|  | //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This contains code to emit Expr nodes as LLVM code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGCXXABI.h" | 
|  | #include "CGCall.h" | 
|  | #include "CGCleanup.h" | 
|  | #include "CGDebugInfo.h" | 
|  | #include "CGObjCRuntime.h" | 
|  | #include "CGOpenMPRuntime.h" | 
|  | #include "CGRecordLayout.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "ConstantEmitter.h" | 
|  | #include "TargetInfo.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/NSAPI.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/CodeGenOptions.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/Support/ConvertUTF.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/Path.h" | 
|  | #include "llvm/Transforms/Utils/SanitizerStats.h" | 
|  |  | 
|  | #include <string> | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                        Miscellaneous Helper Methods | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { | 
|  | unsigned addressSpace = | 
|  | cast<llvm::PointerType>(value->getType())->getAddressSpace(); | 
|  |  | 
|  | llvm::PointerType *destType = Int8PtrTy; | 
|  | if (addressSpace) | 
|  | destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); | 
|  |  | 
|  | if (value->getType() == destType) return value; | 
|  | return Builder.CreateBitCast(value, destType); | 
|  | } | 
|  |  | 
|  | /// CreateTempAlloca - This creates a alloca and inserts it into the entry | 
|  | /// block. | 
|  | Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, | 
|  | CharUnits Align, | 
|  | const Twine &Name, | 
|  | llvm::Value *ArraySize) { | 
|  | auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); | 
|  | Alloca->setAlignment(Align.getAsAlign()); | 
|  | return Address(Alloca, Align); | 
|  | } | 
|  |  | 
|  | /// CreateTempAlloca - This creates a alloca and inserts it into the entry | 
|  | /// block. The alloca is casted to default address space if necessary. | 
|  | Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, | 
|  | const Twine &Name, | 
|  | llvm::Value *ArraySize, | 
|  | Address *AllocaAddr) { | 
|  | auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); | 
|  | if (AllocaAddr) | 
|  | *AllocaAddr = Alloca; | 
|  | llvm::Value *V = Alloca.getPointer(); | 
|  | // Alloca always returns a pointer in alloca address space, which may | 
|  | // be different from the type defined by the language. For example, | 
|  | // in C++ the auto variables are in the default address space. Therefore | 
|  | // cast alloca to the default address space when necessary. | 
|  | if (getASTAllocaAddressSpace() != LangAS::Default) { | 
|  | auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); | 
|  | llvm::IRBuilderBase::InsertPointGuard IPG(Builder); | 
|  | // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, | 
|  | // otherwise alloca is inserted at the current insertion point of the | 
|  | // builder. | 
|  | if (!ArraySize) | 
|  | Builder.SetInsertPoint(AllocaInsertPt); | 
|  | V = getTargetHooks().performAddrSpaceCast( | 
|  | *this, V, getASTAllocaAddressSpace(), LangAS::Default, | 
|  | Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); | 
|  | } | 
|  |  | 
|  | return Address(V, Align); | 
|  | } | 
|  |  | 
|  | /// CreateTempAlloca - This creates an alloca and inserts it into the entry | 
|  | /// block if \p ArraySize is nullptr, otherwise inserts it at the current | 
|  | /// insertion point of the builder. | 
|  | llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, | 
|  | const Twine &Name, | 
|  | llvm::Value *ArraySize) { | 
|  | if (ArraySize) | 
|  | return Builder.CreateAlloca(Ty, ArraySize, Name); | 
|  | return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), | 
|  | ArraySize, Name, AllocaInsertPt); | 
|  | } | 
|  |  | 
|  | /// CreateDefaultAlignTempAlloca - This creates an alloca with the | 
|  | /// default alignment of the corresponding LLVM type, which is *not* | 
|  | /// guaranteed to be related in any way to the expected alignment of | 
|  | /// an AST type that might have been lowered to Ty. | 
|  | Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, | 
|  | const Twine &Name) { | 
|  | CharUnits Align = | 
|  | CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); | 
|  | return CreateTempAlloca(Ty, Align, Name); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { | 
|  | assert(isa<llvm::AllocaInst>(Var.getPointer())); | 
|  | auto *Store = new llvm::StoreInst(Init, Var.getPointer()); | 
|  | Store->setAlignment(Var.getAlignment().getAsAlign()); | 
|  | llvm::BasicBlock *Block = AllocaInsertPt->getParent(); | 
|  | Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); | 
|  | } | 
|  |  | 
|  | Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { | 
|  | CharUnits Align = getContext().getTypeAlignInChars(Ty); | 
|  | return CreateTempAlloca(ConvertType(Ty), Align, Name); | 
|  | } | 
|  |  | 
|  | Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, | 
|  | Address *Alloca) { | 
|  | // FIXME: Should we prefer the preferred type alignment here? | 
|  | return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); | 
|  | } | 
|  |  | 
|  | Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, | 
|  | const Twine &Name, Address *Alloca) { | 
|  | return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, | 
|  | /*ArraySize=*/nullptr, Alloca); | 
|  | } | 
|  |  | 
|  | Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, | 
|  | const Twine &Name) { | 
|  | return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); | 
|  | } | 
|  |  | 
|  | Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, | 
|  | const Twine &Name) { | 
|  | return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), | 
|  | Name); | 
|  | } | 
|  |  | 
|  | /// EvaluateExprAsBool - Perform the usual unary conversions on the specified | 
|  | /// expression and compare the result against zero, returning an Int1Ty value. | 
|  | llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { | 
|  | PGO.setCurrentStmt(E); | 
|  | if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { | 
|  | llvm::Value *MemPtr = EmitScalarExpr(E); | 
|  | return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); | 
|  | } | 
|  |  | 
|  | QualType BoolTy = getContext().BoolTy; | 
|  | SourceLocation Loc = E->getExprLoc(); | 
|  | if (!E->getType()->isAnyComplexType()) | 
|  | return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); | 
|  |  | 
|  | return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, | 
|  | Loc); | 
|  | } | 
|  |  | 
|  | /// EmitIgnoredExpr - Emit code to compute the specified expression, | 
|  | /// ignoring the result. | 
|  | void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { | 
|  | if (E->isRValue()) | 
|  | return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); | 
|  |  | 
|  | // Just emit it as an l-value and drop the result. | 
|  | EmitLValue(E); | 
|  | } | 
|  |  | 
|  | /// EmitAnyExpr - Emit code to compute the specified expression which | 
|  | /// can have any type.  The result is returned as an RValue struct. | 
|  | /// If this is an aggregate expression, AggSlot indicates where the | 
|  | /// result should be returned. | 
|  | RValue CodeGenFunction::EmitAnyExpr(const Expr *E, | 
|  | AggValueSlot aggSlot, | 
|  | bool ignoreResult) { | 
|  | switch (getEvaluationKind(E->getType())) { | 
|  | case TEK_Scalar: | 
|  | return RValue::get(EmitScalarExpr(E, ignoreResult)); | 
|  | case TEK_Complex: | 
|  | return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); | 
|  | case TEK_Aggregate: | 
|  | if (!ignoreResult && aggSlot.isIgnored()) | 
|  | aggSlot = CreateAggTemp(E->getType(), "agg-temp"); | 
|  | EmitAggExpr(E, aggSlot); | 
|  | return aggSlot.asRValue(); | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will | 
|  | /// always be accessible even if no aggregate location is provided. | 
|  | RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { | 
|  | AggValueSlot AggSlot = AggValueSlot::ignored(); | 
|  |  | 
|  | if (hasAggregateEvaluationKind(E->getType())) | 
|  | AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); | 
|  | return EmitAnyExpr(E, AggSlot); | 
|  | } | 
|  |  | 
|  | /// EmitAnyExprToMem - Evaluate an expression into a given memory | 
|  | /// location. | 
|  | void CodeGenFunction::EmitAnyExprToMem(const Expr *E, | 
|  | Address Location, | 
|  | Qualifiers Quals, | 
|  | bool IsInit) { | 
|  | // FIXME: This function should take an LValue as an argument. | 
|  | switch (getEvaluationKind(E->getType())) { | 
|  | case TEK_Complex: | 
|  | EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), | 
|  | /*isInit*/ false); | 
|  | return; | 
|  |  | 
|  | case TEK_Aggregate: { | 
|  | EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, | 
|  | AggValueSlot::IsDestructed_t(IsInit), | 
|  | AggValueSlot::DoesNotNeedGCBarriers, | 
|  | AggValueSlot::IsAliased_t(!IsInit), | 
|  | AggValueSlot::MayOverlap)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case TEK_Scalar: { | 
|  | RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); | 
|  | LValue LV = MakeAddrLValue(Location, E->getType()); | 
|  | EmitStoreThroughLValue(RV, LV); | 
|  | return; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | static void | 
|  | pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, | 
|  | const Expr *E, Address ReferenceTemporary) { | 
|  | // Objective-C++ ARC: | 
|  | //   If we are binding a reference to a temporary that has ownership, we | 
|  | //   need to perform retain/release operations on the temporary. | 
|  | // | 
|  | // FIXME: This should be looking at E, not M. | 
|  | if (auto Lifetime = M->getType().getObjCLifetime()) { | 
|  | switch (Lifetime) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | // Carry on to normal cleanup handling. | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | // Nothing to do; cleaned up by an autorelease pool. | 
|  | return; | 
|  |  | 
|  | case Qualifiers::OCL_Strong: | 
|  | case Qualifiers::OCL_Weak: | 
|  | switch (StorageDuration Duration = M->getStorageDuration()) { | 
|  | case SD_Static: | 
|  | // Note: we intentionally do not register a cleanup to release | 
|  | // the object on program termination. | 
|  | return; | 
|  |  | 
|  | case SD_Thread: | 
|  | // FIXME: We should probably register a cleanup in this case. | 
|  | return; | 
|  |  | 
|  | case SD_Automatic: | 
|  | case SD_FullExpression: | 
|  | CodeGenFunction::Destroyer *Destroy; | 
|  | CleanupKind CleanupKind; | 
|  | if (Lifetime == Qualifiers::OCL_Strong) { | 
|  | const ValueDecl *VD = M->getExtendingDecl(); | 
|  | bool Precise = | 
|  | VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); | 
|  | CleanupKind = CGF.getARCCleanupKind(); | 
|  | Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise | 
|  | : &CodeGenFunction::destroyARCStrongImprecise; | 
|  | } else { | 
|  | // __weak objects always get EH cleanups; otherwise, exceptions | 
|  | // could cause really nasty crashes instead of mere leaks. | 
|  | CleanupKind = NormalAndEHCleanup; | 
|  | Destroy = &CodeGenFunction::destroyARCWeak; | 
|  | } | 
|  | if (Duration == SD_FullExpression) | 
|  | CGF.pushDestroy(CleanupKind, ReferenceTemporary, | 
|  | M->getType(), *Destroy, | 
|  | CleanupKind & EHCleanup); | 
|  | else | 
|  | CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, | 
|  | M->getType(), | 
|  | *Destroy, CleanupKind & EHCleanup); | 
|  | return; | 
|  |  | 
|  | case SD_Dynamic: | 
|  | llvm_unreachable("temporary cannot have dynamic storage duration"); | 
|  | } | 
|  | llvm_unreachable("unknown storage duration"); | 
|  | } | 
|  | } | 
|  |  | 
|  | CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; | 
|  | if (const RecordType *RT = | 
|  | E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { | 
|  | // Get the destructor for the reference temporary. | 
|  | auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (!ClassDecl->hasTrivialDestructor()) | 
|  | ReferenceTemporaryDtor = ClassDecl->getDestructor(); | 
|  | } | 
|  |  | 
|  | if (!ReferenceTemporaryDtor) | 
|  | return; | 
|  |  | 
|  | // Call the destructor for the temporary. | 
|  | switch (M->getStorageDuration()) { | 
|  | case SD_Static: | 
|  | case SD_Thread: { | 
|  | llvm::FunctionCallee CleanupFn; | 
|  | llvm::Constant *CleanupArg; | 
|  | if (E->getType()->isArrayType()) { | 
|  | CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( | 
|  | ReferenceTemporary, E->getType(), | 
|  | CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, | 
|  | dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); | 
|  | CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); | 
|  | } else { | 
|  | CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( | 
|  | GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); | 
|  | CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); | 
|  | } | 
|  | CGF.CGM.getCXXABI().registerGlobalDtor( | 
|  | CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case SD_FullExpression: | 
|  | CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), | 
|  | CodeGenFunction::destroyCXXObject, | 
|  | CGF.getLangOpts().Exceptions); | 
|  | break; | 
|  |  | 
|  | case SD_Automatic: | 
|  | CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, | 
|  | ReferenceTemporary, E->getType(), | 
|  | CodeGenFunction::destroyCXXObject, | 
|  | CGF.getLangOpts().Exceptions); | 
|  | break; | 
|  |  | 
|  | case SD_Dynamic: | 
|  | llvm_unreachable("temporary cannot have dynamic storage duration"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static Address createReferenceTemporary(CodeGenFunction &CGF, | 
|  | const MaterializeTemporaryExpr *M, | 
|  | const Expr *Inner, | 
|  | Address *Alloca = nullptr) { | 
|  | auto &TCG = CGF.getTargetHooks(); | 
|  | switch (M->getStorageDuration()) { | 
|  | case SD_FullExpression: | 
|  | case SD_Automatic: { | 
|  | // If we have a constant temporary array or record try to promote it into a | 
|  | // constant global under the same rules a normal constant would've been | 
|  | // promoted. This is easier on the optimizer and generally emits fewer | 
|  | // instructions. | 
|  | QualType Ty = Inner->getType(); | 
|  | if (CGF.CGM.getCodeGenOpts().MergeAllConstants && | 
|  | (Ty->isArrayType() || Ty->isRecordType()) && | 
|  | CGF.CGM.isTypeConstant(Ty, true)) | 
|  | if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { | 
|  | if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { | 
|  | auto AS = AddrSpace.getValue(); | 
|  | auto *GV = new llvm::GlobalVariable( | 
|  | CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, | 
|  | llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, | 
|  | llvm::GlobalValue::NotThreadLocal, | 
|  | CGF.getContext().getTargetAddressSpace(AS)); | 
|  | CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); | 
|  | GV->setAlignment(alignment.getAsAlign()); | 
|  | llvm::Constant *C = GV; | 
|  | if (AS != LangAS::Default) | 
|  | C = TCG.performAddrSpaceCast( | 
|  | CGF.CGM, GV, AS, LangAS::Default, | 
|  | GV->getValueType()->getPointerTo( | 
|  | CGF.getContext().getTargetAddressSpace(LangAS::Default))); | 
|  | // FIXME: Should we put the new global into a COMDAT? | 
|  | return Address(C, alignment); | 
|  | } | 
|  | } | 
|  | return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); | 
|  | } | 
|  | case SD_Thread: | 
|  | case SD_Static: | 
|  | return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); | 
|  |  | 
|  | case SD_Dynamic: | 
|  | llvm_unreachable("temporary can't have dynamic storage duration"); | 
|  | } | 
|  | llvm_unreachable("unknown storage duration"); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction:: | 
|  | EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { | 
|  | const Expr *E = M->GetTemporaryExpr(); | 
|  |  | 
|  | assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || | 
|  | !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && | 
|  | "Reference should never be pseudo-strong!"); | 
|  |  | 
|  | // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so | 
|  | // as that will cause the lifetime adjustment to be lost for ARC | 
|  | auto ownership = M->getType().getObjCLifetime(); | 
|  | if (ownership != Qualifiers::OCL_None && | 
|  | ownership != Qualifiers::OCL_ExplicitNone) { | 
|  | Address Object = createReferenceTemporary(*this, M, E); | 
|  | if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { | 
|  | Object = Address(llvm::ConstantExpr::getBitCast(Var, | 
|  | ConvertTypeForMem(E->getType()) | 
|  | ->getPointerTo(Object.getAddressSpace())), | 
|  | Object.getAlignment()); | 
|  |  | 
|  | // createReferenceTemporary will promote the temporary to a global with a | 
|  | // constant initializer if it can.  It can only do this to a value of | 
|  | // ARC-manageable type if the value is global and therefore "immune" to | 
|  | // ref-counting operations.  Therefore we have no need to emit either a | 
|  | // dynamic initialization or a cleanup and we can just return the address | 
|  | // of the temporary. | 
|  | if (Var->hasInitializer()) | 
|  | return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); | 
|  |  | 
|  | Var->setInitializer(CGM.EmitNullConstant(E->getType())); | 
|  | } | 
|  | LValue RefTempDst = MakeAddrLValue(Object, M->getType(), | 
|  | AlignmentSource::Decl); | 
|  |  | 
|  | switch (getEvaluationKind(E->getType())) { | 
|  | default: llvm_unreachable("expected scalar or aggregate expression"); | 
|  | case TEK_Scalar: | 
|  | EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); | 
|  | break; | 
|  | case TEK_Aggregate: { | 
|  | EmitAggExpr(E, AggValueSlot::forAddr(Object, | 
|  | E->getType().getQualifiers(), | 
|  | AggValueSlot::IsDestructed, | 
|  | AggValueSlot::DoesNotNeedGCBarriers, | 
|  | AggValueSlot::IsNotAliased, | 
|  | AggValueSlot::DoesNotOverlap)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | pushTemporaryCleanup(*this, M, E, Object); | 
|  | return RefTempDst; | 
|  | } | 
|  |  | 
|  | SmallVector<const Expr *, 2> CommaLHSs; | 
|  | SmallVector<SubobjectAdjustment, 2> Adjustments; | 
|  | E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); | 
|  |  | 
|  | for (const auto &Ignored : CommaLHSs) | 
|  | EmitIgnoredExpr(Ignored); | 
|  |  | 
|  | if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { | 
|  | if (opaque->getType()->isRecordType()) { | 
|  | assert(Adjustments.empty()); | 
|  | return EmitOpaqueValueLValue(opaque); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create and initialize the reference temporary. | 
|  | Address Alloca = Address::invalid(); | 
|  | Address Object = createReferenceTemporary(*this, M, E, &Alloca); | 
|  | if (auto *Var = dyn_cast<llvm::GlobalVariable>( | 
|  | Object.getPointer()->stripPointerCasts())) { | 
|  | Object = Address(llvm::ConstantExpr::getBitCast( | 
|  | cast<llvm::Constant>(Object.getPointer()), | 
|  | ConvertTypeForMem(E->getType())->getPointerTo()), | 
|  | Object.getAlignment()); | 
|  | // If the temporary is a global and has a constant initializer or is a | 
|  | // constant temporary that we promoted to a global, we may have already | 
|  | // initialized it. | 
|  | if (!Var->hasInitializer()) { | 
|  | Var->setInitializer(CGM.EmitNullConstant(E->getType())); | 
|  | EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); | 
|  | } | 
|  | } else { | 
|  | switch (M->getStorageDuration()) { | 
|  | case SD_Automatic: | 
|  | if (auto *Size = EmitLifetimeStart( | 
|  | CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), | 
|  | Alloca.getPointer())) { | 
|  | pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, | 
|  | Alloca, Size); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SD_FullExpression: { | 
|  | if (!ShouldEmitLifetimeMarkers) | 
|  | break; | 
|  |  | 
|  | // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end | 
|  | // marker. Instead, start the lifetime of a conditional temporary earlier | 
|  | // so that it's unconditional. Don't do this with sanitizers which need | 
|  | // more precise lifetime marks. | 
|  | ConditionalEvaluation *OldConditional = nullptr; | 
|  | CGBuilderTy::InsertPoint OldIP; | 
|  | if (isInConditionalBranch() && !E->getType().isDestructedType() && | 
|  | !SanOpts.has(SanitizerKind::HWAddress) && | 
|  | !SanOpts.has(SanitizerKind::Memory) && | 
|  | !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { | 
|  | OldConditional = OutermostConditional; | 
|  | OutermostConditional = nullptr; | 
|  |  | 
|  | OldIP = Builder.saveIP(); | 
|  | llvm::BasicBlock *Block = OldConditional->getStartingBlock(); | 
|  | Builder.restoreIP(CGBuilderTy::InsertPoint( | 
|  | Block, llvm::BasicBlock::iterator(Block->back()))); | 
|  | } | 
|  |  | 
|  | if (auto *Size = EmitLifetimeStart( | 
|  | CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), | 
|  | Alloca.getPointer())) { | 
|  | pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, | 
|  | Size); | 
|  | } | 
|  |  | 
|  | if (OldConditional) { | 
|  | OutermostConditional = OldConditional; | 
|  | Builder.restoreIP(OldIP); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); | 
|  | } | 
|  | pushTemporaryCleanup(*this, M, E, Object); | 
|  |  | 
|  | // Perform derived-to-base casts and/or field accesses, to get from the | 
|  | // temporary object we created (and, potentially, for which we extended | 
|  | // the lifetime) to the subobject we're binding the reference to. | 
|  | for (unsigned I = Adjustments.size(); I != 0; --I) { | 
|  | SubobjectAdjustment &Adjustment = Adjustments[I-1]; | 
|  | switch (Adjustment.Kind) { | 
|  | case SubobjectAdjustment::DerivedToBaseAdjustment: | 
|  | Object = | 
|  | GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, | 
|  | Adjustment.DerivedToBase.BasePath->path_begin(), | 
|  | Adjustment.DerivedToBase.BasePath->path_end(), | 
|  | /*NullCheckValue=*/ false, E->getExprLoc()); | 
|  | break; | 
|  |  | 
|  | case SubobjectAdjustment::FieldAdjustment: { | 
|  | LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); | 
|  | LV = EmitLValueForField(LV, Adjustment.Field); | 
|  | assert(LV.isSimple() && | 
|  | "materialized temporary field is not a simple lvalue"); | 
|  | Object = LV.getAddress(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case SubobjectAdjustment::MemberPointerAdjustment: { | 
|  | llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); | 
|  | Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, | 
|  | Adjustment.Ptr.MPT); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | RValue | 
|  | CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { | 
|  | // Emit the expression as an lvalue. | 
|  | LValue LV = EmitLValue(E); | 
|  | assert(LV.isSimple()); | 
|  | llvm::Value *Value = LV.getPointer(); | 
|  |  | 
|  | if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { | 
|  | // C++11 [dcl.ref]p5 (as amended by core issue 453): | 
|  | //   If a glvalue to which a reference is directly bound designates neither | 
|  | //   an existing object or function of an appropriate type nor a region of | 
|  | //   storage of suitable size and alignment to contain an object of the | 
|  | //   reference's type, the behavior is undefined. | 
|  | QualType Ty = E->getType(); | 
|  | EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); | 
|  | } | 
|  |  | 
|  | return RValue::get(Value); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getAccessedFieldNo - Given an encoded value and a result number, return the | 
|  | /// input field number being accessed. | 
|  | unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, | 
|  | const llvm::Constant *Elts) { | 
|  | return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) | 
|  | ->getZExtValue(); | 
|  | } | 
|  |  | 
|  | /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. | 
|  | static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, | 
|  | llvm::Value *High) { | 
|  | llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); | 
|  | llvm::Value *K47 = Builder.getInt64(47); | 
|  | llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); | 
|  | llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); | 
|  | llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); | 
|  | llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); | 
|  | return Builder.CreateMul(B1, KMul); | 
|  | } | 
|  |  | 
|  | bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { | 
|  | return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || | 
|  | TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; | 
|  | } | 
|  |  | 
|  | bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { | 
|  | CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); | 
|  | return (RD && RD->hasDefinition() && RD->isDynamicClass()) && | 
|  | (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || | 
|  | TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || | 
|  | TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); | 
|  | } | 
|  |  | 
|  | bool CodeGenFunction::sanitizePerformTypeCheck() const { | 
|  | return SanOpts.has(SanitizerKind::Null) | | 
|  | SanOpts.has(SanitizerKind::Alignment) | | 
|  | SanOpts.has(SanitizerKind::ObjectSize) | | 
|  | SanOpts.has(SanitizerKind::Vptr); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, | 
|  | llvm::Value *Ptr, QualType Ty, | 
|  | CharUnits Alignment, | 
