|  | //===- ASTStructuralEquivalence.cpp ---------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implement StructuralEquivalenceContext class and helper functions | 
|  | //  for layout matching. | 
|  | // | 
|  | // The structural equivalence check could have been implemented as a parallel | 
|  | // BFS on a pair of graphs.  That must have been the original approach at the | 
|  | // beginning. | 
|  | // Let's consider this simple BFS algorithm from the `s` source: | 
|  | // ``` | 
|  | // void bfs(Graph G, int s) | 
|  | // { | 
|  | //   Queue<Integer> queue = new Queue<Integer>(); | 
|  | //   marked[s] = true; // Mark the source | 
|  | //   queue.enqueue(s); // and put it on the queue. | 
|  | //   while (!q.isEmpty()) { | 
|  | //     int v = queue.dequeue(); // Remove next vertex from the queue. | 
|  | //     for (int w : G.adj(v)) | 
|  | //       if (!marked[w]) // For every unmarked adjacent vertex, | 
|  | //       { | 
|  | //         marked[w] = true; | 
|  | //         queue.enqueue(w); | 
|  | //       } | 
|  | //   } | 
|  | // } | 
|  | // ``` | 
|  | // Indeed, it has it's queue, which holds pairs of nodes, one from each graph, | 
|  | // this is the `DeclsToCheck` member. `VisitedDecls` plays the role of the | 
|  | // marking (`marked`) functionality above, we use it to check whether we've | 
|  | // already seen a pair of nodes. | 
|  | // | 
|  | // We put in the elements into the queue only in the toplevel decl check | 
|  | // function: | 
|  | // ``` | 
|  | // static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | //                                      Decl *D1, Decl *D2); | 
|  | // ``` | 
|  | // The `while` loop where we iterate over the children is implemented in | 
|  | // `Finish()`.  And `Finish` is called only from the two **member** functions | 
|  | // which check the equivalency of two Decls or two Types. ASTImporter (and | 
|  | // other clients) call only these functions. | 
|  | // | 
|  | // The `static` implementation functions are called from `Finish`, these push | 
|  | // the children nodes to the queue via `static bool | 
|  | // IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, | 
|  | // Decl *D2)`.  So far so good, this is almost like the BFS.  However, if we | 
|  | // let a static implementation function to call `Finish` via another **member** | 
|  | // function that means we end up with two nested while loops each of them | 
|  | // working on the same queue. This is wrong and nobody can reason about it's | 
|  | // doing. Thus, static implementation functions must not call the **member** | 
|  | // functions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTStructuralEquivalence.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTDiagnostic.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclBase.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclFriend.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/NestedNameSpecifier.h" | 
|  | #include "clang/AST/TemplateBase.h" | 
|  | #include "clang/AST/TemplateName.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/Basic/ExceptionSpecificationType.h" | 
|  | #include "clang/Basic/IdentifierTable.h" | 
|  | #include "clang/Basic/LLVM.h" | 
|  | #include "clang/Basic/SourceLocation.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include <cassert> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | QualType T1, QualType T2); | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | Decl *D1, Decl *D2); | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | const TemplateArgument &Arg1, | 
|  | const TemplateArgument &Arg2); | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | NestedNameSpecifier *NNS1, | 
|  | NestedNameSpecifier *NNS2); | 
|  | static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, | 
|  | const IdentifierInfo *Name2); | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | const DeclarationName Name1, | 
|  | const DeclarationName Name2) { | 
|  | if (Name1.getNameKind() != Name2.getNameKind()) | 
|  | return false; | 
|  |  | 
|  | switch (Name1.getNameKind()) { | 
|  |  | 
|  | case DeclarationName::Identifier: | 
|  | return IsStructurallyEquivalent(Name1.getAsIdentifierInfo(), | 
|  | Name2.getAsIdentifierInfo()); | 
|  |  | 
|  | case DeclarationName::CXXConstructorName: | 
|  | case DeclarationName::CXXDestructorName: | 
|  | case DeclarationName::CXXConversionFunctionName: | 
|  | return IsStructurallyEquivalent(Context, Name1.getCXXNameType(), | 
|  | Name2.getCXXNameType()); | 
|  |  | 
|  | case DeclarationName::CXXDeductionGuideName: { | 
|  | if (!IsStructurallyEquivalent( | 
|  | Context, Name1.getCXXDeductionGuideTemplate()->getDeclName(), | 
|  | Name2.getCXXDeductionGuideTemplate()->getDeclName())) | 
|  | return false; | 
|  | return IsStructurallyEquivalent(Context, | 
|  | Name1.getCXXDeductionGuideTemplate(), | 
|  | Name2.getCXXDeductionGuideTemplate()); | 
|  | } | 
|  |  | 
|  | case DeclarationName::CXXOperatorName: | 
|  | return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator(); | 
|  |  | 
|  | case DeclarationName::CXXLiteralOperatorName: | 
|  | return IsStructurallyEquivalent(Name1.getCXXLiteralIdentifier(), | 
|  | Name2.getCXXLiteralIdentifier()); | 
|  |  | 
|  | case DeclarationName::CXXUsingDirective: | 
|  | return true; // FIXME When do we consider two using directives equal? | 
|  |  | 
|  | case DeclarationName::ObjCZeroArgSelector: | 
|  | case DeclarationName::ObjCOneArgSelector: | 
|  | case DeclarationName::ObjCMultiArgSelector: | 
|  | return true; // FIXME | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled kind of DeclarationName"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence of two expressions. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | const Expr *E1, const Expr *E2) { | 
|  | if (!E1 || !E2) | 
|  | return E1 == E2; | 
|  |  | 
|  | if (auto *DE1 = dyn_cast<DependentScopeDeclRefExpr>(E1)) { | 
|  | auto *DE2 = dyn_cast<DependentScopeDeclRefExpr>(E2); | 
|  | if (!DE2) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, DE1->getDeclName(), | 
|  | DE2->getDeclName())) | 
|  | return false; | 
|  | return IsStructurallyEquivalent(Context, DE1->getQualifier(), | 
|  | DE2->getQualifier()); | 
|  | } else if (auto CastE1 = dyn_cast<ImplicitCastExpr>(E1)) { | 
|  | auto *CastE2 = dyn_cast<ImplicitCastExpr>(E2); | 
|  | if (!CastE2) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, CastE1->getType(), | 
|  | CastE2->getType())) | 
|  | return false; | 
|  | return IsStructurallyEquivalent(Context, CastE1->getSubExpr(), | 
|  | CastE2->getSubExpr()); | 
|  | } | 
|  | // FIXME: Handle other kind of expressions! | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether two identifiers are equivalent. | 
|  | static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, | 
|  | const IdentifierInfo *Name2) { | 
|  | if (!Name1 || !Name2) | 
|  | return Name1 == Name2; | 
|  |  | 
|  | return Name1->getName() == Name2->getName(); | 
|  | } | 
|  |  | 
|  | /// Determine whether two nested-name-specifiers are equivalent. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | NestedNameSpecifier *NNS1, | 
|  | NestedNameSpecifier *NNS2) { | 
|  | if (NNS1->getKind() != NNS2->getKind()) | 
|  | return false; | 
|  |  | 
|  | NestedNameSpecifier *Prefix1 = NNS1->getPrefix(), | 
|  | *Prefix2 = NNS2->getPrefix(); | 
|  | if ((bool)Prefix1 != (bool)Prefix2) | 
|  | return false; | 
|  |  | 
|  | if (Prefix1) | 
|  | if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2)) | 
|  | return false; | 
|  |  | 
|  | switch (NNS1->getKind()) { | 
|  | case NestedNameSpecifier::Identifier: | 
|  | return IsStructurallyEquivalent(NNS1->getAsIdentifier(), | 
|  | NNS2->getAsIdentifier()); | 
|  | case NestedNameSpecifier::Namespace: | 
|  | return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(), | 
|  | NNS2->getAsNamespace()); | 
|  | case NestedNameSpecifier::NamespaceAlias: | 
|  | return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(), | 
|  | NNS2->getAsNamespaceAlias()); | 
|  | case NestedNameSpecifier::TypeSpec: | 
|  | case NestedNameSpecifier::TypeSpecWithTemplate: | 
|  | return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0), | 
|  | QualType(NNS2->getAsType(), 0)); | 
|  | case NestedNameSpecifier::Global: | 
|  | return true; | 
