|  | //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the ARM addressing mode implementation stuff. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H | 
|  | #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H | 
|  |  | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <cassert> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | /// ARM_AM - ARM Addressing Mode Stuff | 
|  | namespace ARM_AM { | 
|  | enum ShiftOpc { | 
|  | no_shift = 0, | 
|  | asr, | 
|  | lsl, | 
|  | lsr, | 
|  | ror, | 
|  | rrx | 
|  | }; | 
|  |  | 
|  | enum AddrOpc { | 
|  | sub = 0, | 
|  | add | 
|  | }; | 
|  |  | 
|  | static inline const char *getAddrOpcStr(AddrOpc Op) { | 
|  | return Op == sub ? "-" : ""; | 
|  | } | 
|  |  | 
|  | static inline const char *getShiftOpcStr(ShiftOpc Op) { | 
|  | switch (Op) { | 
|  | default: llvm_unreachable("Unknown shift opc!"); | 
|  | case ARM_AM::asr: return "asr"; | 
|  | case ARM_AM::lsl: return "lsl"; | 
|  | case ARM_AM::lsr: return "lsr"; | 
|  | case ARM_AM::ror: return "ror"; | 
|  | case ARM_AM::rrx: return "rrx"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned getShiftOpcEncoding(ShiftOpc Op) { | 
|  | switch (Op) { | 
|  | default: llvm_unreachable("Unknown shift opc!"); | 
|  | case ARM_AM::asr: return 2; | 
|  | case ARM_AM::lsl: return 0; | 
|  | case ARM_AM::lsr: return 1; | 
|  | case ARM_AM::ror: return 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | enum AMSubMode { | 
|  | bad_am_submode = 0, | 
|  | ia, | 
|  | ib, | 
|  | da, | 
|  | db | 
|  | }; | 
|  |  | 
|  | static inline const char *getAMSubModeStr(AMSubMode Mode) { | 
|  | switch (Mode) { | 
|  | default: llvm_unreachable("Unknown addressing sub-mode!"); | 
|  | case ARM_AM::ia: return "ia"; | 
|  | case ARM_AM::ib: return "ib"; | 
|  | case ARM_AM::da: return "da"; | 
|  | case ARM_AM::db: return "db"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. | 
|  | /// | 
|  | static inline unsigned rotr32(unsigned Val, unsigned Amt) { | 
|  | assert(Amt < 32 && "Invalid rotate amount"); | 
|  | return (Val >> Amt) | (Val << ((32-Amt)&31)); | 
|  | } | 
|  |  | 
|  | /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. | 
|  | /// | 
|  | static inline unsigned rotl32(unsigned Val, unsigned Amt) { | 
|  | assert(Amt < 32 && "Invalid rotate amount"); | 
|  | return (Val << Amt) | (Val >> ((32-Amt)&31)); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Addressing Mode #1: shift_operand with registers | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | // This 'addressing mode' is used for arithmetic instructions.  It can | 
|  | // represent things like: | 
|  | //   reg | 
|  | //   reg [asr|lsl|lsr|ror|rrx] reg | 
|  | //   reg [asr|lsl|lsr|ror|rrx] imm | 
|  | // | 
|  | // This is stored three operands [rega, regb, opc].  The first is the base | 
|  | // reg, the second is the shift amount (or reg0 if not present or imm).  The | 
|  | // third operand encodes the shift opcode and the imm if a reg isn't present. | 
|  | // | 
|  | static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { | 
|  | return ShOp | (Imm << 3); | 
|  | } | 
|  | static inline unsigned getSORegOffset(unsigned Op) { | 
|  | return Op >> 3; | 
|  | } | 
|  | static inline ShiftOpc getSORegShOp(unsigned Op) { | 
|  | return (ShiftOpc)(Op & 7); | 
|  | } | 
|  |  | 
|  | /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return | 
|  | /// the 8-bit imm value. | 
|  | static inline unsigned getSOImmValImm(unsigned Imm) { | 
|  | return Imm & 0xFF; | 
|  | } | 
|  | /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return | 
|  | /// the rotate amount. | 
|  | static inline unsigned getSOImmValRot(unsigned Imm) { | 
|  | return (Imm >> 8) * 2; | 
|  | } | 
|  |  | 
|  | /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, | 
|  | /// computing the rotate amount to use.  If this immediate value cannot be | 
|  | /// handled with a single shifter-op, determine a good rotate amount that will | 
|  | /// take a maximal chunk of bits out of the immediate. | 