|  | SanitizerSet SkippedChecks, | 
|  | llvm::Value *ArraySize) { | 
|  | if (!sanitizePerformTypeCheck()) | 
|  | return; | 
|  |  | 
|  | // Don't check pointers outside the default address space. The null check | 
|  | // isn't correct, the object-size check isn't supported by LLVM, and we can't | 
|  | // communicate the addresses to the runtime handler for the vptr check. | 
|  | if (Ptr->getType()->getPointerAddressSpace()) | 
|  | return; | 
|  |  | 
|  | // Don't check pointers to volatile data. The behavior here is implementation- | 
|  | // defined. | 
|  | if (Ty.isVolatileQualified()) | 
|  | return; | 
|  |  | 
|  | SanitizerScope SanScope(this); | 
|  |  | 
|  | SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; | 
|  | llvm::BasicBlock *Done = nullptr; | 
|  |  | 
|  | // Quickly determine whether we have a pointer to an alloca. It's possible | 
|  | // to skip null checks, and some alignment checks, for these pointers. This | 
|  | // can reduce compile-time significantly. | 
|  | auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); | 
|  |  | 
|  | llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); | 
|  | llvm::Value *IsNonNull = nullptr; | 
|  | bool IsGuaranteedNonNull = | 
|  | SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; | 
|  | bool AllowNullPointers = isNullPointerAllowed(TCK); | 
|  | if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && | 
|  | !IsGuaranteedNonNull) { | 
|  | // The glvalue must not be an empty glvalue. | 
|  | IsNonNull = Builder.CreateIsNotNull(Ptr); | 
|  |  | 
|  | // The IR builder can constant-fold the null check if the pointer points to | 
|  | // a constant. | 
|  | IsGuaranteedNonNull = IsNonNull == True; | 
|  |  | 
|  | // Skip the null check if the pointer is known to be non-null. | 
|  | if (!IsGuaranteedNonNull) { | 
|  | if (AllowNullPointers) { | 
|  | // When performing pointer casts, it's OK if the value is null. | 
|  | // Skip the remaining checks in that case. | 
|  | Done = createBasicBlock("null"); | 
|  | llvm::BasicBlock *Rest = createBasicBlock("not.null"); | 
|  | Builder.CreateCondBr(IsNonNull, Rest, Done); | 
|  | EmitBlock(Rest); | 
|  | } else { | 
|  | Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SanOpts.has(SanitizerKind::ObjectSize) && | 
|  | !SkippedChecks.has(SanitizerKind::ObjectSize) && | 
|  | !Ty->isIncompleteType()) { | 
|  | uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity(); | 
|  | llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); | 
|  | if (ArraySize) | 
|  | Size = Builder.CreateMul(Size, ArraySize); | 
|  |  | 
|  | // Degenerate case: new X[0] does not need an objectsize check. | 
|  | llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); | 
|  | if (!ConstantSize || !ConstantSize->isNullValue()) { | 
|  | // The glvalue must refer to a large enough storage region. | 
|  | // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation | 
|  | //        to check this. | 
|  | // FIXME: Get object address space | 
|  | llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; | 
|  | llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); | 
|  | llvm::Value *Min = Builder.getFalse(); | 
|  | llvm::Value *NullIsUnknown = Builder.getFalse(); | 
|  | llvm::Value *Dynamic = Builder.getFalse(); | 
|  | llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); | 
|  | llvm::Value *LargeEnough = Builder.CreateICmpUGE( | 
|  | Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); | 
|  | Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t AlignVal = 0; | 
|  | llvm::Value *PtrAsInt = nullptr; | 
|  |  | 
|  | if (SanOpts.has(SanitizerKind::Alignment) && | 
|  | !SkippedChecks.has(SanitizerKind::Alignment)) { | 
|  | AlignVal = Alignment.getQuantity(); | 
|  | if (!Ty->isIncompleteType() && !AlignVal) | 
|  | AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); | 
|  |  | 
|  | // The glvalue must be suitably aligned. | 
|  | if (AlignVal > 1 && | 
|  | (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { | 
|  | PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); | 
|  | llvm::Value *Align = Builder.CreateAnd( | 
|  | PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); | 
|  | llvm::Value *Aligned = | 
|  | Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); | 
|  | if (Aligned != True) | 
|  | Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Checks.size() > 0) { | 
|  | // Make sure we're not losing information. Alignment needs to be a power of | 
|  | // 2 | 
|  | assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); | 
|  | llvm::Constant *StaticData[] = { | 
|  | EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), | 
|  | llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), | 
|  | llvm::ConstantInt::get(Int8Ty, TCK)}; | 
|  | EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, | 
|  | PtrAsInt ? PtrAsInt : Ptr); | 
|  | } | 
|  |  | 
|  | // If possible, check that the vptr indicates that there is a subobject of | 
|  | // type Ty at offset zero within this object. | 
|  | // | 
|  | // C++11 [basic.life]p5,6: | 
|  | //   [For storage which does not refer to an object within its lifetime] | 
|  | //   The program has undefined behavior if: | 
|  | //    -- the [pointer or glvalue] is used to access a non-static data member | 
|  | //       or call a non-static member function | 
|  | if (SanOpts.has(SanitizerKind::Vptr) && | 
|  | !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { | 
|  | // Ensure that the pointer is non-null before loading it. If there is no | 
|  | // compile-time guarantee, reuse the run-time null check or emit a new one. | 
|  | if (!IsGuaranteedNonNull) { | 
|  | if (!IsNonNull) | 
|  | IsNonNull = Builder.CreateIsNotNull(Ptr); | 
|  | if (!Done) | 
|  | Done = createBasicBlock("vptr.null"); | 
|  | llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); | 
|  | Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); | 
|  | EmitBlock(VptrNotNull); | 
|  | } | 
|  |  | 
|  | // Compute a hash of the mangled name of the type. | 
|  | // | 
|  | // FIXME: This is not guaranteed to be deterministic! Move to a | 
|  | //        fingerprinting mechanism once LLVM provides one. For the time | 
|  | //        being the implementation happens to be deterministic. | 
|  | SmallString<64> MangledName; | 
|  | llvm::raw_svector_ostream Out(MangledName); | 
|  | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), | 
|  | Out); | 
|  |  | 
|  | // Blacklist based on the mangled type. | 
|  | if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( | 
|  | SanitizerKind::Vptr, Out.str())) { | 
|  | llvm::hash_code TypeHash = hash_value(Out.str()); | 
|  |  | 
|  | // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). | 
|  | llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); | 
|  | llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); | 
|  | Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); | 
|  | llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); | 
|  | llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); | 
|  |  | 
|  | llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); | 
|  | Hash = Builder.CreateTrunc(Hash, IntPtrTy); | 
|  |  | 
|  | // Look the hash up in our cache. | 
|  | const int CacheSize = 128; | 
|  | llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); | 
|  | llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, | 
|  | "__ubsan_vptr_type_cache"); | 
|  | llvm::Value *Slot = Builder.CreateAnd(Hash, | 
|  | llvm::ConstantInt::get(IntPtrTy, | 
|  | CacheSize-1)); | 
|  | llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; | 
|  | llvm::Value *CacheVal = | 
|  | Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), | 
|  | getPointerAlign()); | 
|  |  | 
|  | // If the hash isn't in the cache, call a runtime handler to perform the | 
|  | // hard work of checking whether the vptr is for an object of the right | 
|  | // type. This will either fill in the cache and return, or produce a | 
|  | // diagnostic. | 
|  | llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); | 
|  | llvm::Constant *StaticData[] = { | 
|  | EmitCheckSourceLocation(Loc), | 
|  | EmitCheckTypeDescriptor(Ty), | 
|  | CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), | 
|  | llvm::ConstantInt::get(Int8Ty, TCK) | 
|  | }; | 
|  | llvm::Value *DynamicData[] = { Ptr, Hash }; | 
|  | EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), | 
|  | SanitizerHandler::DynamicTypeCacheMiss, StaticData, | 
|  | DynamicData); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Done) { | 
|  | Builder.CreateBr(Done); | 
|  | EmitBlock(Done); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine whether this expression refers to a flexible array member in a | 
|  | /// struct. We disable array bounds checks for such members. | 
|  | static bool isFlexibleArrayMemberExpr(const Expr *E) { | 
|  | // For compatibility with existing code, we treat arrays of length 0 or | 
|  | // 1 as flexible array members. | 
|  | const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); | 
|  | if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { | 
|  | if (CAT->getSize().ugt(1)) | 
|  | return false; | 
|  | } else if (!isa<IncompleteArrayType>(AT)) | 
|  | return false; | 
|  |  | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | // A flexible array member must be the last member in the class. | 
|  | if (const auto *ME = dyn_cast<MemberExpr>(E)) { | 
|  | // FIXME: If the base type of the member expr is not FD->getParent(), | 
|  | // this should not be treated as a flexible array member access. | 
|  | if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { | 
|  | RecordDecl::field_iterator FI( | 
|  | DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); | 
|  | return ++FI == FD->getParent()->field_end(); | 
|  | } | 
|  | } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { | 
|  | return IRE->getDecl()->getNextIvar() == nullptr; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, | 
|  | QualType EltTy) { | 
|  | ASTContext &C = getContext(); | 
|  | uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); | 
|  | if (!EltSize) | 
|  | return nullptr; | 
|  |  | 
|  | auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); | 
|  | if (!ArrayDeclRef) | 
|  | return nullptr; | 
|  |  | 
|  | auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); | 
|  | if (!ParamDecl) | 
|  | return nullptr; | 
|  |  | 
|  | auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); | 
|  | if (!POSAttr) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't load the size if it's a lower bound. | 
|  | int POSType = POSAttr->getType(); | 
|  | if (POSType != 0 && POSType != 1) | 
|  | return nullptr; | 
|  |  | 
|  | // Find the implicit size parameter. | 
|  | auto PassedSizeIt = SizeArguments.find(ParamDecl); | 
|  | if (PassedSizeIt == SizeArguments.end()) | 
|  | return nullptr; | 
|  |  | 
|  | const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; | 
|  | assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); | 
|  | Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; | 
|  | llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, | 
|  | C.getSizeType(), E->getExprLoc()); | 
|  | llvm::Value *SizeOfElement = | 
|  | llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); | 
|  | return Builder.CreateUDiv(SizeInBytes, SizeOfElement); | 
|  | } | 
|  |  | 
|  | /// If Base is known to point to the start of an array, return the length of | 
|  | /// that array. Return 0 if the length cannot be determined. | 
|  | static llvm::Value *getArrayIndexingBound( | 
|  | CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { | 
|  | // For the vector indexing extension, the bound is the number of elements. | 
|  | if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { | 
|  | IndexedType = Base->getType(); | 
|  | return CGF.Builder.getInt32(VT->getNumElements()); | 
|  | } | 
|  |  | 
|  | Base = Base->IgnoreParens(); | 
|  |  | 
|  | if (const auto *CE = dyn_cast<CastExpr>(Base)) { | 
|  | if (CE->getCastKind() == CK_ArrayToPointerDecay && | 
|  | !isFlexibleArrayMemberExpr(CE->getSubExpr())) { | 
|  | IndexedType = CE->getSubExpr()->getType(); | 
|  | const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); | 
|  | if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) | 
|  | return CGF.Builder.getInt(CAT->getSize()); | 
|  | else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) | 
|  | return CGF.getVLASize(VAT).NumElts; | 
|  | // Ignore pass_object_size here. It's not applicable on decayed pointers. | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; | 
|  | if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { | 
|  | IndexedType = Base->getType(); | 
|  | return POS; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, | 
|  | llvm::Value *Index, QualType IndexType, | 
|  | bool Accessed) { | 
|  | assert(SanOpts.has(SanitizerKind::ArrayBounds) && | 
|  | "should not be called unless adding bounds checks"); | 
|  | SanitizerScope SanScope(this); | 
|  |  | 
|  | QualType IndexedType; | 
|  | llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); | 
|  | if (!Bound) | 
|  | return; | 
|  |  | 
|  | bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); | 
|  | llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); | 
|  | llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); | 
|  |  | 
|  | llvm::Constant *StaticData[] = { | 
|  | EmitCheckSourceLocation(E->getExprLoc()), | 
|  | EmitCheckTypeDescriptor(IndexedType), | 
|  | EmitCheckTypeDescriptor(IndexType) | 
|  | }; | 
|  | llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) | 
|  | : Builder.CreateICmpULE(IndexVal, BoundVal); | 
|  | EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), | 
|  | SanitizerHandler::OutOfBounds, StaticData, Index); | 
|  | } | 
|  |  | 
|  |  | 
|  | CodeGenFunction::ComplexPairTy CodeGenFunction:: | 
|  | EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, | 
|  | bool isInc, bool isPre) { | 
|  | ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); | 
|  |  | 
|  | llvm::Value *NextVal; | 
|  | if (isa<llvm::IntegerType>(InVal.first->getType())) { | 
|  | uint64_t AmountVal = isInc ? 1 : -1; | 
|  | NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); | 
|  |  | 
|  | // Add the inc/dec to the real part. | 
|  | NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); | 
|  | } else { | 
|  | QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); | 
|  | llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); | 
|  | if (!isInc) | 
|  | FVal.changeSign(); | 
|  | NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); | 
|  |  | 
|  | // Add the inc/dec to the real part. | 
|  | NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); | 
|  | } | 
|  |  | 
|  | ComplexPairTy IncVal(NextVal, InVal.second); | 
|  |  | 
|  | // Store the updated result through the lvalue. | 
|  | EmitStoreOfComplex(IncVal, LV, /*init*/ false); | 
|  |  | 
|  | // If this is a postinc, return the value read from memory, otherwise use the | 
|  | // updated value. | 
|  | return isPre ? IncVal : InVal; | 
|  | } | 
|  |  | 
|  | void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, | 
|  | CodeGenFunction *CGF) { | 
|  | // Bind VLAs in the cast type. | 
|  | if (CGF && E->getType()->isVariablyModifiedType()) | 
|  | CGF->EmitVariablyModifiedType(E->getType()); | 
|  |  | 
|  | if (CGDebugInfo *DI = getModuleDebugInfo()) | 
|  | DI->EmitExplicitCastType(E->getType()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         LValue Expression Emission | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// EmitPointerWithAlignment - Given an expression of pointer type, try to | 
|  | /// derive a more accurate bound on the alignment of the pointer. | 
|  | Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, | 
|  | LValueBaseInfo *BaseInfo, | 
|  | TBAAAccessInfo *TBAAInfo) { | 
|  | // We allow this with ObjC object pointers because of fragile ABIs. | 
|  | assert(E->getType()->isPointerType() || | 
|  | E->getType()->isObjCObjectPointerType()); | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | // Casts: | 
|  | if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { | 
|  | if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) | 
|  | CGM.EmitExplicitCastExprType(ECE, this); | 
|  |  | 
|  | switch (CE->getCastKind()) { | 
|  | // Non-converting casts (but not C's implicit conversion from void*). | 
|  | case CK_BitCast: | 
|  | case CK_NoOp: | 
|  | case CK_AddressSpaceConversion: | 
|  | if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { | 
|  | if (PtrTy->getPointeeType()->isVoidType()) | 
|  | break; | 
|  |  | 
|  | LValueBaseInfo InnerBaseInfo; | 
|  | TBAAAccessInfo InnerTBAAInfo; | 
|  | Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), | 
|  | &InnerBaseInfo, | 
|  | &InnerTBAAInfo); | 
|  | if (BaseInfo) *BaseInfo = InnerBaseInfo; | 
|  | if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; | 
|  |  | 
|  | if (isa<ExplicitCastExpr>(CE)) { | 
|  | LValueBaseInfo TargetTypeBaseInfo; | 
|  | TBAAAccessInfo TargetTypeTBAAInfo; | 
|  | CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), | 
|  | &TargetTypeBaseInfo, | 
|  | &TargetTypeTBAAInfo); | 
|  | if (TBAAInfo) | 
|  | *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, | 
|  | TargetTypeTBAAInfo); | 
|  | // If the source l-value is opaque, honor the alignment of the | 
|  | // casted-to type. | 
|  | if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { | 
|  | if (BaseInfo) | 
|  | BaseInfo->mergeForCast(TargetTypeBaseInfo); | 
|  | Addr = Address(Addr.getPointer(), Align); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && | 
|  | CE->getCastKind() == CK_BitCast) { | 
|  | if (auto PT = E->getType()->getAs<PointerType>()) | 
|  | EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), | 
|  | /*MayBeNull=*/true, | 
|  | CodeGenFunction::CFITCK_UnrelatedCast, | 
|  | CE->getBeginLoc()); | 
|  | } | 
|  | return CE->getCastKind() != CK_AddressSpaceConversion | 
|  | ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) | 
|  | : Builder.CreateAddrSpaceCast(Addr, | 
|  | ConvertType(E->getType())); | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Array-to-pointer decay. | 
|  | case CK_ArrayToPointerDecay: | 
|  | return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); | 
|  |  | 
|  | // Derived-to-base conversions. | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_DerivedToBase: { | 
|  | // TODO: Support accesses to members of base classes in TBAA. For now, we | 
|  | // conservatively pretend that the complete object is of the base class | 
|  | // type. | 
|  | if (TBAAInfo) | 
|  | *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); | 
|  | Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); | 
|  | auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); | 
|  | return GetAddressOfBaseClass(Addr, Derived, | 
|  | CE->path_begin(), CE->path_end(), | 
|  | ShouldNullCheckClassCastValue(CE), | 
|  | CE->getExprLoc()); | 
|  | } | 
|  |  | 
|  | // TODO: Is there any reason to treat base-to-derived conversions | 
|  | // specially? | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unary &. | 
|  | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | 
|  | if (UO->getOpcode() == UO_AddrOf) { | 
|  | LValue LV = EmitLValue(UO->getSubExpr()); | 
|  | if (BaseInfo) *BaseInfo = LV.getBaseInfo(); | 
|  | if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); | 
|  | return LV.getAddress(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: conditional operators, comma. | 
|  |  | 
|  | // Otherwise, use the alignment of the type. | 
|  | CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, | 
|  | TBAAInfo); | 
|  | return Address(EmitScalarExpr(E), Align); | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::GetUndefRValue(QualType Ty) { | 
|  | if (Ty->isVoidType()) | 
|  | return RValue::get(nullptr); | 
|  |  | 
|  | switch (getEvaluationKind(Ty)) { | 
|  | case TEK_Complex: { | 
|  | llvm::Type *EltTy = | 
|  | ConvertType(Ty->castAs<ComplexType>()->getElementType()); | 
|  | llvm::Value *U = llvm::UndefValue::get(EltTy); | 
|  | return RValue::getComplex(std::make_pair(U, U)); | 
|  | } | 
|  |  | 
|  | // If this is a use of an undefined aggregate type, the aggregate must have an | 
|  | // identifiable address.  Just because the contents of the value are undefined | 
|  | // doesn't mean that the address can't be taken and compared. | 
|  | case TEK_Aggregate: { | 
|  | Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); | 
|  | return RValue::getAggregate(DestPtr); | 
|  | } | 
|  |  | 
|  | case TEK_Scalar: | 
|  | return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, | 
|  | const char *Name) { | 
|  | ErrorUnsupported(E, Name); | 
|  | return GetUndefRValue(E->getType()); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, | 
|  | const char *Name) { | 
|  | ErrorUnsupported(E, Name); | 
|  | llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); | 
|  | return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), | 
|  | E->getType()); | 
|  | } | 
|  |  | 
|  | bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { | 
|  | const Expr *Base = Obj; | 
|  | while (!isa<CXXThisExpr>(Base)) { | 
|  | // The result of a dynamic_cast can be null. | 
|  | if (isa<CXXDynamicCastExpr>(Base)) | 
|  | return false; | 
|  |  | 
|  | if (const auto *CE = dyn_cast<CastExpr>(Base)) { | 
|  | Base = CE->getSubExpr(); | 
|  | } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { | 
|  | Base = PE->getSubExpr(); | 
|  | } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { | 
|  | if (UO->getOpcode() == UO_Extension) | 
|  | Base = UO->getSubExpr(); | 
|  | else | 
|  | return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { | 
|  | LValue LV; | 
|  | if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) | 
|  | LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); | 
|  | else | 
|  | LV = EmitLValue(E); | 
|  | if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { | 
|  | SanitizerSet SkippedChecks; | 
|  | if (const auto *ME = dyn_cast<MemberExpr>(E)) { | 
|  | bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); | 
|  | if (IsBaseCXXThis) | 
|  | SkippedChecks.set(SanitizerKind::Alignment, true); | 
|  | if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) | 
|  | SkippedChecks.set(SanitizerKind::Null, true); | 
|  | } | 
|  | EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), | 
|  | E->getType(), LV.getAlignment(), SkippedChecks); | 
|  | } | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | /// EmitLValue - Emit code to compute a designator that specifies the location | 
|  | /// of the expression. | 
|  | /// | 
|  | /// This can return one of two things: a simple address or a bitfield reference. | 
|  | /// In either case, the LLVM Value* in the LValue structure is guaranteed to be | 
|  | /// an LLVM pointer type. | 
|  | /// | 
|  | /// If this returns a bitfield reference, nothing about the pointee type of the | 
|  | /// LLVM value is known: For example, it may not be a pointer to an integer. | 
|  | /// | 
|  | /// If this returns a normal address, and if the lvalue's C type is fixed size, | 
|  | /// this method guarantees that the returned pointer type will point to an LLVM | 
|  | /// type of the same size of the lvalue's type.  If the lvalue has a variable | 
|  | /// length type, this is not possible. | 
|  | /// | 
|  | LValue CodeGenFunction::EmitLValue(const Expr *E) { | 
|  | ApplyDebugLocation DL(*this, E); | 
|  | switch (E->getStmtClass()) { | 
|  | default: return EmitUnsupportedLValue(E, "l-value expression"); | 
|  |  | 
|  | case Expr::ObjCPropertyRefExprClass: | 
|  | llvm_unreachable("cannot emit a property reference directly"); | 
|  |  | 
|  | case Expr::ObjCSelectorExprClass: | 
|  | return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); | 
|  | case Expr::ObjCIsaExprClass: | 
|  | return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); | 
|  | case Expr::BinaryOperatorClass: | 
|  | return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); | 
|  | case Expr::CompoundAssignOperatorClass: { | 
|  | QualType Ty = E->getType(); | 
|  | if (const AtomicType *AT = Ty->getAs<AtomicType>()) | 
|  | Ty = AT->getValueType(); | 
|  | if (!Ty->isAnyComplexType()) | 
|  | return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); | 
|  | return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); | 
|  | } | 
|  | case Expr::CallExprClass: | 
|  | case Expr::CXXMemberCallExprClass: | 
|  | case Expr::CXXOperatorCallExprClass: | 
|  | case Expr::UserDefinedLiteralClass: | 
|  | return EmitCallExprLValue(cast<CallExpr>(E)); | 
|  | case Expr::CXXRewrittenBinaryOperatorClass: | 
|  | return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); | 
|  | case Expr::VAArgExprClass: | 
|  | return EmitVAArgExprLValue(cast<VAArgExpr>(E)); | 
|  | case Expr::DeclRefExprClass: | 
|  | return EmitDeclRefLValue(cast<DeclRefExpr>(E)); | 
|  | case Expr::ConstantExprClass: | 
|  | return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); | 
|  | case Expr::ParenExprClass: | 
|  | return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); | 
|  | case Expr::GenericSelectionExprClass: | 
|  | return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); | 
|  | case Expr::PredefinedExprClass: | 
|  | return EmitPredefinedLValue(cast<PredefinedExpr>(E)); | 
|  | case Expr::StringLiteralClass: | 
|  | return EmitStringLiteralLValue(cast<StringLiteral>(E)); | 
|  | case Expr::ObjCEncodeExprClass: | 
|  | return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); | 
|  | case Expr::PseudoObjectExprClass: | 
|  | return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); | 
|  | case Expr::InitListExprClass: | 
|  | return EmitInitListLValue(cast<InitListExpr>(E)); | 
|  | case Expr::CXXTemporaryObjectExprClass: | 
|  | case Expr::CXXConstructExprClass: | 
|  | return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); | 
|  | case Expr::CXXBindTemporaryExprClass: | 
|  | return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); | 
|  | case Expr::CXXUuidofExprClass: | 
|  | return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); | 
|  | case Expr::LambdaExprClass: | 
|  | return EmitAggExprToLValue(E); | 
|  |  | 
|  | case Expr::ExprWithCleanupsClass: { | 
|  | const auto *cleanups = cast<ExprWithCleanups>(E); | 
|  | enterFullExpression(cleanups); | 
|  | RunCleanupsScope Scope(*this); | 
|  | LValue LV = EmitLValue(cleanups->getSubExpr()); | 
|  | if (LV.isSimple()) { | 
|  | // Defend against branches out of gnu statement expressions surrounded by | 
|  | // cleanups. | 
|  | llvm::Value *V = LV.getPointer(); | 
|  | Scope.ForceCleanup({&V}); | 
|  | return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), | 
|  | getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); | 
|  | } | 
|  | // FIXME: Is it possible to create an ExprWithCleanups that produces a | 
|  | // bitfield lvalue or some other non-simple lvalue? | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | case Expr::CXXDefaultArgExprClass: { | 
|  | auto *DAE = cast<CXXDefaultArgExpr>(E); | 
|  | CXXDefaultArgExprScope Scope(*this, DAE); | 
|  | return EmitLValue(DAE->getExpr()); | 
|  | } | 
|  | case Expr::CXXDefaultInitExprClass: { | 
|  | auto *DIE = cast<CXXDefaultInitExpr>(E); | 
|  | CXXDefaultInitExprScope Scope(*this, DIE); | 
|  | return EmitLValue(DIE->getExpr()); | 
|  | } | 
|  | case Expr::CXXTypeidExprClass: | 
|  | return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); | 
|  |  | 
|  | case Expr::ObjCMessageExprClass: | 
|  | return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); | 
|  | case Expr::ObjCIvarRefExprClass: | 
|  | return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); | 
|  | case Expr::StmtExprClass: | 
|  | return EmitStmtExprLValue(cast<StmtExpr>(E)); | 
|  | case Expr::UnaryOperatorClass: | 
|  | return EmitUnaryOpLValue(cast<UnaryOperator>(E)); | 
|  | case Expr::ArraySubscriptExprClass: | 
|  | return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); | 
|  | case Expr::OMPArraySectionExprClass: | 
|  | return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); | 
|  | case Expr::ExtVectorElementExprClass: | 
|  | return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); | 
|  | case Expr::MemberExprClass: | 
|  | return EmitMemberExpr(cast<MemberExpr>(E)); | 
|  | case Expr::CompoundLiteralExprClass: | 
|  | return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); | 
|  | case Expr::ConditionalOperatorClass: | 
|  | return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); | 
|  | case Expr::BinaryConditionalOperatorClass: | 
|  | return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); | 
|  | case Expr::ChooseExprClass: | 
|  | return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); | 
|  | case Expr::OpaqueValueExprClass: | 
|  | return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); | 
|  | case Expr::SubstNonTypeTemplateParmExprClass: | 
|  | return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); | 
|  | case Expr::ImplicitCastExprClass: | 
|  | case Expr::CStyleCastExprClass: | 
|  | case Expr::CXXFunctionalCastExprClass: | 
|  | case Expr::CXXStaticCastExprClass: | 
|  | case Expr::CXXDynamicCastExprClass: | 
|  | case Expr::CXXReinterpretCastExprClass: | 
|  | case Expr::CXXConstCastExprClass: | 
|  | case Expr::ObjCBridgedCastExprClass: | 
|  | return EmitCastLValue(cast<CastExpr>(E)); | 
|  |  | 
|  | case Expr::MaterializeTemporaryExprClass: | 
|  | return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); | 
|  |  | 
|  | case Expr::CoawaitExprClass: | 
|  | return EmitCoawaitLValue(cast<CoawaitExpr>(E)); | 
|  | case Expr::CoyieldExprClass: | 
|  | return EmitCoyieldLValue(cast<CoyieldExpr>(E)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given an object of the given canonical type, can we safely copy a | 
|  | /// value out of it based on its initializer? | 
|  | static bool isConstantEmittableObjectType(QualType type) { | 
|  | assert(type.isCanonical()); | 
|  | assert(!type->isReferenceType()); | 
|  |  | 
|  | // Must be const-qualified but non-volatile. | 
|  | Qualifiers qs = type.getLocalQualifiers(); | 
|  | if (!qs.hasConst() || qs.hasVolatile()) return false; | 
|  |  | 
|  | // Otherwise, all object types satisfy this except C++ classes with | 
|  | // mutable subobjects or non-trivial copy/destroy behavior. | 
|  | if (const auto *RT = dyn_cast<RecordType>(type)) | 
|  | if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) | 
|  | if (RD->hasMutableFields() || !RD->isTrivial()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Can we constant-emit a load of a reference to a variable of the | 
|  | /// given type?  This is different from predicates like | 
|  | /// Decl::mightBeUsableInConstantExpressions because we do want it to apply | 
|  | /// in situations that don't necessarily satisfy the language's rules | 
|  | /// for this (e.g. C++'s ODR-use rules).  For example, we want to able | 
|  | /// to do this with const float variables even if those variables | 
|  | /// aren't marked 'constexpr'. | 
|  | enum ConstantEmissionKind { | 
|  | CEK_None, | 
|  | CEK_AsReferenceOnly, | 
|  | CEK_AsValueOrReference, | 
|  | CEK_AsValueOnly | 
|  | }; | 
|  | static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { | 
|  | type = type.getCanonicalType(); | 
|  | if (const auto *ref = dyn_cast<ReferenceType>(type)) { | 
|  | if (isConstantEmittableObjectType(ref->getPointeeType())) | 
|  | return CEK_AsValueOrReference; | 
|  | return CEK_AsReferenceOnly; | 
|  | } | 
|  | if (isConstantEmittableObjectType(type)) | 
|  | return CEK_AsValueOnly; | 
|  | return CEK_None; | 
|  | } | 
|  |  | 
|  | /// Try to emit a reference to the given value without producing it as | 
|  | /// an l-value.  This is just an optimization, but it avoids us needing | 
|  | /// to emit global copies of variables if they're named without triggering | 
|  | /// a formal use in a context where we can't emit a direct reference to them, | 
|  | /// for instance if a block or lambda or a member of a local class uses a | 
|  | /// const int variable or constexpr variable from an enclosing function. | 
|  | CodeGenFunction::ConstantEmission | 
|  | CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { | 
|  | ValueDecl *value = refExpr->getDecl(); | 
|  |  | 
|  | // The value needs to be an enum constant or a constant variable. | 
|  | ConstantEmissionKind CEK; | 
|  | if (isa<ParmVarDecl>(value)) { | 
|  | CEK = CEK_None; | 
|  | } else if (auto *var = dyn_cast<VarDecl>(value)) { | 
|  | CEK = checkVarTypeForConstantEmission(var->getType()); | 
|  | } else if (isa<EnumConstantDecl>(value)) { | 
|  | CEK = CEK_AsValueOnly; | 
|  | } else { | 
|  | CEK = CEK_None; | 
|  | } | 
|  | if (CEK == CEK_None) return ConstantEmission(); | 
|  |  | 
|  | Expr::EvalResult result; | 
|  | bool resultIsReference; | 
|  | QualType resultType; | 
|  |  | 
|  | // It's best to evaluate all the way as an r-value if that's permitted. | 
|  | if (CEK != CEK_AsReferenceOnly && | 
|  | refExpr->EvaluateAsRValue(result, getContext())) { | 
|  | resultIsReference = false; | 
|  | resultType = refExpr->getType(); | 
|  |  | 
|  | // Otherwise, try to evaluate as an l-value. | 
|  | } else if (CEK != CEK_AsValueOnly && | 
|  | refExpr->EvaluateAsLValue(result, getContext())) { | 
|  | resultIsReference = true; | 
|  | resultType = value->getType(); | 
|  |  | 
|  | // Failure. | 
|  | } else { | 
|  | return ConstantEmission(); | 
|  | } | 
|  |  | 
|  | // In any case, if the initializer has side-effects, abandon ship. | 
|  | if (result.HasSideEffects) | 
|  | return ConstantEmission(); | 
|  |  | 
|  | // Emit as a constant. | 
|  | auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), | 
|  | result.Val, resultType); | 
|  |  | 
|  | // Make sure we emit a debug reference to the global variable. | 
|  | // This should probably fire even for | 
|  | if (isa<VarDecl>(value)) { | 
|  | if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) | 
|  | EmitDeclRefExprDbgValue(refExpr, result.Val); | 
|  | } else { | 
|  | assert(isa<EnumConstantDecl>(value)); | 
|  | EmitDeclRefExprDbgValue(refExpr, result.Val); | 
|  | } | 
|  |  | 
|  | // If we emitted a reference constant, we need to dereference that. | 
|  | if (resultIsReference) | 
|  | return ConstantEmission::forReference(C); | 
|  |  | 
|  | return ConstantEmission::forValue(C); | 
|  | } | 
|  |  | 
|  | static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, | 
|  | const MemberExpr *ME) { | 
|  | if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { | 
|  | // Try to emit static variable member expressions as DREs. | 
|  | return DeclRefExpr::Create( | 
|  | CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, | 
|  | /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), | 
|  | ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | CodeGenFunction::ConstantEmission | 
|  | CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { | 
|  | if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) | 
|  | return tryEmitAsConstant(DRE); | 
|  | return ConstantEmission(); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::emitScalarConstant( | 
|  | const CodeGenFunction::ConstantEmission &Constant, Expr *E) { | 
|  | assert(Constant && "not a constant"); | 
|  | if (Constant.isReference()) | 
|  | return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), | 
|  | E->getExprLoc()) | 
|  | .getScalarVal(); | 
|  | return Constant.getValue(); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, | 
|  | SourceLocation Loc) { | 
|  | return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), | 
|  | lvalue.getType(), Loc, lvalue.getBaseInfo(), | 
|  | lvalue.getTBAAInfo(), lvalue.isNontemporal()); | 
|  | } | 
|  |  | 
|  | static bool hasBooleanRepresentation(QualType Ty) { | 
|  | if (Ty->isBooleanType()) | 
|  | return true; | 
|  |  | 
|  | if (const EnumType *ET = Ty->getAs<EnumType>()) | 
|  | return ET->getDecl()->getIntegerType()->isBooleanType(); | 
|  |  | 
|  | if (const AtomicType *AT = Ty->getAs<AtomicType>()) | 
|  | return hasBooleanRepresentation(AT->getValueType()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, | 
|  | llvm::APInt &Min, llvm::APInt &End, | 
|  | bool StrictEnums, bool IsBool) { | 
|  | const EnumType *ET = Ty->getAs<EnumType>(); | 
|  | bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && | 
|  | ET && !ET->getDecl()->isFixed(); | 
|  | if (!IsBool && !IsRegularCPlusPlusEnum) | 
|  | return false; | 
|  |  | 
|  | if (IsBool) { | 
|  | Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); | 
|  | End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); | 
|  | } else { | 
|  | const EnumDecl *ED = ET->getDecl(); | 
|  | llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); | 
|  | unsigned Bitwidth = LTy->getScalarSizeInBits(); | 
|  | unsigned NumNegativeBits = ED->getNumNegativeBits(); | 
|  | unsigned NumPositiveBits = ED->getNumPositiveBits(); | 
|  |  | 
|  | if (NumNegativeBits) { | 
|  | unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); | 
|  | assert(NumBits <= Bitwidth); | 
|  | End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); | 
|  | Min = -End; | 
|  | } else { | 
|  | assert(NumPositiveBits <= Bitwidth); | 
|  | End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; | 
|  | Min = llvm::APInt(Bitwidth, 0); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { | 
|  | llvm::APInt Min, End; | 
|  | if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, | 
|  | hasBooleanRepresentation(Ty))) | 
|  | return nullptr; | 
|  |  | 
|  | llvm::MDBuilder MDHelper(getLLVMContext()); | 
|  | return MDHelper.createRange(Min, End); | 
|  | } | 
|  |  | 
|  | bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, | 
|  | SourceLocation Loc) { | 
|  | bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); | 
|  | bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); | 
|  | if (!HasBoolCheck && !HasEnumCheck) | 
|  | return false; | 
|  |  | 
|  | bool IsBool = hasBooleanRepresentation(Ty) || | 
|  | NSAPI(CGM.getContext()).isObjCBOOLType(Ty); | 
|  | bool NeedsBoolCheck = HasBoolCheck && IsBool; | 
|  | bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); | 
|  | if (!NeedsBoolCheck && !NeedsEnumCheck) | 
|  | return false; | 
|  |  | 
|  | // Single-bit booleans don't need to be checked. Special-case this to avoid | 
|  | // a bit width mismatch when handling bitfield values. This is handled by | 
|  | // EmitFromMemory for the non-bitfield case. | 
|  | if (IsBool && | 
|  | cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) | 
|  | return false; | 
|  |  | 
|  | llvm::APInt Min, End; | 
|  | if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) | 
|  | return true; | 
|  |  | 
|  | auto &Ctx = getLLVMContext(); | 
|  | SanitizerScope SanScope(this); | 
|  | llvm::Value *Check; | 
|  | --End; | 
|  | if (!Min) { | 
|  | Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); | 
|  | } else { | 
|  | llvm::Value *Upper = | 
|  | Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); | 
|  | llvm::Value *Lower = | 
|  | Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); | 
|  | Check = Builder.CreateAnd(Upper, Lower); | 
|  | } | 
|  | llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), | 
|  | EmitCheckTypeDescriptor(Ty)}; | 
|  | SanitizerMask Kind = | 
|  | NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; | 
|  | EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, | 
|  | StaticArgs, EmitCheckValue(Value)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, | 
|  | QualType Ty, | 
|  | SourceLocation Loc, | 
|  | LValueBaseInfo BaseInfo, | 
|  | TBAAAccessInfo TBAAInfo, | 
|  | bool isNontemporal) { | 
|  | if (!CGM.getCodeGenOpts().PreserveVec3Type) { | 
|  | // For better performance, handle vector loads differently. | 
|  | if (Ty->isVectorType()) { | 
|  | const llvm::Type *EltTy = Addr.getElementType(); | 
|  |  | 
|  | const auto *VTy = cast<llvm::VectorType>(EltTy); | 
|  |  | 
|  | // Handle vectors of size 3 like size 4 for better performance. | 
|  | if (VTy->getNumElements() == 3) { | 
|  |  | 
|  | // Bitcast to vec4 type. | 
|  | llvm::VectorType *vec4Ty = | 
|  | llvm::VectorType::get(VTy->getElementType(), 4); | 
|  | Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); | 
|  | // Now load value. | 
|  | llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); | 
|  |  | 
|  | // Shuffle vector to get vec3. | 
|  | V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), | 
|  | {0, 1, 2}, "extractVec"); | 
|  | return EmitFromMemory(V, Ty); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Atomic operations have to be done on integral types. | 
|  | LValue AtomicLValue = | 
|  | LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); | 
|  | if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { | 
|  | return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); | 
|  | } | 
|  |  | 
|  | llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); | 
|  | if (isNontemporal) { | 
|  | llvm::MDNode *Node = llvm::MDNode::get( | 
|  | Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); | 
|  | Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); | 
|  | } | 
|  |  | 
|  | CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); | 
|  |  | 
|  | if (EmitScalarRangeCheck(Load, Ty, Loc)) { | 
|  | // In order to prevent the optimizer from throwing away the check, don't | 
|  | // attach range metadata to the load. | 
|  | } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) | 
|  | if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) | 
|  | Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); | 
|  |  | 
|  | return EmitFromMemory(Load, Ty); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { | 
|  | // Bool has a different representation in memory than in registers. | 
|  | if (hasBooleanRepresentation(Ty)) { | 
|  | // This should really always be an i1, but sometimes it's already | 
|  | // an i8, and it's awkward to track those cases down. | 
|  | if (Value->getType()->isIntegerTy(1)) | 
|  | return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); | 
|  | assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && | 
|  | "wrong value rep of bool"); | 
|  | } | 
|  |  | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { | 
|  | // Bool has a different representation in memory than in registers. | 
|  | if (hasBooleanRepresentation(Ty)) { | 
|  | assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && | 
|  | "wrong value rep of bool"); | 
|  | return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); | 
|  | } | 
|  |  | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, | 
|  | bool Volatile, QualType Ty, | 
|  | LValueBaseInfo BaseInfo, | 
|  | TBAAAccessInfo TBAAInfo, | 
|  | bool isInit, bool isNontemporal) { | 
|  | if (!CGM.getCodeGenOpts().PreserveVec3Type) { | 
|  | // Handle vectors differently to get better performance. | 
|  | if (Ty->isVectorType()) { | 
|  | llvm::Type *SrcTy = Value->getType(); | 
|  | auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); | 
|  | // Handle vec3 special. | 
|  | if (VecTy && VecTy->getNumElements() == 3) { | 
|  | // Our source is a vec3, do a shuffle vector to make it a vec4. | 
|  | llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), | 
|  | Builder.getInt32(2), | 
|  | llvm::UndefValue::get(Builder.getInt32Ty())}; | 
|  | llvm::Value *MaskV = llvm::ConstantVector::get(Mask); | 
|  | Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), | 
|  | MaskV, "extractVec"); | 
|  | SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); | 
|  | } | 
|  | if (Addr.getElementType() != SrcTy) { | 
|  | Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Value = EmitToMemory(Value, Ty); | 
|  |  | 
|  | LValue AtomicLValue = | 
|  | LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); | 
|  | if (Ty->isAtomicType() || | 
|  | (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { | 
|  | EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); | 
|  | if (isNontemporal) { | 
|  | llvm::MDNode *Node = | 
|  | llvm::MDNode::get(Store->getContext(), | 
|  | llvm::ConstantAsMetadata::get(Builder.getInt32(1))); | 
|  | Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); | 
|  | } | 
|  |  | 
|  | CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, | 
|  | bool isInit) { | 
|  | EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), | 
|  | lvalue.getType(), lvalue.getBaseInfo(), | 
|  | lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); | 
|  | } | 
|  |  | 
|  | /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this | 
|  | /// method emits the address of the lvalue, then loads the result as an rvalue, | 
|  | /// returning the rvalue. | 
|  | RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { | 
|  | if (LV.isObjCWeak()) { | 
|  | // load of a __weak object. | 
|  | Address AddrWeakObj = LV.getAddress(); | 
|  | return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, | 
|  | AddrWeakObj)); | 
|  | } | 
|  | if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { | 
|  | // In MRC mode, we do a load+autorelease. | 
|  | if (!getLangOpts().ObjCAutoRefCount) { | 
|  | return RValue::get(EmitARCLoadWeak(LV.getAddress())); | 
|  | } | 
|  |  | 
|  | // In ARC mode, we load retained and then consume the value. | 
|  | llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); | 
|  | Object = EmitObjCConsumeObject(LV.getType(), Object); | 
|  | return RValue::get(Object); | 
|  | } | 
|  |  | 
|  | if (LV.isSimple()) { | 
|  | assert(!LV.getType()->isFunctionType()); | 
|  |  | 
|  | // Everything needs a load. | 
|  | return RValue::get(EmitLoadOfScalar(LV, Loc)); | 
|  | } | 
|  |  | 
|  | if (LV.isVectorElt()) { | 
|  | llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), | 
|  | LV.isVolatileQualified()); | 
|  | return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), | 
|  | "vecext")); | 
|  | } | 
|  |  | 
|  | // If this is a reference to a subset of the elements of a vector, either | 
|  | // shuffle the input or extract/insert them as appropriate. | 
|  | if (LV.isExtVectorElt()) | 
|  | return EmitLoadOfExtVectorElementLValue(LV); | 
|  |  | 
|  | // Global Register variables always invoke intrinsics | 
|  | if (LV.isGlobalReg()) | 
|  | return EmitLoadOfGlobalRegLValue(LV); | 
|  |  | 
|  | assert(LV.isBitField() && "Unknown LValue type!"); | 
|  | return EmitLoadOfBitfieldLValue(LV, Loc); | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, | 
|  | SourceLocation Loc) { | 
|  | const CGBitFieldInfo &Info = LV.getBitFieldInfo(); | 
|  |  | 
|  | // Get the output type. | 
|  | llvm::Type *ResLTy = ConvertType(LV.getType()); | 
|  |  | 
|  | Address Ptr = LV.getBitFieldAddress(); | 
|  | llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); | 
|  |  | 
|  | if (Info.IsSigned) { | 
|  | assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); | 
|  | unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; | 
|  | if (HighBits) | 
|  | Val = Builder.CreateShl(Val, HighBits, "bf.shl"); | 
|  | if (Info.Offset + HighBits) | 
|  | Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); | 
|  | } else { | 
|  | if (Info.Offset) | 
|  | Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); | 
|  | if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) | 
|  | Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, | 
|  | Info.Size), | 
|  | "bf.clear"); | 
|  | } | 
|  | Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); | 
|  | EmitScalarRangeCheck(Val, LV.getType(), Loc); | 
|  | return RValue::get(Val); | 
|  | } | 
|  |  | 
|  | // If this is a reference to a subset of the elements of a vector, create an | 
|  | // appropriate shufflevector. | 
|  | RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { | 
|  | llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), | 
|  | LV.isVolatileQualified()); | 
|  |  | 
|  | const llvm::Constant *Elts = LV.getExtVectorElts(); | 
|  |  | 
|  | // If the result of the expression is a non-vector type, we must be extracting | 
|  | // a single element.  Just codegen as an extractelement. | 
|  | const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); | 
|  | if (!ExprVT) { | 
|  | unsigned InIdx = getAccessedFieldNo(0, Elts); | 
|  | llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); | 
|  | return RValue::get(Builder.CreateExtractElement(Vec, Elt)); | 
|  | } | 
|  |  | 
|  | // Always use shuffle vector to try to retain the original program structure | 
|  | unsigned NumResultElts = ExprVT->getNumElements(); | 
|  |  | 
|  | SmallVector<llvm::Constant*, 4> Mask; | 
|  | for (unsigned i = 0; i != NumResultElts; ++i) | 
|  | Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); | 
|  |  | 
|  | llvm::Value *MaskV = llvm::ConstantVector::get(Mask); | 
|  | Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), | 
|  | MaskV); | 
|  | return RValue::get(Vec); | 
|  | } | 
|  |  | 
|  | /// Generates lvalue for partial ext_vector access. | 
|  | Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { | 
|  | Address VectorAddress = LV.getExtVectorAddress(); | 
|  | const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); | 
|  | QualType EQT = ExprVT->getElementType(); | 
|  | llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); | 
|  |  | 
|  | Address CastToPointerElement = | 
|  | Builder.CreateElementBitCast(VectorAddress, VectorElementTy, | 
|  | "conv.ptr.element"); | 
|  |  | 
|  | const llvm::Constant *Elts = LV.getExtVectorElts(); | 
|  | unsigned ix = getAccessedFieldNo(0, Elts); | 
|  |  | 
|  | Address VectorBasePtrPlusIx = | 
|  | Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, | 
|  | "vector.elt"); | 
|  |  | 
|  | return VectorBasePtrPlusIx; | 
|  | } | 
|  |  | 
|  | /// Load of global gamed gegisters are always calls to intrinsics. | 
|  | RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { | 
|  | assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && | 
|  | "Bad type for register variable"); | 
|  | llvm::MDNode *RegName = cast<llvm::MDNode>( | 
|  | cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); | 
|  |  | 
|  | // We accept integer and pointer types only | 
|  | llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); | 
|  | llvm::Type *Ty = OrigTy; | 
|  | if (OrigTy->isPointerTy()) | 
|  | Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); | 
|  | llvm::Type *Types[] = { Ty }; | 
|  |  | 
|  | llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); | 
|  | llvm::Value *Call = Builder.CreateCall( | 
