if (EvaluationKind == TEK_Aggregate) | 
|  | return resultSlot.asRValue(); | 
|  |  | 
|  | // Drill into the padding structure if we have one. | 
|  | if (hasPadding()) | 
|  | addr = CGF.Builder.CreateStructGEP(addr, 0); | 
|  |  | 
|  | // Otherwise, just convert the temporary to an r-value using the | 
|  | // normal conversion routine. | 
|  | return CGF.convertTempToRValue(addr, getValueType(), loc); | 
|  | } | 
|  | if (!asValue) | 
|  | // Get RValue from temp memory as atomic for non-simple lvalues | 
|  | return RValue::get(CGF.Builder.CreateLoad(addr)); | 
|  | if (LVal.isBitField()) | 
|  | return CGF.EmitLoadOfBitfieldLValue( | 
|  | LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(), | 
|  | LVal.getBaseInfo(), TBAAAccessInfo()), loc); | 
|  | if (LVal.isVectorElt()) | 
|  | return CGF.EmitLoadOfLValue( | 
|  | LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(), | 
|  | LVal.getBaseInfo(), TBAAAccessInfo()), loc); | 
|  | assert(LVal.isExtVectorElt()); | 
|  | return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt( | 
|  | addr, LVal.getExtVectorElts(), LVal.getType(), | 
|  | LVal.getBaseInfo(), TBAAAccessInfo())); | 
|  | } | 
|  |  | 
|  | RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal, | 
|  | AggValueSlot ResultSlot, | 
|  | SourceLocation Loc, | 
|  | bool AsValue) const { | 
|  | // Try not to in some easy cases. | 
|  | assert(IntVal->getType()->isIntegerTy() && "Expected integer value"); | 
|  | if (getEvaluationKind() == TEK_Scalar && | 
|  | (((!LVal.isBitField() || | 
|  | LVal.getBitFieldInfo().Size == ValueSizeInBits) && | 
|  | !hasPadding()) || | 
|  | !AsValue)) { | 
|  | auto *ValTy = AsValue | 
|  | ? CGF.ConvertTypeForMem(ValueTy) | 
|  | : getAtomicAddress().getType()->getPointerElementType(); | 
|  | if (ValTy->isIntegerTy()) { | 
|  | assert(IntVal->getType() == ValTy && "Different integer types."); | 
|  | return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy)); | 
|  | } else if (ValTy->isPointerTy()) | 
|  | return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy)); | 
|  | else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy)) | 
|  | return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy)); | 
|  | } | 
|  |  | 
|  | // Create a temporary.  This needs to be big enough to hold the | 
|  | // atomic integer. | 
|  | Address Temp = Address::invalid(); | 
|  | bool TempIsVolatile = false; | 
|  | if (AsValue && getEvaluationKind() == TEK_Aggregate) { | 
|  | assert(!ResultSlot.isIgnored()); | 
|  | Temp = ResultSlot.getAddress(); | 
|  | TempIsVolatile = ResultSlot.isVolatile(); | 
|  | } else { | 
|  | Temp = CreateTempAlloca(); | 
|  | } | 
|  |  | 
|  | // Slam the integer into the temporary. | 
|  | Address CastTemp = emitCastToAtomicIntPointer(Temp); | 
|  | CGF.Builder.CreateStore(IntVal, CastTemp) | 
|  | ->setVolatile(TempIsVolatile); | 
|  |  | 
|  | return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue); | 
|  | } | 
|  |  | 
|  | void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, | 
|  | llvm::AtomicOrdering AO, bool) { | 
|  | // void __atomic_load(size_t size, void *mem, void *return, int order); | 
|  | CallArgList Args; | 
|  | Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); | 
|  | Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), | 
|  | CGF.getContext().VoidPtrTy); | 
|  | Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)), | 
|  | CGF.getContext().VoidPtrTy); | 
|  | Args.add( | 
|  | RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))), | 
|  | CGF.getContext().IntTy); | 
|  | emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args); | 
|  | } | 
|  |  | 
|  | llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, | 
|  | bool IsVolatile) { | 
|  | // Okay, we're doing this natively. | 
|  | Address Addr = getAtomicAddressAsAtomicIntPointer(); | 
|  | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load"); | 
|  | Load->setAtomic(AO); | 
|  |  | 
|  | // Other decoration. | 
|  | if (IsVolatile) | 
|  | Load->setVolatile(true); | 