|  | static inline unsigned getSOImmValRotate(unsigned Imm) { | 
|  | // 8-bit (or less) immediates are trivially shifter_operands with a rotate | 
|  | // of zero. | 
|  | if ((Imm & ~255U) == 0) return 0; | 
|  |  | 
|  | // Use CTZ to compute the rotate amount. | 
|  | unsigned TZ = countTrailingZeros(Imm); | 
|  |  | 
|  | // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits, | 
|  | // not 9. | 
|  | unsigned RotAmt = TZ & ~1; | 
|  |  | 
|  | // If we can handle this spread, return it. | 
|  | if ((rotr32(Imm, RotAmt) & ~255U) == 0) | 
|  | return (32-RotAmt)&31;  // HW rotates right, not left. | 
|  |  | 
|  | // For values like 0xF000000F, we should ignore the low 6 bits, then | 
|  | // retry the hunt. | 
|  | if (Imm & 63U) { | 
|  | unsigned TZ2 = countTrailingZeros(Imm & ~63U); | 
|  | unsigned RotAmt2 = TZ2 & ~1; | 
|  | if ((rotr32(Imm, RotAmt2) & ~255U) == 0) | 
|  | return (32-RotAmt2)&31;  // HW rotates right, not left. | 
|  | } | 
|  |  | 
|  | // Otherwise, we have no way to cover this span of bits with a single | 
|  | // shifter_op immediate.  Return a chunk of bits that will be useful to | 
|  | // handle. | 
|  | return (32-RotAmt)&31;  // HW rotates right, not left. | 
|  | } | 
|  |  | 
|  | /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit | 
|  | /// into an shifter_operand immediate operand, return the 12-bit encoding for | 
|  | /// it.  If not, return -1. | 
|  | static inline int getSOImmVal(unsigned Arg) { | 
|  | // 8-bit (or less) immediates are trivially shifter_operands with a rotate | 
|  | // of zero. | 
|  | if ((Arg & ~255U) == 0) return Arg; | 
|  |  | 
|  | unsigned RotAmt = getSOImmValRotate(Arg); | 
|  |  | 
|  | // If this cannot be handled with a single shifter_op, bail out. | 
|  | if (rotr32(~255U, RotAmt) & Arg) | 
|  | return -1; | 
|  |  | 
|  | // Encode this correctly. | 
|  | return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); | 
|  | } | 
|  |  | 
|  | /// isSOImmTwoPartVal - Return true if the specified value can be obtained by | 
|  | /// or'ing together two SOImmVal's. | 
|  | static inline bool isSOImmTwoPartVal(unsigned V) { | 
|  | // If this can be handled with a single shifter_op, bail out. | 
|  | V = rotr32(~255U, getSOImmValRotate(V)) & V; | 
|  | if (V == 0) | 
|  | return false; | 
|  |  | 
|  | // If this can be handled with two shifter_op's, accept. | 
|  | V = rotr32(~255U, getSOImmValRotate(V)) & V; | 
|  | return V == 0; | 
|  | } | 
|  |  | 
|  | /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, | 
|  | /// return the first chunk of it. | 
|  | static inline unsigned getSOImmTwoPartFirst(unsigned V) { | 
|  | return rotr32(255U, getSOImmValRotate(V)) & V; | 
|  | } | 
|  |  | 
|  | /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, | 
|  | /// return the second chunk of it. | 
|  | static inline unsigned getSOImmTwoPartSecond(unsigned V) { | 
|  | // Mask out the first hunk. | 
|  | V = rotr32(~255U, getSOImmValRotate(V)) & V; | 
|  |  | 
|  | // Take what's left. | 
|  | assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed | 
|  | /// by a left shift. Returns the shift amount to use. | 
|  | static inline unsigned getThumbImmValShift(unsigned Imm) { | 
|  | // 8-bit (or less) immediates are trivially immediate operand with a shift | 
|  | // of zero. | 
|  | if ((Imm & ~255U) == 0) return 0; | 
|  |  | 
|  | // Use CTZ to compute the shift amount. | 
|  | return countTrailingZeros(Imm); | 
|  | } | 
|  |  | 
|  | /// isThumbImmShiftedVal - Return true if the specified value can be obtained | 
|  | /// by left shifting a 8-bit immediate. | 
|  | static inline bool isThumbImmShiftedVal(unsigned V) { | 
|  | // If this can be handled with | 
|  | V = (~255U << getThumbImmValShift(V)) & V; | 
|  | return V == 0; | 
|  | } | 
|  |  | 
|  | /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed | 
|  | /// by a left shift. Returns the shift amount to use. | 
|  | static inline unsigned getThumbImm16ValShift(unsigned Imm) { | 
|  | // 16-bit (or less) immediates are trivially immediate operand with a shift | 
|  | // of zero. | 
|  | if ((Imm & ~65535U) == 0) return 0; | 
|  |  | 
|  | // Use CTZ to compute the shift amount. | 
|  | return countTrailingZeros(Imm); | 
|  | } | 
|  |  | 
|  | /// isThumbImm16ShiftedVal - Return true if the specified value can be | 
|  | /// obtained by left shifting a 16-bit immediate. | 
|  | static inline bool isThumbImm16ShiftedVal(unsigned V) { | 
|  | // If this can be handled with | 
|  | V = (~65535U << getThumbImm16ValShift(V)) & V; | 
|  | return V == 0; | 
|  | } | 
|  |  | 
|  | /// getThumbImmNonShiftedVal - If V is a value that satisfies | 
|  | /// isThumbImmShiftedVal, return the non-shiftd value. | 
|  | static inline unsigned getThumbImmNonShiftedVal(unsigned V) { | 
|  | return V >> getThumbImmValShift(V); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getT2SOImmValSplat - Return the 12-bit encoded representation | 
|  | /// if the specified value can be obtained by splatting the low 8 bits | 
|  | /// into every other byte or every byte of a 32-bit value. i.e., | 
|  | ///     00000000 00000000 00000000 abcdefgh    control = 0 | 
|  | ///     00000000 abcdefgh 00000000 abcdefgh    control = 1 | 
|  | ///     abcdefgh 00000000 abcdefgh 00000000    control = 2 | 
|  | ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3 | 
|  | /// Return -1 if none of the above apply. | 
|  | /// See ARM Reference Manual A6.3.2. | 
|  | static inline int getT2SOImmValSplatVal(unsigned V) { | 
|  | unsigned u, Vs, Imm; | 
|  | // control = 0 | 
|  | if ((V & 0xffffff00) == 0) | 
|  | return V; | 
|  |  | 
|  | // If the value is zeroes in the first byte, just shift those off | 
|  | Vs = ((V & 0xff) == 0) ? V >> 8 : V; | 
|  | // Any passing value only has 8 bits of payload, splatted across the word | 
|  | Imm = Vs & 0xff; | 
|  | // Likewise, any passing values have the payload splatted into the 3rd byte | 
|  | u = Imm | (Imm << 16); | 
|  |  | 
|  | // control = 1 or 2 | 
|  | if (Vs == u) | 
|  | return (((Vs == V) ? 1 : 2) << 8) | Imm; | 
|  |  | 
|  | // control = 3 | 
|  | if (Vs == (u | (u << 8))) | 
|  | return (3 << 8) | Imm; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the | 
|  | /// specified value is a rotated 8-bit value. Return -1 if no rotation | 
|  | /// encoding is possible. | 
|  | /// See ARM Reference Manual A6.3.2. | 
|  | static inline int getT2SOImmValRotateVal(unsigned V) { | 
|  | unsigned RotAmt = countLeadingZeros(V); | 
|  | if (RotAmt >= 24) | 
|  | return -1; | 
|  |  | 
|  | // If 'Arg' can be handled with a single shifter_op return the value. | 
|  | if ((rotr32(0xff000000U, RotAmt) & V) == V) | 
|  | return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit | 
|  | /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit | 
|  | /// encoding for it.  If not, return -1. | 
|  | /// See ARM Reference Manual A6.3.2. | 
|  | static inline int getT2SOImmVal(unsigned Arg) { | 
|  | // If 'Arg' is an 8-bit splat, then get the encoded value. | 
|  | int Splat = getT2SOImmValSplatVal(Arg); | 
|  | if (Splat != -1) | 
|  | return Splat; | 
|  |  | 
|  | // If 'Arg' can be handled with a single shifter_op return the value. | 
|  | int Rot = getT2SOImmValRotateVal(Arg); | 
|  | if (Rot != -1) | 
|  | return Rot; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline unsigned getT2SOImmValRotate(unsigned V) { | 
|  | if ((V & ~255U) == 0) return 0; | 
|  | // Use CTZ to compute the rotate amount. | 
|  | unsigned RotAmt = countTrailingZeros(V); | 
|  | return (32 - RotAmt) & 31; | 
|  | } | 
|  |  | 
|  | static inline bool isT2SOImmTwoPartVal (unsigned Imm) { | 
|  | unsigned V = Imm; | 
|  | // Passing values can be any combination of splat values and shifter | 
|  | // values. If this can be handled with a single shifter or splat, bail | 
|  | // out. Those should be handled directly, not with a two-part val. | 
|  | if (getT2SOImmValSplatVal(V) != -1) | 
|  | return false; | 
|  | V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; | 
|  | if (V == 0) | 
|  | return false; | 