|  | F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); | 
|  | if (OrigTy->isPointerTy()) | 
|  | Call = Builder.CreateIntToPtr(Call, OrigTy); | 
|  | return RValue::get(Call); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// EmitStoreThroughLValue - Store the specified rvalue into the specified | 
|  | /// lvalue, where both are guaranteed to the have the same type, and that type | 
|  | /// is 'Ty'. | 
|  | void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, | 
|  | bool isInit) { | 
|  | if (!Dst.isSimple()) { | 
|  | if (Dst.isVectorElt()) { | 
|  | // Read/modify/write the vector, inserting the new element. | 
|  | llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), | 
|  | Dst.isVolatileQualified()); | 
|  | Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), | 
|  | Dst.getVectorIdx(), "vecins"); | 
|  | Builder.CreateStore(Vec, Dst.getVectorAddress(), | 
|  | Dst.isVolatileQualified()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is an update of extended vector elements, insert them as | 
|  | // appropriate. | 
|  | if (Dst.isExtVectorElt()) | 
|  | return EmitStoreThroughExtVectorComponentLValue(Src, Dst); | 
|  |  | 
|  | if (Dst.isGlobalReg()) | 
|  | return EmitStoreThroughGlobalRegLValue(Src, Dst); | 
|  |  | 
|  | assert(Dst.isBitField() && "Unknown LValue type"); | 
|  | return EmitStoreThroughBitfieldLValue(Src, Dst); | 
|  | } | 
|  |  | 
|  | // There's special magic for assigning into an ARC-qualified l-value. | 
|  | if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { | 
|  | switch (Lifetime) { | 
|  | case Qualifiers::OCL_None: | 
|  | llvm_unreachable("present but none"); | 
|  |  | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | // nothing special | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Strong: | 
|  | if (isInit) { | 
|  | Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); | 
|  | break; | 
|  | } | 
|  | EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); | 
|  | return; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | if (isInit) | 
|  | // Initialize and then skip the primitive store. | 
|  | EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); | 
|  | else | 
|  | EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); | 
|  | return; | 
|  |  | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), | 
|  | Src.getScalarVal())); | 
|  | // fall into the normal path | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Dst.isObjCWeak() && !Dst.isNonGC()) { | 
|  | // load of a __weak object. | 
|  | Address LvalueDst = Dst.getAddress(); | 
|  | llvm::Value *src = Src.getScalarVal(); | 
|  | CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Dst.isObjCStrong() && !Dst.isNonGC()) { | 
|  | // load of a __strong object. | 
|  | Address LvalueDst = Dst.getAddress(); | 
|  | llvm::Value *src = Src.getScalarVal(); | 
|  | if (Dst.isObjCIvar()) { | 
|  | assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); | 
|  | llvm::Type *ResultType = IntPtrTy; | 
|  | Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); | 
|  | llvm::Value *RHS = dst.getPointer(); | 
|  | RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); | 
|  | llvm::Value *LHS = | 
|  | Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, | 
|  | "sub.ptr.lhs.cast"); | 
|  | llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); | 
|  | CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, | 
|  | BytesBetween); | 
|  | } else if (Dst.isGlobalObjCRef()) { | 
|  | CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, | 
|  | Dst.isThreadLocalRef()); | 
|  | } | 
|  | else | 
|  | CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(Src.isScalar() && "Can't emit an agg store with this method"); | 
|  | EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, | 
|  | llvm::Value **Result) { | 
|  | const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); | 
|  | llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); | 
|  | Address Ptr = Dst.getBitFieldAddress(); | 
|  |  | 
|  | // Get the source value, truncated to the width of the bit-field. | 
|  | llvm::Value *SrcVal = Src.getScalarVal(); | 
|  |  | 
|  | // Cast the source to the storage type and shift it into place. | 
|  | SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), | 
|  | /*isSigned=*/false); | 
|  | llvm::Value *MaskedVal = SrcVal; | 
|  |  | 
|  | // See if there are other bits in the bitfield's storage we'll need to load | 
|  | // and mask together with source before storing. | 
|  | if (Info.StorageSize != Info.Size) { | 
|  | assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); | 
|  | llvm::Value *Val = | 
|  | Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); | 
|  |  | 
|  | // Mask the source value as needed. | 
|  | if (!hasBooleanRepresentation(Dst.getType())) | 
|  | SrcVal = Builder.CreateAnd(SrcVal, | 
|  | llvm::APInt::getLowBitsSet(Info.StorageSize, | 
|  | Info.Size), | 
|  | "bf.value"); | 
|  | MaskedVal = SrcVal; | 
|  | if (Info.Offset) | 
|  | SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); | 
|  |  | 
|  | // Mask out the original value. | 
|  | Val = Builder.CreateAnd(Val, | 
|  | ~llvm::APInt::getBitsSet(Info.StorageSize, | 
|  | Info.Offset, | 
|  | Info.Offset + Info.Size), | 
|  | "bf.clear"); | 
|  |  | 
|  | // Or together the unchanged values and the source value. | 
|  | SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); | 
|  | } else { | 
|  | assert(Info.Offset == 0); | 
|  | } | 
|  |  | 
|  | // Write the new value back out. | 
|  | Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); | 
|  |  | 
|  | // Return the new value of the bit-field, if requested. | 
|  | if (Result) { | 
|  | llvm::Value *ResultVal = MaskedVal; | 
|  |  | 
|  | // Sign extend the value if needed. | 
|  | if (Info.IsSigned) { | 
|  | assert(Info.Size <= Info.StorageSize); | 
|  | unsigned HighBits = Info.StorageSize - Info.Size; | 
|  | if (HighBits) { | 
|  | ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); | 
|  | ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); | 
|  | } | 
|  | } | 
|  |  | 
|  | ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, | 
|  | "bf.result.cast"); | 
|  | *Result = EmitFromMemory(ResultVal, Dst.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, | 
|  | LValue Dst) { | 
|  | // This access turns into a read/modify/write of the vector.  Load the input | 
|  | // value now. | 
|  | llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), | 
|  | Dst.isVolatileQualified()); | 
|  | const llvm::Constant *Elts = Dst.getExtVectorElts(); | 
|  |  | 
|  | llvm::Value *SrcVal = Src.getScalarVal(); | 
|  |  | 
|  | if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { | 
|  | unsigned NumSrcElts = VTy->getNumElements(); | 
|  | unsigned NumDstElts = Vec->getType()->getVectorNumElements(); | 
|  | if (NumDstElts == NumSrcElts) { | 
|  | // Use shuffle vector is the src and destination are the same number of | 
|  | // elements and restore the vector mask since it is on the side it will be | 
|  | // stored. | 
|  | SmallVector<llvm::Constant*, 4> Mask(NumDstElts); | 
|  | for (unsigned i = 0; i != NumSrcElts; ++i) | 
|  | Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); | 
|  |  | 
|  | llvm::Value *MaskV = llvm::ConstantVector::get(Mask); | 
|  | Vec = Builder.CreateShuffleVector(SrcVal, | 
|  | llvm::UndefValue::get(Vec->getType()), | 
|  | MaskV); | 
|  | } else if (NumDstElts > NumSrcElts) { | 
|  | // Extended the source vector to the same length and then shuffle it | 
|  | // into the destination. | 
|  | // FIXME: since we're shuffling with undef, can we just use the indices | 
|  | //        into that?  This could be simpler. | 
|  | SmallVector<llvm::Constant*, 4> ExtMask; | 
|  | for (unsigned i = 0; i != NumSrcElts; ++i) | 
|  | ExtMask.push_back(Builder.getInt32(i)); | 
|  | ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); | 
|  | llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); | 
|  | llvm::Value *ExtSrcVal = | 
|  | Builder.CreateShuffleVector(SrcVal, | 
|  | llvm::UndefValue::get(SrcVal->getType()), | 
|  | ExtMaskV); | 
|  | // build identity | 
|  | SmallVector<llvm::Constant*, 4> Mask; | 
|  | for (unsigned i = 0; i != NumDstElts; ++i) | 
|  | Mask.push_back(Builder.getInt32(i)); | 
|  |  | 
|  | // When the vector size is odd and .odd or .hi is used, the last element | 
|  | // of the Elts constant array will be one past the size of the vector. | 
|  | // Ignore the last element here, if it is greater than the mask size. | 
|  | if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) | 
|  | NumSrcElts--; | 
|  |  | 
|  | // modify when what gets shuffled in | 
|  | for (unsigned i = 0; i != NumSrcElts; ++i) | 
|  | Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); | 
|  | llvm::Value *MaskV = llvm::ConstantVector::get(Mask); | 
|  | Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); | 
|  | } else { | 
|  | // We should never shorten the vector | 
|  | llvm_unreachable("unexpected shorten vector length"); | 
|  | } | 
|  | } else { | 
|  | // If the Src is a scalar (not a vector) it must be updating one element. | 
|  | unsigned InIdx = getAccessedFieldNo(0, Elts); | 
|  | llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); | 
|  | Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); | 
|  | } | 
|  |  | 
|  | Builder.CreateStore(Vec, Dst.getExtVectorAddress(), | 
|  | Dst.isVolatileQualified()); | 
|  | } | 
|  |  | 
|  | /// Store of global named registers are always calls to intrinsics. | 
|  | void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { | 
|  | assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && | 
|  | "Bad type for register variable"); | 
|  | llvm::MDNode *RegName = cast<llvm::MDNode>( | 
|  | cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); | 
|  | assert(RegName && "Register LValue is not metadata"); | 
|  |  | 
|  | // We accept integer and pointer types only | 
|  | llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); | 
|  | llvm::Type *Ty = OrigTy; | 
|  | if (OrigTy->isPointerTy()) | 
|  | Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); | 
|  | llvm::Type *Types[] = { Ty }; | 
|  |  | 
|  | llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); | 
|  | llvm::Value *Value = Src.getScalarVal(); | 
|  | if (OrigTy->isPointerTy()) | 
|  | Value = Builder.CreatePtrToInt(Value, Ty); | 
|  | Builder.CreateCall( | 
|  | F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); | 
|  | } | 
|  |  | 
|  | // setObjCGCLValueClass - sets class of the lvalue for the purpose of | 
|  | // generating write-barries API. It is currently a global, ivar, | 
|  | // or neither. | 
|  | static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, | 
|  | LValue &LV, | 
|  | bool IsMemberAccess=false) { | 
|  | if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) | 
|  | return; | 
|  |  | 
|  | if (isa<ObjCIvarRefExpr>(E)) { | 
|  | QualType ExpTy = E->getType(); | 
|  | if (IsMemberAccess && ExpTy->isPointerType()) { | 
|  | // If ivar is a structure pointer, assigning to field of | 
|  | // this struct follows gcc's behavior and makes it a non-ivar | 
|  | // writer-barrier conservatively. | 
|  | ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); | 
|  | if (ExpTy->isRecordType()) { | 
|  | LV.setObjCIvar(false); | 
|  | return; | 
|  | } | 
|  | } | 
|  | LV.setObjCIvar(true); | 
|  | auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); | 
|  | LV.setBaseIvarExp(Exp->getBase()); | 
|  | LV.setObjCArray(E->getType()->isArrayType()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { | 
|  | if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { | 
|  | if (VD->hasGlobalStorage()) { | 
|  | LV.setGlobalObjCRef(true); | 
|  | LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); | 
|  | } | 
|  | } | 
|  | LV.setObjCArray(E->getType()->isArrayType()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { | 
|  | setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *Exp = dyn_cast<ParenExpr>(E)) { | 
|  | setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); | 
|  | if (LV.isObjCIvar()) { | 
|  | // If cast is to a structure pointer, follow gcc's behavior and make it | 
|  | // a non-ivar write-barrier. | 
|  | QualType ExpTy = E->getType(); | 
|  | if (ExpTy->isPointerType()) | 
|  | ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); | 
|  | if (ExpTy->isRecordType()) | 
|  | LV.setObjCIvar(false); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { | 
|  | setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { | 
|  | setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { | 
|  | setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { | 
|  | setObjCGCLValueClass(Ctx, Exp->getBase(), LV); | 
|  | if (LV.isObjCIvar() && !LV.isObjCArray()) | 
|  | // Using array syntax to assigning to what an ivar points to is not | 
|  | // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; | 
|  | LV.setObjCIvar(false); | 
|  | else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) | 
|  | // Using array syntax to assigning to what global points to is not | 
|  | // same as assigning to the global itself. {id *G;} G[i] = 0; | 
|  | LV.setGlobalObjCRef(false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *Exp = dyn_cast<MemberExpr>(E)) { | 
|  | setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); | 
|  | // We don't know if member is an 'ivar', but this flag is looked at | 
|  | // only in the context of LV.isObjCIvar(). | 
|  | LV.setObjCArray(E->getType()->isArrayType()); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static llvm::Value * | 
|  | EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, | 
|  | llvm::Value *V, llvm::Type *IRType, | 
|  | StringRef Name = StringRef()) { | 
|  | unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); | 
|  | return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); | 
|  | } | 
|  |  | 
|  | static LValue EmitThreadPrivateVarDeclLValue( | 
|  | CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, | 
|  | llvm::Type *RealVarTy, SourceLocation Loc) { | 
|  | Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); | 
|  | Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); | 
|  | return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, | 
|  | const VarDecl *VD, QualType T) { | 
|  | llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = | 
|  | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); | 
|  | // Return an invalid address if variable is MT_To and unified | 
|  | // memory is not enabled. For all other cases: MT_Link and | 
|  | // MT_To with unified memory, return a valid address. | 
|  | if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && | 
|  | !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) | 
|  | return Address::invalid(); | 
|  | assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || | 
|  | (*Res == OMPDeclareTargetDeclAttr::MT_To && | 
|  | CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && | 
|  | "Expected link clause OR to clause with unified memory enabled."); | 
|  | QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); | 
|  | Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); | 
|  | return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); | 
|  | } | 
|  |  | 
|  | Address | 
|  | CodeGenFunction::EmitLoadOfReference(LValue RefLVal, | 
|  | LValueBaseInfo *PointeeBaseInfo, | 
|  | TBAAAccessInfo *PointeeTBAAInfo) { | 
|  | llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), | 
|  | RefLVal.isVolatile()); | 
|  | CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); | 
|  |  | 
|  | CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), | 
|  | PointeeBaseInfo, PointeeTBAAInfo, | 
|  | /* forPointeeType= */ true); | 
|  | return Address(Load, Align); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { | 
|  | LValueBaseInfo PointeeBaseInfo; | 
|  | TBAAAccessInfo PointeeTBAAInfo; | 
|  | Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, | 
|  | &PointeeTBAAInfo); | 
|  | return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), | 
|  | PointeeBaseInfo, PointeeTBAAInfo); | 
|  | } | 
|  |  | 
|  | Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, | 
|  | const PointerType *PtrTy, | 
|  | LValueBaseInfo *BaseInfo, | 
|  | TBAAAccessInfo *TBAAInfo) { | 
|  | llvm::Value *Addr = Builder.CreateLoad(Ptr); | 
|  | return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), | 
|  | BaseInfo, TBAAInfo, | 
|  | /*forPointeeType=*/true)); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, | 
|  | const PointerType *PtrTy) { | 
|  | LValueBaseInfo BaseInfo; | 
|  | TBAAAccessInfo TBAAInfo; | 
|  | Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); | 
|  | return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); | 
|  | } | 
|  |  | 
|  | static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, | 
|  | const Expr *E, const VarDecl *VD) { | 
|  | QualType T = E->getType(); | 
|  |  | 
|  | // If it's thread_local, emit a call to its wrapper function instead. | 
|  | if (VD->getTLSKind() == VarDecl::TLS_Dynamic && | 
|  | CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) | 
|  | return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); | 
|  | // Check if the variable is marked as declare target with link clause in | 
|  | // device codegen. | 
|  | if (CGF.getLangOpts().OpenMPIsDevice) { | 
|  | Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); | 
|  | if (Addr.isValid()) | 
|  | return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); | 
|  | llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); | 
|  | V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); | 
|  | CharUnits Alignment = CGF.getContext().getDeclAlign(VD); | 
|  | Address Addr(V, Alignment); | 
|  | // Emit reference to the private copy of the variable if it is an OpenMP | 
|  | // threadprivate variable. | 
|  | if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && | 
|  | VD->hasAttr<OMPThreadPrivateDeclAttr>()) { | 
|  | return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, | 
|  | E->getExprLoc()); | 
|  | } | 
|  | LValue LV = VD->getType()->isReferenceType() ? | 
|  | CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), | 
|  | AlignmentSource::Decl) : | 
|  | CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); | 
|  | setObjCGCLValueClass(CGF.getContext(), E, LV); | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, | 
|  | const FunctionDecl *FD) { | 
|  | if (FD->hasAttr<WeakRefAttr>()) { | 
|  | ConstantAddress aliasee = CGM.GetWeakRefReference(FD); | 
|  | return aliasee.getPointer(); | 
|  | } | 
|  |  | 
|  | llvm::Constant *V = CGM.GetAddrOfFunction(FD); | 
|  | if (!FD->hasPrototype()) { | 
|  | if (const FunctionProtoType *Proto = | 
|  | FD->getType()->getAs<FunctionProtoType>()) { | 
|  | // Ugly case: for a K&R-style definition, the type of the definition | 
|  | // isn't the same as the type of a use.  Correct for this with a | 
|  | // bitcast. | 
|  | QualType NoProtoType = | 
|  | CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); | 
|  | NoProtoType = CGM.getContext().getPointerType(NoProtoType); | 
|  | V = llvm::ConstantExpr::getBitCast(V, | 
|  | CGM.getTypes().ConvertType(NoProtoType)); | 
|  | } | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, | 
|  | const Expr *E, const FunctionDecl *FD) { | 
|  | llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); | 
|  | CharUnits Alignment = CGF.getContext().getDeclAlign(FD); | 
|  | return CGF.MakeAddrLValue(V, E->getType(), Alignment, | 
|  | AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, | 
|  | llvm::Value *ThisValue) { | 
|  | QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); | 
|  | LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); | 
|  | return CGF.EmitLValueForField(LV, FD); | 
|  | } | 
|  |  | 
|  | /// Named Registers are named metadata pointing to the register name | 
|  | /// which will be read from/written to as an argument to the intrinsic | 
|  | /// @llvm.read/write_register. | 
|  | /// So far, only the name is being passed down, but other options such as | 
|  | /// register type, allocation type or even optimization options could be | 
|  | /// passed down via the metadata node. | 
|  | static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { | 
|  | SmallString<64> Name("llvm.named.register."); | 
|  | AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); | 
|  | assert(Asm->getLabel().size() < 64-Name.size() && | 
|  | "Register name too big"); | 
|  | Name.append(Asm->getLabel()); | 
|  | llvm::NamedMDNode *M = | 
|  | CGM.getModule().getOrInsertNamedMetadata(Name); | 
|  | if (M->getNumOperands() == 0) { | 
|  | llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), | 
|  | Asm->getLabel()); | 
|  | llvm::Metadata *Ops[] = {Str}; | 
|  | M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); | 
|  | } | 
|  |  | 
|  | CharUnits Alignment = CGM.getContext().getDeclAlign(VD); | 
|  |  | 
|  | llvm::Value *Ptr = | 
|  | llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); | 
|  | return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); | 
|  | } | 
|  |  | 
|  | /// Determine whether we can emit a reference to \p VD from the current | 
|  | /// context, despite not necessarily having seen an odr-use of the variable in | 
|  | /// this context. | 
|  | static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, | 
|  | const DeclRefExpr *E, | 
|  | const VarDecl *VD, | 
|  | bool IsConstant) { | 
|  | // For a variable declared in an enclosing scope, do not emit a spurious | 
|  | // reference even if we have a capture, as that will emit an unwarranted | 
|  | // reference to our capture state, and will likely generate worse code than | 
|  | // emitting a local copy. | 
|  | if (E->refersToEnclosingVariableOrCapture()) | 
|  | return false; | 
|  |  | 
|  | // For a local declaration declared in this function, we can always reference | 
|  | // it even if we don't have an odr-use. | 
|  | if (VD->hasLocalStorage()) { | 
|  | return VD->getDeclContext() == | 
|  | dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); | 
|  | } | 
|  |  | 
|  | // For a global declaration, we can emit a reference to it if we know | 
|  | // for sure that we are able to emit a definition of it. | 
|  | VD = VD->getDefinition(CGF.getContext()); | 
|  | if (!VD) | 
|  | return false; | 
|  |  | 
|  | // Don't emit a spurious reference if it might be to a variable that only | 
|  | // exists on a different device / target. | 
|  | // FIXME: This is unnecessarily broad. Check whether this would actually be a | 
|  | // cross-target reference. | 
|  | if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || | 
|  | CGF.getLangOpts().OpenCL) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We can emit a spurious reference only if the linkage implies that we'll | 
|  | // be emitting a non-interposable symbol that will be retained until link | 
|  | // time. | 
|  | switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { | 
|  | case llvm::GlobalValue::ExternalLinkage: | 
|  | case llvm::GlobalValue::LinkOnceODRLinkage: | 
|  | case llvm::GlobalValue::WeakODRLinkage: | 
|  | case llvm::GlobalValue::InternalLinkage: | 
|  | case llvm::GlobalValue::PrivateLinkage: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { | 
|  | const NamedDecl *ND = E->getDecl(); | 
|  | QualType T = E->getType(); | 
|  |  | 
|  | assert(E->isNonOdrUse() != NOUR_Unevaluated && | 
|  | "should not emit an unevaluated operand"); | 
|  |  | 
|  | if (const auto *VD = dyn_cast<VarDecl>(ND)) { | 
|  | // Global Named registers access via intrinsics only | 
|  | if (VD->getStorageClass() == SC_Register && | 
|  | VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) | 
|  | return EmitGlobalNamedRegister(VD, CGM); | 
|  |  | 
|  | // If this DeclRefExpr does not constitute an odr-use of the variable, | 
|  | // we're not permitted to emit a reference to it in general, and it might | 
|  | // not be captured if capture would be necessary for a use. Emit the | 
|  | // constant value directly instead. | 
|  | if (E->isNonOdrUse() == NOUR_Constant && | 
|  | (VD->getType()->isReferenceType() || | 
|  | !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { | 
|  | VD->getAnyInitializer(VD); | 
|  | llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( | 
|  | E->getLocation(), *VD->evaluateValue(), VD->getType()); | 
|  | assert(Val && "failed to emit constant expression"); | 
|  |  | 
|  | Address Addr = Address::invalid(); | 
|  | if (!VD->getType()->isReferenceType()) { | 
|  | // Spill the constant value to a global. | 
|  | Addr = CGM.createUnnamedGlobalFrom(*VD, Val, | 
|  | getContext().getDeclAlign(VD)); | 
|  | llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); | 
|  | auto *PTy = llvm::PointerType::get( | 
|  | VarTy, getContext().getTargetAddressSpace(VD->getType())); | 
|  | if (PTy != Addr.getType()) | 
|  | Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); | 
|  | } else { | 
|  | // Should we be using the alignment of the constant pointer we emitted? | 
|  | CharUnits Alignment = | 
|  | getNaturalTypeAlignment(E->getType(), | 
|  | /* BaseInfo= */ nullptr, | 
|  | /* TBAAInfo= */ nullptr, | 
|  | /* forPointeeType= */ true); | 
|  | Addr = Address(Val, Alignment); | 
|  | } | 
|  | return MakeAddrLValue(Addr, T, AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | // FIXME: Handle other kinds of non-odr-use DeclRefExprs. | 
|  |  | 
|  | // Check for captured variables. | 
|  | if (E->refersToEnclosingVariableOrCapture()) { | 
|  | VD = VD->getCanonicalDecl(); | 
|  | if (auto *FD = LambdaCaptureFields.lookup(VD)) | 
|  | return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); | 
|  | else if (CapturedStmtInfo) { | 
|  | auto I = LocalDeclMap.find(VD); | 
|  | if (I != LocalDeclMap.end()) { | 
|  | if (VD->getType()->isReferenceType()) | 
|  | return EmitLoadOfReferenceLValue(I->second, VD->getType(), | 
|  | AlignmentSource::Decl); | 
|  | return MakeAddrLValue(I->second, T); | 
|  | } | 
|  | LValue CapLVal = | 
|  | EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), | 
|  | CapturedStmtInfo->getContextValue()); | 
|  | return MakeAddrLValue( | 
|  | Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), | 
|  | CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), | 
|  | CapLVal.getTBAAInfo()); | 
|  | } | 
|  |  | 
|  | assert(isa<BlockDecl>(CurCodeDecl)); | 
|  | Address addr = GetAddrOfBlockDecl(VD); | 
|  | return MakeAddrLValue(addr, T, AlignmentSource::Decl); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: We should be able to assert this for FunctionDecls as well! | 
|  | // FIXME: We should be able to assert this for all DeclRefExprs, not just | 
|  | // those with a valid source location. | 
|  | assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || | 
|  | !E->getLocation().isValid()) && | 
|  | "Should not use decl without marking it used!"); | 
|  |  | 
|  | if (ND->hasAttr<WeakRefAttr>()) { | 
|  | const auto *VD = cast<ValueDecl>(ND); | 
|  | ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); | 
|  | return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | if (const auto *VD = dyn_cast<VarDecl>(ND)) { | 
|  | // Check if this is a global variable. | 
|  | if (VD->hasLinkage() || VD->isStaticDataMember()) | 
|  | return EmitGlobalVarDeclLValue(*this, E, VD); | 
|  |  | 
|  | Address addr = Address::invalid(); | 
|  |  | 
|  | // The variable should generally be present in the local decl map. | 
|  | auto iter = LocalDeclMap.find(VD); | 
|  | if (iter != LocalDeclMap.end()) { | 
|  | addr = iter->second; | 
|  |  | 
|  | // Otherwise, it might be static local we haven't emitted yet for | 
|  | // some reason; most likely, because it's in an outer function. | 
|  | } else if (VD->isStaticLocal()) { | 
|  | addr = Address(CGM.getOrCreateStaticVarDecl( | 
|  | *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), | 
|  | getContext().getDeclAlign(VD)); | 
|  |  | 
|  | // No other cases for now. | 
|  | } else { | 
|  | llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Check for OpenMP threadprivate variables. | 
|  | if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && | 
|  | VD->hasAttr<OMPThreadPrivateDeclAttr>()) { | 
|  | return EmitThreadPrivateVarDeclLValue( | 
|  | *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), | 
|  | E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | // Drill into block byref variables. | 
|  | bool isBlockByref = VD->isEscapingByref(); | 
|  | if (isBlockByref) { | 
|  | addr = emitBlockByrefAddress(addr, VD); | 
|  | } | 
|  |  | 
|  | // Drill into reference types. | 
|  | LValue LV = VD->getType()->isReferenceType() ? | 
|  | EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : | 
|  | MakeAddrLValue(addr, T, AlignmentSource::Decl); | 
|  |  | 
|  | bool isLocalStorage = VD->hasLocalStorage(); | 
|  |  | 
|  | bool NonGCable = isLocalStorage && | 
|  | !VD->getType()->isReferenceType() && | 
|  | !isBlockByref; | 
|  | if (NonGCable) { | 
|  | LV.getQuals().removeObjCGCAttr(); | 
|  | LV.setNonGC(true); | 
|  | } | 
|  |  | 
|  | bool isImpreciseLifetime = | 
|  | (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); | 
|  | if (isImpreciseLifetime) | 
|  | LV.setARCPreciseLifetime(ARCImpreciseLifetime); | 
|  | setObjCGCLValueClass(getContext(), E, LV); | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(ND)) | 
|  | return EmitFunctionDeclLValue(*this, E, FD); | 
|  |  | 
|  | // FIXME: While we're emitting a binding from an enclosing scope, all other | 
|  | // DeclRefExprs we see should be implicitly treated as if they also refer to | 
|  | // an enclosing scope. | 
|  | if (const auto *BD = dyn_cast<BindingDecl>(ND)) | 
|  | return EmitLValue(BD->getBinding()); | 
|  |  | 
|  | llvm_unreachable("Unhandled DeclRefExpr"); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { | 
|  | // __extension__ doesn't affect lvalue-ness. | 
|  | if (E->getOpcode() == UO_Extension) | 
|  | return EmitLValue(E->getSubExpr()); | 
|  |  | 
|  | QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); | 
|  | switch (E->getOpcode()) { | 
|  | default: llvm_unreachable("Unknown unary operator lvalue!"); | 
|  | case UO_Deref: { | 
|  | QualType T = E->getSubExpr()->getType()->getPointeeType(); | 
|  | assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); | 
|  |  | 
|  | LValueBaseInfo BaseInfo; | 
|  | TBAAAccessInfo TBAAInfo; | 
|  | Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, | 
|  | &TBAAInfo); | 
|  | LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); | 
|  | LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); | 
|  |  | 
|  | // We should not generate __weak write barrier on indirect reference | 
|  | // of a pointer to object; as in void foo (__weak id *param); *param = 0; | 
|  | // But, we continue to generate __strong write barrier on indirect write | 
|  | // into a pointer to object. | 
|  | if (getLangOpts().ObjC && | 
|  | getLangOpts().getGC() != LangOptions::NonGC && | 
|  | LV.isObjCWeak()) | 
|  | LV.setNonGC(!E->isOBJCGCCandidate(getContext())); | 
|  | return LV; | 
|  | } | 
|  | case UO_Real: | 
|  | case UO_Imag: { | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | assert(LV.isSimple() && "real/imag on non-ordinary l-value"); | 
|  |  | 
|  | // __real is valid on scalars.  This is a faster way of testing that. | 
|  | // __imag can only produce an rvalue on scalars. | 
|  | if (E->getOpcode() == UO_Real && | 
|  | !LV.getAddress().getElementType()->isStructTy()) { | 
|  | assert(E->getSubExpr()->getType()->isArithmeticType()); | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | QualType T = ExprTy->castAs<ComplexType>()->getElementType(); | 
|  |  | 
|  | Address Component = | 
|  | (E->getOpcode() == UO_Real | 
|  | ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) | 
|  | : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); | 
|  | LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), | 
|  | CGM.getTBAAInfoForSubobject(LV, T)); | 
|  | ElemLV.getQuals().addQualifiers(LV.getQuals()); | 
|  | return ElemLV; | 
|  | } | 
|  | case UO_PreInc: | 
|  | case UO_PreDec: { | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | bool isInc = E->getOpcode() == UO_PreInc; | 
|  |  | 
|  | if (E->getType()->isAnyComplexType()) | 
|  | EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); | 
|  | else | 
|  | EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); | 
|  | return LV; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { | 
|  | return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), | 
|  | E->getType(), AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { | 
|  | return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), | 
|  | E->getType(), AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { | 
|  | auto SL = E->getFunctionName(); | 
|  | assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); | 
|  | StringRef FnName = CurFn->getName(); | 
|  | if (FnName.startswith("\01")) | 
|  | FnName = FnName.substr(1); | 
|  | StringRef NameItems[] = { | 
|  | PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; | 
|  | std::string GVName = llvm::join(NameItems, NameItems + 2, "."); | 
|  | if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { | 
|  | std::string Name = SL->getString(); | 
|  | if (!Name.empty()) { | 
|  | unsigned Discriminator = | 
|  | CGM.getCXXABI().getMangleContext().getBlockId(BD, true); | 
|  | if (Discriminator) | 
|  | Name += "_" + Twine(Discriminator + 1).str(); | 
|  | auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); | 
|  | return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); | 
|  | } else { | 
|  | auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); | 
|  | return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); | 
|  | } | 
|  | } | 
|  | auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); | 
|  | return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | /// Emit a type description suitable for use by a runtime sanitizer library. The | 
|  | /// format of a type descriptor is | 
|  | /// | 
|  | /// \code | 
|  | ///   { i16 TypeKind, i16 TypeInfo } | 
|  | /// \endcode | 
|  | /// | 
|  | /// followed by an array of i8 containing the type name. TypeKind is 0 for an | 
|  | /// integer, 1 for a floating point value, and -1 for anything else. | 
|  | llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { | 
|  | // Only emit each type's descriptor once. | 
|  | if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) | 
|  | return C; | 
|  |  | 
|  | uint16_t TypeKind = -1; | 
|  | uint16_t TypeInfo = 0; | 
|  |  | 
|  | if (T->isIntegerType()) { | 
|  | TypeKind = 0; | 
|  | TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | | 
|  | (T->isSignedIntegerType() ? 1 : 0); | 
|  | } else if (T->isFloatingType()) { | 
|  | TypeKind = 1; | 
|  | TypeInfo = getContext().getTypeSize(T); | 
|  | } | 
|  |  | 
|  | // Format the type name as if for a diagnostic, including quotes and | 
|  | // optionally an 'aka'. | 
|  | SmallString<32> Buffer; | 
|  | CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, | 
|  | (intptr_t)T.getAsOpaquePtr(), | 
|  | StringRef(), StringRef(), None, Buffer, | 
|  | None); | 
|  |  | 
|  | llvm::Constant *Components[] = { | 
|  | Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), | 
|  | llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) | 
|  | }; | 
|  | llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); | 
|  |  | 
|  | auto *GV = new llvm::GlobalVariable( | 
|  | CGM.getModule(), Descriptor->getType(), | 
|  | /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); | 
|  | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | 
|  | CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); | 
|  |  | 
|  | // Remember the descriptor for this type. | 
|  | CGM.setTypeDescriptorInMap(T, GV); | 
|  |  | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { | 
|  | llvm::Type *TargetTy = IntPtrTy; | 
|  |  | 
|  | if (V->getType() == TargetTy) | 
|  | return V; | 
|  |  | 
|  | // Floating-point types which fit into intptr_t are bitcast to integers | 
|  | // and then passed directly (after zero-extension, if necessary). | 
|  | if (V->getType()->isFloatingPointTy()) { | 
|  | unsigned Bits = V->getType()->getPrimitiveSizeInBits(); | 
|  | if (Bits <= TargetTy->getIntegerBitWidth()) | 
|  | V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), | 
|  | Bits)); | 
|  | } | 
|  |  | 
|  | // Integers which fit in intptr_t are zero-extended and passed directly. | 
|  | if (V->getType()->isIntegerTy() && | 
|  | V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) | 
|  | return Builder.CreateZExt(V, TargetTy); | 
|  |  | 
|  | // Pointers are passed directly, everything else is passed by address. | 
|  | if (!V->getType()->isPointerTy()) { | 
|  | Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); | 
|  | Builder.CreateStore(V, Ptr); | 
|  | V = Ptr.getPointer(); | 
|  | } | 
|  | return Builder.CreatePtrToInt(V, TargetTy); | 
|  | } | 
|  |  | 
|  | /// Emit a representation of a SourceLocation for passing to a handler | 
|  | /// in a sanitizer runtime library. The format for this data is: | 
|  | /// \code | 
|  | ///   struct SourceLocation { | 
|  | ///     const char *Filename; | 
|  | ///     int32_t Line, Column; | 
|  | ///   }; | 
|  | /// \endcode | 
|  | /// For an invalid SourceLocation, the Filename pointer is null. | 
|  | llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { | 
|  | llvm::Constant *Filename; | 
|  | int Line, Column; | 
|  |  | 
|  | PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); | 
|  | if (PLoc.isValid()) { | 
|  | StringRef FilenameString = PLoc.getFilename(); | 
|  |  | 
|  | int PathComponentsToStrip = | 
|  | CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; | 
|  | if (PathComponentsToStrip < 0) { | 
|  | assert(PathComponentsToStrip != INT_MIN); | 
|  | int PathComponentsToKeep = -PathComponentsToStrip; | 
|  | auto I = llvm::sys::path::rbegin(FilenameString); | 
|  | auto E = llvm::sys::path::rend(FilenameString); | 
|  | while (I != E && --PathComponentsToKeep) | 
|  | ++I; | 
|  |  | 
|  | FilenameString = FilenameString.substr(I - E); | 
|  | } else if (PathComponentsToStrip > 0) { | 
|  | auto I = llvm::sys::path::begin(FilenameString); | 
|  | auto E = llvm::sys::path::end(FilenameString); | 
|  | while (I != E && PathComponentsToStrip--) | 
|  | ++I; | 
|  |  | 
|  | if (I != E) | 
|  | FilenameString = | 
|  | FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); | 
|  | else | 
|  | FilenameString = llvm::sys::path::filename(FilenameString); | 
|  | } | 
|  |  | 
|  | auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); | 
|  | CGM.getSanitizerMetadata()->disableSanitizerForGlobal( | 
|  | cast<llvm::GlobalVariable>(FilenameGV.getPointer())); | 
|  | Filename = FilenameGV.getPointer(); | 
|  | Line = PLoc.getLine(); | 
|  | Column = PLoc.getColumn(); | 
|  | } else { | 
|  | Filename = llvm::Constant::getNullValue(Int8PtrTy); | 
|  | Line = Column = 0; | 
|  | } | 
|  |  | 
|  | llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), | 
|  | Builder.getInt32(Column)}; | 
|  |  | 
|  | return llvm::ConstantStruct::getAnon(Data); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Specify under what conditions this check can be recovered | 
|  | enum class CheckRecoverableKind { | 
|  | /// Always terminate program execution if this check fails. | 
|  | Unrecoverable, | 
|  | /// Check supports recovering, runtime has both fatal (noreturn) and | 
|  | /// non-fatal handlers for this check. | 
|  | Recoverable, | 
|  | /// Runtime conditionally aborts, always need to support recovery. | 
|  | AlwaysRecoverable | 
|  | }; | 
|  | } | 
|  |  | 
|  | static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { | 
|  | assert(Kind.countPopulation() == 1); | 
|  | if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) | 
|  | return CheckRecoverableKind::AlwaysRecoverable; | 
|  | else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) | 
|  | return CheckRecoverableKind::Unrecoverable; | 
|  | else | 
|  | return CheckRecoverableKind::Recoverable; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct SanitizerHandlerInfo { | 
|  | char const *const Name; | 
|  | unsigned Version; | 
|  | }; | 
|  | } | 
|  |  | 
|  | const SanitizerHandlerInfo SanitizerHandlers[] = { | 
|  | #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, | 
|  | LIST_SANITIZER_CHECKS | 
|  | #undef SANITIZER_CHECK | 
|  | }; | 
|  |  | 
|  | static void emitCheckHandlerCall(CodeGenFunction &CGF, | 
|  | llvm::FunctionType *FnType, | 
|  | ArrayRef<llvm::Value *> FnArgs, | 
|  | SanitizerHandler CheckHandler, | 
|  | CheckRecoverableKind RecoverKind, bool IsFatal, | 
|  | llvm::BasicBlock *ContBB) { | 
|  | assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); | 
|  | Optional<ApplyDebugLocation> DL; | 
|  | if (!CGF.Builder.getCurrentDebugLocation()) { | 
|  | // Ensure that the call has at least an artificial debug location. | 
|  | DL.emplace(CGF, SourceLocation()); | 
|  | } | 
|  | bool NeedsAbortSuffix = | 
|  | IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; | 
|  | bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; | 
|  | const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; | 
|  | const StringRef CheckName = CheckInfo.Name; | 
|  | std::string FnName = "__ubsan_handle_" + CheckName.str(); | 
|  | if (CheckInfo.Version && !MinimalRuntime) | 
|  | FnName += "_v" + llvm::utostr(CheckInfo.Version); | 
|  | if (MinimalRuntime) | 
|  | FnName += "_minimal"; | 
|  | if (NeedsAbortSuffix) | 
|  | FnName += "_abort"; | 
|  | bool MayReturn = | 
|  | !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; | 
|  |  | 
|  | llvm::AttrBuilder B; | 
|  | if (!MayReturn) { | 
|  | B.addAttribute(llvm::Attribute::NoReturn) | 
|  | .addAttribute(llvm::Attribute::NoUnwind); | 
|  | } | 
|  | B.addAttribute(llvm::Attribute::UWTable); | 
|  |  | 
|  | llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( | 
|  | FnType, FnName, | 
|  | llvm::AttributeList::get(CGF.getLLVMContext(), | 
|  | llvm::AttributeList::FunctionIndex, B), | 
|  | /*Local=*/true); | 
|  | llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); | 
|  | if (!MayReturn) { | 
|  | HandlerCall->setDoesNotReturn(); | 
|  | CGF.Builder.CreateUnreachable(); | 
|  | } else { | 
|  | CGF.Builder.CreateBr(ContBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitCheck( | 
|  | ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, | 
|  | SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, | 
|  | ArrayRef<llvm::Value *> DynamicArgs) { | 
|  | assert(IsSanitizerScope); | 
|  | assert(Checked.size() > 0); | 
|  | assert(CheckHandler >= 0 && | 
|  | size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); | 
|  | const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; | 
|  |  | 
|  | llvm::Value *FatalCond = nullptr; | 
|  | llvm::Value *RecoverableCond = nullptr; | 
|  | llvm::Value *TrapCond = nullptr; | 
|  | for (int i = 0, n = Checked.size(); i < n; ++i) { | 
|  | llvm::Value *Check = Checked[i].first; | 
|  | // -fsanitize-trap= overrides -fsanitize-recover=. | 
|  | llvm::Value *&Cond = | 
|  | CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) | 
|  | ? TrapCond | 
|  | : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) | 
|  | ? RecoverableCond | 
|  | : FatalCond; | 
|  | Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; | 
|  | } | 
|  |  | 
|  | if (TrapCond) | 
|  | EmitTrapCheck(TrapCond); | 
|  | if (!FatalCond && !RecoverableCond) | 
|  | return; | 
|  |  | 
|  | llvm::Value *JointCond; | 
|  | if (FatalCond && RecoverableCond) | 
|  | JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); | 
|  | else | 
|  | JointCond = FatalCond ? FatalCond : RecoverableCond; | 
|  | assert(JointCond); | 
|  |  | 
|  | CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); | 
|  | assert(SanOpts.has(Checked[0].second)); | 
|  | #ifndef NDEBUG | 
|  | for (int i = 1, n = Checked.size(); i < n; ++i) { | 
|  | assert(RecoverKind == getRecoverableKind(Checked[i].second) && | 
|  | "All recoverable kinds in a single check must be same!"); | 
|  | assert(SanOpts.has(Checked[i].second)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | llvm::BasicBlock *Cont = createBasicBlock("cont"); | 
|  | llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); | 
|  | llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); | 
|  | // Give hint that we very much don't expect to execute the handler | 
|  | // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp | 
|  | llvm::MDBuilder MDHelper(getLLVMContext()); | 
|  | llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); | 
|  | Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); | 
|  | EmitBlock(Handlers); | 
|  |  | 
|  | // Handler functions take an i8* pointing to the (handler-specific) static | 
|  | // information block, followed by a sequence of intptr_t arguments | 
|  | // representing operand values. | 
|  | SmallVector<llvm::Value *, 4> Args; | 
|  | SmallVector<llvm::Type *, 4> ArgTypes; | 
|  | if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { | 
|  | Args.reserve(DynamicArgs.size() + 1); | 
|  | ArgTypes.reserve(DynamicArgs.size() + 1); | 
|  |  | 
|  | // Emit handler arguments and create handler function type. | 
|  | if (!StaticArgs.empty()) { | 
|  | llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); | 
|  | auto *InfoPtr = | 
|  | new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, | 
|  | llvm::GlobalVariable::PrivateLinkage, Info); | 
|  | InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | 
|  | CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); | 
|  | Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); | 
|  | ArgTypes.push_back(Int8PtrTy); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { | 
|  | Args.push_back(EmitCheckValue(DynamicArgs[i])); | 
|  | ArgTypes.push_back(IntPtrTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::FunctionType *FnType = | 
|  | llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); | 
|  |  | 
|  | if (!FatalCond || !RecoverableCond) { | 
|  | // Simple case: we need to generate a single handler call, either | 
|  | // fatal, or non-fatal. | 
|  | emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, | 
|  | (FatalCond != nullptr), Cont); | 
|  | } else { | 
|  | // Emit two handler calls: first one for set of unrecoverable checks, | 
|  | // another one for recoverable. | 
|  | llvm::BasicBlock *NonFatalHandlerBB = | 
|  | createBasicBlock("non_fatal." + CheckName); | 
|  | llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); | 
|  | Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); | 
|  | EmitBlock(FatalHandlerBB); | 
|  | emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, | 
|  | NonFatalHandlerBB); | 
|  | EmitBlock(NonFatalHandlerBB); | 
|  | emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, | 
|  | Cont); | 
|  | } | 
|  |  | 
|  | EmitBlock(Cont); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitCfiSlowPathCheck( | 
|  | SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, | 
|  | llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { | 
|  | llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); | 
|  |  | 
|  | llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); | 
|  | llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); | 
|  |  | 
|  | llvm::MDBuilder MDHelper(getLLVMContext()); | 
|  | llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); | 
|  | BI->setMetadata(llvm::LLVMContext::MD_prof, Node); | 
|  |  | 
|  | EmitBlock(CheckBB); | 
|  |  | 
|  | bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); | 
|  |  | 
|  | llvm::CallInst *CheckCall; | 
|  | llvm::FunctionCallee SlowPathFn; | 
|  | if (WithDiag) { | 
|  | llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); | 
|  | auto *InfoPtr = | 
|  | new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, | 
|  | llvm::GlobalVariable::PrivateLinkage, Info); | 
|  | InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | 
|  | CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); | 
|  |  | 
|  | SlowPathFn = CGM.getModule().getOrInsertFunction( | 
|  | "__cfi_slowpath_diag", | 
|  | llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, | 
|  | false)); | 
|  | CheckCall = Builder.CreateCall( | 
|  | SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); | 
|  | } else { | 
|  | SlowPathFn = CGM.getModule().getOrInsertFunction( | 
|  | "__cfi_slowpath", | 
|  | llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); | 
|  | CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); | 
|  | } | 
|  |  | 
|  | CGM.setDSOLocal( | 
|  | cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); | 
|  | CheckCall->setDoesNotThrow(); | 
|  |  | 
|  | EmitBlock(Cont); | 
|  | } | 
|  |  | 
|  | // Emit a stub for __cfi_check function so that the linker knows about this | 
|  | // symbol in LTO mode. | 
|  | void CodeGenFunction::EmitCfiCheckStub() { | 
|  | llvm::Module *M = &CGM.getModule(); | 
|  | auto &Ctx = M->getContext(); | 
|  | llvm::Function *F = llvm::Function::Create( | 
|  | llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), | 
|  | llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); | 
|  | CGM.setDSOLocal(F); | 
|  | llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); | 
|  | // FIXME: consider emitting an intrinsic call like | 
|  | // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) | 
|  | // which can be lowered in CrossDSOCFI pass to the actual contents of | 
|  | // __cfi_check. This would allow inlining of __cfi_check calls. | 
|  | llvm::CallInst::Create( | 
|  | llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); | 
|  | llvm::ReturnInst::Create(Ctx, nullptr, BB); | 
|  | } | 
|  |  | 
|  | // This function is basically a switch over the CFI failure kind, which is | 
|  | // extracted from CFICheckFailData (1st function argument). Each case is either | 
|  | // llvm.trap or a call to one of the two runtime handlers, based on | 
|  | // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid | 
|  | // failure kind) traps, but this should really never happen.  CFICheckFailData | 
|  | // can be nullptr if the calling module has -fsanitize-trap behavior for this | 
|  | // check kind; in this case __cfi_check_fail traps as well. | 
|  | void CodeGenFunction::EmitCfiCheckFail() { | 
|  | SanitizerScope SanScope(this); | 
|  | FunctionArgList Args; | 
|  | ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, | 
|  | ImplicitParamDecl::Other); | 
|  | ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, | 
|  | ImplicitParamDecl::Other); | 
|  | Args.push_back(&ArgData); | 
|  | Args.push_back(&ArgAddr); | 
|  |  | 
|  | const CGFunctionInfo &FI = | 
|  | CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); | 
|  |  | 
|  | llvm::Function *F = llvm::Function::Create( | 
|  | llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), | 
|  | llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); | 
|  | F->setVisibility(llvm::GlobalValue::HiddenVisibility); | 
|  |  | 
|  | StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, | 
|  | SourceLocation()); | 
|  |  | 
|  | // This function should not be affected by blacklist. This function does | 
|  | // not have a source location, but "src:*" would still apply. Revert any | 
|  | // changes to SanOpts made in StartFunction. | 
|  | SanOpts = CGM.getLangOpts().Sanitize; | 
|  |  | 
|  | llvm::Value *Data = | 
|  | EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, | 
|  | CGM.getContext().VoidPtrTy, ArgData.getLocation()); | 
|  | llvm::Value *Addr = | 
|  | EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, | 
|  | CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); | 
|  |  | 
|  | // Data == nullptr means the calling module has trap behaviour for this check. | 
|  | llvm::Value *DataIsNotNullPtr = | 
|  | Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); | 
|  | EmitTrapCheck(DataIsNotNullPtr); | 
|  |  | 
|  | llvm::StructType *SourceLocationTy = | 
|  | llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); | 
|  | llvm::StructType *CfiCheckFailDataTy = | 
|  | llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); | 
|  |  | 
|  | llvm::Value *V = Builder.CreateConstGEP2_32( | 
|  | CfiCheckFailDataTy, | 
|  | Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, | 
|  | 0); | 
|  | Address CheckKindAddr(V, getIntAlign()); | 
|  | llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); | 
|  |  | 
|  | llvm::Value *AllVtables = llvm::MetadataAsValue::get( | 
|  | CGM.getLLVMContext(), | 
|  | llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); | 
|  | llvm::Value *ValidVtable = Builder.CreateZExt( | 
|  | Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), | 
|  | {Addr, AllVtables}), | 
|  | IntPtrTy); | 
|  |  | 
|  | const std::pair<int, SanitizerMask> CheckKinds[] = { | 
|  | {CFITCK_VCall, SanitizerKind::CFIVCall}, | 
|  | {CFITCK_NVCall, SanitizerKind::CFINVCall}, | 
|  | {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, | 
|  | {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, | 
|  | {CFITCK_ICall, SanitizerKind::CFIICall}}; | 
|  |  | 
|  | SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; | 
|  | for (auto CheckKindMaskPair : CheckKinds) { | 
|  | int Kind = CheckKindMaskPair.first; | 
|  | SanitizerMask Mask = CheckKindMaskPair.second; | 
|  | llvm::Value *Cond = | 
|  | Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); | 
|  | if (CGM.getLangOpts().Sanitize.has(Mask)) | 
|  | EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, | 
|  | {Data, Addr, ValidVtable}); | 
|  | else | 
|  | EmitTrapCheck(Cond); | 
|  | } | 
|  |  | 
|  | FinishFunction(); | 
|  | // The only reference to this function will be created during LTO link. | 
|  | // Make sure it survives until then. | 
|  | CGM.addUsedGlobal(F); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { | 
|  | if (SanOpts.has(SanitizerKind::Unreachable)) { | 
|  | SanitizerScope SanScope(this); | 
|  | EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), | 
|  | SanitizerKind::Unreachable), | 
|  | SanitizerHandler::BuiltinUnreachable, | 
|  | EmitCheckSourceLocation(Loc), None); | 
|  | } | 
|  | Builder.CreateUnreachable(); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { | 
|  | llvm::BasicBlock *Cont = createBasicBlock("cont"); | 
|  |  | 
|  | // If we're optimizing, collapse all calls to trap down to just one per | 
|  | // function to save on code size. | 
|  | if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { | 
|  | TrapBB = createBasicBlock("trap"); | 
|  | Builder.CreateCondBr(Checked, Cont, TrapBB); | 
|  | EmitBlock(TrapBB); | 
|  | llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); | 
|  | TrapCall->setDoesNotReturn(); | 
|  | TrapCall->setDoesNotThrow(); | 
|  | Builder.CreateUnreachable(); | 
|  | } else { | 
|  | Builder.CreateCondBr(Checked, Cont, TrapBB); | 
|  | } | 
|  |  | 
|  | EmitBlock(Cont); | 
|  | } | 
|  |  | 
|  | llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { | 
|  | llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); | 
|  |  | 
|  | if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { | 
|  | auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", | 
|  | CGM.getCodeGenOpts().TrapFuncName); | 
|  | TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); | 
|  | } | 
|  |  | 
|  | return TrapCall; | 
|  | } | 
|  |  | 
|  | Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, | 
|  | LValueBaseInfo *BaseInfo, | 
|  | TBAAAccessInfo *TBAAInfo) { | 
|  | assert(E->getType()->isArrayType() && | 
|  | "Array to pointer decay must have array source type!"); | 
|  |  | 
|  | // Expressions of array type can't be bitfields or vector elements. | 
|  | LValue LV = EmitLValue(E); | 
|  | Address Addr = LV.getAddress(); | 
|  |  | 
|  | // If the array type was an incomplete type, we need to make sure | 
|  | // the decay ends up being the right type. | 
|  | llvm::Type *NewTy = ConvertType(E->getType()); | 
|  | Addr = Builder.CreateElementBitCast(Addr, NewTy); | 
|  |  | 
|  | // Note that VLA pointers are always decayed, so we don't need to do | 
|  | // anything here. | 
|  | if (!E->getType()->isVariableArrayType()) { | 
|  | assert(isa<llvm::ArrayType>(Addr.getElementType()) && | 
|  | "Expected pointer to array"); | 
|  | Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); | 
|  | } | 
|  |  | 
|  | // The result of this decay conversion points to an array element within the | 
|  | // base lvalue. However, since TBAA currently does not support representing | 
|  | // accesses to elements of member arrays, we conservatively represent accesses | 
|  | // to the pointee object as if it had no any base lvalue specified. | 
|  | // TODO: Support TBAA for member arrays. | 
|  | QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); | 
|  | if (BaseInfo) *BaseInfo = LV.getBaseInfo(); | 
|  | if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); | 
|  |  | 
|  | return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); | 
|  | } | 
|  |  | 
|  | /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an | 
|  | /// array to pointer, return the array subexpression. | 
|  | static const Expr *isSimpleArrayDecayOperand(const Expr *E) { | 
|  | // If this isn't just an array->pointer decay, bail out. | 
|  | const auto *CE = dyn_cast<CastExpr>(E); | 
|  | if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a decay from variable width array, bail out. | 
|  | const Expr *SubExpr = CE->getSubExpr(); | 
|  | if (SubExpr->getType()->isVariableArrayType()) | 
|  | return nullptr; | 
|  |  | 
|  | return SubExpr; | 
|  | } | 
|  |  | 
|  | static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, | 
|  | llvm::Value *ptr, | 
|  | ArrayRef<llvm::Value*> indices, | 
|  | bool inbounds, | 
|  | bool signedIndices, | 
|  | SourceLocation loc, | 
|  | const llvm::Twine &name = "arrayidx") { | 
|  | if (inbounds) { | 
|  | return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, | 
|  | CodeGenFunction::NotSubtraction, loc, | 
|  | name); | 
|  | } else { | 
|  | return CGF.Builder.CreateGEP(ptr, indices, name); | 
|  | } | 
|  | } | 
|  |  | 
|  | static CharUnits getArrayElementAlign(CharUnits arrayAlign, | 
|  | llvm::Value *idx, | 
|  | CharUnits eltSize) { | 
|  | // If we have a constant index, we can use the exact offset of the | 
|  | // element we're accessing. | 
|  | if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { | 
|  | CharUnits offset = constantIdx->getZExtValue() * eltSize; | 
|  | return arrayAlign.alignmentAtOffset(offset); | 
|  |  | 
|  | // Otherwise, use the worst-case alignment for any element. | 
|  | } else { | 
|  | return arrayAlign.alignmentOfArrayElement(eltSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | static QualType getFixedSizeElementType(const ASTContext &ctx, | 
|  | const VariableArrayType *vla) { | 
|  | QualType eltType; | 
|  | do { | 
|  | eltType = vla->getElementType(); | 
|  | } while ((vla = ctx.getAsVariableArrayType(eltType))); | 
|  | return eltType; | 
|  | } | 
|  |  | 
|  | static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, | 
|  | ArrayRef<llvm::Value *> indices, | 
|  | QualType eltType, bool inbounds, | 
|  | bool signedIndices, SourceLocation loc, | 
|  | QualType *arrayType = nullptr, | 
|  | const llvm::Twine &name = "arrayidx") { | 
|  | // All the indices except that last must be zero. | 
|  | #ifndef NDEBUG | 
|  | for (auto idx : indices.drop_back()) | 
|  | assert(isa<llvm::ConstantInt>(idx) && | 
|  | cast<llvm::ConstantInt>(idx)->isZero()); | 
|  | #endif | 
|  |  | 
|  | // Determine the element size of the statically-sized base.  This is | 
|  | // the thing that the indices are expressed in terms of. | 
|  | if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { | 
|  | eltType = getFixedSizeElementType(CGF.getContext(), vla); | 
|  | } | 
|  |  | 
|  | // We can use that to compute the best alignment of the element. | 
|  | CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); | 
|  | CharUnits eltAlign = | 
|  | getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); | 
|  |  | 
|  | llvm::Value *eltPtr; | 
|  | auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); | 
|  | if (!CGF.IsInPreservedAIRegion || !LastIndex) { | 
|  | eltPtr = emitArraySubscriptGEP( | 
|  | CGF, addr.getPointer(), indices, inbounds, signedIndices, | 
|  | loc, name); | 
|  | } else { | 
|  | // Remember the original array subscript for bpf target | 
|  | unsigned idx = LastIndex->getZExtValue(); | 
|  | llvm::DIType *DbgInfo = nullptr; | 
|  | if (arrayType) | 
|  | DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); | 
|  | eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), | 
|  | addr.getPointer(), | 
|  | indices.size() - 1, | 
|  | idx, DbgInfo); | 
|  | } | 
|  |  | 
|  | return Address(eltPtr, eltAlign); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, | 
|  | bool Accessed) { | 
|  | // The index must always be an integer, which is not an aggregate.  Emit it | 
|  | // in lexical order (this complexity is, sadly, required by C++17). | 
|  | llvm::Value *IdxPre = | 
|  | (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; | 
|  | bool SignedIndices = false; | 
|  | auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { | 
|  | auto *Idx = IdxPre; | 
|  | if (E->getLHS() != E->getIdx()) { | 
|  | assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); | 
|  | Idx = EmitScalarExpr(E->getIdx()); | 
|  | } | 
|  |  | 
|  | QualType IdxTy = E->getIdx()->getType(); | 
|  | bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); | 
|  | SignedIndices |= IdxSigned; | 
|  |  | 
|  | if (SanOpts.has(SanitizerKind::ArrayBounds)) | 
|  | EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); | 
|  |  | 
|  | // Extend or truncate the index type to 32 or 64-bits. | 
|  | if (Promote && Idx->getType() != IntPtrTy) | 
|  | Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); | 
|  |  | 
|  | return Idx; | 
|  | }; | 
|  | IdxPre = nullptr; | 
|  |  | 
|  | // If the base is a vector type, then we are forming a vector element lvalue | 
|  | // with this subscript. | 
|  | if (E->getBase()->getType()->isVectorType() && | 
|  | !isa<ExtVectorElementExpr>(E->getBase())) { | 
|  | // Emit the vector as an lvalue to get its address. | 
|  | LValue LHS = EmitLValue(E->getBase()); | 
|  | auto *Idx = EmitIdxAfterBase(/*Promote*/false); | 
|  | assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); | 
|  | return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), | 
|  | LHS.getBaseInfo(), TBAAAccessInfo()); | 
|  | } | 
|  |  | 
|  | // All the other cases basically behave like simple offsetting. | 
|  |  | 
|  | // Handle the extvector case we ignored above. | 
|  | if (isa<ExtVectorElementExpr>(E->getBase())) { | 
|  | LValue LV = EmitLValue(E->getBase()); | 
|  | auto *Idx = EmitIdxAfterBase(/*Promote*/true); | 
|  | Address Addr = EmitExtVectorElementLValue(LV); | 
|  |  | 
|  | QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); | 
|  | Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, | 
|  | SignedIndices, E->getExprLoc()); | 
|  | return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), | 
|  | CGM.getTBAAInfoForSubobject(LV, EltType)); | 
|  | } | 
|  |  | 
|  | LValueBaseInfo EltBaseInfo; | 
|  | TBAAAccessInfo EltTBAAInfo; | 
|  | Address Addr = Address::invalid(); | 
|  | if (const VariableArrayType *vla = | 
|  | getContext().getAsVariableArrayType(E->getType())) { | 
|  | // The base must be a pointer, which is not an aggregate.  Emit | 
|  | // it.  It needs to be emitted first in case it's what captures | 
|  | // the VLA bounds. | 
|  | Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); | 
|  | auto *Idx = EmitIdxAfterBase(/*Promote*/true); | 
|  |  | 
|  | // The element count here is the total number of non-VLA elements. | 
|  | llvm::Value *numElements = getVLASize(vla).NumElts; | 
|  |  | 
|  | // Effectively, the multiply by the VLA size is part of the GEP. | 
|  | // GEP indexes are signed, and scaling an index isn't permitted to | 
|  | // signed-overflow, so we use the same semantics for our explicit | 
|  | // multiply.  We suppress this if overflow is not undefined behavior. | 
|  | if (getLangOpts().isSignedOverflowDefined()) { | 
|  | Idx = Builder.CreateMul(Idx, numElements); | 
|  | } else { | 
|  | Idx = Builder.CreateNSWMul(Idx, numElements); | 
|  | } | 
|  |  | 
|  | Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), | 
|  | !getLangOpts().isSignedOverflowDefined(), | 
|  | SignedIndices, E->getExprLoc()); | 
|  |  | 
|  | } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ | 
|  | // Indexing over an interface, as in "NSString *P; P[4];" | 
|  |  | 
|  | // Emit the base pointer. | 
|  | Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); | 
|  | auto *Idx = EmitIdxAfterBase(/*Promote*/true); | 
|  |  | 
|  | CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); | 
|  | llvm::Value *InterfaceSizeVal = | 
|  | llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); | 
|  |  | 
|  | llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); | 
|  |  | 
|  | // We don't necessarily build correct LLVM struct types for ObjC | 
|  | // interfaces, so we can't rely on GEP to do this scaling | 
|  | // correctly, so we need to cast to i8*.  FIXME: is this actually | 
|  | // true?  A lot of other things in the fragile ABI would break... | 
|  | llvm::Type *OrigBaseTy = Addr.getType(); | 
|  | Addr = Builder.CreateElementBitCast(Addr, Int8Ty); | 
|  |  | 
|  | // Do the GEP. | 
|  | CharUnits EltAlign = | 
|  | getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); | 
|  | llvm::Value *EltPtr = | 
|  | emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, | 
|  | SignedIndices, E->getExprLoc()); | 
|  | Addr = Address(EltPtr, EltAlign); | 
|  |  | 
|  | // Cast back. | 
|  | Addr = Builder.CreateBitCast(Addr, OrigBaseTy); | 
|  | } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { | 
|  | // If this is A[i] where A is an array, the frontend will have decayed the | 
|  | // base to be a ArrayToPointerDecay implicit cast.  While correct, it is | 
|  | // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a | 
|  | // "gep x, i" here.  Emit one "gep A, 0, i". | 
|  | assert(Array->getType()->isArrayType() && | 
|  | "Array to pointer decay must have array source type!"); | 
|  | LValue ArrayLV; | 
|  | // For simple multidimensional array indexing, set the 'accessed' flag for | 
|  | // better bounds-checking of the base expression. | 
|  | if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) | 
|  | ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); | 
|  | else | 
|  | ArrayLV = EmitLValue(Array); | 
|  | auto *Idx = EmitIdxAfterBase(/*Promote*/true); | 
|  |  | 
|  | // Propagate the alignment from the array itself to the result. | 
|  | QualType arrayType = Array->getType(); | 
|  | Addr = emitArraySubscriptGEP( | 
|  | *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, | 
|  | E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, | 
|  | E->getExprLoc(), &arrayType); | 
|  | EltBaseInfo = ArrayLV.getBaseInfo(); | 
|  | EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); | 
|  | } else { | 
|  | // The base must be a pointer; emit it with an estimate of its alignment. | 
|  | Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); | 
|  | auto *Idx = EmitIdxAfterBase(/*Promote*/true); | 
|  | QualType ptrType = E->getBase()->getType(); | 
|  | Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), | 
|  | !getLangOpts().isSignedOverflowDefined(), | 
|  | SignedIndices, E->getExprLoc(), &ptrType); | 
|  | } | 
|  |  | 
|  | LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); | 
|  |  | 
|  | if (getLangOpts().ObjC && | 
|  | getLangOpts().getGC() != LangOptions::NonGC) { | 
|  | LV.setNonGC(!E->isOBJCGCCandidate(getContext())); | 
|  | setObjCGCLValueClass(getContext(), E, LV); | 
|  | } | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, | 
|  | LValueBaseInfo &BaseInfo, | 
|  | TBAAAccessInfo &TBAAInfo, | 
|  | QualType BaseTy, QualType ElTy, | 
|  | bool IsLowerBound) { | 
|  | LValue BaseLVal; | 
|  | if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { | 
|  | BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); | 
|  | if (BaseTy->isArrayType()) { | 
|  | Address Addr = BaseLVal.getAddress(); | 
|  | BaseInfo = BaseLVal.getBaseInfo(); | 
|  |  | 
|  | // If the array type was an incomplete type, we need to make sure | 
|  | // the decay ends up being the right type. | 
|  | llvm::Type *NewTy = CGF.ConvertType(BaseTy); | 
|  | Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); | 
|  |  | 
|  | // Note that VLA pointers are always decayed, so we don't need to do | 
|  | // anything here. | 
|  | if (!BaseTy->isVariableArrayType()) { | 
|  | assert(isa<llvm::ArrayType>(Addr.getElementType()) && | 
|  | "Expected pointer to array"); | 
|  | Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); | 
|  | } | 
|  |  | 
|  | return CGF.Builder.CreateElementBitCast(Addr, | 
|  | CGF.ConvertTypeForMem(ElTy)); | 
|  | } | 
|  | LValueBaseInfo TypeBaseInfo; | 
|  | TBAAAccessInfo TypeTBAAInfo; | 
|  | CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, | 
|  | &TypeTBAAInfo); | 
|  | BaseInfo.mergeForCast(TypeBaseInfo); | 
|  | TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); | 
|  | return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); | 
|  | } | 
|  | return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, | 
|  | bool IsLowerBound) { | 
|  | QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); | 
|  | QualType ResultExprTy; | 
|  | if (auto *AT = getContext().getAsArrayType(BaseTy)) | 
|  | ResultExprTy = AT->getElementType(); | 
|  | else | 
|  | ResultExprTy = BaseTy->getPointeeType(); | 
|  | llvm::Value *Idx = nullptr; | 
|  | if (IsLowerBound || E->getColonLoc().isInvalid()) { | 
|  | // Requesting lower bound or upper bound, but without provided length and | 
|  | // without ':' symbol for the default length -> length = 1. | 
|  | // Idx = LowerBound ?: 0; | 
|  | if (auto *LowerBound = E->getLowerBound()) { | 
|  | Idx = Builder.CreateIntCast( | 
|  | EmitScalarExpr(LowerBound), IntPtrTy, | 
|  | LowerBound->getType()->hasSignedIntegerRepresentation()); | 
|  | } else | 
|  | Idx = llvm::ConstantInt::getNullValue(IntPtrTy); | 
|  | } else { | 
|  | // Try to emit length or lower bound as constant. If this is possible, 1 | 
|  | // is subtracted from constant length or lower bound. Otherwise, emit LLVM | 
|  | // IR (LB + Len) - 1. | 
|  | auto &C = CGM.getContext(); | 
|  | auto *Length = E->getLength(); | 
|  | llvm::APSInt ConstLength; | 
|  | if (Length) { | 
|  | // Idx = LowerBound + Length - 1; | 
|  | if (Length->isIntegerConstantExpr(ConstLength, C)) { | 
|  | ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); | 
|  | Length = nullptr; | 
|  | } | 
|  | auto *LowerBound = E->getLowerBound(); | 
|  | llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); | 
|  | if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { | 
|  | ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); | 
|  | LowerBound = nullptr; | 
|  | } | 
|  | if (!Length) | 
|  | --ConstLength; | 
|  | else if (!LowerBound) | 
|  | --ConstLowerBound; | 
|  |  | 
|  | if (Length || LowerBound) { | 
|  | auto *LowerBoundVal = | 
|  | LowerBound | 
|  | ? Builder.CreateIntCast( | 
|  | EmitScalarExpr(LowerBound), IntPtrTy, | 
|  | LowerBound->getType()->hasSignedIntegerRepresentation()) | 
|  | : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); | 
|  | auto *LengthVal = | 
|  | Length | 
|  | ? Builder.CreateIntCast( | 
|  | EmitScalarExpr(Length), IntPtrTy, | 
|  | Length->getType()->hasSignedIntegerRepresentation()) | 
|  | : llvm::ConstantInt::get(IntPtrTy, ConstLength); | 
|  | Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", | 
|  | /*HasNUW=*/false, | 
|  | !getLangOpts().isSignedOverflowDefined()); | 
|  | if (Length && LowerBound) { | 
|  | Idx = Builder.CreateSub( | 
|  | Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", | 
|  | /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); | 
|  | } | 
|  | } else | 
|  | Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); | 
|  | } else { | 
|  | // Idx = ArraySize - 1; | 
|  | QualType ArrayTy = BaseTy->isPointerType() | 
|  | ? E->getBase()->IgnoreParenImpCasts()->getType() | 
|  | : BaseTy; | 
|  | if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { | 
|  | Length = VAT->getSizeExpr(); | 
|  | if (Length->isIntegerConstantExpr(ConstLength, C)) | 
|  | Length = nullptr; | 
|  | } else { | 
|  | auto *CAT = C.getAsConstantArrayType(ArrayTy); | 
|  | ConstLength = CAT->getSize(); | 
|  | } | 
|  | if (Length) { | 
|  | auto *LengthVal = Builder.CreateIntCast( | 
|  | EmitScalarExpr(Length), IntPtrTy, | 
|  | Length->getType()->hasSignedIntegerRepresentation()); | 
|  | Idx = Builder.CreateSub( | 
|  | LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", | 
|  | /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); | 
|  | } else { | 
|  | ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); | 
|  | --ConstLength; | 
|  | Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); | 
|  | } | 
|  | } | 
|  | } | 
|  | assert(Idx); | 
|  |  | 
|  | Address EltPtr = Address::invalid(); | 
|  | LValueBaseInfo BaseInfo; | 
|  | TBAAAccessInfo TBAAInfo; | 
|  | if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { | 
|  | // The base must be a pointer, which is not an aggregate.  Emit | 
|  | // it.  It needs to be emitted first in case it's what captures | 
|  | // the VLA bounds. | 
|  | Address Base = | 
|  | emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, | 
|  | BaseTy, VLA->getElementType(), IsLowerBound); | 
|  | // The element count here is the total number of non-VLA elements. | 
|  | llvm::Value *NumElements = getVLASize(VLA).NumElts; | 
|  |  | 
|  | // Effectively, the multiply by the VLA size is part of the GEP. | 
|  | // GEP indexes are signed, and scaling an index isn't permitted to | 
|  | // signed-overflow, so we use the same semantics for our explicit | 
|  | // multiply.  We suppress this if overflow is not undefined behavior. | 
|  | if (getLangOpts().isSignedOverflowDefined()) | 
|  | Idx = Builder.CreateMul(Idx, NumElements); | 
|  | else | 
|  | Idx = Builder.CreateNSWMul(Idx, NumElements); | 
|  | EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), | 
|  | !getLangOpts().isSignedOverflowDefined(), | 
|  | /*signedIndices=*/false, E->getExprLoc()); | 
|  | } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { | 
|  | // If this is A[i] where A is an array, the frontend will have decayed the | 
|  | // base to be a ArrayToPointerDecay implicit cast.  While correct, it is | 
|  | // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a | 
|  | // "gep x, i" here.  Emit one "gep A, 0, i". | 
|  | assert(Array->getType()->isArrayType() && | 
|  | "Array to pointer decay must have array source type!"); | 
|  | LValue ArrayLV; | 
|  | // For simple multidimensional array indexing, set the 'accessed' flag for | 
|  | // better bounds-checking of the base expression. | 
|  | if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) | 
|  | ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); | 
|  | else | 
|  | ArrayLV = EmitLValue(Array); | 
|  |  | 
|  | // Propagate the alignment from the array itself to the result. | 
|  | EltPtr = emitArraySubscriptGEP( | 
|  | *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, | 
|  | ResultExprTy, !getLangOpts().isSignedOverflowDefined(), | 
|  | /*signedIndices=*/false, E->getExprLoc()); | 
|  | BaseInfo = ArrayLV.getBaseInfo(); | 
|  | TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); | 
|  | } else { | 
|  | Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, | 
|  | TBAAInfo, BaseTy, ResultExprTy, | 
|  | IsLowerBound); | 
|  | EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, | 
|  | !getLangOpts().isSignedOverflowDefined(), | 
|  | /*signedIndices=*/false, E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction:: | 
|  | EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { | 
|  | // Emit the base vector as an l-value. | 
|  | LValue Base; | 
|  |  | 
|  | // ExtVectorElementExpr's base can either be a vector or pointer to vector. | 
|  | if (E->isArrow()) { | 
|  | // If it is a pointer to a vector, emit the address and form an lvalue with | 
|  | // it. | 
|  | LValueBaseInfo BaseInfo; | 
|  | TBAAAccessInfo TBAAInfo; | 
|  | Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); | 
|  | const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); | 
|  | Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); | 
|  | Base.getQuals().removeObjCGCAttr(); | 
|  | } else if (E->getBase()->isGLValue()) { | 
|  | // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), | 
|  | // emit the base as an lvalue. | 
|  | assert(E->getBase()->getType()->isVectorType()); | 
|  | Base = EmitLValue(E->getBase()); | 
|  | } else { | 
|  | // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. | 
|  | assert(E->getBase()->getType()->isVectorType() && | 
|  | "Result must be a vector"); | 
|  | llvm::Value *Vec = EmitScalarExpr(E->getBase()); | 
|  |  | 
|  | // Store the vector to memory (because LValue wants an address). | 
|  | Address VecMem = CreateMemTemp(E->getBase()->getType()); | 
|  | Builder.CreateStore(Vec, VecMem); | 
|  | Base = MakeAddrLValue(VecMem, E->getBase()->getType(), | 
|  | AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | QualType type = | 
|  | E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); | 
|  |  | 
|  | // Encode the element access list into a vector of unsigned indices. | 
|  | SmallVector<uint32_t, 4> Indices; | 
|  | E->getEncodedElementAccess(Indices); | 
|  |  | 
|  | if (Base.isSimple()) { | 
|  | llvm::Constant *CV = | 
|  | llvm::ConstantDataVector::get(getLLVMContext(), Indices); | 
|  | return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, | 
|  | Base.getBaseInfo(), TBAAAccessInfo()); | 
|  | } | 
|  | assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); | 
|  |  | 
|  | llvm::Constant *BaseElts = Base.getExtVectorElts(); | 
|  | SmallVector<llvm::Constant *, 4> CElts; | 
|  |  | 
|  | for (unsigned i = 0, e = Indices.size(); i != e; ++i) | 
|  | CElts.push_back(BaseElts->getAggregateElement(Indices[i])); | 
|  | llvm::Constant *CV = llvm::ConstantVector::get(CElts); | 
|  | return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, | 
|  | Base.getBaseInfo(), TBAAAccessInfo()); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { | 
|  | if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { | 
|  | EmitIgnoredExpr(E->getBase()); | 
|  | return EmitDeclRefLValue(DRE); | 
|  | } | 
|  |  | 
|  | Expr *BaseExpr = E->getBase(); | 
|  | // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar. | 
|  | LValue BaseLV; | 
|  | if (E->isArrow()) { | 
|  | LValueBaseInfo BaseInfo; | 
|  | TBAAAccessInfo TBAAInfo; | 
|  | Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); | 
|  | QualType PtrTy = BaseExpr->getType()->getPointeeType(); | 
|  | SanitizerSet SkippedChecks; | 
|  | bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); | 
|  | if (IsBaseCXXThis) | 
|  | SkippedChecks.set(SanitizerKind::Alignment, true); | 
|  | if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) | 
|  | SkippedChecks.set(SanitizerKind::Null, true); | 
|  | EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, | 
|  | /*Alignment=*/CharUnits::Zero(), SkippedChecks); | 
|  | BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); | 
|  | } else | 
|  | BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); | 
|  |  | 
|  | NamedDecl *ND = E->getMemberDecl(); | 
|  | if (auto *Field = dyn_cast<FieldDecl>(ND)) { | 
|  | LValue LV = EmitLValueForField(BaseLV, Field); | 
|  | setObjCGCLValueClass(getContext(), E, LV); | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(ND)) | 
|  | return EmitFunctionDeclLValue(*this, E, FD); | 
|  |  | 
|  | llvm_unreachable("Unhandled member declaration!"); | 
|  | } | 
|  |  | 
|  | /// Given that we are currently emitting a lambda, emit an l-value for | 
|  | /// one of its members. | 
|  | LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { | 
|  | assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); | 
|  | assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); | 
|  | QualType LambdaTagType = | 
|  | getContext().getTagDeclType(Field->getParent()); | 
|  | LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); | 
|  | return EmitLValueForField(LambdaLV, Field); | 
|  | } | 
|  |  | 
|  | /// Get the field index in the debug info. The debug info structure/union | 
|  | /// will ignore the unnamed bitfields. | 
|  | unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, | 
|  | unsigned FieldIndex) { | 
|  | unsigned I = 0, Skipped = 0; | 
|  |  | 
|  | for (auto F : Rec->getDefinition()->fields()) { | 
|  | if (I == FieldIndex) | 
|  | break; | 
|  | if (F->isUnnamedBitfield()) | 
|  | Skipped++; | 
|  | I++; | 
|  | } | 
|  |  | 
|  | return FieldIndex - Skipped; | 
|  | } | 
|  |  | 
|  | /// Get the address of a zero-sized field within a record. The resulting | 
|  | /// address doesn't necessarily have the right type. | 
|  | static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, | 
|  | const FieldDecl *Field) { | 
|  | CharUnits Offset = CGF.getContext().toCharUnitsFromBits( | 
|  | CGF.getContext().getFieldOffset(Field)); | 
|  | if (Offset.isZero()) | 
|  | return Base; | 
|  | Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); | 
|  | return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); | 
|  | } | 
|  |  | 
|  | /// Drill down to the storage of a field without walking into | 
|  | /// reference types. | 
|  | /// | 
|  | /// The resulting address doesn't necessarily have the right type. | 
|  | static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, | 
|  | const FieldDecl *field) { | 
|  | if (field->isZeroSize(CGF.getContext())) | 
|  | return emitAddrOfZeroSizeField(CGF, base, field); | 
|  |  | 
|  | const RecordDecl *rec = field->getParent(); | 
|  |  | 
|  | unsigned idx = | 
|  | CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); | 
|  |  | 
|  | return CGF.Builder.CreateStructGEP(base, idx, field->getName()); | 
|  | } | 
|  |  | 
|  | static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base, | 
|  | const FieldDecl *field) { | 
|  | const RecordDecl *rec = field->getParent(); | 
|  | llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType( | 
|  | CGF.getContext().getRecordType(rec), rec->getLocation()); | 
|  |  | 
|  | unsigned idx = | 
|  | CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); | 
|  |  | 
|  | return CGF.Builder.CreatePreserveStructAccessIndex( | 
|  | base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); | 
|  | } | 
|  |  | 
|  | static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { | 
|  | const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); | 
|  | if (!RD) | 
|  | return false; | 
|  |  | 
|  | if (RD->isDynamicClass()) | 
|  | return true; | 
|  |  | 
|  | for (const auto &Base : RD->bases()) | 
|  | if (hasAnyVptr(Base.getType(), Context)) | 
|  | return true; | 
|  |  | 
|  | for (const FieldDecl *Field : RD->fields()) | 
|  | if (hasAnyVptr(Field->getType(), Context)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitLValueForField(LValue base, | 
|  | const FieldDecl *field) { | 
|  | LValueBaseInfo BaseInfo = base.getBaseInfo(); | 
|  |  | 
|  | if (field->isBitField()) { | 
|  | const CGRecordLayout &RL = | 
|  | CGM.getTypes().getCGRecordLayout(field->getParent()); | 
|  | const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); | 
|  | Address Addr = base.getAddress(); | 
|  | unsigned Idx = RL.getLLVMFieldNo(field); | 
|  | if (!IsInPreservedAIRegion) { | 
|  | if (Idx != 0) | 
|  | // For structs, we GEP to the field that the record layout suggests. | 
|  | Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); | 
|  | } else { | 
|  | const RecordDecl *rec = field->getParent(); | 
|  | llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( | 
|  | getContext().getRecordType(rec), rec->getLocation()); | 
|  | Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, | 
|  | getDebugInfoFIndex(rec, field->getFieldIndex()), | 
|  | DbgInfo); | 
|  | } | 
|  |  | 
|  | // Get the access type. | 
|  | llvm::Type *FieldIntTy = | 
|  | llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); | 
|  | if (Addr.getElementType() != FieldIntTy) | 
|  | Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); | 
|  |  | 
|  | QualType fieldType = | 
|  | field->getType().withCVRQualifiers(base.getVRQualifiers()); | 
|  | // TODO: Support TBAA for bit fields. | 
|  | LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); | 
|  | return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, | 
|  | TBAAAccessInfo()); | 
|  | } | 
|  |  | 
|  | // Fields of may-alias structures are may-alias themselves. | 
|  | // FIXME: this should get propagated down through anonymous structs | 
|  | // and unions. | 
|  | QualType FieldType = field->getType(); | 
|  | const RecordDecl *rec = field->getParent(); | 
|  | AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); | 
|  | LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); | 
|  | TBAAAccessInfo FieldTBAAInfo; | 
|  | if (base.getTBAAInfo().isMayAlias() || | 
|  | rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { | 
|  | FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); | 
|  | } else if (rec->isUnion()) { | 
|  | // TODO: Support TBAA for unions. | 
|  | FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); | 
|  | } else { | 
|  | // If no base type been assigned for the base access, then try to generate | 
|  | // one for this base lvalue. | 
|  | FieldTBAAInfo = base.getTBAAInfo(); | 
|  | if (!FieldTBAAInfo.BaseType) { | 
|  | FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); | 
|  | assert(!FieldTBAAInfo.Offset && | 
|  | "Nonzero offset for an access with no base type!"); | 
|  | } | 
|  |  | 
|  | // Adjust offset to be relative to the base type. | 
|  | const ASTRecordLayout &Layout = | 
|  | getContext().getASTRecordLayout(field->getParent()); | 
|  | unsigned CharWidth = getContext().getCharWidth(); | 
|  | if (FieldTBAAInfo.BaseType) | 
|  | FieldTBAAInfo.Offset += | 
|  | Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; | 
|  |  | 
|  | // Update the final access type and size. | 
|  | FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); | 
|  | FieldTBAAInfo.Size = | 
|  | getContext().getTypeSizeInChars(FieldType).getQuantity(); | 
|  | } | 
|  |  | 
|  | Address addr = base.getAddress(); | 
|  | if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { | 
|  | if (CGM.getCodeGenOpts().StrictVTablePointers && | 
|  | ClassDef->isDynamicClass()) { | 
|  | // Getting to any field of dynamic object requires stripping dynamic | 
|  | // information provided by invariant.group.  This is because accessing | 
|  | // fields may leak the real address of dynamic object, which could result | 
|  | // in miscompilation when leaked pointer would be compared. | 
|  | auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); | 
|  | addr = Address(stripped, addr.getAlignment()); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned RecordCVR = base.getVRQualifiers(); | 
|  | if (rec->isUnion()) { | 
|  | // For unions, there is no pointer adjustment. | 
|  | if (CGM.getCodeGenOpts().StrictVTablePointers && | 
|  | hasAnyVptr(FieldType, getContext())) | 
|  | // Because unions can easily skip invariant.barriers, we need to add | 
|  | // a barrier every time CXXRecord field with vptr is referenced. | 
|  | addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), | 
|  | addr.getAlignment()); | 
|  |  | 
|  | if (IsInPreservedAIRegion) { | 
|  | // Remember the original union field index | 
|  | llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( | 
|  | getContext().getRecordType(rec), rec->getLocation()); | 
|  | addr = Address( | 
|  | Builder.CreatePreserveUnionAccessIndex( | 
|  | addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), | 
|  | addr.getAlignment()); | 
|  | } | 
|  |  | 
|  | if (FieldType->isReferenceType()) | 
|  | addr = Builder.CreateElementBitCast( | 
|  | addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); | 
|  | } else { | 
|  | if (!IsInPreservedAIRegion) | 
|  | // For structs, we GEP to the field that the record layout suggests. | 
|  | addr = emitAddrOfFieldStorage(*this, addr, field); | 
|  | else | 
|  | // Remember the original struct field index | 
|  | addr = emitPreserveStructAccess(*this, addr, field); | 
|  | } | 
|  |  | 
|  | // If this is a reference field, load the reference right now. | 
|  | if (FieldType->isReferenceType()) { | 
|  | LValue RefLVal = | 
|  | MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); | 
|  | if (RecordCVR & Qualifiers::Volatile) | 
|  | RefLVal.getQuals().addVolatile(); | 
|  | addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); | 
|  |  | 
|  | // Qualifiers on the struct don't apply to the referencee. | 
|  | RecordCVR = 0; | 
|  | FieldType = FieldType->getPointeeType(); | 
|  | } | 
|  |  | 
|  | // Make sure that the address is pointing to the right type.  This is critical | 
|  | // for both unions and structs.  A union needs a bitcast, a struct element | 
|  | // will need a bitcast if the LLVM type laid out doesn't match the desired | 
|  | // type. | 
|  | addr = Builder.CreateElementBitCast( | 
|  | addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); | 
|  |  | 
|  | if (field->hasAttr<AnnotateAttr>()) | 
|  | addr = EmitFieldAnnotations(field, addr); | 
|  |  | 
|  | LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); | 
|  | LV.getQuals().addCVRQualifiers(RecordCVR); | 
|  |  | 
|  | // __weak attribute on a field is ignored. | 
|  | if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) | 
|  | LV.getQuals().removeObjCGCAttr(); | 
|  |  | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | LValue | 
|  | CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, | 
|  | const FieldDecl *Field) { | 
|  | QualType FieldType = Field->getType(); | 
|  |  | 
|  | if (!FieldType->isReferenceType()) | 
|  | return EmitLValueForField(Base, Field); | 
|  |  | 
|  | Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); | 
|  |  | 
|  | // Make sure that the address is pointing to the right type. | 
|  | llvm::Type *llvmType = ConvertTypeForMem(FieldType); | 
|  | V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); | 
|  |  | 
|  | // TODO: Generate TBAA information that describes this access as a structure | 
|  | // member access and not just an access to an object of the field's type. This | 
|  | // should be similar to what we do in EmitLValueForField(). | 
|  | LValueBaseInfo BaseInfo = Base.getBaseInfo(); | 
|  | AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); | 
|  | LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); | 
|  | return MakeAddrLValue(V, FieldType, FieldBaseInfo, | 
|  | CGM.getTBAAInfoForSubobject(Base, FieldType)); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ | 
|  | if (E->isFileScope()) { | 
|  | ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); | 
|  | return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); | 
|  | } | 
|  | if (E->getType()->isVariablyModifiedType()) | 
|  | // make sure to emit the VLA size. | 
|  | EmitVariablyModifiedType(E->getType()); | 
|  |  | 
|  | Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); | 
|  | const Expr *InitExpr = E->getInitializer(); | 
|  | LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); | 
|  |  | 
|  | EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), | 
|  | /*Init*/ true); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { | 
|  | if (!E->isGLValue()) | 
|  | // Initializing an aggregate temporary in C++11: T{...}. | 
|  | return EmitAggExprToLValue(E); | 
|  |  | 
|  | // An lvalue initializer list must be initializing a reference. | 
|  | assert(E->isTransparent() && "non-transparent glvalue init list"); | 
|  | return EmitLValue(E->getInit(0)); | 
|  | } | 
|  |  | 
|  | /// Emit the operand of a glvalue conditional operator. This is either a glvalue | 
|  | /// or a (possibly-parenthesized) throw-expression. If this is a throw, no | 
|  | /// LValue is returned and the current block has been terminated. | 
|  | static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, | 
|  | const Expr *Operand) { | 
|  | if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { | 
|  | CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | return CGF.EmitLValue(Operand); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction:: | 
|  | EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { | 
|  | if (!expr->isGLValue()) { | 
|  | // ?: here should be an aggregate. | 
|  | assert(hasAggregateEvaluationKind(expr->getType()) && | 
|  | "Unexpected conditional operator!"); | 
|  | return EmitAggExprToLValue(expr); | 
|  | } | 
|  |  | 
|  | OpaqueValueMapping binding(*this, expr); | 
|  |  | 
|  | const Expr *condExpr = expr->getCond(); | 
|  | bool CondExprBool; | 
|  | if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { | 
|  | const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); | 
|  | if (!CondExprBool) std::swap(live, dead); | 
|  |  | 
|  | if (!ContainsLabel(dead)) { | 
|  | // If the true case is live, we need to track its region. | 
|  | if (CondExprBool) | 
|  | incrementProfileCounter(expr); | 
|  | return EmitLValue(live); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); | 
|  | llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); | 
|  | llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); | 
|  |  | 
|  | ConditionalEvaluation eval(*this); | 
|  | EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); | 
|  |  | 
|  | // Any temporaries created here are conditional. | 
|  | EmitBlock(lhsBlock); | 
|  | incrementProfileCounter(expr); | 
|  | eval.begin(*this); | 
|  | Optional<LValue> lhs = | 
|  | EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); | 
|  | eval.end(*this); | 
|  |  | 
|  | if (lhs && !lhs->isSimple()) | 
|  | return EmitUnsupportedLValue(expr, "conditional operator"); | 
|  |  | 
|  | lhsBlock = Builder.GetInsertBlock(); | 
|  | if (lhs) | 
|  | Builder.CreateBr(contBlock); | 
|  |  | 
|  | // Any temporaries created here are conditional. | 
|  | EmitBlock(rhsBlock); | 
|  | eval.begin(*this); | 
|  | Optional<LValue> rhs = | 
|  | EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); | 
|  | eval.end(*this); | 
|  | if (rhs && !rhs->isSimple()) | 
|  | return EmitUnsupportedLValue(expr, "conditional operator"); | 
|  | rhsBlock = Builder.GetInsertBlock(); | 
|  |  | 
|  | EmitBlock(contBlock); | 
|  |  | 
|  | if (lhs && rhs) { | 
|  | llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), | 
|  | 2, "cond-lvalue"); | 
|  | phi->addIncoming(lhs->getPointer(), lhsBlock); | 
|  | phi->addIncoming(rhs->getPointer(), rhsBlock); | 
|  | Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); | 
|  | AlignmentSource alignSource = | 
|  | std::max(lhs->getBaseInfo().getAlignmentSource(), | 
|  | rhs->getBaseInfo().getAlignmentSource()); | 
|  | TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( | 
|  | lhs->getTBAAInfo(), rhs->getTBAAInfo()); | 
|  | return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), | 
|  | TBAAInfo); | 
|  | } else { | 
|  | assert((lhs || rhs) && | 
|  | "both operands of glvalue conditional are throw-expressions?"); | 
|  | return lhs ? *lhs : *rhs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference | 
|  | /// type. If the cast is to a reference, we can have the usual lvalue result, | 
|  | /// otherwise if a cast is needed by the code generator in an lvalue context, | 
|  | /// then it must mean that we need the address of an aggregate in order to | 
|  | /// access one of its members.  This can happen for all the reasons that casts | 
|  | /// are permitted with aggregate result, including noop aggregate casts, and | 
|  | /// cast from scalar to union. | 
|  | LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { | 
|  | switch (E->getCastKind()) { | 
|  | case CK_ToVoid: | 
|  | case CK_BitCast: | 
|  | case CK_LValueToRValueBitCast: | 
|  | case CK_ArrayToPointerDecay: | 
|  | case CK_FunctionToPointerDecay: | 
|  | case CK_NullToMemberPointer: | 
|  | case CK_NullToPointer: | 
|  | case CK_IntegralToPointer: | 
|  | case CK_PointerToIntegral: | 
|  | case CK_PointerToBoolean: | 
|  | case CK_VectorSplat: | 
|  | case CK_IntegralCast: | 
|  | case CK_BooleanToSignedIntegral: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_IntegralToFloating: | 
|  | case CK_FloatingToIntegral: | 
|  | case CK_FloatingToBoolean: | 
|  | case CK_FloatingCast: | 
|  | case CK_FloatingRealToComplex: | 
|  | case CK_FloatingComplexToReal: | 
|  | case CK_FloatingComplexToBoolean: | 
|  | case CK_FloatingComplexCast: | 
|  | case CK_FloatingComplexToIntegralComplex: | 
|  | case CK_IntegralRealToComplex: | 
|  | case CK_IntegralComplexToReal: | 
|  | case CK_IntegralComplexToBoolean: | 
|  | case CK_IntegralComplexCast: | 
|  | case CK_IntegralComplexToFloatingComplex: | 
|  | case CK_DerivedToBaseMemberPointer: | 
|  | case CK_BaseToDerivedMemberPointer: | 
|  | case CK_MemberPointerToBoolean: | 
|  | case CK_ReinterpretMemberPointer: | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | case CK_ARCProduceObject: | 
|  | case CK_ARCConsumeObject: | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | case CK_ARCExtendBlockObject: | 
|  | case CK_CopyAndAutoreleaseBlockObject: | 
|  | case CK_IntToOCLSampler: | 
|  | case CK_FixedPointCast: | 
|  | case CK_FixedPointToBoolean: | 
|  | case CK_FixedPointToIntegral: | 
|  | case CK_IntegralToFixedPoint: | 
|  | return EmitUnsupportedLValue(E, "unexpected cast lvalue"); | 
|  |  | 
|  | case CK_Dependent: | 
|  | llvm_unreachable("dependent cast kind in IR gen!"); | 
|  |  | 
|  | case CK_BuiltinFnToFnPtr: | 
|  | llvm_unreachable("builtin functions are handled elsewhere"); | 
|  |  | 
|  | // These are never l-values; just use the aggregate emission code. | 
|  | case CK_NonAtomicToAtomic: | 
|  | case CK_AtomicToNonAtomic: | 
|  | return EmitAggExprToLValue(E); | 
|  |  | 
|  | case CK_Dynamic: { | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | Address V = LV.getAddress(); | 
|  | const auto *DCE = cast<CXXDynamicCastExpr>(E); | 
|  | return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); | 
|  | } | 
|  |  | 
|  | case CK_ConstructorConversion: | 
|  | case CK_UserDefinedConversion: | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | case CK_NoOp: | 
|  | case CK_LValueToRValue: | 
|  | return EmitLValue(E->getSubExpr()); | 
|  |  | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_DerivedToBase: { | 
|  | const RecordType *DerivedClassTy = | 
|  | E->getSubExpr()->getType()->getAs<RecordType>(); | 
|  | auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); | 
|  |  | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | Address This = LV.getAddress(); | 
|  |  | 
|  | // Perform the derived-to-base conversion | 
|  | Address Base = GetAddressOfBaseClass( | 
|  | This, DerivedClassDecl, E->path_begin(), E->path_end(), | 
|  | /*NullCheckValue=*/false, E->getExprLoc()); | 
|  |  | 
|  | // TODO: Support accesses to members of base classes in TBAA. For now, we | 
|  | // conservatively pretend that the complete object is of the base class | 
|  | // type. | 
|  | return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), | 
|  | CGM.getTBAAInfoForSubobject(LV, E->getType())); | 
|  | } | 
|  | case CK_ToUnion: | 
|  | return EmitAggExprToLValue(E); | 
|  | case CK_BaseToDerived: { | 
|  | const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); | 
|  | auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); | 
|  |  | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  |  | 
|  | // Perform the base-to-derived conversion | 
|  | Address Derived = | 
|  | GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, | 
|  | E->path_begin(), E->path_end(), | 
|  | /*NullCheckValue=*/false); | 
|  |  | 
|  | // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is | 
|  | // performed and the object is not of the derived type. | 
|  | if (sanitizePerformTypeCheck()) | 
|  | EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), | 
|  | Derived.getPointer(), E->getType()); | 
|  |  | 
|  | if (SanOpts.has(SanitizerKind::CFIDerivedCast)) | 
|  | EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), | 
|  | /*MayBeNull=*/false, CFITCK_DerivedCast, | 
|  | E->getBeginLoc()); | 
|  |  | 
|  | return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), | 
|  | CGM.getTBAAInfoForSubobject(LV, E->getType())); | 
|  | } | 
|  | case CK_LValueBitCast: { | 
|  | // This must be a reinterpret_cast (or c-style equivalent). | 
|  | const auto *CE = cast<ExplicitCastExpr>(E); | 
|  |  | 
|  | CGM.EmitExplicitCastExprType(CE, this); | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | Address V = Builder.CreateBitCast(LV.getAddress(), | 
|  | ConvertType(CE->getTypeAsWritten())); | 
|  |  | 
|  | if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) | 
|  | EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), | 
|  | /*MayBeNull=*/false, CFITCK_UnrelatedCast, | 
|  | E->getBeginLoc()); | 
|  |  | 
|  | return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), | 
|  | CGM.getTBAAInfoForSubobject(LV, E->getType())); | 
|  | } | 
|  | case CK_AddressSpaceConversion: { | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | QualType DestTy = getContext().getPointerType(E->getType()); | 
|  | llvm::Value *V = getTargetHooks().performAddrSpaceCast( | 
|  | *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), | 
|  | E->getType().getAddressSpace(), ConvertType(DestTy)); | 
|  | return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), | 
|  | E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); | 
|  | } | 
|  | case CK_ObjCObjectLValueCast: { | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | Address V = Builder.CreateElementBitCast(LV.getAddress(), | 
|  | ConvertType(E->getType())); | 
|  | return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), | 
|  | CGM.getTBAAInfoForSubobject(LV, E->getType())); | 
|  | } | 
|  | case CK_ZeroToOCLOpaqueType: | 
|  | llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled lvalue cast kind?"); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { | 
|  | assert(OpaqueValueMappingData::shouldBindAsLValue(e)); | 
|  | return getOrCreateOpaqueLValueMapping(e); | 
|  | } | 
|  |  | 
|  | LValue | 
|  | CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { | 
|  | assert(OpaqueValueMapping::shouldBindAsLValue(e)); | 
|  |  | 
|  | llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator | 
|  | it = OpaqueLValues.find(e); | 
|  |  | 
|  | if (it != OpaqueLValues.end()) | 
|  | return it->second; | 
|  |  | 
|  | assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); | 
|  | return EmitLValue(e->getSourceExpr()); | 
|  | } | 
|  |  | 
|  | RValue | 
|  | CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { | 
|  | assert(!OpaqueValueMapping::shouldBindAsLValue(e)); | 
|  |  | 
|  | llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator | 
|  | it = OpaqueRValues.find(e); | 
|  |  | 
|  | if (it != OpaqueRValues.end()) | 
|  | return it->second; | 
|  |  | 
|  | assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); | 
|  | return EmitAnyExpr(e->getSourceExpr()); | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitRValueForField(LValue LV, | 
|  | const FieldDecl *FD, | 
|  | SourceLocation Loc) { | 
|  | QualType FT = FD->getType(); | 
|  | LValue FieldLV = EmitLValueForField(LV, FD); | 
|  | switch (getEvaluationKind(FT)) { | 
|  | case TEK_Complex: | 
|  | return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); | 
|  | case TEK_Aggregate: | 
|  | return FieldLV.asAggregateRValue(); | 
|  | case TEK_Scalar: | 
|  | // This routine is used to load fields one-by-one to perform a copy, so | 
|  | // don't load reference fields. | 
|  | if (FD->getType()->isReferenceType()) | 
|  | return RValue::get(FieldLV.getPointer()); | 
|  | return EmitLoadOfLValue(FieldLV, Loc); | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                             Expression Emission | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, | 
|  | ReturnValueSlot ReturnValue) { | 
|  | // Builtins never have block type. | 
|  | if (E->getCallee()->getType()->isBlockPointerType()) | 
|  | return EmitBlockCallExpr(E, ReturnValue); | 
|  |  | 
|  | if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) | 
|  | return EmitCXXMemberCallExpr(CE, ReturnValue); | 
|  |  | 
|  | if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) | 
|  | return EmitCUDAKernelCallExpr(CE, ReturnValue); | 
|  |  | 
|  | if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) | 
|  | if (const CXXMethodDecl *MD = | 
|  | dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) | 
|  | return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); | 
|  |  | 
|  | CGCallee callee = EmitCallee(E->getCallee()); | 
|  |  | 
|  | if (callee.isBuiltin()) { | 
|  | return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), | 
|  | E, ReturnValue); | 
|  | } | 
|  |  | 
|  | if (callee.isPseudoDestructor()) { | 
|  | return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); | 
|  | } | 
|  |  | 
|  | return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); | 
|  | } | 
|  |  | 
|  | /// Emit a CallExpr without considering whether it might be a subclass. | 
|  | RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, | 
|  | ReturnValueSlot ReturnValue) { | 
|  | CGCallee Callee = EmitCallee(E->getCallee()); | 
|  | return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); | 
|  | } | 
|  |  | 
|  | static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { | 
|  | if (auto builtinID = FD->getBuiltinID()) { | 
|  | return CGCallee::forBuiltin(builtinID, FD); | 
|  | } | 
|  |  | 
|  | llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); | 
|  | return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); | 
|  | } | 
|  |  | 
|  | CGCallee CodeGenFunction::EmitCallee(const Expr *E) { | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | // Look through function-to-pointer decay. | 
|  | if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() == CK_FunctionToPointerDecay || | 
|  | ICE->getCastKind() == CK_BuiltinFnToFnPtr) { | 
|  | return EmitCallee(ICE->getSubExpr()); | 
|  | } | 
|  |  | 
|  | // Resolve direct calls. | 
|  | } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { | 
|  | if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { | 
|  | return EmitDirectCallee(*this, FD); | 
|  | } | 
|  | } else if (auto ME = dyn_cast<MemberExpr>(E)) { | 
|  | if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { | 
|  | EmitIgnoredExpr(ME->getBase()); | 
|  | return EmitDirectCallee(*this, FD); | 
|  | } | 
|  |  | 
|  | // Look through template substitutions. | 
|  | } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
|  | return EmitCallee(NTTP->getReplacement()); | 
|  |  | 
|  | // Treat pseudo-destructor calls differently. | 
|  | } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { | 
|  | return CGCallee::forPseudoDestructor(PDE); | 
|  | } | 
|  |  | 
|  | // Otherwise, we have an indirect reference. | 
|  | llvm::Value *calleePtr; | 
|  | QualType functionType; | 
|  | if (auto ptrType = E->getType()->getAs<PointerType>()) { | 
|  | calleePtr = EmitScalarExpr(E); | 
|  | functionType = ptrType->getPointeeType(); | 
|  | } else { | 
|  | functionType = E->getType(); | 
|  | calleePtr = EmitLValue(E).getPointer(); | 
|  | } | 
|  | assert(functionType->isFunctionType()); | 
|  |  | 
|  | GlobalDecl GD; | 
|  | if (const auto *VD = | 
|  | dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) | 
|  | GD = GlobalDecl(VD); | 
|  |  | 
|  | CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); | 
|  | CGCallee callee(calleeInfo, calleePtr); | 
|  | return callee; | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { | 
|  | // Comma expressions just emit their LHS then their RHS as an l-value. | 
|  | if (E->getOpcode() == BO_Comma) { | 
|  | EmitIgnoredExpr(E->getLHS()); | 
|  | EnsureInsertPoint(); | 
|  | return EmitLValue(E->getRHS()); | 
|  | } | 
|  |  | 
|  | if (E->getOpcode() == BO_PtrMemD || | 
|  | E->getOpcode() == BO_PtrMemI) | 
|  | return EmitPointerToDataMemberBinaryExpr(E); | 
|  |  | 
|  | assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); | 
|  |  | 
|  | // Note that in all of these cases, __block variables need the RHS | 
|  | // evaluated first just in case the variable gets moved by the RHS. | 
|  |  | 
|  | switch (getEvaluationKind(E->getType())) { | 
|  | case TEK_Scalar: { | 
|  | switch (E->getLHS()->getType().getObjCLifetime()) { | 
|  | case Qualifiers::OCL_Strong: | 
|  | return EmitARCStoreStrong(E, /*ignored*/ false).first; | 
|  |  | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | return EmitARCStoreAutoreleasing(E).first; | 
|  |  | 
|  | // No reason to do any of these differently. | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | case Qualifiers::OCL_Weak: | 
|  | break; | 
|  | } | 
|  |  | 
|  | RValue RV = EmitAnyExpr(E->getRHS()); | 
|  | LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); | 
|  | if (RV.isScalar()) | 
|  | EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); | 
|  | EmitStoreThroughLValue(RV, LV); | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | case TEK_Complex: | 
|  | return EmitComplexAssignmentLValue(E); | 
|  |  | 
|  | case TEK_Aggregate: | 
|  | return EmitAggExprToLValue(E); | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { | 
|  | RValue RV = EmitCallExpr(E); | 
|  |  | 
|  | if (!RV.isScalar()) | 
|  | return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), | 
|  | AlignmentSource::Decl); | 
|  |  | 
|  | assert(E->getCallReturnType(getContext())->isReferenceType() && | 
|  | "Can't have a scalar return unless the return type is a " | 
|  | "reference type!"); | 
|  |  | 
|  | return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { | 
|  | // FIXME: This shouldn't require another copy. | 
|  | return EmitAggExprToLValue(E); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { | 
|  | assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() | 
|  | && "binding l-value to type which needs a temporary"); | 
|  | AggValueSlot Slot = CreateAggTemp(E->getType()); | 
|  | EmitCXXConstructExpr(E, Slot); | 
|  | return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | LValue | 
|  | CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { | 
|  | return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); | 
|  | } | 
|  |  | 
|  | Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { | 
|  | return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), | 
|  | ConvertType(E->getType())); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { | 
|  | return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), | 
|  | AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | LValue | 
|  | CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { | 
|  | AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); | 
|  | Slot.setExternallyDestructed(); | 
|  | EmitAggExpr(E->getSubExpr(), Slot); | 
|  | EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); | 
|  | return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { | 
|  | RValue RV = EmitObjCMessageExpr(E); | 
|  |  | 
|  | if (!RV.isScalar()) | 
|  | return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), | 
|  | AlignmentSource::Decl); | 
|  |  | 
|  | assert(E->getMethodDecl()->getReturnType()->isReferenceType() && | 
|  | "Can't have a scalar return unless the return type is a " | 
|  | "reference type!"); | 
|  |  | 
|  | return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { | 
|  | Address V = | 
|  | CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); | 
|  | return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, | 
|  | const ObjCIvarDecl *Ivar) { | 
|  | return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, | 
|  | llvm::Value *BaseValue, | 
|  | const ObjCIvarDecl *Ivar, | 
|  | unsigned CVRQualifiers) { | 
|  | return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, | 
|  | Ivar, CVRQualifiers); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { | 
|  | // FIXME: A lot of the code below could be shared with EmitMemberExpr. | 
|  | llvm::Value *BaseValue = nullptr; | 
|  | const Expr *BaseExpr = E->getBase(); | 
|  | Qualifiers BaseQuals; | 
|  | QualType ObjectTy; | 
|  | if (E->isArrow()) { | 
|  | BaseValue = EmitScalarExpr(BaseExpr); | 
|  | ObjectTy = BaseExpr->getType()->getPointeeType(); | 
|  | BaseQuals = ObjectTy.getQualifiers(); | 
|  | } else { | 
|  | LValue BaseLV = EmitLValue(BaseExpr); | 
|  | BaseValue = BaseLV.getPointer(); | 
|  | ObjectTy = BaseExpr->getType(); | 
|  | BaseQuals = ObjectTy.getQualifiers(); | 
|  | } | 
|  |  | 
|  | LValue LV = | 
|  | EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), | 
|  | BaseQuals.getCVRQualifiers()); | 
|  | setObjCGCLValueClass(getContext(), E, LV); | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { | 
|  | // Can only get l-value for message expression returning aggregate type | 
|  | RValue RV = EmitAnyExprToTemp(E); | 
|  | return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), | 
|  | AlignmentSource::Decl); | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, | 
|  | const CallExpr *E, ReturnValueSlot ReturnValue, | 
|  | llvm::Value *Chain) { | 
|  | // Get the actual function type. The callee type will always be a pointer to | 
|  | // function type or a block pointer type. | 
|  | assert(CalleeType->isFunctionPointerType() && | 
|  | "Call must have function pointer type!"); | 
|  |  | 
|  | const Decl *TargetDecl = | 
|  | OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); | 
|  |  | 
|  | CalleeType = getContext().getCanonicalType(CalleeType); | 
|  |  | 
|  | auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); | 
|  |  | 
|  | CGCallee Callee = OrigCallee; | 
|  |  | 
|  | if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && | 
|  | (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { | 
|  | if (llvm::Constant *PrefixSig = | 
|  | CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { | 
|  | SanitizerScope SanScope(this); | 
|  | // Remove any (C++17) exception specifications, to allow calling e.g. a | 
|  | // noexcept function through a non-noexcept pointer. | 
|  | auto ProtoTy = | 
|  | getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); | 
|  | llvm::Constant *FTRTTIConst = | 
|  | CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); | 
|  | llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; | 
|  | llvm::StructType *PrefixStructTy = llvm::StructType::get( | 
|  | CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); | 
|  |  | 
|  | llvm::Value *CalleePtr = Callee.getFunctionPointer(); | 
|  |  | 
|  | llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( | 
|  | CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); | 
|  | llvm::Value *CalleeSigPtr = | 
|  | Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); | 
|  | llvm::Value *CalleeSig = | 
|  | Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); | 
|  | llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); | 
|  |  | 
|  | llvm::BasicBlock *Cont = createBasicBlock("cont"); | 
|  | llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); | 
|  | Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); | 
|  |  | 
|  | EmitBlock(TypeCheck); | 
|  | llvm::Value *CalleeRTTIPtr = | 
|  | Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); | 
|  | llvm::Value *CalleeRTTIEncoded = | 
|  | Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); | 
|  | llvm::Value *CalleeRTTI = | 
|  | DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); | 
|  | llvm::Value *CalleeRTTIMatch = | 
|  | Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); | 
|  | llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), | 
|  | EmitCheckTypeDescriptor(CalleeType)}; | 
|  | EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), | 
|  | SanitizerHandler::FunctionTypeMismatch, StaticData, | 
|  | {CalleePtr, CalleeRTTI, FTRTTIConst}); | 
|  |  | 
|  | Builder.CreateBr(Cont); | 
|  | EmitBlock(Cont); | 
|  | } | 
|  | } | 
|  |  | 
|  | const auto *FnType = cast<FunctionType>(PointeeType); | 
|  |  | 
|  | // If we are checking indirect calls and this call is indirect, check that the | 
|  | // function pointer is a member of the bit set for the function type. | 
|  | if (SanOpts.has(SanitizerKind::CFIICall) && | 
|  | (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { | 
|  | SanitizerScope SanScope(this); | 
|  | EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); | 
|  |  | 
|  | llvm::Metadata *MD; | 
|  | if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) | 
|  | MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); | 
|  | else | 
|  | MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); | 
|  |  | 
|  | llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); | 
|  |  | 
|  | llvm::Value *CalleePtr = Callee.getFunctionPointer(); | 
|  | llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); | 
|  | llvm::Value *TypeTest = Builder.CreateCall( | 
|  | CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); | 
|  |  | 
|  | auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); | 
|  | llvm::Constant *StaticData[] = { | 
|  | llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), | 
|  | EmitCheckSourceLocation(E->getBeginLoc()), | 
|  | EmitCheckTypeDescriptor(QualType(FnType, 0)), | 
|  | }; | 
|  | if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { | 
|  | EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, | 
|  | CastedCallee, StaticData); | 
|  | } else { | 
|  | EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), | 
|  | SanitizerHandler::CFICheckFail, StaticData, | 
|  | {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); | 
|  | } | 
|  | } | 
|  |  | 
|  | CallArgList Args; | 
|  | if (Chain) | 
|  | Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), | 
|  | CGM.getContext().VoidPtrTy); | 
|  |  | 
|  | // C++17 requires that we evaluate arguments to a call using assignment syntax | 
|  | // right-to-left, and that we evaluate arguments to certain other operators | 
|  | // left-to-right. Note that we allow this to override the order dictated by | 
|  | // the calling convention on the MS ABI, which means that parameter | 
|  | // destruction order is not necessarily reverse construction order. | 
|  | // FIXME: Revisit this based on C++ committee response to unimplementability. | 
|  | EvaluationOrder Order = EvaluationOrder::Default; | 
|  | if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { | 
|  | if (OCE->isAssignmentOp()) | 
|  | Order = EvaluationOrder::ForceRightToLeft; | 
|  | else { | 
|  | switch (OCE->getOperator()) { | 
|  | case OO_LessLess: | 
|  | case OO_GreaterGreater: | 
|  | case OO_AmpAmp: | 
|  | case OO_PipePipe: | 
|  | case OO_Comma: | 
|  | case OO_ArrowStar: | 
|  | Order = EvaluationOrder::ForceLeftToRight; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), | 
|  | E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); | 
|  |  | 
|  | const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( | 
|  | Args, FnType, /*ChainCall=*/Chain); | 
|  |  | 
|  | // C99 6.5.2.2p6: | 
|  | //   If the expression that denotes the called function has a type | 
|  | //   that does not include a prototype, [the default argument | 
|  | //   promotions are performed]. If the number of arguments does not | 
|  | //   equal the number of parameters, the behavior is undefined. If | 
|  | //   the function is defined with a type that includes a prototype, | 
|  | //   and either the prototype ends with an ellipsis (, ...) or the | 
|  | //   types of the arguments after promotion are not compatible with | 
|  | //   the types of the parameters, the behavior is undefined. If the | 
|  | //   function is defined with a type that does not include a | 
|  | //   prototype, and the types of the arguments after promotion are | 
|  | //   not compatible with those of the parameters after promotion, | 
|  | //   the behavior is undefined [except in some trivial cases]. | 
|  | // That is, in the general case, we should assume that a call | 
|  | // through an unprototyped function type works like a *non-variadic* | 
|  | // call.  The way we make this work is to cast to the exact type | 
|  | // of the promoted arguments. | 
|  | // | 
|  | // Chain calls use this same code path to add the invisible chain parameter | 
|  | // to the function type. | 
|  | if (isa<FunctionNoProtoType>(FnType) || Chain) { | 
|  | llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); | 
|  | CalleeTy = CalleeTy->getPointerTo(); | 
|  |  | 
|  | llvm::Value *CalleePtr = Callee.getFunctionPointer(); | 
|  | CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); | 
|  | Callee.setFunctionPointer(CalleePtr); | 
|  | } | 
|  |  | 
|  | llvm::CallBase *CallOrInvoke = nullptr; | 
|  | RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, | 
|  | E->getExprLoc()); | 
|  |  | 
|  | // Generate function declaration DISuprogram in order to be used | 
|  | // in debug info about call sites. | 
|  | if (CGDebugInfo *DI = getDebugInfo()) { | 
|  | if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) | 
|  | DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), | 
|  | CalleeDecl); | 
|  | } | 
|  |  | 
|  | return Call; | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction:: | 
|  | EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { | 
|  | Address BaseAddr = Address::invalid(); | 
|  | if (E->getOpcode() == BO_PtrMemI) { | 
|  | BaseAddr = EmitPointerWithAlignment(E->getLHS()); | 
|  | } else { | 
|  | BaseAddr = EmitLValue(E->getLHS()).getAddress(); | 
|  | } | 
|  |  | 
|  | llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); | 
|  |  | 
|  | const MemberPointerType *MPT | 
|  | = E->getRHS()->getType()->getAs<MemberPointerType>(); | 
|  |  | 
|  | LValueBaseInfo BaseInfo; | 
|  | TBAAAccessInfo TBAAInfo; | 
|  | Address MemberAddr = | 
|  | EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, | 
|  | &TBAAInfo); | 
|  |  | 
|  | return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); | 
|  | } | 
|  |  | 
|  | /// Given the address of a temporary variable, produce an r-value of | 
|  | /// its type. | 
|  | RValue CodeGenFunction::convertTempToRValue(Address addr, | 
|  | QualType type, | 
|  | SourceLocation loc) { | 
|  | LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); | 
|  | switch (getEvaluationKind(type)) { | 
|  | case TEK_Complex: | 
|  | return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); | 
|  | case TEK_Aggregate: | 
|  | return lvalue.asAggregateRValue(); | 
|  | case TEK_Scalar: | 
|  | return RValue::get(EmitLoadOfScalar(lvalue, loc)); | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { | 
|  | assert(Val->getType()->isFPOrFPVectorTy()); | 
|  | if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) | 
|  | return; | 
|  |  | 
|  | llvm::MDBuilder MDHelper(getLLVMContext()); | 
|  | llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); | 
|  |  | 
|  | cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct LValueOrRValue { | 
|  | LValue LV; | 
|  | RValue RV; | 
|  | }; | 
|  | } | 
|  |  | 
|  | static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, | 
|  | const PseudoObjectExpr *E, | 
|  | bool forLValue, | 
|  | AggValueSlot slot) { | 
|  | SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; | 
|  |  | 
|  | // Find the result expression, if any. | 
|  | const Expr *resultExpr = E->getResultExpr(); | 
|  | LValueOrRValue result; | 
|  |  | 
|  | for (PseudoObjectExpr::const_semantics_iterator | 
|  | i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { | 
|  | const Expr *semantic = *i; | 
|  |  | 
|  | // If this semantic expression is an opaque value, bind it | 
|  | // to the result of its source expression. | 
|  | if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { | 
|  | // Skip unique OVEs. | 
|  | if (ov->isUnique()) { | 
|  | assert(ov != resultExpr && | 
|  | "A unique OVE cannot be used as the result expression"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is the result expression, we may need to evaluate | 
|  | // directly into the slot. | 
|  | typedef CodeGenFunction::OpaqueValueMappingData OVMA; | 
|  | OVMA opaqueData; | 
|  | if (ov == resultExpr && ov->isRValue() && !forLValue && | 
|  | CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { | 
|  | CGF.EmitAggExpr(ov->getSourceExpr(), slot); | 
|  | LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), | 
|  | AlignmentSource::Decl); | 
|  | opaqueData = OVMA::bind(CGF, ov, LV); | 
|  | result.RV = slot.asRValue(); | 
|  |  | 
|  | // Otherwise, emit as normal. | 
|  | } else { | 
|  | opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); | 
|  |  | 
|  | // If this is the result, also evaluate the result now. | 
|  | if (ov == resultExpr) { | 
|  | if (forLValue) | 
|  | result.LV = CGF.EmitLValue(ov); | 
|  | else | 
|  | result.RV = CGF.EmitAnyExpr(ov, slot); | 
|  | } | 
|  | } | 
|  |  | 
|  | opaques.push_back(opaqueData); | 
|  |  | 
|  | // Otherwise, if the expression is the result, evaluate it | 
|  | // and remember the result. | 
|  | } else if (semantic == resultExpr) { | 
|  | if (forLValue) | 
|  | result.LV = CGF.EmitLValue(semantic); | 
|  | else | 
|  | result.RV = CGF.EmitAnyExpr(semantic, slot); | 
|  |  | 
|  | // Otherwise, evaluate the expression in an ignored context. | 
|  | } else { | 
|  | CGF.EmitIgnoredExpr(semantic); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unbind all the opaques now. | 
|  | for (unsigned i = 0, e = opaques.size(); i != e; ++i) | 
|  | opaques[i].unbind(CGF); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, | 
|  | AggValueSlot slot) { | 
|  | return emitPseudoObjectExpr(*this, E, false, slot).RV; | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { | 
|  | return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; | 
|  | } |