|  | case NestedNameSpecifier::Super: | 
|  | return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(), | 
|  | NNS2->getAsRecordDecl()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | const TemplateName &N1, | 
|  | const TemplateName &N2) { | 
|  | TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl(); | 
|  | TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl(); | 
|  | if (TemplateDeclN1 && TemplateDeclN2) { | 
|  | if (!IsStructurallyEquivalent(Context, TemplateDeclN1, TemplateDeclN2)) | 
|  | return false; | 
|  | // If the kind is different we compare only the template decl. | 
|  | if (N1.getKind() != N2.getKind()) | 
|  | return true; | 
|  | } else if (TemplateDeclN1 || TemplateDeclN2) | 
|  | return false; | 
|  | else if (N1.getKind() != N2.getKind()) | 
|  | return false; | 
|  |  | 
|  | // Check for special case incompatibilities. | 
|  | switch (N1.getKind()) { | 
|  |  | 
|  | case TemplateName::OverloadedTemplate: { | 
|  | OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(), | 
|  | *OS2 = N2.getAsOverloadedTemplate(); | 
|  | OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(), | 
|  | E1 = OS1->end(), E2 = OS2->end(); | 
|  | for (; I1 != E1 && I2 != E2; ++I1, ++I2) | 
|  | if (!IsStructurallyEquivalent(Context, *I1, *I2)) | 
|  | return false; | 
|  | return I1 == E1 && I2 == E2; | 
|  | } | 
|  |  | 
|  | case TemplateName::AssumedTemplate: { | 
|  | AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(), | 
|  | *TN2 = N1.getAsAssumedTemplateName(); | 
|  | return TN1->getDeclName() == TN2->getDeclName(); | 
|  | } | 
|  |  | 
|  | case TemplateName::DependentTemplate: { | 
|  | DependentTemplateName *DN1 = N1.getAsDependentTemplateName(), | 
|  | *DN2 = N2.getAsDependentTemplateName(); | 
|  | if (!IsStructurallyEquivalent(Context, DN1->getQualifier(), | 
|  | DN2->getQualifier())) | 
|  | return false; | 
|  | if (DN1->isIdentifier() && DN2->isIdentifier()) | 
|  | return IsStructurallyEquivalent(DN1->getIdentifier(), | 
|  | DN2->getIdentifier()); | 
|  | else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator()) | 
|  | return DN1->getOperator() == DN2->getOperator(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case TemplateName::SubstTemplateTemplateParmPack: { | 
|  | SubstTemplateTemplateParmPackStorage | 
|  | *P1 = N1.getAsSubstTemplateTemplateParmPack(), | 
|  | *P2 = N2.getAsSubstTemplateTemplateParmPack(); | 
|  | return IsStructurallyEquivalent(Context, P1->getArgumentPack(), | 
|  | P2->getArgumentPack()) && | 
|  | IsStructurallyEquivalent(Context, P1->getParameterPack(), | 
|  | P2->getParameterPack()); | 
|  | } | 
|  |  | 
|  | case TemplateName::Template: | 
|  | case TemplateName::QualifiedTemplate: | 
|  | case TemplateName::SubstTemplateTemplateParm: | 
|  | // It is sufficient to check value of getAsTemplateDecl. | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether two template arguments are equivalent. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | const TemplateArgument &Arg1, | 
|  | const TemplateArgument &Arg2) { | 
|  | if (Arg1.getKind() != Arg2.getKind()) | 
|  | return false; | 
|  |  | 
|  | switch (Arg1.getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | return true; | 
|  |  | 
|  | case TemplateArgument::Type: | 
|  | return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType()); | 
|  |  | 
|  | case TemplateArgument::Integral: | 
|  | if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(), | 
|  | Arg2.getIntegralType())) | 
|  | return false; | 
|  |  | 
|  | return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), | 
|  | Arg2.getAsIntegral()); | 
|  |  | 
|  | case TemplateArgument::Declaration: | 
|  | return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl()); | 
|  |  | 
|  | case TemplateArgument::NullPtr: | 
|  | return true; // FIXME: Is this correct? | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(), | 
|  | Arg2.getAsTemplate()); | 
|  |  | 
|  | case TemplateArgument::TemplateExpansion: | 
|  | return IsStructurallyEquivalent(Context, | 
|  | Arg1.getAsTemplateOrTemplatePattern(), | 
|  | Arg2.getAsTemplateOrTemplatePattern()); | 
|  |  | 
|  | case TemplateArgument::Expression: | 
|  | return IsStructurallyEquivalent(Context, Arg1.getAsExpr(), | 
|  | Arg2.getAsExpr()); | 
|  |  | 
|  | case TemplateArgument::Pack: | 
|  | if (Arg1.pack_size() != Arg2.pack_size()) | 
|  | return false; | 
|  |  | 
|  | for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I) | 
|  | if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I], | 
|  | Arg2.pack_begin()[I])) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid template argument kind"); | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence for the common part of array | 
|  | /// types. | 
|  | static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | const ArrayType *Array1, | 
|  | const ArrayType *Array2) { | 
|  | if (!IsStructurallyEquivalent(Context, Array1->getElementType(), | 
|  | Array2->getElementType())) | 
|  | return false; | 
|  | if (Array1->getSizeModifier() != Array2->getSizeModifier()) | 
|  | return false; | 
|  | if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence based on the ExtInfo of functions. This | 
|  | /// is inspired by ASTContext::mergeFunctionTypes(), we compare calling | 
|  | /// conventions bits but must not compare some other bits. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | FunctionType::ExtInfo EI1, | 
|  | FunctionType::ExtInfo EI2) { | 
|  | // Compatible functions must have compatible calling conventions. | 
|  | if (EI1.getCC() != EI2.getCC()) | 
|  | return false; | 
|  |  | 
|  | // Regparm is part of the calling convention. | 
|  | if (EI1.getHasRegParm() != EI2.getHasRegParm()) | 
|  | return false; | 
|  | if (EI1.getRegParm() != EI2.getRegParm()) | 
|  | return false; | 
|  |  | 
|  | if (EI1.getProducesResult() != EI2.getProducesResult()) | 
|  | return false; | 
|  | if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs()) | 
|  | return false; | 
|  | if (EI1.getNoCfCheck() != EI2.getNoCfCheck()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check the equivalence of exception specifications. | 
|  | static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context, | 
|  | const FunctionProtoType *Proto1, | 
|  | const FunctionProtoType *Proto2) { | 
|  |  | 
|  | auto Spec1 = Proto1->getExceptionSpecType(); | 
|  | auto Spec2 = Proto2->getExceptionSpecType(); | 
|  |  | 
|  | if (isUnresolvedExceptionSpec(Spec1) || isUnresolvedExceptionSpec(Spec2)) | 
|  | return true; | 
|  |  | 
|  | if (Spec1 != Spec2) | 
|  | return false; | 
|  | if (Spec1 == EST_Dynamic) { | 
|  | if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) | 
|  | return false; | 
|  | for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { | 
|  | if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I), | 
|  | Proto2->getExceptionType(I))) | 
|  | return false; | 
|  | } | 
|  | } else if (isComputedNoexcept(Spec1)) { | 
|  | if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(), | 
|  | Proto2->getNoexceptExpr())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence of two types. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | QualType T1, QualType T2) { | 
|  | if (T1.isNull() || T2.isNull()) | 
|  | return T1.isNull() && T2.isNull(); | 
|  |  | 
|  | QualType OrigT1 = T1; | 
|  | QualType OrigT2 = T2; | 
|  |  | 
|  | if (!Context.StrictTypeSpelling) { | 
|  | // We aren't being strict about token-to-token equivalence of types, | 
|  | // so map down to the canonical type. | 
|  | T1 = Context.FromCtx.getCanonicalType(T1); | 
|  | T2 = Context.ToCtx.getCanonicalType(T2); | 
|  | } | 
|  |  | 
|  | if (T1.getQualifiers() != T2.getQualifiers()) | 
|  | return false; | 
|  |  | 
|  | Type::TypeClass TC = T1->getTypeClass(); | 
|  |  | 
|  | if (T1->getTypeClass() != T2->getTypeClass()) { | 
|  | // Compare function types with prototypes vs. without prototypes as if | 
|  | // both did not have prototypes. | 
|  | if (T1->getTypeClass() == Type::FunctionProto && | 
|  | T2->getTypeClass() == Type::FunctionNoProto) | 
|  | TC = Type::FunctionNoProto; | 
|  | else if (T1->getTypeClass() == Type::FunctionNoProto && | 
|  | T2->getTypeClass() == Type::FunctionProto) | 
|  | TC = Type::FunctionNoProto; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (TC) { | 
|  | case Type::Builtin: | 
|  | // FIXME: Deal with Char_S/Char_U. | 
|  | if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind()) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::Complex: | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | cast<ComplexType>(T1)->getElementType(), | 
|  | cast<ComplexType>(T2)->getElementType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::Adjusted: | 
|  | case Type::Decayed: | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | cast<AdjustedType>(T1)->getOriginalType(), | 
|  | cast<AdjustedType>(T2)->getOriginalType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::Pointer: | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | cast<PointerType>(T1)->getPointeeType(), | 
|  | cast<PointerType>(T2)->getPointeeType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::BlockPointer: | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | cast<BlockPointerType>(T1)->getPointeeType(), | 
|  | cast<BlockPointerType>(T2)->getPointeeType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: { | 
|  | const auto *Ref1 = cast<ReferenceType>(T1); | 
|  | const auto *Ref2 = cast<ReferenceType>(T2); | 
|  | if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) | 
|  | return false; | 
|  | if (Ref1->isInnerRef() != Ref2->isInnerRef()) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(), | 
|  | Ref2->getPointeeTypeAsWritten())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::MemberPointer: { | 
|  | const auto *MemPtr1 = cast<MemberPointerType>(T1); | 
|  | const auto *MemPtr2 = cast<MemberPointerType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(), | 
|  | MemPtr2->getPointeeType())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0), | 
|  | QualType(MemPtr2->getClass(), 0))) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ConstantArray: { | 
|  | const auto *Array1 = cast<ConstantArrayType>(T1); | 
|  | const auto *Array2 = cast<ConstantArrayType>(T2); | 
|  | if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize())) | 
|  | return false; | 
|  |  | 
|  | if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::IncompleteArray: | 
|  | if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1), | 
|  | cast<ArrayType>(T2))) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::VariableArray: { | 
|  | const auto *Array1 = cast<VariableArrayType>(T1); | 
|  | const auto *Array2 = cast<VariableArrayType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), | 
|  | Array2->getSizeExpr())) | 
|  | return false; | 
|  |  | 
|  | if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) | 
|  | return false; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DependentSizedArray: { | 
|  | const auto *Array1 = cast<DependentSizedArrayType>(T1); | 
|  | const auto *Array2 = cast<DependentSizedArrayType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), | 
|  | Array2->getSizeExpr())) | 
|  | return false; | 
|  |  | 
|  | if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) | 
|  | return false; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DependentAddressSpace: { | 
|  | const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(T1); | 
|  | const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(), | 
|  | DepAddressSpace2->getAddrSpaceExpr())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(), | 
|  | DepAddressSpace2->getPointeeType())) | 
|  | return false; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DependentSizedExtVector: { | 
|  | const auto *Vec1 = cast<DependentSizedExtVectorType>(T1); | 
|  | const auto *Vec2 = cast<DependentSizedExtVectorType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), | 
|  | Vec2->getSizeExpr())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), | 
|  | Vec2->getElementType())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DependentVector: { | 
|  | const auto *Vec1 = cast<DependentVectorType>(T1); | 
|  | const auto *Vec2 = cast<DependentVectorType>(T2); | 
|  | if (Vec1->getVectorKind() != Vec2->getVectorKind()) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), | 
|  | Vec2->getSizeExpr())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), | 
|  | Vec2->getElementType())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: { | 
|  | const auto *Vec1 = cast<VectorType>(T1); | 
|  | const auto *Vec2 = cast<VectorType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), | 
|  | Vec2->getElementType())) | 
|  | return false; | 
|  | if (Vec1->getNumElements() != Vec2->getNumElements()) | 
|  | return false; | 
|  | if (Vec1->getVectorKind() != Vec2->getVectorKind()) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DependentSizedMatrix: { | 
|  | const DependentSizedMatrixType *Mat1 = cast<DependentSizedMatrixType>(T1); | 
|  | const DependentSizedMatrixType *Mat2 = cast<DependentSizedMatrixType>(T2); | 
|  | // The element types, row and column expressions must be structurally | 
|  | // equivalent. | 
|  | if (!IsStructurallyEquivalent(Context, Mat1->getRowExpr(), | 
|  | Mat2->getRowExpr()) || | 
|  | !IsStructurallyEquivalent(Context, Mat1->getColumnExpr(), | 
|  | Mat2->getColumnExpr()) || | 
|  | !IsStructurallyEquivalent(Context, Mat1->getElementType(), | 
|  | Mat2->getElementType())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ConstantMatrix: { | 
|  | const ConstantMatrixType *Mat1 = cast<ConstantMatrixType>(T1); | 
|  | const ConstantMatrixType *Mat2 = cast<ConstantMatrixType>(T2); | 
|  | // The element types must be structurally equivalent and the number of rows | 
|  | // and columns must match. | 
|  | if (!IsStructurallyEquivalent(Context, Mat1->getElementType(), | 
|  | Mat2->getElementType()) || | 
|  | Mat1->getNumRows() != Mat2->getNumRows() || | 
|  | Mat1->getNumColumns() != Mat2->getNumColumns()) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::FunctionProto: { | 
|  | const auto *Proto1 = cast<FunctionProtoType>(T1); | 
|  | const auto *Proto2 = cast<FunctionProtoType>(T2); | 
|  |  | 
|  | if (Proto1->getNumParams() != Proto2->getNumParams()) | 
|  | return false; | 
|  | for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) { | 
|  | if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I), | 
|  | Proto2->getParamType(I))) | 
|  | return false; | 
|  | } | 
|  | if (Proto1->isVariadic() != Proto2->isVariadic()) | 
|  | return false; | 
|  |  | 
|  | if (Proto1->getMethodQuals() != Proto2->getMethodQuals()) | 
|  | return false; | 
|  |  | 
|  | // Check exceptions, this information is lost in canonical type. | 
|  | const auto *OrigProto1 = | 
|  | cast<FunctionProtoType>(OrigT1.getDesugaredType(Context.FromCtx)); | 
|  | const auto *OrigProto2 = | 
|  | cast<FunctionProtoType>(OrigT2.getDesugaredType(Context.ToCtx)); | 
|  | if (!IsEquivalentExceptionSpec(Context, OrigProto1, OrigProto2)) | 
|  | return false; | 
|  |  | 
|  | // Fall through to check the bits common with FunctionNoProtoType. | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  |  | 
|  | case Type::FunctionNoProto: { | 
|  | const auto *Function1 = cast<FunctionType>(T1); | 
|  | const auto *Function2 = cast<FunctionType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Function1->getReturnType(), | 
|  | Function2->getReturnType())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(), | 
|  | Function2->getExtInfo())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::UnresolvedUsing: | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | cast<UnresolvedUsingType>(T1)->getDecl(), | 
|  | cast<UnresolvedUsingType>(T2)->getDecl())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::Attributed: | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | cast<AttributedType>(T1)->getModifiedType(), | 
|  | cast<AttributedType>(T2)->getModifiedType())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent( | 
|  | Context, cast<AttributedType>(T1)->getEquivalentType(), | 
|  | cast<AttributedType>(T2)->getEquivalentType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::Paren: | 
|  | if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(), | 
|  | cast<ParenType>(T2)->getInnerType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::MacroQualified: | 
|  | if (!IsStructurallyEquivalent( | 
|  | Context, cast<MacroQualifiedType>(T1)->getUnderlyingType(), | 
|  | cast<MacroQualifiedType>(T2)->getUnderlyingType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::Typedef: | 
|  | if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(), | 
|  | cast<TypedefType>(T2)->getDecl())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::TypeOfExpr: | 
|  | if (!IsStructurallyEquivalent( | 
|  | Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(), | 
|  | cast<TypeOfExprType>(T2)->getUnderlyingExpr())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::TypeOf: | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | cast<TypeOfType>(T1)->getUnderlyingType(), | 
|  | cast<TypeOfType>(T2)->getUnderlyingType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::UnaryTransform: | 
|  | if (!IsStructurallyEquivalent( | 
|  | Context, cast<UnaryTransformType>(T1)->getUnderlyingType(), | 
|  | cast<UnaryTransformType>(T2)->getUnderlyingType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::Decltype: | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | cast<DecltypeType>(T1)->getUnderlyingExpr(), | 
|  | cast<DecltypeType>(T2)->getUnderlyingExpr())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::Auto: { | 
|  | auto *Auto1 = cast<AutoType>(T1); | 
|  | auto *Auto2 = cast<AutoType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Auto1->getDeducedType(), | 
|  | Auto2->getDeducedType())) | 
|  | return false; | 
|  | if (Auto1->isConstrained() != Auto2->isConstrained()) | 
|  | return false; | 
|  | if (Auto1->isConstrained()) { | 
|  | if (Auto1->getTypeConstraintConcept() != | 
|  | Auto2->getTypeConstraintConcept()) | 
|  | return false; | 
|  | ArrayRef<TemplateArgument> Auto1Args = | 
|  | Auto1->getTypeConstraintArguments(); | 
|  | ArrayRef<TemplateArgument> Auto2Args = | 
|  | Auto2->getTypeConstraintArguments(); | 
|  | if (Auto1Args.size() != Auto2Args.size()) | 
|  | return false; | 
|  | for (unsigned I = 0, N = Auto1Args.size(); I != N; ++I) { | 
|  | if (!IsStructurallyEquivalent(Context, Auto1Args[I], Auto2Args[I])) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DeducedTemplateSpecialization: { | 
|  | const auto *DT1 = cast<DeducedTemplateSpecializationType>(T1); | 
|  | const auto *DT2 = cast<DeducedTemplateSpecializationType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(), | 
|  | DT2->getTemplateName())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(), | 
|  | DT2->getDeducedType())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Record: | 
|  | case Type::Enum: | 
|  | if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(), | 
|  | cast<TagType>(T2)->getDecl())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::TemplateTypeParm: { | 
|  | const auto *Parm1 = cast<TemplateTypeParmType>(T1); | 
|  | const auto *Parm2 = cast<TemplateTypeParmType>(T2); | 
|  | if (Parm1->getDepth() != Parm2->getDepth()) | 
|  | return false; | 
|  | if (Parm1->getIndex() != Parm2->getIndex()) | 
|  | return false; | 
|  | if (Parm1->isParameterPack() != Parm2->isParameterPack()) | 
|  | return false; | 
|  |  | 
|  | // Names of template type parameters are never significant. | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::SubstTemplateTypeParm: { | 
|  | const auto *Subst1 = cast<SubstTemplateTypeParmType>(T1); | 
|  | const auto *Subst2 = cast<SubstTemplateTypeParmType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | QualType(Subst1->getReplacedParameter(), 0), | 
|  | QualType(Subst2->getReplacedParameter(), 0))) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(), | 
|  | Subst2->getReplacementType())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::SubstTemplateTypeParmPack: { | 
|  | const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(T1); | 
|  | const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | QualType(Subst1->getReplacedParameter(), 0), | 
|  | QualType(Subst2->getReplacedParameter(), 0))) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(), | 
|  | Subst2->getArgumentPack())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::TemplateSpecialization: { | 
|  | const auto *Spec1 = cast<TemplateSpecializationType>(T1); | 
|  | const auto *Spec2 = cast<TemplateSpecializationType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(), | 
|  | Spec2->getTemplateName())) | 
|  | return false; | 
|  | if (Spec1->getNumArgs() != Spec2->getNumArgs()) | 
|  | return false; | 
|  | for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { | 
|  | if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), | 
|  | Spec2->getArg(I))) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Elaborated: { | 
|  | const auto *Elab1 = cast<ElaboratedType>(T1); | 
|  | const auto *Elab2 = cast<ElaboratedType>(T2); | 
|  | // CHECKME: what if a keyword is ETK_None or ETK_typename ? | 
|  | if (Elab1->getKeyword() != Elab2->getKeyword()) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(), | 
|  | Elab2->getQualifier())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(), | 
|  | Elab2->getNamedType())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::InjectedClassName: { | 
|  | const auto *Inj1 = cast<InjectedClassNameType>(T1); | 
|  | const auto *Inj2 = cast<InjectedClassNameType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | Inj1->getInjectedSpecializationType(), | 
|  | Inj2->getInjectedSpecializationType())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DependentName: { | 
|  | const auto *Typename1 = cast<DependentNameType>(T1); | 
|  | const auto *Typename2 = cast<DependentNameType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(), | 
|  | Typename2->getQualifier())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Typename1->getIdentifier(), | 
|  | Typename2->getIdentifier())) | 
|  | return false; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DependentTemplateSpecialization: { | 
|  | const auto *Spec1 = cast<DependentTemplateSpecializationType>(T1); | 
|  | const auto *Spec2 = cast<DependentTemplateSpecializationType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(), | 
|  | Spec2->getQualifier())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Spec1->getIdentifier(), | 
|  | Spec2->getIdentifier())) | 
|  | return false; | 
|  | if (Spec1->getNumArgs() != Spec2->getNumArgs()) | 
|  | return false; | 
|  | for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { | 
|  | if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), | 
|  | Spec2->getArg(I))) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::PackExpansion: | 
|  | if (!IsStructurallyEquivalent(Context, | 
|  | cast<PackExpansionType>(T1)->getPattern(), | 
|  | cast<PackExpansionType>(T2)->getPattern())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::ObjCInterface: { | 
|  | const auto *Iface1 = cast<ObjCInterfaceType>(T1); | 
|  | const auto *Iface2 = cast<ObjCInterfaceType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Iface1->getDecl(), | 
|  | Iface2->getDecl())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ObjCTypeParam: { | 
|  | const auto *Obj1 = cast<ObjCTypeParamType>(T1); | 
|  | const auto *Obj2 = cast<ObjCTypeParamType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl())) | 
|  | return false; | 
|  |  | 
|  | if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) | 
|  | return false; | 
|  | for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { | 
|  | if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), | 
|  | Obj2->getProtocol(I))) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ObjCObject: { | 
|  | const auto *Obj1 = cast<ObjCObjectType>(T1); | 
|  | const auto *Obj2 = cast<ObjCObjectType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(), | 
|  | Obj2->getBaseType())) | 
|  | return false; | 
|  | if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) | 
|  | return false; | 
|  | for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { | 
|  | if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), | 
|  | Obj2->getProtocol(I))) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ObjCObjectPointer: { | 
|  | const auto *Ptr1 = cast<ObjCObjectPointerType>(T1); | 
|  | const auto *Ptr2 = cast<ObjCObjectPointerType>(T2); | 
|  | if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(), | 
|  | Ptr2->getPointeeType())) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Atomic: | 
|  | if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(), | 
|  | cast<AtomicType>(T2)->getValueType())) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Type::Pipe: | 
|  | if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(), | 
|  | cast<PipeType>(T2)->getElementType())) | 
|  | return false; | 
|  | break; | 
|  | case Type::ExtInt: { | 
|  | const auto *Int1 = cast<ExtIntType>(T1); | 
|  | const auto *Int2 = cast<ExtIntType>(T2); | 
|  |  | 
|  | if (Int1->isUnsigned() != Int2->isUnsigned() || | 
|  | Int1->getNumBits() != Int2->getNumBits()) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | case Type::DependentExtInt: { | 
|  | const auto *Int1 = cast<DependentExtIntType>(T1); | 
|  | const auto *Int2 = cast<DependentExtIntType>(T2); | 
|  |  | 
|  | if (Int1->isUnsigned() != Int2->isUnsigned() || | 
|  | !IsStructurallyEquivalent(Context, Int1->getNumBitsExpr(), | 
|  | Int2->getNumBitsExpr())) | 
|  | return false; | 
|  | } | 
|  | } // end switch | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence of two fields. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | FieldDecl *Field1, FieldDecl *Field2) { | 
|  | const auto *Owner2 = cast<RecordDecl>(Field2->getDeclContext()); | 
|  |  | 
|  | // For anonymous structs/unions, match up the anonymous struct/union type | 
|  | // declarations directly, so that we don't go off searching for anonymous | 
|  | // types | 
|  | if (Field1->isAnonymousStructOrUnion() && | 
|  | Field2->isAnonymousStructOrUnion()) { | 
|  | RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl(); | 
|  | RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl(); | 
|  | return IsStructurallyEquivalent(Context, D1, D2); | 
|  | } | 
|  |  | 
|  | // Check for equivalent field names. | 
|  | IdentifierInfo *Name1 = Field1->getIdentifier(); | 
|  | IdentifierInfo *Name2 = Field2->getIdentifier(); | 
|  | if (!::IsStructurallyEquivalent(Name1, Name2)) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2( | 
|  | Owner2->getLocation(), | 
|  | Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(Owner2); | 
|  | Context.Diag2(Field2->getLocation(), diag::note_odr_field_name) | 
|  | << Field2->getDeclName(); | 
|  | Context.Diag1(Field1->getLocation(), diag::note_odr_field_name) | 
|  | << Field1->getDeclName(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsStructurallyEquivalent(Context, Field1->getType(), | 
|  | Field2->getType())) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2( | 
|  | Owner2->getLocation(), | 
|  | Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(Owner2); | 
|  | Context.Diag2(Field2->getLocation(), diag::note_odr_field) | 
|  | << Field2->getDeclName() << Field2->getType(); | 
|  | Context.Diag1(Field1->getLocation(), diag::note_odr_field) | 
|  | << Field1->getDeclName() << Field1->getType(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Field1->isBitField() != Field2->isBitField()) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2( | 
|  | Owner2->getLocation(), | 
|  | Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(Owner2); | 
|  | if (Field1->isBitField()) { | 
|  | Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) | 
|  | << Field1->getDeclName() << Field1->getType() | 
|  | << Field1->getBitWidthValue(Context.FromCtx); | 
|  | Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field) | 
|  | << Field2->getDeclName(); | 
|  | } else { | 
|  | Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) | 
|  | << Field2->getDeclName() << Field2->getType() | 
|  | << Field2->getBitWidthValue(Context.ToCtx); | 
|  | Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field) | 
|  | << Field1->getDeclName(); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Field1->isBitField()) { | 
|  | // Make sure that the bit-fields are the same length. | 
|  | unsigned Bits1 = Field1->getBitWidthValue(Context.FromCtx); | 
|  | unsigned Bits2 = Field2->getBitWidthValue(Context.ToCtx); | 
|  |  | 
|  | if (Bits1 != Bits2) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(Owner2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(Owner2); | 
|  | Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) | 
|  | << Field2->getDeclName() << Field2->getType() << Bits2; | 
|  | Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) | 
|  | << Field1->getDeclName() << Field1->getType() << Bits1; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence of two methods. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | CXXMethodDecl *Method1, | 
|  | CXXMethodDecl *Method2) { | 
|  | bool PropertiesEqual = | 
|  | Method1->getDeclKind() == Method2->getDeclKind() && | 
|  | Method1->getRefQualifier() == Method2->getRefQualifier() && | 
|  | Method1->getAccess() == Method2->getAccess() && | 
|  | Method1->getOverloadedOperator() == Method2->getOverloadedOperator() && | 
|  | Method1->isStatic() == Method2->isStatic() && | 
|  | Method1->isConst() == Method2->isConst() && | 
|  | Method1->isVolatile() == Method2->isVolatile() && | 
|  | Method1->isVirtual() == Method2->isVirtual() && | 
|  | Method1->isPure() == Method2->isPure() && | 
|  | Method1->isDefaulted() == Method2->isDefaulted() && | 
|  | Method1->isDeleted() == Method2->isDeleted(); | 
|  | if (!PropertiesEqual) | 
|  | return false; | 
|  | // FIXME: Check for 'final'. | 
|  |  | 
|  | if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Method1)) { | 
|  | auto *Constructor2 = cast<CXXConstructorDecl>(Method2); | 
|  | if (!Constructor1->getExplicitSpecifier().isEquivalent( | 
|  | Constructor2->getExplicitSpecifier())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Method1)) { | 
|  | auto *Conversion2 = cast<CXXConversionDecl>(Method2); | 
|  | if (!Conversion1->getExplicitSpecifier().isEquivalent( | 
|  | Conversion2->getExplicitSpecifier())) | 
|  | return false; | 
|  | if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(), | 
|  | Conversion2->getConversionType())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const IdentifierInfo *Name1 = Method1->getIdentifier(); | 
|  | const IdentifierInfo *Name2 = Method2->getIdentifier(); | 
|  | if (!::IsStructurallyEquivalent(Name1, Name2)) { | 
|  | return false; | 
|  | // TODO: Names do not match, add warning like at check for FieldDecl. | 
|  | } | 
|  |  | 
|  | // Check the prototypes. | 
|  | if (!::IsStructurallyEquivalent(Context, | 
|  | Method1->getType(), Method2->getType())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence of two lambda classes. | 
|  | static bool | 
|  | IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context, | 
|  | CXXRecordDecl *D1, CXXRecordDecl *D2) { | 
|  | assert(D1->isLambda() && D2->isLambda() && | 
|  | "Must be called on lambda classes"); | 
|  | if (!IsStructurallyEquivalent(Context, D1->getLambdaCallOperator(), | 
|  | D2->getLambdaCallOperator())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence of two records. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | RecordDecl *D1, RecordDecl *D2) { | 
|  | if (D1->isUnion() != D2->isUnion()) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here) | 
|  | << D1->getDeclName() << (unsigned)D1->getTagKind(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!D1->getDeclName() && !D2->getDeclName()) { | 
|  | // If both anonymous structs/unions are in a record context, make sure | 
|  | // they occur in the same location in the context records. | 
|  | if (Optional<unsigned> Index1 = | 
|  | StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) { | 
|  | if (Optional<unsigned> Index2 = | 
|  | StructuralEquivalenceContext::findUntaggedStructOrUnionIndex( | 
|  | D2)) { | 
|  | if (*Index1 != *Index2) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If both declarations are class template specializations, we know | 
|  | // the ODR applies, so check the template and template arguments. | 
|  | const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1); | 
|  | const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2); | 
|  | if (Spec1 && Spec2) { | 
|  | // Check that the specialized templates are the same. | 
|  | if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(), | 
|  | Spec2->getSpecializedTemplate())) | 
|  | return false; | 
|  |  | 
|  | // Check that the template arguments are the same. | 
|  | if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) | 
|  | return false; | 
|  |  | 
|  | for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) | 
|  | if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I), | 
|  | Spec2->getTemplateArgs().get(I))) | 
|  | return false; | 
|  | } | 
|  | // If one is a class template specialization and the other is not, these | 
|  | // structures are different. | 
|  | else if (Spec1 || Spec2) | 
|  | return false; | 
|  |  | 
|  | // Compare the definitions of these two records. If either or both are | 
|  | // incomplete (i.e. it is a forward decl), we assume that they are | 
|  | // equivalent. | 
|  | D1 = D1->getDefinition(); | 
|  | D2 = D2->getDefinition(); | 
|  | if (!D1 || !D2) | 
|  | return true; | 
|  |  | 
|  | // If any of the records has external storage and we do a minimal check (or | 
|  | // AST import) we assume they are equivalent. (If we didn't have this | 
|  | // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger | 
|  | // another AST import which in turn would call the structural equivalency | 
|  | // check again and finally we'd have an improper result.) | 
|  | if (Context.EqKind == StructuralEquivalenceKind::Minimal) | 
|  | if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage()) | 
|  | return true; | 
|  |  | 
|  | // If one definition is currently being defined, we do not compare for | 
|  | // equality and we assume that the decls are equal. | 
|  | if (D1->isBeingDefined() || D2->isBeingDefined()) | 
|  | return true; | 
|  |  | 
|  | if (auto *D1CXX = dyn_cast<CXXRecordDecl>(D1)) { | 
|  | if (auto *D2CXX = dyn_cast<CXXRecordDecl>(D2)) { | 
|  | if (D1CXX->hasExternalLexicalStorage() && | 
|  | !D1CXX->isCompleteDefinition()) { | 
|  | D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX); | 
|  | } | 
|  |  | 
|  | if (D1CXX->isLambda() != D2CXX->isLambda()) | 
|  | return false; | 
|  | if (D1CXX->isLambda()) { | 
|  | if (!IsStructurallyEquivalentLambdas(Context, D1CXX, D2CXX)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (D1CXX->getNumBases() != D2CXX->getNumBases()) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases) | 
|  | << D2CXX->getNumBases(); | 
|  | Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases) | 
|  | << D1CXX->getNumBases(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check the base classes. | 
|  | for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), | 
|  | BaseEnd1 = D1CXX->bases_end(), | 
|  | Base2 = D2CXX->bases_begin(); | 
|  | Base1 != BaseEnd1; ++Base1, ++Base2) { | 
|  | if (!IsStructurallyEquivalent(Context, Base1->getType(), | 
|  | Base2->getType())) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base) | 
|  | << Base2->getType() << Base2->getSourceRange(); | 
|  | Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) | 
|  | << Base1->getType() << Base1->getSourceRange(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check virtual vs. non-virtual inheritance mismatch. | 
|  | if (Base1->isVirtual() != Base2->isVirtual()) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base) | 
|  | << Base2->isVirtual() << Base2->getSourceRange(); | 
|  | Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) | 
|  | << Base1->isVirtual() << Base1->getSourceRange(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the friends for consistency. | 
|  | CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(), | 
|  | Friend2End = D2CXX->friend_end(); | 
|  | for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(), | 
|  | Friend1End = D1CXX->friend_end(); | 
|  | Friend1 != Friend1End; ++Friend1, ++Friend2) { | 
|  | if (Friend2 == Friend2End) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2CXX); | 
|  | Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); | 
|  | Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2CXX); | 
|  | Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); | 
|  | Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Friend2 != Friend2End) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); | 
|  | Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } else if (D1CXX->getNumBases() > 0) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); | 
|  | Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) | 
|  | << Base1->getType() << Base1->getSourceRange(); | 
|  | Context.Diag2(D2->getLocation(), diag::note_odr_missing_base); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the fields for consistency. | 
|  | RecordDecl::field_iterator Field2 = D2->field_begin(), | 
|  | Field2End = D2->field_end(); | 
|  | for (RecordDecl::field_iterator Field1 = D1->field_begin(), | 
|  | Field1End = D1->field_end(); | 
|  | Field1 != Field1End; ++Field1, ++Field2) { | 
|  | if (Field2 == Field2End) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag1(Field1->getLocation(), diag::note_odr_field) | 
|  | << Field1->getDeclName() << Field1->getType(); | 
|  | Context.Diag2(D2->getLocation(), diag::note_odr_missing_field); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsStructurallyEquivalent(Context, *Field1, *Field2)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Field2 != Field2End) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag2(Field2->getLocation(), diag::note_odr_field) | 
|  | << Field2->getDeclName() << Field2->getType(); | 
|  | Context.Diag1(D1->getLocation(), diag::note_odr_missing_field); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence of two enums. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | EnumDecl *D1, EnumDecl *D2) { | 
|  |  | 
|  | // Compare the definitions of these two enums. If either or both are | 
|  | // incomplete (i.e. forward declared), we assume that they are equivalent. | 
|  | D1 = D1->getDefinition(); | 
|  | D2 = D2->getDefinition(); | 
|  | if (!D1 || !D2) | 
|  | return true; | 
|  |  | 
|  | EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), | 
|  | EC2End = D2->enumerator_end(); | 
|  | for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), | 
|  | EC1End = D1->enumerator_end(); | 
|  | EC1 != EC1End; ++EC1, ++EC2) { | 
|  | if (EC2 == EC2End) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) | 
|  | << EC1->getDeclName() << EC1->getInitVal().toString(10); | 
|  | Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm::APSInt Val1 = EC1->getInitVal(); | 
|  | llvm::APSInt Val2 = EC2->getInitVal(); | 
|  | if (!llvm::APSInt::isSameValue(Val1, Val2) || | 
|  | !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) | 
|  | << EC2->getDeclName() << EC2->getInitVal().toString(10); | 
|  | Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) | 
|  | << EC1->getDeclName() << EC1->getInitVal().toString(10); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EC2 != EC2End) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( | 
|  | diag::err_odr_tag_type_inconsistent)) | 
|  | << Context.ToCtx.getTypeDeclType(D2); | 
|  | Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) | 
|  | << EC2->getDeclName() << EC2->getInitVal().toString(10); | 
|  | Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | TemplateParameterList *Params1, | 
|  | TemplateParameterList *Params2) { | 
|  | if (Params1->size() != Params2->size()) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(Params2->getTemplateLoc(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_different_num_template_parameters)) | 
|  | << Params1->size() << Params2->size(); | 
|  | Context.Diag1(Params1->getTemplateLoc(), | 
|  | diag::note_odr_template_parameter_list); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (unsigned I = 0, N = Params1->size(); I != N; ++I) { | 
|  | if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(Params2->getParam(I)->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_different_template_parameter_kind)); | 
|  | Context.Diag1(Params1->getParam(I)->getLocation(), | 
|  | diag::note_odr_template_parameter_here); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsStructurallyEquivalent(Context, Params1->getParam(I), | 
|  | Params2->getParam(I))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | TemplateTypeParmDecl *D1, | 
|  | TemplateTypeParmDecl *D2) { | 
|  | if (D1->isParameterPack() != D2->isParameterPack()) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_parameter_pack_non_pack)) | 
|  | << D2->isParameterPack(); | 
|  | Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) | 
|  | << D1->isParameterPack(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | NonTypeTemplateParmDecl *D1, | 
|  | NonTypeTemplateParmDecl *D2) { | 
|  | if (D1->isParameterPack() != D2->isParameterPack()) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_parameter_pack_non_pack)) | 
|  | << D2->isParameterPack(); | 
|  | Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) | 
|  | << D1->isParameterPack(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check types. | 
|  | if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_non_type_parameter_type_inconsistent)) | 
|  | << D2->getType() << D1->getType(); | 
|  | Context.Diag1(D1->getLocation(), diag::note_odr_value_here) | 
|  | << D1->getType(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | TemplateTemplateParmDecl *D1, | 
|  | TemplateTemplateParmDecl *D2) { | 
|  | if (D1->isParameterPack() != D2->isParameterPack()) { | 
|  | if (Context.Complain) { | 
|  | Context.Diag2(D2->getLocation(), | 
|  | Context.getApplicableDiagnostic( | 
|  | diag::err_odr_parameter_pack_non_pack)) | 
|  | << D2->isParameterPack(); | 
|  | Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) | 
|  | << D1->isParameterPack(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check template parameter lists. | 
|  | return IsStructurallyEquivalent(Context, D1->getTemplateParameters(), | 
|  | D2->getTemplateParameters()); | 
|  | } | 
|  |  | 
|  | static bool IsTemplateDeclCommonStructurallyEquivalent( | 
|  | StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) { | 
|  | if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) | 
|  | return false; | 
|  | if (!D1->getIdentifier()) // Special name | 
|  | if (D1->getNameAsString() != D2->getNameAsString()) | 
|  | return false; | 
|  | return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(), | 
|  | D2->getTemplateParameters()); | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | ClassTemplateDecl *D1, | 
|  | ClassTemplateDecl *D2) { | 
|  | // Check template parameters. | 
|  | if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) | 
|  | return false; | 
|  |  | 
|  | // Check the templated declaration. | 
|  | return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(), | 
|  | D2->getTemplatedDecl()); | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | FunctionTemplateDecl *D1, | 
|  | FunctionTemplateDecl *D2) { | 
|  | // Check template parameters. | 
|  | if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) | 
|  | return false; | 
|  |  | 
|  | // Check the templated declaration. | 
|  | return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(), | 
|  | D2->getTemplatedDecl()->getType()); | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | ConceptDecl *D1, | 
|  | ConceptDecl *D2) { | 
|  | // Check template parameters. | 
|  | if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) | 
|  | return false; | 
|  |  | 
|  | // Check the constraint expression. | 
|  | return IsStructurallyEquivalent(Context, D1->getConstraintExpr(), | 
|  | D2->getConstraintExpr()); | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | FriendDecl *D1, FriendDecl *D2) { | 
|  | if ((D1->getFriendType() && D2->getFriendDecl()) || | 
|  | (D1->getFriendDecl() && D2->getFriendType())) { | 
|  | return false; | 
|  | } | 
|  | if (D1->getFriendType() && D2->getFriendType()) | 
|  | return IsStructurallyEquivalent(Context, | 
|  | D1->getFriendType()->getType(), | 
|  | D2->getFriendType()->getType()); | 
|  | if (D1->getFriendDecl() && D2->getFriendDecl()) | 
|  | return IsStructurallyEquivalent(Context, D1->getFriendDecl(), | 
|  | D2->getFriendDecl()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | FunctionDecl *D1, FunctionDecl *D2) { | 
|  | // FIXME: Consider checking for function attributes as well. | 
|  | if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine structural equivalence of two declarations. | 
|  | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, | 
|  | Decl *D1, Decl *D2) { | 
|  | // FIXME: Check for known structural equivalences via a callback of some sort. | 
|  |  | 
|  | D1 = D1->getCanonicalDecl(); | 
|  | D2 = D2->getCanonicalDecl(); | 
|  | std::pair<Decl *, Decl *> P{D1, D2}; | 
|  |  | 
|  | // Check whether we already know that these two declarations are not | 
|  | // structurally equivalent. | 
|  | if (Context.NonEquivalentDecls.count(P)) | 
|  | return false; | 
|  |  | 
|  | // Check if a check for these declarations is already pending. | 
|  | // If yes D1 and D2 will be checked later (from DeclsToCheck), | 
|  | // or these are already checked (and equivalent). | 
|  | bool Inserted = Context.VisitedDecls.insert(P).second; | 
|  | if (!Inserted) | 
|  | return true; | 
|  |  | 
|  | Context.DeclsToCheck.push(P); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc, | 
|  | unsigned DiagID) { | 
|  | assert(Complain && "Not allowed to complain"); | 
|  | if (LastDiagFromC2) | 
|  | FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics()); | 
|  | LastDiagFromC2 = false; | 
|  | return FromCtx.getDiagnostics().Report(Loc, DiagID); | 
|  | } | 
|  |  | 
|  | DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc, | 
|  | unsigned DiagID) { | 
|  | assert(Complain && "Not allowed to complain"); | 
|  | if (!LastDiagFromC2) | 
|  | ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics()); | 
|  | LastDiagFromC2 = true; | 
|  | return ToCtx.getDiagnostics().Report(Loc, DiagID); | 
|  | } | 
|  |  | 
|  | Optional<unsigned> | 
|  | StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) { | 
|  | ASTContext &Context = Anon->getASTContext(); | 
|  | QualType AnonTy = Context.getRecordType(Anon); | 
|  |  | 
|  | const auto *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext()); | 
|  | if (!Owner) | 
|  | return None; | 
|  |  | 
|  | unsigned Index = 0; | 
|  | for (const auto *D : Owner->noload_decls()) { | 
|  | const auto *F = dyn_cast<FieldDecl>(D); | 
|  | if (!F) | 
|  | continue; | 
|  |  | 
|  | if (F->isAnonymousStructOrUnion()) { | 
|  | if (Context.hasSameType(F->getType(), AnonTy)) | 
|  | break; | 
|  | ++Index; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the field looks like this: | 
|  | // struct { ... } A; | 
|  | QualType FieldType = F->getType(); | 
|  | // In case of nested structs. | 
|  | while (const auto *ElabType = dyn_cast<ElaboratedType>(FieldType)) | 
|  | FieldType = ElabType->getNamedType(); | 
|  |  | 
|  | if (const auto *RecType = dyn_cast<RecordType>(FieldType)) { | 
|  | const RecordDecl *RecDecl = RecType->getDecl(); | 
|  | if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) { | 
|  | if (Context.hasSameType(FieldType, AnonTy)) | 
|  | break; | 
|  | ++Index; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Index; | 
|  | } | 
|  |  | 
|  | unsigned StructuralEquivalenceContext::getApplicableDiagnostic( | 
|  | unsigned ErrorDiagnostic) { | 
|  | if (ErrorOnTagTypeMismatch) | 
|  | return ErrorDiagnostic; | 
|  |  | 
|  | switch (ErrorDiagnostic) { | 
|  | case diag::err_odr_variable_type_inconsistent: | 
|  | return diag::warn_odr_variable_type_inconsistent; | 
|  | case diag::err_odr_variable_multiple_def: | 
|  | return diag::warn_odr_variable_multiple_def; | 
|  | case diag::err_odr_function_type_inconsistent: | 
|  | return diag::warn_odr_function_type_inconsistent; | 
|  | case diag::err_odr_tag_type_inconsistent: | 
|  | return diag::warn_odr_tag_type_inconsistent; | 
|  | case diag::err_odr_field_type_inconsistent: | 
|  | return diag::warn_odr_field_type_inconsistent; | 
|  | case diag::err_odr_ivar_type_inconsistent: | 
|  | return diag::warn_odr_ivar_type_inconsistent; | 
|  | case diag::err_odr_objc_superclass_inconsistent: | 
|  | return diag::warn_odr_objc_superclass_inconsistent; | 
|  | case diag::err_odr_objc_method_result_type_inconsistent: | 
|  | return diag::warn_odr_objc_method_result_type_inconsistent; | 
|  | case diag::err_odr_objc_method_num_params_inconsistent: | 
|  | return diag::warn_odr_objc_method_num_params_inconsistent; | 
|  | case diag::err_odr_objc_method_param_type_inconsistent: | 
|  | return diag::warn_odr_objc_method_param_type_inconsistent; | 
|  | case diag::err_odr_objc_method_variadic_inconsistent: | 
|  | return diag::warn_odr_objc_method_variadic_inconsistent; | 
|  | case diag::err_odr_objc_property_type_inconsistent: | 
|  | return diag::warn_odr_objc_property_type_inconsistent; | 
|  | case diag::err_odr_objc_property_impl_kind_inconsistent: | 