|  |  | 
|  | // If this can be handled as an immediate, accept. | 
|  | if (getT2SOImmVal(V) != -1) return true; | 
|  |  | 
|  | // Likewise, try masking out a splat value first. | 
|  | V = Imm; | 
|  | if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) | 
|  | V &= ~0xff00ff00U; | 
|  | else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) | 
|  | V &= ~0x00ff00ffU; | 
|  | // If what's left can be handled as an immediate, accept. | 
|  | if (getT2SOImmVal(V) != -1) return true; | 
|  |  | 
|  | // Otherwise, do not accept. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { | 
|  | assert (isT2SOImmTwoPartVal(Imm) && | 
|  | "Immedate cannot be encoded as two part immediate!"); | 
|  | // Try a shifter operand as one part | 
|  | unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm; | 
|  | // If the rest is encodable as an immediate, then return it. | 
|  | if (getT2SOImmVal(V) != -1) return V; | 
|  |  | 
|  | // Try masking out a splat value first. | 
|  | if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) | 
|  | return Imm & 0xff00ff00U; | 
|  |  | 
|  | // The other splat is all that's left as an option. | 
|  | assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); | 
|  | return Imm & 0x00ff00ffU; | 
|  | } | 
|  |  | 
|  | static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { | 
|  | // Mask out the first hunk | 
|  | Imm ^= getT2SOImmTwoPartFirst(Imm); | 
|  | // Return what's left | 
|  | assert (getT2SOImmVal(Imm) != -1 && | 
|  | "Unable to encode second part of T2 two part SO immediate"); | 
|  | return Imm; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Addressing Mode #2 | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | // This is used for most simple load/store instructions. | 
|  | // | 
|  | // addrmode2 := reg +/- reg shop imm | 
|  | // addrmode2 := reg +/- imm12 | 
|  | // | 
|  | // The first operand is always a Reg.  The second operand is a reg if in | 
|  | // reg/reg form, otherwise it's reg#0.  The third field encodes the operation | 
|  | // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The | 
|  | // fourth operand 16-17 encodes the index mode. | 
|  | // | 
|  | // If this addressing mode is a frame index (before prolog/epilog insertion | 
|  | // and code rewriting), this operand will have the form:  FI#, reg0, <offs> | 
|  | // with no shift amount for the frame offset. | 
|  | // | 
|  | static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, | 
|  | unsigned IdxMode = 0) { | 
|  | assert(Imm12 < (1 << 12) && "Imm too large!"); | 
|  | bool isSub = Opc == sub; | 
|  | return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; | 
|  | } | 
|  | static inline unsigned getAM2Offset(unsigned AM2Opc) { | 
|  | return AM2Opc & ((1 << 12)-1); | 
|  | } | 
|  | static inline AddrOpc getAM2Op(unsigned AM2Opc) { | 
|  | return ((AM2Opc >> 12) & 1) ? sub : add; | 
|  | } | 
|  | static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { | 
|  | return (ShiftOpc)((AM2Opc >> 13) & 7); | 
|  | } | 
|  | static inline unsigned getAM2IdxMode(unsigned AM2Opc) { | 
|  | return (AM2Opc >> 16); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Addressing Mode #3 | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | // This is used for sign-extending loads, and load/store-pair instructions. | 
|  | // | 
|  | // addrmode3 := reg +/- reg | 
|  | // addrmode3 := reg +/- imm8 | 
|  | // | 
|  | // The first operand is always a Reg.  The second operand is a reg if in | 
|  | // reg/reg form, otherwise it's reg#0.  The third field encodes the operation | 
|  | // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the | 
|  | // index mode. | 
|  |  | 
|  | /// getAM3Opc - This function encodes the addrmode3 opc field. | 
|  | static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, | 
|  | unsigned IdxMode = 0) { | 
|  | bool isSub = Opc == sub; | 
|  | return ((int)isSub << 8) | Offset | (IdxMode << 9); | 
|  | } | 
|  | static inline unsigned char getAM3Offset(unsigned AM3Opc) { | 
|  | return AM3Opc & 0xFF; | 
|  | } | 
|  | static inline AddrOpc getAM3Op(unsigned AM3Opc) { | 
|  | return ((AM3Opc >> 8) & 1) ? sub : add; | 
|  | } | 
|  | static inline unsigned getAM3IdxMode(unsigned AM3Opc) { | 
|  | return (AM3Opc >> 9); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Addressing Mode #4 | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | // This is used for load / store multiple instructions. | 
|  | // | 
|  | // addrmode4 := reg, <mode> | 
|  | // | 
|  | // The four modes are: | 
|  | //    IA - Increment after | 
|  | //    IB - Increment before | 
|  | //    DA - Decrement after | 
|  | //    DB - Decrement before | 
|  | // For VFP instructions, only the IA and DB modes are valid. | 
|  |  | 
|  | static inline AMSubMode getAM4SubMode(unsigned Mode) { | 
|  | return (AMSubMode)(Mode & 0x7); | 
|  | } | 
|  |  | 
|  | static inline unsigned getAM4ModeImm(AMSubMode SubMode) { | 
|  | return (int)SubMode; | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Addressing Mode #5 | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | // This is used for coprocessor instructions, such as FP load/stores. | 
|  | // | 
|  | // addrmode5 := reg +/- imm8*4 | 
|  | // | 
|  | // The first operand is always a Reg.  The second operand encodes the | 
|  | // operation in bit 8 and the immediate in bits 0-7. | 
|  |  | 
|  | /// getAM5Opc - This function encodes the addrmode5 opc field. | 
|  | static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { | 
|  | bool isSub = Opc == sub; | 
|  | return ((int)isSub << 8) | Offset; | 
|  | } | 
|  | static inline unsigned char getAM5Offset(unsigned AM5Opc) { | 
|  | return AM5Opc & 0xFF; | 
|  | } | 
|  | static inline AddrOpc getAM5Op(unsigned AM5Opc) { | 
|  | return ((AM5Opc >> 8) & 1) ? sub : add; | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Addressing Mode #6 | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | // This is used for NEON load / store instructions. | 
|  | // | 
|  | // addrmode6 := reg with optional alignment | 
|  | // | 
|  | // This is stored in two operands [regaddr, align].  The first is the | 
|  | // address register.  The second operand is the value of the alignment | 
|  | // specifier in bytes or zero if no explicit alignment. | 
|  | // Valid alignments depend on the specific instruction. | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // NEON Modified Immediates | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | // Several NEON instructions (e.g., VMOV) take a "modified immediate" | 
|  | // vector operand, where a small immediate encoded in the instruction | 
|  | // specifies a full NEON vector value.  These modified immediates are | 
|  | // represented here as encoded integers.  The low 8 bits hold the immediate | 
|  | // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold | 
|  | // the "Cmode" field of the instruction.  The interfaces below treat the | 
|  | // Op and Cmode values as a single 5-bit value. | 
|  |  | 
|  | static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) { | 
|  | return (OpCmode << 8) | Val; | 
|  | } | 
|  | static inline unsigned getNEONModImmOpCmode(unsigned ModImm) { | 
|  | return (ModImm >> 8) & 0x1f; | 
|  | } | 
|  | static inline unsigned getNEONModImmVal(unsigned ModImm) { | 
|  | return ModImm & 0xff; | 
|  | } | 
|  |  | 
|  | /// decodeNEONModImm - Decode a NEON modified immediate value into the | 
|  | /// element value and the element size in bits.  (If the element size is | 
|  | /// smaller than the vector, it is splatted into all the elements.) | 
|  | static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) { | 
|  | unsigned OpCmode = getNEONModImmOpCmode(ModImm); | 
|  | unsigned Imm8 = getNEONModImmVal(ModImm); | 
|  | uint64_t Val = 0; | 
|  |  | 
|  | if (OpCmode == 0xe) { | 
|  | // 8-bit vector elements | 
|  | Val = Imm8; | 
|  | EltBits = 8; | 
|  | } else if ((OpCmode & 0xc) == 0x8) { | 
|  | // 16-bit vector elements | 
|  | unsigned ByteNum = (OpCmode & 0x6) >> 1; | 
|  | Val = Imm8 << (8 * ByteNum); | 
|  | EltBits = 16; | 
|  | } else if ((OpCmode & 0x8) == 0) { | 
|  | // 32-bit vector elements, zero with one byte set | 
|  | unsigned ByteNum = (OpCmode & 0x6) >> 1; | 
|  | Val = Imm8 << (8 * ByteNum); | 
|  | EltBits = 32; | 
|  | } else if ((OpCmode & 0xe) == 0xc) { | 
|  | // 32-bit vector elements, one byte with low bits set | 
|  | unsigned ByteNum = 1 + (OpCmode & 0x1); | 
|  | Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); | 
|  | EltBits = 32; | 
|  | } else if (OpCmode == 0x1e) { | 
|  | // 64-bit vector elements | 
|  | for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) { | 
|  | if ((ModImm >> ByteNum) & 1) | 
|  | Val |= (uint64_t)0xff << (8 * ByteNum); | 
|  | } | 
|  | EltBits = 64; | 
|  | } else { | 
|  | llvm_unreachable("Unsupported NEON immediate"); | 
|  | } | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | AMSubMode getLoadStoreMultipleSubMode(int Opcode); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Floating-point Immediates | 
|  | // | 
|  | static inline float getFPImmFloat(unsigned Imm) { | 
|  | // We expect an 8-bit binary encoding of a floating-point number here. | 
|  | union { | 
|  | uint32_t I; | 
|  | float F; | 
|  | } FPUnion; | 
|  |  | 
|  | uint8_t Sign = (Imm >> 7) & 0x1; | 
|  | uint8_t Exp = (Imm >> 4) & 0x7; | 
|  | uint8_t Mantissa = Imm & 0xf; | 
|  |  | 
|  | //   8-bit FP    iEEEE Float Encoding | 
|  | //   abcd efgh   aBbbbbbc defgh000 00000000 00000000 | 
|  | // | 
|  | // where B = NOT(b); | 
|  |  | 
|  | FPUnion.I = 0; | 
|  | FPUnion.I |= Sign << 31; | 
|  | FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; | 
|  | FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; | 
|  | FPUnion.I |= (Exp & 0x3) << 23; | 
|  | FPUnion.I |= Mantissa << 19; | 
|  | return FPUnion.F; | 
|  | } | 
|  |  | 
|  | /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit | 
|  | /// floating-point value. If the value cannot be represented as an 8-bit | 
|  | /// floating-point value, then return -1. | 
|  | static inline int getFP32Imm(const APInt &Imm) { | 
|  | uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; | 
|  | int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127 | 
|  | int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits | 
|  |  | 
|  | // We can handle 4 bits of mantissa. | 
|  | // mantissa = (16+UInt(e:f:g:h))/16. | 
|  | if (Mantissa & 0x7ffff) | 
|  | return -1; | 
|  | Mantissa >>= 19; | 
|  | if ((Mantissa & 0xf) != Mantissa) | 
|  | return -1; | 
|  |  | 
|  | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 | 
|  | if (Exp < -3 || Exp > 4) | 
|  | return -1; | 
|  | Exp = ((Exp+3) & 0x7) ^ 4; | 
|  |  | 
|  | return ((int)Sign << 7) | (Exp << 4) | Mantissa; | 
|  | } | 
|  |  | 
|  | static inline int getFP32Imm(const APFloat &FPImm) { | 
|  | return getFP32Imm(FPImm.bitcastToAPInt()); | 
|  | } | 
|  |  | 
|  | /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit | 
|  | /// floating-point value. If the value cannot be represented as an 8-bit | 
|  | /// floating-point value, then return -1. | 
|  | static inline int getFP64Imm(const APInt &Imm) { | 
|  | uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; | 
|  | int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 | 
|  | uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; | 
|  |  | 
|  | // We can handle 4 bits of mantissa. | 
|  | // mantissa = (16+UInt(e:f:g:h))/16. | 
|  | if (Mantissa & 0xffffffffffffULL) | 
|  | return -1; | 
|  | Mantissa >>= 48; | 
|  | if ((Mantissa & 0xf) != Mantissa) | 
|  | return -1; | 
|  |  | 
|  | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 | 
|  | if (Exp < -3 || Exp > 4) | 
|  | return -1; | 
|  | Exp = ((Exp+3) & 0x7) ^ 4; | 
|  |  | 
|  | return ((int)Sign << 7) | (Exp << 4) | Mantissa; | 
|  | } | 
|  |  | 
|  | static inline int getFP64Imm(const APFloat &FPImm) { | 
|  | return getFP64Imm(FPImm.bitcastToAPInt()); | 
|  | } | 
|  |  | 
|  | } // end namespace ARM_AM | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif | 
|  |  |