|  | CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo()); | 
|  | return Load; | 
|  | } | 
|  |  | 
|  | /// An LValue is a candidate for having its loads and stores be made atomic if | 
|  | /// we are operating under /volatile:ms *and* the LValue itself is volatile and | 
|  | /// performing such an operation can be performed without a libcall. | 
|  | bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { | 
|  | if (!CGM.getCodeGenOpts().MSVolatile) return false; | 
|  | AtomicInfo AI(*this, LV); | 
|  | bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType()); | 
|  | // An atomic is inline if we don't need to use a libcall. | 
|  | bool AtomicIsInline = !AI.shouldUseLibcall(); | 
|  | // MSVC doesn't seem to do this for types wider than a pointer. | 
|  | if (getContext().getTypeSize(LV.getType()) > | 
|  | getContext().getTypeSize(getContext().getIntPtrType())) | 
|  | return false; | 
|  | return IsVolatile && AtomicIsInline; | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, | 
|  | AggValueSlot Slot) { | 
|  | llvm::AtomicOrdering AO; | 
|  | bool IsVolatile = LV.isVolatileQualified(); | 
|  | if (LV.getType()->isAtomicType()) { | 
|  | AO = llvm::AtomicOrdering::SequentiallyConsistent; | 
|  | } else { | 
|  | AO = llvm::AtomicOrdering::Acquire; | 
|  | IsVolatile = true; | 
|  | } | 
|  | return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot); | 
|  | } | 
|  |  | 
|  | RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, | 
|  | bool AsValue, llvm::AtomicOrdering AO, | 
|  | bool IsVolatile) { | 
|  | // Check whether we should use a library call. | 
|  | if (shouldUseLibcall()) { | 
|  | Address TempAddr = Address::invalid(); | 
|  | if (LVal.isSimple() && !ResultSlot.isIgnored()) { | 
|  | assert(getEvaluationKind() == TEK_Aggregate); | 
|  | TempAddr = ResultSlot.getAddress(); | 
|  | } else | 
|  | TempAddr = CreateTempAlloca(); | 
|  |  | 
|  | EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile); | 
|  |  | 
|  | // Okay, turn that back into the original value or whole atomic (for | 
|  | // non-simple lvalues) type. | 
|  | return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue); | 
|  | } | 
|  |  | 
|  | // Okay, we're doing this natively. | 
|  | auto *Load = EmitAtomicLoadOp(AO, IsVolatile); | 
|  |  | 
|  | // If we're ignoring an aggregate return, don't do anything. | 
|  | if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) | 
|  | return RValue::getAggregate(Address::invalid(), false); | 
|  |  | 
|  | // Okay, turn that back into the original value or atomic (for non-simple | 
|  | // lvalues) type. | 
|  | return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue); | 
|  | } | 
|  |  | 
|  | /// Emit a load from an l-value of atomic type.  Note that the r-value | 
|  | /// we produce is an r-value of the atomic *value* type. | 
|  | RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, | 
|  | llvm::AtomicOrdering AO, bool IsVolatile, | 
|  | AggValueSlot resultSlot) { | 
|  | AtomicInfo Atomics(*this, src); | 
|  | return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO, | 
|  | IsVolatile); | 
|  | } | 
|  |  | 
|  | /// Copy an r-value into memory as part of storing to an atomic type. | 
|  | /// This needs to create a bit-pattern suitable for atomic operations. | 
|  | void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { | 
|  | assert(LVal.isSimple()); | 
|  | // If we have an r-value, the rvalue should be of the atomic type, | 
|  | // which means that the caller is responsible for having zeroed | 
|  | // any padding.  Just do an aggregate copy of that type. | 
|  | if (rvalue.isAggregate()) { | 
|  | LValue Dest = CGF.MakeAddrLValue(getAtomicAddress(), getAtomicType()); | 
|  | LValue Src = CGF.MakeAddrLValue(rvalue.getAggregateAddress(), | 
|  | getAtomicType()); | 
|  | bool IsVolatile = rvalue.isVolatileQualified() || | 
|  | LVal.isVolatileQualified(); | 
|  | CGF.EmitAggregateCopy(Dest, Src, getAtomicType(), | 
|  | AggValueSlot::DoesNotOverlap, IsVolatile); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, otherwise we're copying stuff. | 