|  | return diag::warn_odr_objc_property_impl_kind_inconsistent; | 
|  | case diag::err_odr_objc_synthesize_ivar_inconsistent: | 
|  | return diag::warn_odr_objc_synthesize_ivar_inconsistent; | 
|  | case diag::err_odr_different_num_template_parameters: | 
|  | return diag::warn_odr_different_num_template_parameters; | 
|  | case diag::err_odr_different_template_parameter_kind: | 
|  | return diag::warn_odr_different_template_parameter_kind; | 
|  | case diag::err_odr_parameter_pack_non_pack: | 
|  | return diag::warn_odr_parameter_pack_non_pack; | 
|  | case diag::err_odr_non_type_parameter_type_inconsistent: | 
|  | return diag::warn_odr_non_type_parameter_type_inconsistent; | 
|  | } | 
|  | llvm_unreachable("Diagnostic kind not handled in preceding switch"); | 
|  | } | 
|  |  | 
|  | bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) { | 
|  |  | 
|  | // Ensure that the implementation functions (all static functions in this TU) | 
|  | // never call the public ASTStructuralEquivalence::IsEquivalent() functions, | 
|  | // because that will wreak havoc the internal state (DeclsToCheck and | 
|  | // VisitedDecls members) and can cause faulty behaviour. | 
|  | // In other words: Do not start a graph search from a new node with the | 
|  | // internal data of another search in progress. | 
|  | // FIXME: Better encapsulation and separation of internal and public | 
|  | // functionality. | 
|  | assert(DeclsToCheck.empty()); | 
|  | assert(VisitedDecls.empty()); | 
|  |  | 
|  | if (!::IsStructurallyEquivalent(*this, D1, D2)) | 
|  | return false; | 
|  |  | 
|  | return !Finish(); | 
|  | } | 
|  |  | 
|  | bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) { | 
|  | assert(DeclsToCheck.empty()); | 
|  | assert(VisitedDecls.empty()); | 
|  | if (!::IsStructurallyEquivalent(*this, T1, T2)) | 
|  | return false; | 
|  |  | 
|  | return !Finish(); | 
|  | } | 
|  |  | 
|  | bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) { | 
|  | // Check for equivalent described template. | 
|  | TemplateDecl *Template1 = D1->getDescribedTemplate(); | 
|  | TemplateDecl *Template2 = D2->getDescribedTemplate(); | 
|  | if ((Template1 != nullptr) != (Template2 != nullptr)) | 
|  | return false; | 
|  | if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Move check for identifier names into this function. | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool StructuralEquivalenceContext::CheckKindSpecificEquivalence( | 
|  | Decl *D1, Decl *D2) { | 
|  | // FIXME: Switch on all declaration kinds. For now, we're just going to | 
|  | // check the obvious ones. | 
|  | if (auto *Record1 = dyn_cast<RecordDecl>(D1)) { | 
|  | if (auto *Record2 = dyn_cast<RecordDecl>(D2)) { | 
|  | // Check for equivalent structure names. | 
|  | IdentifierInfo *Name1 = Record1->getIdentifier(); | 
|  | if (!Name1 && Record1->getTypedefNameForAnonDecl()) | 
|  | Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier(); | 
|  | IdentifierInfo *Name2 = Record2->getIdentifier(); | 
|  | if (!Name2 && Record2->getTypedefNameForAnonDecl()) | 
|  | Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier(); | 
|  | if (!::IsStructurallyEquivalent(Name1, Name2) || | 
|  | !::IsStructurallyEquivalent(*this, Record1, Record2)) | 
|  | return false; | 
|  | } else { | 
|  | // Record/non-record mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (auto *Enum1 = dyn_cast<EnumDecl>(D1)) { | 
|  | if (auto *Enum2 = dyn_cast<EnumDecl>(D2)) { | 
|  | // Check for equivalent enum names. | 
|  | IdentifierInfo *Name1 = Enum1->getIdentifier(); | 
|  | if (!Name1 && Enum1->getTypedefNameForAnonDecl()) | 
|  | Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier(); | 
|  | IdentifierInfo *Name2 = Enum2->getIdentifier(); | 
|  | if (!Name2 && Enum2->getTypedefNameForAnonDecl()) | 
|  | Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier(); | 
|  | if (!::IsStructurallyEquivalent(Name1, Name2) || | 
|  | !::IsStructurallyEquivalent(*this, Enum1, Enum2)) | 
|  | return false; | 
|  | } else { | 
|  | // Enum/non-enum mismatch | 
|  | return false; | 
|  | } | 
|  | } else if (const auto *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) { | 
|  | if (const auto *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) { | 
|  | if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(), | 
|  | Typedef2->getIdentifier()) || | 
|  | !::IsStructurallyEquivalent(*this, Typedef1->getUnderlyingType(), | 
|  | Typedef2->getUnderlyingType())) | 
|  | return false; | 
|  | } else { | 
|  | // Typedef/non-typedef mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (auto *ClassTemplate1 = dyn_cast<ClassTemplateDecl>(D1)) { | 
|  | if (auto *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) { | 
|  | if (!::IsStructurallyEquivalent(*this, ClassTemplate1, | 
|  | ClassTemplate2)) | 
|  | return false; | 
|  | } else { | 
|  | // Class template/non-class-template mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (auto *FunctionTemplate1 = dyn_cast<FunctionTemplateDecl>(D1)) { | 
|  | if (auto *FunctionTemplate2 = dyn_cast<FunctionTemplateDecl>(D2)) { | 
|  | if (!::IsStructurallyEquivalent(*this, FunctionTemplate1, | 
|  | FunctionTemplate2)) | 
|  | return false; | 
|  | } else { | 
|  | // Class template/non-class-template mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (auto *ConceptDecl1 = dyn_cast<ConceptDecl>(D1)) { | 
|  | if (auto *ConceptDecl2 = dyn_cast<ConceptDecl>(D2)) { | 
|  | if (!::IsStructurallyEquivalent(*this, ConceptDecl1, ConceptDecl2)) | 
|  | return false; | 
|  | } else { | 
|  | // Concept/non-concept mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (auto *TTP1 = dyn_cast<TemplateTypeParmDecl>(D1)) { | 
|  | if (auto *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) { | 
|  | if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) | 
|  | return false; | 
|  | } else { | 
|  | // Kind mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (auto *NTTP1 = dyn_cast<NonTypeTemplateParmDecl>(D1)) { | 
|  | if (auto *NTTP2 = dyn_cast<NonTypeTemplateParmDecl>(D2)) { | 
|  | if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2)) | 
|  | return false; | 
|  | } else { | 
|  | // Kind mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (auto *TTP1 = dyn_cast<TemplateTemplateParmDecl>(D1)) { | 
|  | if (auto *TTP2 = dyn_cast<TemplateTemplateParmDecl>(D2)) { | 
|  | if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) | 
|  | return false; | 
|  | } else { | 
|  | // Kind mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (auto *MD1 = dyn_cast<CXXMethodDecl>(D1)) { | 
|  | if (auto *MD2 = dyn_cast<CXXMethodDecl>(D2)) { | 
|  | if (!::IsStructurallyEquivalent(*this, MD1, MD2)) | 
|  | return false; | 
|  | } else { | 
|  | // Kind mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (FunctionDecl *FD1 = dyn_cast<FunctionDecl>(D1)) { | 
|  | if (FunctionDecl *FD2 = dyn_cast<FunctionDecl>(D2)) { | 
|  | if (FD1->isOverloadedOperator()) { | 
|  | if (!FD2->isOverloadedOperator()) | 
|  | return false; | 
|  | if (FD1->getOverloadedOperator() != FD2->getOverloadedOperator()) | 
|  | return false; | 
|  | } | 
|  | if (!::IsStructurallyEquivalent(FD1->getIdentifier(), | 
|  | FD2->getIdentifier())) | 
|  | return false; | 
|  | if (!::IsStructurallyEquivalent(*this, FD1, FD2)) | 
|  | return false; | 
|  | } else { | 
|  | // Kind mismatch. | 
|  | return false; | 
|  | } | 
|  | } else if (FriendDecl *FrD1 = dyn_cast<FriendDecl>(D1)) { | 
|  | if (FriendDecl *FrD2 = dyn_cast<FriendDecl>(D2)) { | 
|  | if (!::IsStructurallyEquivalent(*this, FrD1, FrD2)) | 
|  | return false; | 
|  | } else { | 
|  | // Kind mismatch. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool StructuralEquivalenceContext::Finish() { | 
|  | while (!DeclsToCheck.empty()) { | 
|  | // Check the next declaration. | 
|  | std::pair<Decl *, Decl *> P = DeclsToCheck.front(); | 
|  | DeclsToCheck.pop(); | 
|  |  | 
|  | Decl *D1 = P.first; | 
|  | Decl *D2 = P.second; | 
|  |  | 
|  | bool Equivalent = | 
|  | CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2); | 
|  |  | 
|  | if (!Equivalent) { | 
|  | // Note that these two declarations are not equivalent (and we already | 
|  | // know about it). | 
|  | NonEquivalentDecls.insert(P); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } |