|  | //==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a crude C++11 based thread pool. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Support/ThreadPool.h" | 
|  |  | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #if LLVM_ENABLE_THREADS | 
|  |  | 
|  | // Default to std::thread::hardware_concurrency | 
|  | ThreadPool::ThreadPool() : ThreadPool(std::thread::hardware_concurrency()) {} | 
|  |  | 
|  | ThreadPool::ThreadPool(unsigned ThreadCount) | 
|  | : ActiveThreads(0), EnableFlag(true) { | 
|  | // Create ThreadCount threads that will loop forever, wait on QueueCondition | 
|  | // for tasks to be queued or the Pool to be destroyed. | 
|  | Threads.reserve(ThreadCount); | 
|  | for (unsigned ThreadID = 0; ThreadID < ThreadCount; ++ThreadID) { | 
|  | Threads.emplace_back([&] { | 
|  | while (true) { | 
|  | PackagedTaskTy Task; | 
|  | { | 
|  | std::unique_lock<std::mutex> LockGuard(QueueLock); | 
|  | // Wait for tasks to be pushed in the queue | 
|  | QueueCondition.wait(LockGuard, | 
|  | [&] { return !EnableFlag || !Tasks.empty(); }); | 
|  | // Exit condition | 
|  | if (!EnableFlag && Tasks.empty()) | 
|  | return; | 
|  | // Yeah, we have a task, grab it and release the lock on the queue | 
|  |  | 
|  | // We first need to signal that we are active before popping the queue | 
|  | // in order for wait() to properly detect that even if the queue is | 
|  | // empty, there is still a task in flight. | 
|  | { | 
|  | ++ActiveThreads; | 
|  | std::unique_lock<std::mutex> LockGuard(CompletionLock); | 
|  | } | 
|  | Task = std::move(Tasks.front()); | 
|  | Tasks.pop(); | 
|  | } | 
|  | // Run the task we just grabbed | 
|  | #ifndef _MSC_VER | 
|  | Task(); | 
|  | #else | 
|  | Task(/* unused */ false); | 
|  | #endif | 
|  |  | 
|  | { | 
|  | // Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait() | 
|  | std::unique_lock<std::mutex> LockGuard(CompletionLock); | 
|  | --ActiveThreads; | 
|  | } | 
|  |  | 
|  | // Notify task completion, in case someone waits on ThreadPool::wait() | 
|  | CompletionCondition.notify_all(); | 
|  | } | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ThreadPool::wait() { | 
|  | // Wait for all threads to complete and the queue to be empty | 
|  | std::unique_lock<std::mutex> LockGuard(CompletionLock); | 
|  | // The order of the checks for ActiveThreads and Tasks.empty() matters because | 
|  | // any active threads might be modifying the Tasks queue, and this would be a | 
|  | // race. | 
|  | CompletionCondition.wait(LockGuard, | 
|  | [&] { return !ActiveThreads && Tasks.empty(); }); | 
|  | } | 
|  |  | 
|  | std::shared_future<ThreadPool::VoidTy> ThreadPool::asyncImpl(TaskTy Task) { | 
|  | /// Wrap the Task in a packaged_task to return a future object. | 
|  | PackagedTaskTy PackagedTask(std::move(Task)); | 
|  | auto Future = PackagedTask.get_future(); | 
|  | { | 
|  | // Lock the queue and push the new task | 
|  | std::unique_lock<std::mutex> LockGuard(QueueLock); | 
|  |  | 
|  | // Don't allow enqueueing after disabling the pool | 
|  | assert(EnableFlag && "Queuing a thread during ThreadPool destruction"); | 
|  |  | 
|  | Tasks.push(std::move(PackagedTask)); | 
|  | } | 
|  | QueueCondition.notify_one(); | 
|  | return Future.share(); | 
|  | } | 
|  |  | 
|  | // The destructor joins all threads, waiting for completion. | 
|  | ThreadPool::~ThreadPool() { | 
|  | { | 
|  | std::unique_lock<std::mutex> LockGuard(QueueLock); | 
|  | EnableFlag = false; | 
|  | } | 
|  | QueueCondition.notify_all(); | 
|  | for (auto &Worker : Threads) | 
|  | Worker.join(); | 
|  | } | 
|  |  | 
|  | #else // LLVM_ENABLE_THREADS Disabled | 
|  |  | 
|  | ThreadPool::ThreadPool() : ThreadPool(0) {} | 
|  |  | 
|  | // No threads are launched, issue a warning if ThreadCount is not 0 | 
|  | ThreadPool::ThreadPool(unsigned ThreadCount) | 
|  | : ActiveThreads(0) { | 
|  | if (ThreadCount) { | 
|  | errs() << "Warning: request a ThreadPool with " << ThreadCount | 
|  | << " threads, but LLVM_ENABLE_THREADS has been turned off\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ThreadPool::wait() { | 
|  | // Sequential implementation running the tasks | 
|  | while (!Tasks.empty()) { | 
|  | auto Task = std::move(Tasks.front()); | 
|  | Tasks.pop(); | 
|  | #ifndef _MSC_VER | 
|  | Task(); | 
|  | #else | 
|  | Task(/* unused */ false); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | std::shared_future<ThreadPool::VoidTy> ThreadPool::asyncImpl(TaskTy Task) { | 
|  | #ifndef _MSC_VER | 
|  | // Get a Future with launch::deferred execution using std::async | 
|  | auto Future = std::async(std::launch::deferred, std::move(Task)).share(); | 
|  | // Wrap the future so that both ThreadPool::wait() can operate and the | 
|  | // returned future can be sync'ed on. | 
|  | PackagedTaskTy PackagedTask([Future]() { Future.get(); }); | 
|  | #else | 
|  | auto Future = std::async(std::launch::deferred, std::move(Task), false).share(); | 
|  | PackagedTaskTy PackagedTask([Future](bool) -> bool { Future.get(); return false; }); | 
|  | #endif | 
|  | Tasks.push(std::move(PackagedTask)); | 
|  | return Future; | 
|  | } | 
|  |  | 
|  | ThreadPool::~ThreadPool() { | 
|  | wait(); | 
|  | } | 
|  |  | 
|  | #endif |