|  |  | 
|  | // Zero out the buffer if necessary. | 
|  | emitMemSetZeroIfNecessary(); | 
|  |  | 
|  | // Drill past the padding if present. | 
|  | LValue TempLVal = projectValue(); | 
|  |  | 
|  | // Okay, store the rvalue in. | 
|  | if (rvalue.isScalar()) { | 
|  | CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true); | 
|  | } else { | 
|  | CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Materialize an r-value into memory for the purposes of storing it | 
|  | /// to an atomic type. | 
|  | Address AtomicInfo::materializeRValue(RValue rvalue) const { | 
|  | // Aggregate r-values are already in memory, and EmitAtomicStore | 
|  | // requires them to be values of the atomic type. | 
|  | if (rvalue.isAggregate()) | 
|  | return rvalue.getAggregateAddress(); | 
|  |  | 
|  | // Otherwise, make a temporary and materialize into it. | 
|  | LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType()); | 
|  | AtomicInfo Atomics(CGF, TempLV); | 
|  | Atomics.emitCopyIntoMemory(rvalue); | 
|  | return TempLV.getAddress(); | 
|  | } | 
|  |  | 
|  | llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const { | 
|  | // If we've got a scalar value of the right size, try to avoid going | 
|  | // through memory. | 
|  | if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) { | 
|  | llvm::Value *Value = RVal.getScalarVal(); | 
|  | if (isa<llvm::IntegerType>(Value->getType())) | 
|  | return CGF.EmitToMemory(Value, ValueTy); | 
|  | else { | 
|  | llvm::IntegerType *InputIntTy = llvm::IntegerType::get( | 
|  | CGF.getLLVMContext(), | 
|  | LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); | 
|  | if (isa<llvm::PointerType>(Value->getType())) | 
|  | return CGF.Builder.CreatePtrToInt(Value, InputIntTy); | 
|  | else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy)) | 
|  | return CGF.Builder.CreateBitCast(Value, InputIntTy); | 
|  | } | 
|  | } | 
|  | // Otherwise, we need to go through memory. | 
|  | // Put the r-value in memory. | 
|  | Address Addr = materializeRValue(RVal); | 
|  |  | 
|  | // Cast the temporary to the atomic int type and pull a value out. | 
|  | Addr = emitCastToAtomicIntPointer(Addr); | 
|  | return CGF.Builder.CreateLoad(Addr); | 
|  | } | 
|  |  | 
|  | std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( | 
|  | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, | 
|  | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { | 
|  | // Do the atomic store. | 
|  | Address Addr = getAtomicAddressAsAtomicIntPointer(); | 
|  | auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr.getPointer(), | 
|  | ExpectedVal, DesiredVal, | 
|  | Success, Failure); | 
|  | // Other decoration. | 
|  | Inst->setVolatile(LVal.isVolatileQualified()); | 
|  | Inst->setWeak(IsWeak); | 
|  |  | 
|  | // Okay, turn that back into the original value type. | 
|  | auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0); | 
|  | auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1); | 
|  | return std::make_pair(PreviousVal, SuccessFailureVal); | 
|  | } | 
|  |  | 
|  | llvm::Value * | 
|  | AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, | 
|  | llvm::Value *DesiredAddr, | 
|  | llvm::AtomicOrdering Success, | 
|  | llvm::AtomicOrdering Failure) { | 
|  | // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, | 
|  | // void *desired, int success, int failure); | 
|  | CallArgList Args; | 
|  | Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); | 
|  | Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), | 
|  | CGF.getContext().VoidPtrTy); | 
|  | Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)), | 
|  | CGF.getContext().VoidPtrTy); | 
|  | Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)), | 
|  | CGF.getContext().VoidPtrTy); | 
|  | Args.add(RValue::get( | 
|  | llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))), | 
|  | CGF.getContext().IntTy); | 
|  | Args.add(RValue::get( | 
|  | llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))), | 
|  | CGF.getContext().IntTy); | 
|  | auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange", | 
|  | CGF.getContext().BoolTy, Args); | 
|  |  | 
|  | return SuccessFailureRVal.getScalarVal(); | 
|  | } | 
|  |  | 
|  | std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( | 
|  | RValue Expected, RValue Desired, llvm::AtomicOrdering Success, | 
|  | llvm::AtomicOrdering Failure, bool IsWeak) { | 
|  | if (isStrongerThan(Failure, Success)) | 
|  | // Don't assert on undefined behavior "failure argument shall be no stronger | 
|  | // than the success argument". | 
|  | Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success); | 
|  |  | 
|  | // Check whether we should use a library call. | 
|  | if (shouldUseLibcall()) { | 
|  | // Produce a source address. | 
|  | Address ExpectedAddr = materializeRValue(Expected); | 
|  | Address DesiredAddr = materializeRValue(Desired); | 
|  | auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), | 
|  | DesiredAddr.getPointer(), | 
|  | Success, Failure); | 
|  | return std::make_pair( | 
|  | convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(), | 
|  | SourceLocation(), /*AsValue=*/false), | 
|  | Res); | 
|  | } | 
|  |  | 
|  | // If we've got a scalar value of the right size, try to avoid going | 
|  | // through memory. | 
|  | auto *ExpectedVal = convertRValueToInt(Expected); | 
|  | auto *DesiredVal = convertRValueToInt(Desired); | 
|  | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, | 
|  | Failure, IsWeak); | 
|  | return std::make_pair( | 
|  | ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(), | 
|  | SourceLocation(), /*AsValue=*/false), | 
|  | Res.second); | 
|  | } | 
|  |  | 
|  | static void | 
|  | EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, | 
|  | const llvm::function_ref<RValue(RValue)> &UpdateOp, | 
|  | Address DesiredAddr) { | 
|  | RValue UpRVal; | 
|  | LValue AtomicLVal = Atomics.getAtomicLValue(); | 
|  | LValue DesiredLVal; | 
|  | if (AtomicLVal.isSimple()) { | 
|  | UpRVal = OldRVal; | 
|  | DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType()); | 
|  | } else { | 
|  | // Build new lvalue for temp address. | 
|  | Address Ptr = Atomics.materializeRValue(OldRVal); | 
|  | LValue UpdateLVal; | 
|  | if (AtomicLVal.isBitField()) { | 
|  | UpdateLVal = | 
|  | LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(), | 
|  | AtomicLVal.getType(), | 
|  | AtomicLVal.getBaseInfo(), | 
|  | AtomicLVal.getTBAAInfo()); | 
|  | DesiredLVal = | 
|  | LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), | 
|  | AtomicLVal.getType(), AtomicLVal.getBaseInfo(), | 
|  | AtomicLVal.getTBAAInfo()); | 
|  | } else if (AtomicLVal.isVectorElt()) { | 
|  | UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(), | 
|  | AtomicLVal.getType(), | 
|  | AtomicLVal.getBaseInfo(), | 
|  | AtomicLVal.getTBAAInfo()); | 
|  | DesiredLVal = LValue::MakeVectorElt( | 
|  | DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(), | 
|  | AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); | 
|  | } else { | 
|  | assert(AtomicLVal.isExtVectorElt()); | 
|  | UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(), | 
|  | AtomicLVal.getType(), | 
|  | AtomicLVal.getBaseInfo(), | 
|  | AtomicLVal.getTBAAInfo()); | 
|  | DesiredLVal = LValue::MakeExtVectorElt( | 
|  | DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), | 
|  | AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); | 
|  | } | 
|  | UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation()); | 
|  | } | 
|  | // Store new value in the corresponding memory area. | 
|  | RValue NewRVal = UpdateOp(UpRVal); | 
|  | if (NewRVal.isScalar()) { | 
|  | CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal); | 
|  | } else { | 
|  | assert(NewRVal.isComplex()); | 
|  | CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal, | 
|  | /*isInit=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AtomicInfo::EmitAtomicUpdateLibcall( | 
|  | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, | 
|  | bool IsVolatile) { | 
|  | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); | 
|  |  | 
|  | Address ExpectedAddr = CreateTempAlloca(); | 
|  |  | 
|  | EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); | 
|  | auto *ContBB = CGF.createBasicBlock("atomic_cont"); | 
|  | auto *ExitBB = CGF.createBasicBlock("atomic_exit"); | 
|  | CGF.EmitBlock(ContBB); | 
|  | Address DesiredAddr = CreateTempAlloca(); | 
|  | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || | 
|  | requiresMemSetZero(getAtomicAddress().getElementType())) { | 
|  | auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); | 
|  | CGF.Builder.CreateStore(OldVal, DesiredAddr); | 
|  | } | 
|  | auto OldRVal = convertAtomicTempToRValue(ExpectedAddr, | 
|  | AggValueSlot::ignored(), | 
|  | SourceLocation(), /*AsValue=*/false); | 
|  | EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr); | 
|  | auto *Res = | 
|  | EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), | 
|  | DesiredAddr.getPointer(), | 
|  | AO, Failure); | 
|  | CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); | 
|  | CGF.EmitBlock(ExitBB, /*IsFinished=*/true); | 
|  | } | 
|  |  | 
|  | void AtomicInfo::EmitAtomicUpdateOp( | 
|  | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, | 
|  | bool IsVolatile) { | 
|  | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); | 
|  |  | 
|  | // Do the atomic load. | 
|  | auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); | 
|  | // For non-simple lvalues perform compare-and-swap procedure. | 
|  | auto *ContBB = CGF.createBasicBlock("atomic_cont"); | 
|  | auto *ExitBB = CGF.createBasicBlock("atomic_exit"); | 
|  | auto *CurBB = CGF.Builder.GetInsertBlock(); | 
|  | CGF.EmitBlock(ContBB); | 
|  | llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), | 
|  | /*NumReservedValues=*/2); | 
|  | PHI->addIncoming(OldVal, CurBB); | 
|  | Address NewAtomicAddr = CreateTempAlloca(); | 
|  | Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); | 
|  | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || | 
|  | requiresMemSetZero(getAtomicAddress().getElementType())) { | 
|  | CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); | 
|  | } | 
|  | auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(), | 
|  | SourceLocation(), /*AsValue=*/false); | 
|  | EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr); | 
|  | auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); | 
|  | // Try to write new value using cmpxchg operation. | 
|  | auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); | 
|  | PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); | 
|  | CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); | 
|  | CGF.EmitBlock(ExitBB, /*IsFinished=*/true); | 
|  | } | 
|  |  | 
|  | static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, | 
|  | RValue UpdateRVal, Address DesiredAddr) { | 
|  | LValue AtomicLVal = Atomics.getAtomicLValue(); | 
|  | LValue DesiredLVal; | 
|  | // Build new lvalue for temp address. | 
|  | if (AtomicLVal.isBitField()) { | 
|  | DesiredLVal = | 
|  | LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), | 
|  | AtomicLVal.getType(), AtomicLVal.getBaseInfo(), | 
|  | AtomicLVal.getTBAAInfo()); | 
|  | } else if (AtomicLVal.isVectorElt()) { | 
|  | DesiredLVal = | 
|  | LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(), | 
|  | AtomicLVal.getType(), AtomicLVal.getBaseInfo(), | 
|  | AtomicLVal.getTBAAInfo()); | 
|  | } else { | 
|  | assert(AtomicLVal.isExtVectorElt()); | 
|  | DesiredLVal = LValue::MakeExtVectorElt( | 
|  | DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), | 
|  | AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); | 
|  | } | 
|  | // Store new value in the corresponding memory area. | 
|  | assert(UpdateRVal.isScalar()); | 
|  | CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal); | 
|  | } | 
|  |  | 
|  | void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, | 
|  | RValue UpdateRVal, bool IsVolatile) { | 
|  | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); | 
|  |  | 
|  | Address ExpectedAddr = CreateTempAlloca(); | 
|  |  | 
|  | EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); | 
|  | auto *ContBB = CGF.createBasicBlock("atomic_cont"); | 
|  | auto *ExitBB = CGF.createBasicBlock("atomic_exit"); | 
|  | CGF.EmitBlock(ContBB); | 
|  | Address DesiredAddr = CreateTempAlloca(); | 
|  | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || | 
|  | requiresMemSetZero(getAtomicAddress().getElementType())) { | 
|  | auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); | 
|  | CGF.Builder.CreateStore(OldVal, DesiredAddr); | 
|  | } | 
|  | EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr); | 
|  | auto *Res = | 
|  | EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), | 
|  | DesiredAddr.getPointer(), | 
|  | AO, Failure); | 
|  | CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); | 
|  | CGF.EmitBlock(ExitBB, /*IsFinished=*/true); | 
|  | } | 
|  |  | 
|  | void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, | 
|  | bool IsVolatile) { | 
|  | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); | 
|  |  | 
|  | // Do the atomic load. | 
|  | auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); | 
|  | // For non-simple lvalues perform compare-and-swap procedure. | 
|  | auto *ContBB = CGF.createBasicBlock("atomic_cont"); | 
|  | auto *ExitBB = CGF.createBasicBlock("atomic_exit"); | 
|  | auto *CurBB = CGF.Builder.GetInsertBlock(); | 
|  | CGF.EmitBlock(ContBB); | 
|  | llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), | 
|  | /*NumReservedValues=*/2); | 
|  | PHI->addIncoming(OldVal, CurBB); | 
|  | Address NewAtomicAddr = CreateTempAlloca(); | 
|  | Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); | 
|  | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || | 
|  | requiresMemSetZero(getAtomicAddress().getElementType())) { | 
|  | CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); | 
|  | } | 
|  | EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr); | 
|  | auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); | 
|  | // Try to write new value using cmpxchg operation. | 
|  | auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); | 
|  | PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); | 
|  | CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); | 
|  | CGF.EmitBlock(ExitBB, /*IsFinished=*/true); | 
|  | } | 
|  |  | 
|  | void AtomicInfo::EmitAtomicUpdate( | 
|  | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, | 
|  | bool IsVolatile) { | 
|  | if (shouldUseLibcall()) { | 
|  | EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); | 
|  | } else { | 
|  | EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, | 
|  | bool IsVolatile) { | 
|  | if (shouldUseLibcall()) { | 
|  | EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); | 
|  | } else { | 
|  | EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, | 
|  | bool isInit) { | 
|  | bool IsVolatile = lvalue.isVolatileQualified(); | 
|  | llvm::AtomicOrdering AO; | 
|  | if (lvalue.getType()->isAtomicType()) { | 
|  | AO = llvm::AtomicOrdering::SequentiallyConsistent; | 
|  | } else { | 
|  | AO = llvm::AtomicOrdering::Release; | 
|  | IsVolatile = true; | 
|  | } | 
|  | return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); | 
|  | } | 
|  |  | 
|  | /// Emit a store to an l-value of atomic type. | 
|  | /// | 
|  | /// Note that the r-value is expected to be an r-value *of the atomic | 
|  | /// type*; this means that for aggregate r-values, it should include | 
|  | /// storage for any padding that was necessary. | 
|  | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, | 
|  | llvm::AtomicOrdering AO, bool IsVolatile, | 
|  | bool isInit) { | 
|  | // If this is an aggregate r-value, it should agree in type except | 
|  | // maybe for address-space qualification. | 
|  | assert(!rvalue.isAggregate() || | 
|  | rvalue.getAggregateAddress().getElementType() | 
|  | == dest.getAddress().getElementType()); | 
|  |  | 
|  | AtomicInfo atomics(*this, dest); | 
|  | LValue LVal = atomics.getAtomicLValue(); | 
|  |  | 
|  | // If this is an initialization, just put the value there normally. | 
|  | if (LVal.isSimple()) { | 
|  | if (isInit) { | 
|  | atomics.emitCopyIntoMemory(rvalue); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check whether we should use a library call. | 
|  | if (atomics.shouldUseLibcall()) { | 
|  | // Produce a source address. | 
|  | Address srcAddr = atomics.materializeRValue(rvalue); | 
|  |  | 
|  | // void __atomic_store(size_t size, void *mem, void *val, int order) | 
|  | CallArgList args; | 
|  | args.add(RValue::get(atomics.getAtomicSizeValue()), | 
|  | getContext().getSizeType()); | 
|  | args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicPointer())), | 
|  | getContext().VoidPtrTy); | 
|  | args.add(RValue::get(EmitCastToVoidPtr(srcAddr.getPointer())), | 
|  | getContext().VoidPtrTy); | 
|  | args.add( | 
|  | RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))), | 
|  | getContext().IntTy); | 
|  | emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, we're doing this natively. | 
|  | llvm::Value *intValue = atomics.convertRValueToInt(rvalue); | 
|  |  | 
|  | // Do the atomic store. | 
|  | Address addr = | 
|  | atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress()); | 
|  | intValue = Builder.CreateIntCast( | 
|  | intValue, addr.getElementType(), /*isSigned=*/false); | 
|  | llvm::StoreInst *store = Builder.CreateStore(intValue, addr); | 
|  |  | 
|  | // Initializations don't need to be atomic. | 
|  | if (!isInit) | 
|  | store->setAtomic(AO); | 
|  |  | 
|  | // Other decoration. | 
|  | if (IsVolatile) | 
|  | store->setVolatile(true); | 
|  | CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Emit simple atomic update operation. | 
|  | atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile); | 
|  | } | 
|  |  | 
|  | /// Emit a compare-and-exchange op for atomic type. | 
|  | /// | 
|  | std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( | 
|  | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, | 
|  | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, | 
|  | AggValueSlot Slot) { | 
|  | // If this is an aggregate r-value, it should agree in type except | 
|  | // maybe for address-space qualification. | 
|  | assert(!Expected.isAggregate() || | 
|  | Expected.getAggregateAddress().getElementType() == | 
|  | Obj.getAddress().getElementType()); | 
|  | assert(!Desired.isAggregate() || | 
|  | Desired.getAggregateAddress().getElementType() == | 
|  | Obj.getAddress().getElementType()); | 
|  | AtomicInfo Atomics(*this, Obj); | 
|  |  | 
|  | return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, | 
|  | IsWeak); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitAtomicUpdate( | 
|  | LValue LVal, llvm::AtomicOrdering AO, | 
|  | const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { | 
|  | AtomicInfo Atomics(*this, LVal); | 
|  | Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { | 
|  | AtomicInfo atomics(*this, dest); | 
|  |  | 
|  | switch (atomics.getEvaluationKind()) { | 
|  | case TEK_Scalar: { | 
|  | llvm::Value *value = EmitScalarExpr(init); | 
|  | atomics.emitCopyIntoMemory(RValue::get(value)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case TEK_Complex: { | 
|  | ComplexPairTy value = EmitComplexExpr(init); | 
|  | atomics.emitCopyIntoMemory(RValue::getComplex(value)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case TEK_Aggregate: { | 
|  | // Fix up the destination if the initializer isn't an expression | 
|  | // of atomic type. | 
|  | bool Zeroed = false; | 
|  | if (!init->getType()->isAtomicType()) { | 
|  | Zeroed = atomics.emitMemSetZeroIfNecessary(); | 
|  | dest = atomics.projectValue(); | 
|  | } | 
|  |  | 
|  | // Evaluate the expression directly into the destination. | 
|  | AggValueSlot slot = AggValueSlot::forLValue(dest, | 
|  | AggValueSlot::IsNotDestructed, | 
|  | AggValueSlot::DoesNotNeedGCBarriers, | 
|  | AggValueSlot::IsNotAliased, | 
|  | AggValueSlot::DoesNotOverlap, | 
|  | Zeroed ? AggValueSlot::IsZeroed : | 
|  | AggValueSlot::IsNotZeroed); | 
|  |  | 
|  | EmitAggExpr(init, slot); | 
|  | return; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } |