|  | //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a DAG pattern matching instruction selector for X86, | 
|  | // converting from a legalized dag to a X86 dag. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "x86-isel" | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86RegisterInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Pattern Matcher Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses | 
|  | /// SDValue's instead of register numbers for the leaves of the matched | 
|  | /// tree. | 
|  | struct X86ISelAddressMode { | 
|  | enum { | 
|  | RegBase, | 
|  | FrameIndexBase | 
|  | } BaseType; | 
|  |  | 
|  | // This is really a union, discriminated by BaseType! | 
|  | SDValue Base_Reg; | 
|  | int Base_FrameIndex; | 
|  |  | 
|  | unsigned Scale; | 
|  | SDValue IndexReg; | 
|  | int32_t Disp; | 
|  | SDValue Segment; | 
|  | const GlobalValue *GV; | 
|  | const Constant *CP; | 
|  | const BlockAddress *BlockAddr; | 
|  | const char *ES; | 
|  | int JT; | 
|  | unsigned Align;    // CP alignment. | 
|  | unsigned char SymbolFlags;  // X86II::MO_* | 
|  |  | 
|  | X86ISelAddressMode() | 
|  | : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), | 
|  | Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0), | 
|  | SymbolFlags(X86II::MO_NO_FLAG) { | 
|  | } | 
|  |  | 
|  | bool hasSymbolicDisplacement() const { | 
|  | return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0; | 
|  | } | 
|  |  | 
|  | bool hasBaseOrIndexReg() const { | 
|  | return BaseType == FrameIndexBase || | 
|  | IndexReg.getNode() != 0 || Base_Reg.getNode() != 0; | 
|  | } | 
|  |  | 
|  | /// isRIPRelative - Return true if this addressing mode is already RIP | 
|  | /// relative. | 
|  | bool isRIPRelative() const { | 
|  | if (BaseType != RegBase) return false; | 
|  | if (RegisterSDNode *RegNode = | 
|  | dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) | 
|  | return RegNode->getReg() == X86::RIP; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void setBaseReg(SDValue Reg) { | 
|  | BaseType = RegBase; | 
|  | Base_Reg = Reg; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void dump() { | 
|  | dbgs() << "X86ISelAddressMode " << this << '\n'; | 
|  | dbgs() << "Base_Reg "; | 
|  | if (Base_Reg.getNode() != 0) | 
|  | Base_Reg.getNode()->dump(); | 
|  | else | 
|  | dbgs() << "nul"; | 
|  | dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n' | 
|  | << " Scale" << Scale << '\n' | 
|  | << "IndexReg "; | 
|  | if (IndexReg.getNode() != 0) | 
|  | IndexReg.getNode()->dump(); | 
|  | else | 
|  | dbgs() << "nul"; | 
|  | dbgs() << " Disp " << Disp << '\n' | 
|  | << "GV "; | 
|  | if (GV) | 
|  | GV->dump(); | 
|  | else | 
|  | dbgs() << "nul"; | 
|  | dbgs() << " CP "; | 
|  | if (CP) | 
|  | CP->dump(); | 
|  | else | 
|  | dbgs() << "nul"; | 
|  | dbgs() << '\n' | 
|  | << "ES "; | 
|  | if (ES) | 
|  | dbgs() << ES; | 
|  | else | 
|  | dbgs() << "nul"; | 
|  | dbgs() << " JT" << JT << " Align" << Align << '\n'; | 
|  | } | 
|  | #endif | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// ISel - X86 specific code to select X86 machine instructions for | 
|  | /// SelectionDAG operations. | 
|  | /// | 
|  | class X86DAGToDAGISel final : public SelectionDAGISel { | 
|  | /// Subtarget - Keep a pointer to the X86Subtarget around so that we can | 
|  | /// make the right decision when generating code for different targets. | 
|  | const X86Subtarget *Subtarget; | 
|  |  | 
|  | /// OptForSize - If true, selector should try to optimize for code size | 
|  | /// instead of performance. | 
|  | bool OptForSize; | 
|  |  | 
|  | public: | 
|  | explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) | 
|  | : SelectionDAGISel(tm, OptLevel), | 
|  | Subtarget(&tm.getSubtarget<X86Subtarget>()), | 
|  | OptForSize(false) {} | 
|  |  | 
|  | const char *getPassName() const override { | 
|  | return "X86 DAG->DAG Instruction Selection"; | 
|  | } | 
|  |  | 
|  | void EmitFunctionEntryCode() override; | 
|  |  | 
|  | bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; | 
|  |  | 
|  | void PreprocessISelDAG() override; | 
|  |  | 
|  | inline bool immSext8(SDNode *N) const { | 
|  | return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue()); | 
|  | } | 
|  |  | 
|  | // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit | 
|  | // sign extended field. | 
|  | inline bool i64immSExt32(SDNode *N) const { | 
|  | uint64_t v = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | return (int64_t)v == (int32_t)v; | 
|  | } | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "X86GenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | SDNode *Select(SDNode *N) override; | 
|  | SDNode *SelectGather(SDNode *N, unsigned Opc); | 
|  | SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); | 
|  | SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT); | 
|  |  | 
|  | bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); | 
|  | bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); | 
|  | bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); | 
|  | bool MatchAddress(SDValue N, X86ISelAddressMode &AM); | 
|  | bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, | 
|  | unsigned Depth); | 
|  | bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); | 
|  | bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool SelectMOV64Imm32(SDValue N, SDValue &Imm); | 
|  | bool SelectLEAAddr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool SelectLEA64_32Addr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool SelectTLSADDRAddr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool SelectScalarSSELoad(SDNode *Root, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment, | 
|  | SDValue &NodeWithChain); | 
|  |  | 
|  | bool TryFoldLoad(SDNode *P, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for | 
|  | /// inline asm expressions. | 
|  | bool SelectInlineAsmMemoryOperand(const SDValue &Op, | 
|  | char ConstraintCode, | 
|  | std::vector<SDValue> &OutOps) override; | 
|  |  | 
|  | void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); | 
|  |  | 
|  | inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? | 
|  | CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, | 
|  | getTargetLowering()->getPointerTy()) : | 
|  | AM.Base_Reg; | 
|  | Scale = getI8Imm(AM.Scale); | 
|  | Index = AM.IndexReg; | 
|  | // These are 32-bit even in 64-bit mode since RIP relative offset | 
|  | // is 32-bit. | 
|  | if (AM.GV) | 
|  | Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(), | 
|  | MVT::i32, AM.Disp, | 
|  | AM.SymbolFlags); | 
|  | else if (AM.CP) | 
|  | Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, | 
|  | AM.Align, AM.Disp, AM.SymbolFlags); | 
|  | else if (AM.ES) { | 
|  | assert(!AM.Disp && "Non-zero displacement is ignored with ES."); | 
|  | Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); | 
|  | } else if (AM.JT != -1) { | 
|  | assert(!AM.Disp && "Non-zero displacement is ignored with JT."); | 
|  | Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); | 
|  | } else if (AM.BlockAddr) | 
|  | Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, | 
|  | AM.SymbolFlags); | 
|  | else | 
|  | Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); | 
|  |  | 
|  | if (AM.Segment.getNode()) | 
|  | Segment = AM.Segment; | 
|  | else | 
|  | Segment = CurDAG->getRegister(0, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// getI8Imm - Return a target constant with the specified value, of type | 
|  | /// i8. | 
|  | inline SDValue getI8Imm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i8); | 
|  | } | 
|  |  | 
|  | /// getI32Imm - Return a target constant with the specified value, of type | 
|  | /// i32. | 
|  | inline SDValue getI32Imm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// getGlobalBaseReg - Return an SDNode that returns the value of | 
|  | /// the global base register. Output instructions required to | 
|  | /// initialize the global base register, if necessary. | 
|  | /// | 
|  | SDNode *getGlobalBaseReg(); | 
|  |  | 
|  | /// getTargetMachine - Return a reference to the TargetMachine, casted | 
|  | /// to the target-specific type. | 
|  | const X86TargetMachine &getTargetMachine() const { | 
|  | return static_cast<const X86TargetMachine &>(TM); | 
|  | } | 
|  |  | 
|  | /// getInstrInfo - Return a reference to the TargetInstrInfo, casted | 
|  | /// to the target-specific type. | 
|  | const X86InstrInfo *getInstrInfo() const { | 
|  | return getTargetMachine().getInstrInfo(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool | 
|  | X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { | 
|  | if (OptLevel == CodeGenOpt::None) return false; | 
|  |  | 
|  | if (!N.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | if (N.getOpcode() != ISD::LOAD) | 
|  | return true; | 
|  |  | 
|  | // If N is a load, do additional profitability checks. | 
|  | if (U == Root) { | 
|  | switch (U->getOpcode()) { | 
|  | default: break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::AND: | 
|  | case X86ISD::XOR: | 
|  | case X86ISD::OR: | 
|  | case ISD::ADD: | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | SDValue Op1 = U->getOperand(1); | 
|  |  | 
|  | // If the other operand is a 8-bit immediate we should fold the immediate | 
|  | // instead. This reduces code size. | 
|  | // e.g. | 
|  | // movl 4(%esp), %eax | 
|  | // addl $4, %eax | 
|  | // vs. | 
|  | // movl $4, %eax | 
|  | // addl 4(%esp), %eax | 
|  | // The former is 2 bytes shorter. In case where the increment is 1, then | 
|  | // the saving can be 4 bytes (by using incl %eax). | 
|  | if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) | 
|  | if (Imm->getAPIntValue().isSignedIntN(8)) | 
|  | return false; | 
|  |  | 
|  | // If the other operand is a TLS address, we should fold it instead. | 
|  | // This produces | 
|  | // movl    %gs:0, %eax | 
|  | // leal    i@NTPOFF(%eax), %eax | 
|  | // instead of | 
|  | // movl    $i@NTPOFF, %eax | 
|  | // addl    %gs:0, %eax | 
|  | // if the block also has an access to a second TLS address this will save | 
|  | // a load. | 
|  | // FIXME: This is probably also true for non-TLS addresses. | 
|  | if (Op1.getOpcode() == X86ISD::Wrapper) { | 
|  | SDValue Val = Op1.getOperand(0); | 
|  | if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// MoveBelowCallOrigChain - Replace the original chain operand of the call with | 
|  | /// load's chain operand and move load below the call's chain operand. | 
|  | static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, | 
|  | SDValue Call, SDValue OrigChain) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | SDValue Chain = OrigChain.getOperand(0); | 
|  | if (Chain.getNode() == Load.getNode()) | 
|  | Ops.push_back(Load.getOperand(0)); | 
|  | else { | 
|  | assert(Chain.getOpcode() == ISD::TokenFactor && | 
|  | "Unexpected chain operand"); | 
|  | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) | 
|  | if (Chain.getOperand(i).getNode() == Load.getNode()) | 
|  | Ops.push_back(Load.getOperand(0)); | 
|  | else | 
|  | Ops.push_back(Chain.getOperand(i)); | 
|  | SDValue NewChain = | 
|  | CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), | 
|  | MVT::Other, &Ops[0], Ops.size()); | 
|  | Ops.clear(); | 
|  | Ops.push_back(NewChain); | 
|  | } | 
|  | for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(OrigChain.getOperand(i)); | 
|  | CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size()); | 
|  | CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), | 
|  | Load.getOperand(1), Load.getOperand(2)); | 
|  |  | 
|  | unsigned NumOps = Call.getNode()->getNumOperands(); | 
|  | Ops.clear(); | 
|  | Ops.push_back(SDValue(Load.getNode(), 1)); | 
|  | for (unsigned i = 1, e = NumOps; i != e; ++i) | 
|  | Ops.push_back(Call.getOperand(i)); | 
|  | CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps); | 
|  | } | 
|  |  | 
|  | /// isCalleeLoad - Return true if call address is a load and it can be | 
|  | /// moved below CALLSEQ_START and the chains leading up to the call. | 
|  | /// Return the CALLSEQ_START by reference as a second output. | 
|  | /// In the case of a tail call, there isn't a callseq node between the call | 
|  | /// chain and the load. | 
|  | static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { | 
|  | // The transformation is somewhat dangerous if the call's chain was glued to | 
|  | // the call. After MoveBelowOrigChain the load is moved between the call and | 
|  | // the chain, this can create a cycle if the load is not folded. So it is | 
|  | // *really* important that we are sure the load will be folded. | 
|  | if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) | 
|  | return false; | 
|  | LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); | 
|  | if (!LD || | 
|  | LD->isVolatile() || | 
|  | LD->getAddressingMode() != ISD::UNINDEXED || | 
|  | LD->getExtensionType() != ISD::NON_EXTLOAD) | 
|  | return false; | 
|  |  | 
|  | // Now let's find the callseq_start. | 
|  | while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { | 
|  | if (!Chain.hasOneUse()) | 
|  | return false; | 
|  | Chain = Chain.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (!Chain.getNumOperands()) | 
|  | return false; | 
|  | // Since we are not checking for AA here, conservatively abort if the chain | 
|  | // writes to memory. It's not safe to move the callee (a load) across a store. | 
|  | if (isa<MemSDNode>(Chain.getNode()) && | 
|  | cast<MemSDNode>(Chain.getNode())->writeMem()) | 
|  | return false; | 
|  | if (Chain.getOperand(0).getNode() == Callee.getNode()) | 
|  | return true; | 
|  | if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && | 
|  | Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && | 
|  | Callee.getValue(1).hasOneUse()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void X86DAGToDAGISel::PreprocessISelDAG() { | 
|  | // OptForSize is used in pattern predicates that isel is matching. | 
|  | OptForSize = MF->getFunction()->getAttributes(). | 
|  | hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); | 
|  |  | 
|  | for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), | 
|  | E = CurDAG->allnodes_end(); I != E; ) { | 
|  | SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues. | 
|  |  | 
|  | if (OptLevel != CodeGenOpt::None && | 
|  | // Only does this when target favors doesn't favor register indirect | 
|  | // call. | 
|  | ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) || | 
|  | (N->getOpcode() == X86ISD::TC_RETURN && | 
|  | // Only does this if load can be folded into TC_RETURN. | 
|  | (Subtarget->is64Bit() || | 
|  | getTargetMachine().getRelocationModel() != Reloc::PIC_)))) { | 
|  | /// Also try moving call address load from outside callseq_start to just | 
|  | /// before the call to allow it to be folded. | 
|  | /// | 
|  | ///     [Load chain] | 
|  | ///         ^ | 
|  | ///         | | 
|  | ///       [Load] | 
|  | ///       ^    ^ | 
|  | ///       |    | | 
|  | ///      /      \-- | 
|  | ///     /          | | 
|  | ///[CALLSEQ_START] | | 
|  | ///     ^          | | 
|  | ///     |          | | 
|  | /// [LOAD/C2Reg]   | | 
|  | ///     |          | | 
|  | ///      \        / | 
|  | ///       \      / | 
|  | ///       [CALL] | 
|  | bool HasCallSeq = N->getOpcode() == X86ISD::CALL; | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Load  = N->getOperand(1); | 
|  | if (!isCalleeLoad(Load, Chain, HasCallSeq)) | 
|  | continue; | 
|  | MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); | 
|  | ++NumLoadMoved; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Lower fpround and fpextend nodes that target the FP stack to be store and | 
|  | // load to the stack.  This is a gross hack.  We would like to simply mark | 
|  | // these as being illegal, but when we do that, legalize produces these when | 
|  | // it expands calls, then expands these in the same legalize pass.  We would | 
|  | // like dag combine to be able to hack on these between the call expansion | 
|  | // and the node legalization.  As such this pass basically does "really | 
|  | // late" legalization of these inline with the X86 isel pass. | 
|  | // FIXME: This should only happen when not compiled with -O0. | 
|  | if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) | 
|  | continue; | 
|  |  | 
|  | MVT SrcVT = N->getOperand(0).getSimpleValueType(); | 
|  | MVT DstVT = N->getSimpleValueType(0); | 
|  |  | 
|  | // If any of the sources are vectors, no fp stack involved. | 
|  | if (SrcVT.isVector() || DstVT.isVector()) | 
|  | continue; | 
|  |  | 
|  | // If the source and destination are SSE registers, then this is a legal | 
|  | // conversion that should not be lowered. | 
|  | const X86TargetLowering *X86Lowering = | 
|  | static_cast<const X86TargetLowering *>(getTargetLowering()); | 
|  | bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); | 
|  | bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); | 
|  | if (SrcIsSSE && DstIsSSE) | 
|  | continue; | 
|  |  | 
|  | if (!SrcIsSSE && !DstIsSSE) { | 
|  | // If this is an FPStack extension, it is a noop. | 
|  | if (N->getOpcode() == ISD::FP_EXTEND) | 
|  | continue; | 
|  | // If this is a value-preserving FPStack truncation, it is a noop. | 
|  | if (N->getConstantOperandVal(1)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Here we could have an FP stack truncation or an FPStack <-> SSE convert. | 
|  | // FPStack has extload and truncstore.  SSE can fold direct loads into other | 
|  | // operations.  Based on this, decide what we want to do. | 
|  | MVT MemVT; | 
|  | if (N->getOpcode() == ISD::FP_ROUND) | 
|  | MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'. | 
|  | else | 
|  | MemVT = SrcIsSSE ? SrcVT : DstVT; | 
|  |  | 
|  | SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // FIXME: optimize the case where the src/dest is a load or store? | 
|  | SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, | 
|  | N->getOperand(0), | 
|  | MemTmp, MachinePointerInfo(), MemVT, | 
|  | false, false, 0); | 
|  | SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, | 
|  | MachinePointerInfo(), | 
|  | MemVT, false, false, 0); | 
|  |  | 
|  | // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the | 
|  | // extload we created.  This will cause general havok on the dag because | 
|  | // anything below the conversion could be folded into other existing nodes. | 
|  | // To avoid invalidating 'I', back it up to the convert node. | 
|  | --I; | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); | 
|  |  | 
|  | // Now that we did that, the node is dead.  Increment the iterator to the | 
|  | // next node to process, then delete N. | 
|  | ++I; | 
|  | CurDAG->DeleteNode(N); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in | 
|  | /// the main function. | 
|  | void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, | 
|  | MachineFrameInfo *MFI) { | 
|  | const TargetInstrInfo *TII = TM.getInstrInfo(); | 
|  | if (Subtarget->isTargetCygMing()) { | 
|  | unsigned CallOp = | 
|  | Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32; | 
|  | BuildMI(BB, DebugLoc(), | 
|  | TII->get(CallOp)).addExternalSymbol("__main"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86DAGToDAGISel::EmitFunctionEntryCode() { | 
|  | // If this is main, emit special code for main. | 
|  | if (const Function *Fn = MF->getFunction()) | 
|  | if (Fn->hasExternalLinkage() && Fn->getName() == "main") | 
|  | EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo()); | 
|  | } | 
|  |  | 
|  | static bool isDispSafeForFrameIndex(int64_t Val) { | 
|  | // On 64-bit platforms, we can run into an issue where a frame index | 
|  | // includes a displacement that, when added to the explicit displacement, | 
|  | // will overflow the displacement field. Assuming that the frame index | 
|  | // displacement fits into a 31-bit integer  (which is only slightly more | 
|  | // aggressive than the current fundamental assumption that it fits into | 
|  | // a 32-bit integer), a 31-bit disp should always be safe. | 
|  | return isInt<31>(Val); | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset, | 
|  | X86ISelAddressMode &AM) { | 
|  | int64_t Val = AM.Disp + Offset; | 
|  | CodeModel::Model M = TM.getCodeModel(); | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (!X86::isOffsetSuitableForCodeModel(Val, M, | 
|  | AM.hasSymbolicDisplacement())) | 
|  | return true; | 
|  | // In addition to the checks required for a register base, check that | 
|  | // we do not try to use an unsafe Disp with a frame index. | 
|  | if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && | 
|  | !isDispSafeForFrameIndex(Val)) | 
|  | return true; | 
|  | } | 
|  | AM.Disp = Val; | 
|  | return false; | 
|  |  | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ | 
|  | SDValue Address = N->getOperand(1); | 
|  |  | 
|  | // load gs:0 -> GS segment register. | 
|  | // load fs:0 -> FS segment register. | 
|  | // | 
|  | // This optimization is valid because the GNU TLS model defines that | 
|  | // gs:0 (or fs:0 on X86-64) contains its own address. | 
|  | // For more information see http://people.redhat.com/drepper/tls.pdf | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) | 
|  | if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 && | 
|  | Subtarget->isTargetLinux()) | 
|  | switch (N->getPointerInfo().getAddrSpace()) { | 
|  | case 256: | 
|  | AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); | 
|  | return false; | 
|  | case 257: | 
|  | AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes | 
|  | /// into an addressing mode.  These wrap things that will resolve down into a | 
|  | /// symbol reference.  If no match is possible, this returns true, otherwise it | 
|  | /// returns false. | 
|  | bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { | 
|  | // If the addressing mode already has a symbol as the displacement, we can | 
|  | // never match another symbol. | 
|  | if (AM.hasSymbolicDisplacement()) | 
|  | return true; | 
|  |  | 
|  | SDValue N0 = N.getOperand(0); | 
|  | CodeModel::Model M = TM.getCodeModel(); | 
|  |  | 
|  | // Handle X86-64 rip-relative addresses.  We check this before checking direct | 
|  | // folding because RIP is preferable to non-RIP accesses. | 
|  | if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP && | 
|  | // Under X86-64 non-small code model, GV (and friends) are 64-bits, so | 
|  | // they cannot be folded into immediate fields. | 
|  | // FIXME: This can be improved for kernel and other models? | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) { | 
|  | // Base and index reg must be 0 in order to use %rip as base. | 
|  | if (AM.hasBaseOrIndexReg()) | 
|  | return true; | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { | 
|  | X86ISelAddressMode Backup = AM; | 
|  | AM.GV = G->getGlobal(); | 
|  | AM.SymbolFlags = G->getTargetFlags(); | 
|  | if (FoldOffsetIntoAddress(G->getOffset(), AM)) { | 
|  | AM = Backup; | 
|  | return true; | 
|  | } | 
|  | } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { | 
|  | X86ISelAddressMode Backup = AM; | 
|  | AM.CP = CP->getConstVal(); | 
|  | AM.Align = CP->getAlignment(); | 
|  | AM.SymbolFlags = CP->getTargetFlags(); | 
|  | if (FoldOffsetIntoAddress(CP->getOffset(), AM)) { | 
|  | AM = Backup; | 
|  | return true; | 
|  | } | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { | 
|  | AM.ES = S->getSymbol(); | 
|  | AM.SymbolFlags = S->getTargetFlags(); | 
|  | } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { | 
|  | AM.JT = J->getIndex(); | 
|  | AM.SymbolFlags = J->getTargetFlags(); | 
|  | } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { | 
|  | X86ISelAddressMode Backup = AM; | 
|  | AM.BlockAddr = BA->getBlockAddress(); | 
|  | AM.SymbolFlags = BA->getTargetFlags(); | 
|  | if (FoldOffsetIntoAddress(BA->getOffset(), AM)) { | 
|  | AM = Backup; | 
|  | return true; | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Unhandled symbol reference node."); | 
|  |  | 
|  | if (N.getOpcode() == X86ISD::WrapperRIP) | 
|  | AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Handle the case when globals fit in our immediate field: This is true for | 
|  | // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit | 
|  | // mode, this only applies to a non-RIP-relative computation. | 
|  | if (!Subtarget->is64Bit() || | 
|  | M == CodeModel::Small || M == CodeModel::Kernel) { | 
|  | assert(N.getOpcode() != X86ISD::WrapperRIP && | 
|  | "RIP-relative addressing already handled"); | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { | 
|  | AM.GV = G->getGlobal(); | 
|  | AM.Disp += G->getOffset(); | 
|  | AM.SymbolFlags = G->getTargetFlags(); | 
|  | } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { | 
|  | AM.CP = CP->getConstVal(); | 
|  | AM.Align = CP->getAlignment(); | 
|  | AM.Disp += CP->getOffset(); | 
|  | AM.SymbolFlags = CP->getTargetFlags(); | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { | 
|  | AM.ES = S->getSymbol(); | 
|  | AM.SymbolFlags = S->getTargetFlags(); | 
|  | } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { | 
|  | AM.JT = J->getIndex(); | 
|  | AM.SymbolFlags = J->getTargetFlags(); | 
|  | } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { | 
|  | AM.BlockAddr = BA->getBlockAddress(); | 
|  | AM.Disp += BA->getOffset(); | 
|  | AM.SymbolFlags = BA->getTargetFlags(); | 
|  | } else | 
|  | llvm_unreachable("Unhandled symbol reference node."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// MatchAddress - Add the specified node to the specified addressing mode, | 
|  | /// returning true if it cannot be done.  This just pattern matches for the | 
|  | /// addressing mode. | 
|  | bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { | 
|  | if (MatchAddressRecursively(N, AM, 0)) | 
|  | return true; | 
|  |  | 
|  | // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has | 
|  | // a smaller encoding and avoids a scaled-index. | 
|  | if (AM.Scale == 2 && | 
|  | AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base_Reg.getNode() == 0) { | 
|  | AM.Base_Reg = AM.IndexReg; | 
|  | AM.Scale = 1; | 
|  | } | 
|  |  | 
|  | // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, | 
|  | // because it has a smaller encoding. | 
|  | // TODO: Which other code models can use this? | 
|  | if (TM.getCodeModel() == CodeModel::Small && | 
|  | Subtarget->is64Bit() && | 
|  | AM.Scale == 1 && | 
|  | AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base_Reg.getNode() == 0 && | 
|  | AM.IndexReg.getNode() == 0 && | 
|  | AM.SymbolFlags == X86II::MO_NO_FLAG && | 
|  | AM.hasSymbolicDisplacement()) | 
|  | AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Insert a node into the DAG at least before the Pos node's position. This | 
|  | // will reposition the node as needed, and will assign it a node ID that is <= | 
|  | // the Pos node's ID. Note that this does *not* preserve the uniqueness of node | 
|  | // IDs! The selection DAG must no longer depend on their uniqueness when this | 
|  | // is used. | 
|  | static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { | 
|  | if (N.getNode()->getNodeId() == -1 || | 
|  | N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) { | 
|  | DAG.RepositionNode(Pos.getNode(), N.getNode()); | 
|  | N.getNode()->setNodeId(Pos.getNode()->getNodeId()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This | 
|  | // allows us to convert the shift and and into an h-register extract and | 
|  | // a scaled index. Returns false if the simplification is performed. | 
|  | static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, | 
|  | uint64_t Mask, | 
|  | SDValue Shift, SDValue X, | 
|  | X86ISelAddressMode &AM) { | 
|  | if (Shift.getOpcode() != ISD::SRL || | 
|  | !isa<ConstantSDNode>(Shift.getOperand(1)) || | 
|  | !Shift.hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | int ScaleLog = 8 - Shift.getConstantOperandVal(1); | 
|  | if (ScaleLog <= 0 || ScaleLog >= 4 || | 
|  | Mask != (0xffu << ScaleLog)) | 
|  | return true; | 
|  |  | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | SDLoc DL(N); | 
|  | SDValue Eight = DAG.getConstant(8, MVT::i8); | 
|  | SDValue NewMask = DAG.getConstant(0xff, VT); | 
|  | SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); | 
|  | SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); | 
|  | SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. We must do this in | 
|  | // a valid topological ordering as nothing is going to go back and re-sort | 
|  | // these nodes. We continually insert before 'N' in sequence as this is | 
|  | // essentially a pre-flattened and pre-sorted sequence of nodes. There is no | 
|  | // hierarchy left to express. | 
|  | InsertDAGNode(DAG, N, Eight); | 
|  | InsertDAGNode(DAG, N, Srl); | 
|  | InsertDAGNode(DAG, N, NewMask); | 
|  | InsertDAGNode(DAG, N, And); | 
|  | InsertDAGNode(DAG, N, ShlCount); | 
|  | InsertDAGNode(DAG, N, Shl); | 
|  | DAG.ReplaceAllUsesWith(N, Shl); | 
|  | AM.IndexReg = And; | 
|  | AM.Scale = (1 << ScaleLog); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this | 
|  | // allows us to fold the shift into this addressing mode. Returns false if the | 
|  | // transform succeeded. | 
|  | static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, | 
|  | uint64_t Mask, | 
|  | SDValue Shift, SDValue X, | 
|  | X86ISelAddressMode &AM) { | 
|  | if (Shift.getOpcode() != ISD::SHL || | 
|  | !isa<ConstantSDNode>(Shift.getOperand(1))) | 
|  | return true; | 
|  |  | 
|  | // Not likely to be profitable if either the AND or SHIFT node has more | 
|  | // than one use (unless all uses are for address computation). Besides, | 
|  | // isel mechanism requires their node ids to be reused. | 
|  | if (!N.hasOneUse() || !Shift.hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | // Verify that the shift amount is something we can fold. | 
|  | unsigned ShiftAmt = Shift.getConstantOperandVal(1); | 
|  | if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) | 
|  | return true; | 
|  |  | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | SDLoc DL(N); | 
|  | SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT); | 
|  | SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); | 
|  | SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. We must do this in | 
|  | // a valid topological ordering as nothing is going to go back and re-sort | 
|  | // these nodes. We continually insert before 'N' in sequence as this is | 
|  | // essentially a pre-flattened and pre-sorted sequence of nodes. There is no | 
|  | // hierarchy left to express. | 
|  | InsertDAGNode(DAG, N, NewMask); | 
|  | InsertDAGNode(DAG, N, NewAnd); | 
|  | InsertDAGNode(DAG, N, NewShift); | 
|  | DAG.ReplaceAllUsesWith(N, NewShift); | 
|  |  | 
|  | AM.Scale = 1 << ShiftAmt; | 
|  | AM.IndexReg = NewAnd; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Implement some heroics to detect shifts of masked values where the mask can | 
|  | // be replaced by extending the shift and undoing that in the addressing mode | 
|  | // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and | 
|  | // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in | 
|  | // the addressing mode. This results in code such as: | 
|  | // | 
|  | //   int f(short *y, int *lookup_table) { | 
|  | //     ... | 
|  | //     return *y + lookup_table[*y >> 11]; | 
|  | //   } | 
|  | // | 
|  | // Turning into: | 
|  | //   movzwl (%rdi), %eax | 
|  | //   movl %eax, %ecx | 
|  | //   shrl $11, %ecx | 
|  | //   addl (%rsi,%rcx,4), %eax | 
|  | // | 
|  | // Instead of: | 
|  | //   movzwl (%rdi), %eax | 
|  | //   movl %eax, %ecx | 
|  | //   shrl $9, %ecx | 
|  | //   andl $124, %rcx | 
|  | //   addl (%rsi,%rcx), %eax | 
|  | // | 
|  | // Note that this function assumes the mask is provided as a mask *after* the | 
|  | // value is shifted. The input chain may or may not match that, but computing | 
|  | // such a mask is trivial. | 
|  | static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, | 
|  | uint64_t Mask, | 
|  | SDValue Shift, SDValue X, | 
|  | X86ISelAddressMode &AM) { | 
|  | if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || | 
|  | !isa<ConstantSDNode>(Shift.getOperand(1))) | 
|  | return true; | 
|  |  | 
|  | unsigned ShiftAmt = Shift.getConstantOperandVal(1); | 
|  | unsigned MaskLZ = countLeadingZeros(Mask); | 
|  | unsigned MaskTZ = countTrailingZeros(Mask); | 
|  |  | 
|  | // The amount of shift we're trying to fit into the addressing mode is taken | 
|  | // from the trailing zeros of the mask. | 
|  | unsigned AMShiftAmt = MaskTZ; | 
|  |  | 
|  | // There is nothing we can do here unless the mask is removing some bits. | 
|  | // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. | 
|  | if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; | 
|  |  | 
|  | // We also need to ensure that mask is a continuous run of bits. | 
|  | if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; | 
|  |  | 
|  | // Scale the leading zero count down based on the actual size of the value. | 
|  | // Also scale it down based on the size of the shift. | 
|  | MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt; | 
|  |  | 
|  | // The final check is to ensure that any masked out high bits of X are | 
|  | // already known to be zero. Otherwise, the mask has a semantic impact | 
|  | // other than masking out a couple of low bits. Unfortunately, because of | 
|  | // the mask, zero extensions will be removed from operands in some cases. | 
|  | // This code works extra hard to look through extensions because we can | 
|  | // replace them with zero extensions cheaply if necessary. | 
|  | bool ReplacingAnyExtend = false; | 
|  | if (X.getOpcode() == ISD::ANY_EXTEND) { | 
|  | unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() - | 
|  | X.getOperand(0).getSimpleValueType().getSizeInBits(); | 
|  | // Assume that we'll replace the any-extend with a zero-extend, and | 
|  | // narrow the search to the extended value. | 
|  | X = X.getOperand(0); | 
|  | MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; | 
|  | ReplacingAnyExtend = true; | 
|  | } | 
|  | APInt MaskedHighBits = | 
|  | APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ); | 
|  | APInt KnownZero, KnownOne; | 
|  | DAG.ComputeMaskedBits(X, KnownZero, KnownOne); | 
|  | if (MaskedHighBits != KnownZero) return true; | 
|  |  | 
|  | // We've identified a pattern that can be transformed into a single shift | 
|  | // and an addressing mode. Make it so. | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | if (ReplacingAnyExtend) { | 
|  | assert(X.getValueType() != VT); | 
|  | // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. | 
|  | SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X); | 
|  | InsertDAGNode(DAG, N, NewX); | 
|  | X = NewX; | 
|  | } | 
|  | SDLoc DL(N); | 
|  | SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8); | 
|  | SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); | 
|  | SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8); | 
|  | SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. We must do this in | 
|  | // a valid topological ordering as nothing is going to go back and re-sort | 
|  | // these nodes. We continually insert before 'N' in sequence as this is | 
|  | // essentially a pre-flattened and pre-sorted sequence of nodes. There is no | 
|  | // hierarchy left to express. | 
|  | InsertDAGNode(DAG, N, NewSRLAmt); | 
|  | InsertDAGNode(DAG, N, NewSRL); | 
|  | InsertDAGNode(DAG, N, NewSHLAmt); | 
|  | InsertDAGNode(DAG, N, NewSHL); | 
|  | DAG.ReplaceAllUsesWith(N, NewSHL); | 
|  |  | 
|  | AM.Scale = 1 << AMShiftAmt; | 
|  | AM.IndexReg = NewSRL; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, | 
|  | unsigned Depth) { | 
|  | SDLoc dl(N); | 
|  | DEBUG({ | 
|  | dbgs() << "MatchAddress: "; | 
|  | AM.dump(); | 
|  | }); | 
|  | // Limit recursion. | 
|  | if (Depth > 5) | 
|  | return MatchAddressBase(N, AM); | 
|  |  | 
|  | // If this is already a %rip relative address, we can only merge immediates | 
|  | // into it.  Instead of handling this in every case, we handle it here. | 
|  | // RIP relative addressing: %rip + 32-bit displacement! | 
|  | if (AM.isRIPRelative()) { | 
|  | // FIXME: JumpTable and ExternalSymbol address currently don't like | 
|  | // displacements.  It isn't very important, but this should be fixed for | 
|  | // consistency. | 
|  | if (!AM.ES && AM.JT != -1) return true; | 
|  |  | 
|  | if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) | 
|  | if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::Constant: { | 
|  | uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); | 
|  | if (!FoldOffsetIntoAddress(Val, AM)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86ISD::Wrapper: | 
|  | case X86ISD::WrapperRIP: | 
|  | if (!MatchWrapper(N, AM)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ISD::LOAD: | 
|  | if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ISD::FrameIndex: | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base_Reg.getNode() == 0 && | 
|  | (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { | 
|  | AM.BaseType = X86ISelAddressMode::FrameIndexBase; | 
|  | AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SHL: | 
|  | if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) | 
|  | break; | 
|  |  | 
|  | if (ConstantSDNode | 
|  | *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { | 
|  | unsigned Val = CN->getZExtValue(); | 
|  | // Note that we handle x<<1 as (,x,2) rather than (x,x) here so | 
|  | // that the base operand remains free for further matching. If | 
|  | // the base doesn't end up getting used, a post-processing step | 
|  | // in MatchAddress turns (,x,2) into (x,x), which is cheaper. | 
|  | if (Val == 1 || Val == 2 || Val == 3) { | 
|  | AM.Scale = 1 << Val; | 
|  | SDValue ShVal = N.getNode()->getOperand(0); | 
|  |  | 
|  | // Okay, we know that we have a scale by now.  However, if the scaled | 
|  | // value is an add of something and a constant, we can fold the | 
|  | // constant into the disp field here. | 
|  | if (CurDAG->isBaseWithConstantOffset(ShVal)) { | 
|  | AM.IndexReg = ShVal.getNode()->getOperand(0); | 
|  | ConstantSDNode *AddVal = | 
|  | cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); | 
|  | uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; | 
|  | if (!FoldOffsetIntoAddress(Disp, AM)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AM.IndexReg = ShVal; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SRL: { | 
|  | // Scale must not be used already. | 
|  | if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; | 
|  |  | 
|  | SDValue And = N.getOperand(0); | 
|  | if (And.getOpcode() != ISD::AND) break; | 
|  | SDValue X = And.getOperand(0); | 
|  |  | 
|  | // We only handle up to 64-bit values here as those are what matter for | 
|  | // addressing mode optimizations. | 
|  | if (X.getSimpleValueType().getSizeInBits() > 64) break; | 
|  |  | 
|  | // The mask used for the transform is expected to be post-shift, but we | 
|  | // found the shift first so just apply the shift to the mask before passing | 
|  | // it down. | 
|  | if (!isa<ConstantSDNode>(N.getOperand(1)) || | 
|  | !isa<ConstantSDNode>(And.getOperand(1))) | 
|  | break; | 
|  | uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); | 
|  |  | 
|  | // Try to fold the mask and shift into the scale, and return false if we | 
|  | // succeed. | 
|  | if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: | 
|  | // A mul_lohi where we need the low part can be folded as a plain multiply. | 
|  | if (N.getResNo() != 0) break; | 
|  | // FALL THROUGH | 
|  | case ISD::MUL: | 
|  | case X86ISD::MUL_IMM: | 
|  | // X*[3,5,9] -> X+X*[2,4,8] | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base_Reg.getNode() == 0 && | 
|  | AM.IndexReg.getNode() == 0) { | 
|  | if (ConstantSDNode | 
|  | *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) | 
|  | if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || | 
|  | CN->getZExtValue() == 9) { | 
|  | AM.Scale = unsigned(CN->getZExtValue())-1; | 
|  |  | 
|  | SDValue MulVal = N.getNode()->getOperand(0); | 
|  | SDValue Reg; | 
|  |  | 
|  | // Okay, we know that we have a scale by now.  However, if the scaled | 
|  | // value is an add of something and a constant, we can fold the | 
|  | // constant into the disp field here. | 
|  | if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && | 
|  | isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { | 
|  | Reg = MulVal.getNode()->getOperand(0); | 
|  | ConstantSDNode *AddVal = | 
|  | cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); | 
|  | uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); | 
|  | if (FoldOffsetIntoAddress(Disp, AM)) | 
|  | Reg = N.getNode()->getOperand(0); | 
|  | } else { | 
|  | Reg = N.getNode()->getOperand(0); | 
|  | } | 
|  |  | 
|  | AM.IndexReg = AM.Base_Reg = Reg; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SUB: { | 
|  | // Given A-B, if A can be completely folded into the address and | 
|  | // the index field with the index field unused, use -B as the index. | 
|  | // This is a win if a has multiple parts that can be folded into | 
|  | // the address. Also, this saves a mov if the base register has | 
|  | // other uses, since it avoids a two-address sub instruction, however | 
|  | // it costs an additional mov if the index register has other uses. | 
|  |  | 
|  | // Add an artificial use to this node so that we can keep track of | 
|  | // it if it gets CSE'd with a different node. | 
|  | HandleSDNode Handle(N); | 
|  |  | 
|  | // Test if the LHS of the sub can be folded. | 
|  | X86ISelAddressMode Backup = AM; | 
|  | if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  | // Test if the index field is free for use. | 
|  | if (AM.IndexReg.getNode() || AM.isRIPRelative()) { | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  |  | 
|  | int Cost = 0; | 
|  | SDValue RHS = Handle.getValue().getNode()->getOperand(1); | 
|  | // If the RHS involves a register with multiple uses, this | 
|  | // transformation incurs an extra mov, due to the neg instruction | 
|  | // clobbering its operand. | 
|  | if (!RHS.getNode()->hasOneUse() || | 
|  | RHS.getNode()->getOpcode() == ISD::CopyFromReg || | 
|  | RHS.getNode()->getOpcode() == ISD::TRUNCATE || | 
|  | RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || | 
|  | (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && | 
|  | RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) | 
|  | ++Cost; | 
|  | // If the base is a register with multiple uses, this | 
|  | // transformation may save a mov. | 
|  | if ((AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base_Reg.getNode() && | 
|  | !AM.Base_Reg.getNode()->hasOneUse()) || | 
|  | AM.BaseType == X86ISelAddressMode::FrameIndexBase) | 
|  | --Cost; | 
|  | // If the folded LHS was interesting, this transformation saves | 
|  | // address arithmetic. | 
|  | if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + | 
|  | ((AM.Disp != 0) && (Backup.Disp == 0)) + | 
|  | (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) | 
|  | --Cost; | 
|  | // If it doesn't look like it may be an overall win, don't do it. | 
|  | if (Cost >= 0) { | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Ok, the transformation is legal and appears profitable. Go for it. | 
|  | SDValue Zero = CurDAG->getConstant(0, N.getValueType()); | 
|  | SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); | 
|  | AM.IndexReg = Neg; | 
|  | AM.Scale = 1; | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. | 
|  | InsertDAGNode(*CurDAG, N, Zero); | 
|  | InsertDAGNode(*CurDAG, N, Neg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ISD::ADD: { | 
|  | // Add an artificial use to this node so that we can keep track of | 
|  | // it if it gets CSE'd with a different node. | 
|  | HandleSDNode Handle(N); | 
|  |  | 
|  | X86ISelAddressMode Backup = AM; | 
|  | if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && | 
|  | !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) | 
|  | return false; | 
|  | AM = Backup; | 
|  |  | 
|  | // Try again after commuting the operands. | 
|  | if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&& | 
|  | !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) | 
|  | return false; | 
|  | AM = Backup; | 
|  |  | 
|  | // If we couldn't fold both operands into the address at the same time, | 
|  | // see if we can just put each operand into a register and fold at least | 
|  | // the add. | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | !AM.Base_Reg.getNode() && | 
|  | !AM.IndexReg.getNode()) { | 
|  | N = Handle.getValue(); | 
|  | AM.Base_Reg = N.getOperand(0); | 
|  | AM.IndexReg = N.getOperand(1); | 
|  | AM.Scale = 1; | 
|  | return false; | 
|  | } | 
|  | N = Handle.getValue(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::OR: | 
|  | // Handle "X | C" as "X + C" iff X is known to have C bits clear. | 
|  | if (CurDAG->isBaseWithConstantOffset(N)) { | 
|  | X86ISelAddressMode Backup = AM; | 
|  | ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1)); | 
|  |  | 
|  | // Start with the LHS as an addr mode. | 
|  | if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && | 
|  | !FoldOffsetIntoAddress(CN->getSExtValue(), AM)) | 
|  | return false; | 
|  | AM = Backup; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::AND: { | 
|  | // Perform some heroic transforms on an and of a constant-count shift | 
|  | // with a constant to enable use of the scaled offset field. | 
|  |  | 
|  | // Scale must not be used already. | 
|  | if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; | 
|  |  | 
|  | SDValue Shift = N.getOperand(0); | 
|  | if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break; | 
|  | SDValue X = Shift.getOperand(0); | 
|  |  | 
|  | // We only handle up to 64-bit values here as those are what matter for | 
|  | // addressing mode optimizations. | 
|  | if (X.getSimpleValueType().getSizeInBits() > 64) break; | 
|  |  | 
|  | if (!isa<ConstantSDNode>(N.getOperand(1))) | 
|  | break; | 
|  | uint64_t Mask = N.getConstantOperandVal(1); | 
|  |  | 
|  | // Try to fold the mask and shift into an extract and scale. | 
|  | if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) | 
|  | return false; | 
|  |  | 
|  | // Try to fold the mask and shift directly into the scale. | 
|  | if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) | 
|  | return false; | 
|  |  | 
|  | // Try to swap the mask and shift to place shifts which can be done as | 
|  | // a scale on the outside of the mask. | 
|  | if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MatchAddressBase(N, AM); | 
|  | } | 
|  |  | 
|  | /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the | 
|  | /// specified addressing mode without any further recursion. | 
|  | bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { | 
|  | // Is the base register already occupied? | 
|  | if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { | 
|  | // If so, check to see if the scale index register is set. | 
|  | if (AM.IndexReg.getNode() == 0) { | 
|  | AM.IndexReg = N; | 
|  | AM.Scale = 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, we cannot select it. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Default, generate it as a register. | 
|  | AM.BaseType = X86ISelAddressMode::RegBase; | 
|  | AM.Base_Reg = N; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectAddr - returns true if it is able pattern match an addressing mode. | 
|  | /// It returns the operands which make up the maximal addressing mode it can | 
|  | /// match by reference. | 
|  | /// | 
|  | /// Parent is the parent node of the addr operand that is being matched.  It | 
|  | /// is always a load, store, atomic node, or null.  It is only null when | 
|  | /// checking memory operands for inline asm nodes. | 
|  | bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | X86ISelAddressMode AM; | 
|  |  | 
|  | if (Parent && | 
|  | // This list of opcodes are all the nodes that have an "addr:$ptr" operand | 
|  | // that are not a MemSDNode, and thus don't have proper addrspace info. | 
|  | Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme | 
|  | Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores | 
|  | Parent->getOpcode() != X86ISD::TLSCALL && // Fixme | 
|  | Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp | 
|  | Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp | 
|  | unsigned AddrSpace = | 
|  | cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); | 
|  | // AddrSpace 256 -> GS, 257 -> FS. | 
|  | if (AddrSpace == 256) | 
|  | AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); | 
|  | if (AddrSpace == 257) | 
|  | AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); | 
|  | } | 
|  |  | 
|  | if (MatchAddress(N, AM)) | 
|  | return false; | 
|  |  | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase) { | 
|  | if (!AM.Base_Reg.getNode()) | 
|  | AM.Base_Reg = CurDAG->getRegister(0, VT); | 
|  | } | 
|  |  | 
|  | if (!AM.IndexReg.getNode()) | 
|  | AM.IndexReg = CurDAG->getRegister(0, VT); | 
|  |  | 
|  | getAddressOperands(AM, Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to | 
|  | /// match a load whose top elements are either undef or zeros.  The load flavor | 
|  | /// is derived from the type of N, which is either v4f32 or v2f64. | 
|  | /// | 
|  | /// We also return: | 
|  | ///   PatternChainNode: this is the matched node that has a chain input and | 
|  | ///   output. | 
|  | bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root, | 
|  | SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment, | 
|  | SDValue &PatternNodeWithChain) { | 
|  | if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
|  | PatternNodeWithChain = N.getOperand(0); | 
|  | if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && | 
|  | PatternNodeWithChain.hasOneUse() && | 
|  | IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && | 
|  | IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); | 
|  | if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also handle the case where we explicitly require zeros in the top | 
|  | // elements.  This is a vector shuffle from the zero vector. | 
|  | if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && | 
|  | // Check to see if the top elements are all zeros (or bitcast of zeros). | 
|  | N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | N.getOperand(0).getNode()->hasOneUse() && | 
|  | ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && | 
|  | N.getOperand(0).getOperand(0).hasOneUse() && | 
|  | IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && | 
|  | IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { | 
|  | // Okay, this is a zero extending load.  Fold it. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); | 
|  | if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) | 
|  | return false; | 
|  | PatternNodeWithChain = SDValue(LD, 0); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) { | 
|  | if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | uint64_t ImmVal = CN->getZExtValue(); | 
|  | if ((uint32_t)ImmVal != (uint64_t)ImmVal) | 
|  | return false; | 
|  |  | 
|  | Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // In static codegen with small code model, we can get the address of a label | 
|  | // into a register with 'movl'. TableGen has already made sure we're looking | 
|  | // at a label of some kind. | 
|  | assert(N->getOpcode() == X86ISD::Wrapper && | 
|  | "Unexpected node type for MOV32ri64"); | 
|  | N = N.getOperand(0); | 
|  |  | 
|  | if (N->getOpcode() != ISD::TargetConstantPool && | 
|  | N->getOpcode() != ISD::TargetJumpTable && | 
|  | N->getOpcode() != ISD::TargetGlobalAddress && | 
|  | N->getOpcode() != ISD::TargetExternalSymbol && | 
|  | N->getOpcode() != ISD::TargetBlockAddress) | 
|  | return false; | 
|  |  | 
|  | Imm = N; | 
|  | return TM.getCodeModel() == CodeModel::Small; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment)) | 
|  | return false; | 
|  |  | 
|  | SDLoc DL(N); | 
|  | RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base); | 
|  | if (RN && RN->getReg() == 0) | 
|  | Base = CurDAG->getRegister(0, MVT::i64); | 
|  | else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) { | 
|  | // Base could already be %rip, particularly in the x32 ABI. | 
|  | Base = SDValue(CurDAG->getMachineNode( | 
|  | TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, | 
|  | CurDAG->getTargetConstant(0, MVT::i64), | 
|  | Base, | 
|  | CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | RN = dyn_cast<RegisterSDNode>(Index); | 
|  | if (RN && RN->getReg() == 0) | 
|  | Index = CurDAG->getRegister(0, MVT::i64); | 
|  | else { | 
|  | assert(Index.getValueType() == MVT::i32 && | 
|  | "Expect to be extending 32-bit registers for use in LEA"); | 
|  | Index = SDValue(CurDAG->getMachineNode( | 
|  | TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, | 
|  | CurDAG->getTargetConstant(0, MVT::i64), | 
|  | Index, | 
|  | CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing | 
|  | /// mode it matches can be cost effectively emitted as an LEA instruction. | 
|  | bool X86DAGToDAGISel::SelectLEAAddr(SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment) { | 
|  | X86ISelAddressMode AM; | 
|  |  | 
|  | // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support | 
|  | // segments. | 
|  | SDValue Copy = AM.Segment; | 
|  | SDValue T = CurDAG->getRegister(0, MVT::i32); | 
|  | AM.Segment = T; | 
|  | if (MatchAddress(N, AM)) | 
|  | return false; | 
|  | assert (T == AM.Segment); | 
|  | AM.Segment = Copy; | 
|  |  | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | unsigned Complexity = 0; | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase) | 
|  | if (AM.Base_Reg.getNode()) | 
|  | Complexity = 1; | 
|  | else | 
|  | AM.Base_Reg = CurDAG->getRegister(0, VT); | 
|  | else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) | 
|  | Complexity = 4; | 
|  |  | 
|  | if (AM.IndexReg.getNode()) | 
|  | Complexity++; | 
|  | else | 
|  | AM.IndexReg = CurDAG->getRegister(0, VT); | 
|  |  | 
|  | // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with | 
|  | // a simple shift. | 
|  | if (AM.Scale > 1) | 
|  | Complexity++; | 
|  |  | 
|  | // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA | 
|  | // to a LEA. This is determined with some expermentation but is by no means | 
|  | // optimal (especially for code size consideration). LEA is nice because of | 
|  | // its three-address nature. Tweak the cost function again when we can run | 
|  | // convertToThreeAddress() at register allocation time. | 
|  | if (AM.hasSymbolicDisplacement()) { | 
|  | // For X86-64, we should always use lea to materialize RIP relative | 
|  | // addresses. | 
|  | if (Subtarget->is64Bit()) | 
|  | Complexity = 4; | 
|  | else | 
|  | Complexity += 2; | 
|  | } | 
|  |  | 
|  | if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) | 
|  | Complexity++; | 
|  |  | 
|  | // If it isn't worth using an LEA, reject it. | 
|  | if (Complexity <= 2) | 
|  | return false; | 
|  |  | 
|  | getAddressOperands(AM, Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. | 
|  | bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); | 
|  | const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); | 
|  |  | 
|  | X86ISelAddressMode AM; | 
|  | AM.GV = GA->getGlobal(); | 
|  | AM.Disp += GA->getOffset(); | 
|  | AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); | 
|  | AM.SymbolFlags = GA->getTargetFlags(); | 
|  |  | 
|  | if (N.getValueType() == MVT::i32) { | 
|  | AM.Scale = 1; | 
|  | AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); | 
|  | } else { | 
|  | AM.IndexReg = CurDAG->getRegister(0, MVT::i64); | 
|  | } | 
|  |  | 
|  | getAddressOperands(AM, Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment) { | 
|  | if (!ISD::isNON_EXTLoad(N.getNode()) || | 
|  | !IsProfitableToFold(N, P, P) || | 
|  | !IsLegalToFold(N, P, P, OptLevel)) | 
|  | return false; | 
|  |  | 
|  | return SelectAddr(N.getNode(), | 
|  | N.getOperand(1), Base, Scale, Index, Disp, Segment); | 
|  | } | 
|  |  | 
|  | /// getGlobalBaseReg - Return an SDNode that returns the value of | 
|  | /// the global base register. Output instructions required to | 
|  | /// initialize the global base register, if necessary. | 
|  | /// | 
|  | SDNode *X86DAGToDAGISel::getGlobalBaseReg() { | 
|  | unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); | 
|  | return CurDAG->getRegister(GlobalBaseReg, | 
|  | getTargetLowering()->getPointerTy()).getNode(); | 
|  | } | 
|  |  | 
|  | SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue In1 = Node->getOperand(1); | 
|  | SDValue In2L = Node->getOperand(2); | 
|  | SDValue In2H = Node->getOperand(3); | 
|  |  | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) | 
|  | return NULL; | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); | 
|  | const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain}; | 
|  | SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), | 
|  | MVT::i32, MVT::i32, MVT::Other, Ops); | 
|  | cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); | 
|  | return ResNode; | 
|  | } | 
|  |  | 
|  | /// Atomic opcode table | 
|  | /// | 
|  | enum AtomicOpc { | 
|  | ADD, | 
|  | SUB, | 
|  | INC, | 
|  | DEC, | 
|  | OR, | 
|  | AND, | 
|  | XOR, | 
|  | AtomicOpcEnd | 
|  | }; | 
|  |  | 
|  | enum AtomicSz { | 
|  | ConstantI8, | 
|  | I8, | 
|  | SextConstantI16, | 
|  | ConstantI16, | 
|  | I16, | 
|  | SextConstantI32, | 
|  | ConstantI32, | 
|  | I32, | 
|  | SextConstantI64, | 
|  | ConstantI64, | 
|  | I64, | 
|  | AtomicSzEnd | 
|  | }; | 
|  |  | 
|  | static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = { | 
|  | { | 
|  | X86::LOCK_ADD8mi, | 
|  | X86::LOCK_ADD8mr, | 
|  | X86::LOCK_ADD16mi8, | 
|  | X86::LOCK_ADD16mi, | 
|  | X86::LOCK_ADD16mr, | 
|  | X86::LOCK_ADD32mi8, | 
|  | X86::LOCK_ADD32mi, | 
|  | X86::LOCK_ADD32mr, | 
|  | X86::LOCK_ADD64mi8, | 
|  | X86::LOCK_ADD64mi32, | 
|  | X86::LOCK_ADD64mr, | 
|  | }, | 
|  | { | 
|  | X86::LOCK_SUB8mi, | 
|  | X86::LOCK_SUB8mr, | 
|  | X86::LOCK_SUB16mi8, | 
|  | X86::LOCK_SUB16mi, | 
|  | X86::LOCK_SUB16mr, | 
|  | X86::LOCK_SUB32mi8, | 
|  | X86::LOCK_SUB32mi, | 
|  | X86::LOCK_SUB32mr, | 
|  | X86::LOCK_SUB64mi8, | 
|  | X86::LOCK_SUB64mi32, | 
|  | X86::LOCK_SUB64mr, | 
|  | }, | 
|  | { | 
|  | 0, | 
|  | X86::LOCK_INC8m, | 
|  | 0, | 
|  | 0, | 
|  | X86::LOCK_INC16m, | 
|  | 0, | 
|  | 0, | 
|  | X86::LOCK_INC32m, | 
|  | 0, | 
|  | 0, | 
|  | X86::LOCK_INC64m, | 
|  | }, | 
|  | { | 
|  | 0, | 
|  | X86::LOCK_DEC8m, | 
|  | 0, | 
|  | 0, | 
|  | X86::LOCK_DEC16m, | 
|  | 0, | 
|  | 0, | 
|  | X86::LOCK_DEC32m, | 
|  | 0, | 
|  | 0, | 
|  | X86::LOCK_DEC64m, | 
|  | }, | 
|  | { | 
|  | X86::LOCK_OR8mi, | 
|  | X86::LOCK_OR8mr, | 
|  | X86::LOCK_OR16mi8, | 
|  | X86::LOCK_OR16mi, | 
|  | X86::LOCK_OR16mr, | 
|  | X86::LOCK_OR32mi8, | 
|  | X86::LOCK_OR32mi, | 
|  | X86::LOCK_OR32mr, | 
|  | X86::LOCK_OR64mi8, | 
|  | X86::LOCK_OR64mi32, | 
|  | X86::LOCK_OR64mr, | 
|  | }, | 
|  | { | 
|  | X86::LOCK_AND8mi, | 
|  | X86::LOCK_AND8mr, | 
|  | X86::LOCK_AND16mi8, | 
|  | X86::LOCK_AND16mi, | 
|  | X86::LOCK_AND16mr, | 
|  | X86::LOCK_AND32mi8, | 
|  | X86::LOCK_AND32mi, | 
|  | X86::LOCK_AND32mr, | 
|  | X86::LOCK_AND64mi8, | 
|  | X86::LOCK_AND64mi32, | 
|  | X86::LOCK_AND64mr, | 
|  | }, | 
|  | { | 
|  | X86::LOCK_XOR8mi, | 
|  | X86::LOCK_XOR8mr, | 
|  | X86::LOCK_XOR16mi8, | 
|  | X86::LOCK_XOR16mi, | 
|  | X86::LOCK_XOR16mr, | 
|  | X86::LOCK_XOR32mi8, | 
|  | X86::LOCK_XOR32mi, | 
|  | X86::LOCK_XOR32mr, | 
|  | X86::LOCK_XOR64mi8, | 
|  | X86::LOCK_XOR64mi32, | 
|  | X86::LOCK_XOR64mr, | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Return the target constant operand for atomic-load-op and do simple | 
|  | // translations, such as from atomic-load-add to lock-sub. The return value is | 
|  | // one of the following 3 cases: | 
|  | // + target-constant, the operand could be supported as a target constant. | 
|  | // + empty, the operand is not needed any more with the new op selected. | 
|  | // + non-empty, otherwise. | 
|  | static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG, | 
|  | SDLoc dl, | 
|  | enum AtomicOpc &Op, MVT NVT, | 
|  | SDValue Val) { | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) { | 
|  | int64_t CNVal = CN->getSExtValue(); | 
|  | // Quit if not 32-bit imm. | 
|  | if ((int32_t)CNVal != CNVal) | 
|  | return Val; | 
|  | // For atomic-load-add, we could do some optimizations. | 
|  | if (Op == ADD) { | 
|  | // Translate to INC/DEC if ADD by 1 or -1. | 
|  | if ((CNVal == 1) || (CNVal == -1)) { | 
|  | Op = (CNVal == 1) ? INC : DEC; | 
|  | // No more constant operand after being translated into INC/DEC. | 
|  | return SDValue(); | 
|  | } | 
|  | // Translate to SUB if ADD by negative value. | 
|  | if (CNVal < 0) { | 
|  | Op = SUB; | 
|  | CNVal = -CNVal; | 
|  | } | 
|  | } | 
|  | return CurDAG->getTargetConstant(CNVal, NVT); | 
|  | } | 
|  |  | 
|  | // If the value operand is single-used, try to optimize it. | 
|  | if (Op == ADD && Val.hasOneUse()) { | 
|  | // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x). | 
|  | if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) { | 
|  | Op = SUB; | 
|  | return Val.getOperand(1); | 
|  | } | 
|  | // A special case for i16, which needs truncating as, in most cases, it's | 
|  | // promoted to i32. We will translate | 
|  | // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x)) | 
|  | if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 && | 
|  | Val.getOperand(0).getOpcode() == ISD::SUB && | 
|  | X86::isZeroNode(Val.getOperand(0).getOperand(0))) { | 
|  | Op = SUB; | 
|  | Val = Val.getOperand(0); | 
|  | return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT, | 
|  | Val.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) { | 
|  | if (Node->hasAnyUseOfValue(0)) | 
|  | return 0; | 
|  |  | 
|  | SDLoc dl(Node); | 
|  |  | 
|  | // Optimize common patterns for __sync_or_and_fetch and similar arith | 
|  | // operations where the result is not used. This allows us to use the "lock" | 
|  | // version of the arithmetic instruction. | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue Ptr = Node->getOperand(1); | 
|  | SDValue Val = Node->getOperand(2); | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) | 
|  | return 0; | 
|  |  | 
|  | // Which index into the table. | 
|  | enum AtomicOpc Op; | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | return 0; | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | Op = OR; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | Op = AND; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | Op = XOR; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | Op = ADD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val); | 
|  | bool isUnOp = !Val.getNode(); | 
|  | bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant); | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | switch (NVT.SimpleTy) { | 
|  | default: return 0; | 
|  | case MVT::i8: | 
|  | if (isCN) | 
|  | Opc = AtomicOpcTbl[Op][ConstantI8]; | 
|  | else | 
|  | Opc = AtomicOpcTbl[Op][I8]; | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (isCN) { | 
|  | if (immSext8(Val.getNode())) | 
|  | Opc = AtomicOpcTbl[Op][SextConstantI16]; | 
|  | else | 
|  | Opc = AtomicOpcTbl[Op][ConstantI16]; | 
|  | } else | 
|  | Opc = AtomicOpcTbl[Op][I16]; | 
|  | break; | 
|  | case MVT::i32: | 
|  | if (isCN) { | 
|  | if (immSext8(Val.getNode())) | 
|  | Opc = AtomicOpcTbl[Op][SextConstantI32]; | 
|  | else | 
|  | Opc = AtomicOpcTbl[Op][ConstantI32]; | 
|  | } else | 
|  | Opc = AtomicOpcTbl[Op][I32]; | 
|  | break; | 
|  | case MVT::i64: | 
|  | Opc = AtomicOpcTbl[Op][I64]; | 
|  | if (isCN) { | 
|  | if (immSext8(Val.getNode())) | 
|  | Opc = AtomicOpcTbl[Op][SextConstantI64]; | 
|  | else if (i64immSExt32(Val.getNode())) | 
|  | Opc = AtomicOpcTbl[Op][ConstantI64]; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(Opc != 0 && "Invalid arith lock transform!"); | 
|  |  | 
|  | SDValue Ret; | 
|  | SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, | 
|  | dl, NVT), 0); | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); | 
|  | if (isUnOp) { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain }; | 
|  | Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0); | 
|  | } else { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; | 
|  | Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0); | 
|  | } | 
|  | cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); | 
|  | SDValue RetVals[] = { Undef, Ret }; | 
|  | return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); | 
|  | } | 
|  |  | 
|  | /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has | 
|  | /// any uses which require the SF or OF bits to be accurate. | 
|  | static bool HasNoSignedComparisonUses(SDNode *N) { | 
|  | // Examine each user of the node. | 
|  | for (SDNode::use_iterator UI = N->use_begin(), | 
|  | UE = N->use_end(); UI != UE; ++UI) { | 
|  | // Only examine CopyToReg uses. | 
|  | if (UI->getOpcode() != ISD::CopyToReg) | 
|  | return false; | 
|  | // Only examine CopyToReg uses that copy to EFLAGS. | 
|  | if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != | 
|  | X86::EFLAGS) | 
|  | return false; | 
|  | // Examine each user of the CopyToReg use. | 
|  | for (SDNode::use_iterator FlagUI = UI->use_begin(), | 
|  | FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { | 
|  | // Only examine the Flag result. | 
|  | if (FlagUI.getUse().getResNo() != 1) continue; | 
|  | // Anything unusual: assume conservatively. | 
|  | if (!FlagUI->isMachineOpcode()) return false; | 
|  | // Examine the opcode of the user. | 
|  | switch (FlagUI->getMachineOpcode()) { | 
|  | // These comparisons don't treat the most significant bit specially. | 
|  | case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: | 
|  | case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: | 
|  | case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: | 
|  | case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: | 
|  | case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4: | 
|  | case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4: | 
|  | case X86::CMOVA16rr: case X86::CMOVA16rm: | 
|  | case X86::CMOVA32rr: case X86::CMOVA32rm: | 
|  | case X86::CMOVA64rr: case X86::CMOVA64rm: | 
|  | case X86::CMOVAE16rr: case X86::CMOVAE16rm: | 
|  | case X86::CMOVAE32rr: case X86::CMOVAE32rm: | 
|  | case X86::CMOVAE64rr: case X86::CMOVAE64rm: | 
|  | case X86::CMOVB16rr: case X86::CMOVB16rm: | 
|  | case X86::CMOVB32rr: case X86::CMOVB32rm: | 
|  | case X86::CMOVB64rr: case X86::CMOVB64rm: | 
|  | case X86::CMOVBE16rr: case X86::CMOVBE16rm: | 
|  | case X86::CMOVBE32rr: case X86::CMOVBE32rm: | 
|  | case X86::CMOVBE64rr: case X86::CMOVBE64rm: | 
|  | case X86::CMOVE16rr: case X86::CMOVE16rm: | 
|  | case X86::CMOVE32rr: case X86::CMOVE32rm: | 
|  | case X86::CMOVE64rr: case X86::CMOVE64rm: | 
|  | case X86::CMOVNE16rr: case X86::CMOVNE16rm: | 
|  | case X86::CMOVNE32rr: case X86::CMOVNE32rm: | 
|  | case X86::CMOVNE64rr: case X86::CMOVNE64rm: | 
|  | case X86::CMOVNP16rr: case X86::CMOVNP16rm: | 
|  | case X86::CMOVNP32rr: case X86::CMOVNP32rm: | 
|  | case X86::CMOVNP64rr: case X86::CMOVNP64rm: | 
|  | case X86::CMOVP16rr: case X86::CMOVP16rm: | 
|  | case X86::CMOVP32rr: case X86::CMOVP32rm: | 
|  | case X86::CMOVP64rr: case X86::CMOVP64rm: | 
|  | continue; | 
|  | // Anything else: assume conservatively. | 
|  | default: return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode | 
|  | /// is suitable for doing the {load; increment or decrement; store} to modify | 
|  | /// transformation. | 
|  | static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc, | 
|  | SDValue StoredVal, SelectionDAG *CurDAG, | 
|  | LoadSDNode* &LoadNode, SDValue &InputChain) { | 
|  |  | 
|  | // is the value stored the result of a DEC or INC? | 
|  | if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false; | 
|  |  | 
|  | // is the stored value result 0 of the load? | 
|  | if (StoredVal.getResNo() != 0) return false; | 
|  |  | 
|  | // are there other uses of the loaded value than the inc or dec? | 
|  | if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; | 
|  |  | 
|  | // is the store non-extending and non-indexed? | 
|  | if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) | 
|  | return false; | 
|  |  | 
|  | SDValue Load = StoredVal->getOperand(0); | 
|  | // Is the stored value a non-extending and non-indexed load? | 
|  | if (!ISD::isNormalLoad(Load.getNode())) return false; | 
|  |  | 
|  | // Return LoadNode by reference. | 
|  | LoadNode = cast<LoadSDNode>(Load); | 
|  | // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8) | 
|  | EVT LdVT = LoadNode->getMemoryVT(); | 
|  | if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 && | 
|  | LdVT != MVT::i8) | 
|  | return false; | 
|  |  | 
|  | // Is store the only read of the loaded value? | 
|  | if (!Load.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Is the address of the store the same as the load? | 
|  | if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || | 
|  | LoadNode->getOffset() != StoreNode->getOffset()) | 
|  | return false; | 
|  |  | 
|  | // Check if the chain is produced by the load or is a TokenFactor with | 
|  | // the load output chain as an operand. Return InputChain by reference. | 
|  | SDValue Chain = StoreNode->getChain(); | 
|  |  | 
|  | bool ChainCheck = false; | 
|  | if (Chain == Load.getValue(1)) { | 
|  | ChainCheck = true; | 
|  | InputChain = LoadNode->getChain(); | 
|  | } else if (Chain.getOpcode() == ISD::TokenFactor) { | 
|  | SmallVector<SDValue, 4> ChainOps; | 
|  | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { | 
|  | SDValue Op = Chain.getOperand(i); | 
|  | if (Op == Load.getValue(1)) { | 
|  | ChainCheck = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Make sure using Op as part of the chain would not cause a cycle here. | 
|  | // In theory, we could check whether the chain node is a predecessor of | 
|  | // the load. But that can be very expensive. Instead visit the uses and | 
|  | // make sure they all have smaller node id than the load. | 
|  | int LoadId = LoadNode->getNodeId(); | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = UI->use_end(); UI != UE; ++UI) { | 
|  | if (UI.getUse().getResNo() != 0) | 
|  | continue; | 
|  | if (UI->getNodeId() > LoadId) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ChainOps.push_back(Op); | 
|  | } | 
|  |  | 
|  | if (ChainCheck) | 
|  | // Make a new TokenFactor with all the other input chains except | 
|  | // for the load. | 
|  | InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), | 
|  | MVT::Other, &ChainOps[0], ChainOps.size()); | 
|  | } | 
|  | if (!ChainCheck) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory | 
|  | /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC. | 
|  | static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) { | 
|  | if (Opc == X86ISD::DEC) { | 
|  | if (LdVT == MVT::i64) return X86::DEC64m; | 
|  | if (LdVT == MVT::i32) return X86::DEC32m; | 
|  | if (LdVT == MVT::i16) return X86::DEC16m; | 
|  | if (LdVT == MVT::i8)  return X86::DEC8m; | 
|  | } else { | 
|  | assert(Opc == X86ISD::INC && "unrecognized opcode"); | 
|  | if (LdVT == MVT::i64) return X86::INC64m; | 
|  | if (LdVT == MVT::i32) return X86::INC32m; | 
|  | if (LdVT == MVT::i16) return X86::INC16m; | 
|  | if (LdVT == MVT::i8)  return X86::INC8m; | 
|  | } | 
|  | llvm_unreachable("unrecognized size for LdVT"); | 
|  | } | 
|  |  | 
|  | /// SelectGather - Customized ISel for GATHER operations. | 
|  | /// | 
|  | SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) { | 
|  | // Operands of Gather: VSrc, Base, VIdx, VMask, Scale | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue VSrc = Node->getOperand(2); | 
|  | SDValue Base = Node->getOperand(3); | 
|  | SDValue VIdx = Node->getOperand(4); | 
|  | SDValue VMask = Node->getOperand(5); | 
|  | ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6)); | 
|  | if (!Scale) | 
|  | return 0; | 
|  |  | 
|  | SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(), | 
|  | MVT::Other); | 
|  |  | 
|  | // Memory Operands: Base, Scale, Index, Disp, Segment | 
|  | SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32); | 
|  | SDValue Segment = CurDAG->getRegister(0, MVT::i32); | 
|  | const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx, | 
|  | Disp, Segment, VMask, Chain}; | 
|  | SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops); | 
|  | // Node has 2 outputs: VDst and MVT::Other. | 
|  | // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other. | 
|  | // We replace VDst of Node with VDst of ResNode, and Other of Node with Other | 
|  | // of ResNode. | 
|  | ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0)); | 
|  | ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2)); | 
|  | return ResNode; | 
|  | } | 
|  |  | 
|  | SDNode *X86DAGToDAGISel::Select(SDNode *Node) { | 
|  | MVT NVT = Node->getSimpleValueType(0); | 
|  | unsigned Opc, MOpc; | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | SDLoc dl(Node); | 
|  |  | 
|  | DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n'); | 
|  |  | 
|  | if (Node->isMachineOpcode()) { | 
|  | DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n'); | 
|  | Node->setNodeId(-1); | 
|  | return NULL;   // Already selected. | 
|  | } | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: break; | 
|  | case Intrinsic::x86_avx2_gather_d_pd: | 
|  | case Intrinsic::x86_avx2_gather_d_pd_256: | 
|  | case Intrinsic::x86_avx2_gather_q_pd: | 
|  | case Intrinsic::x86_avx2_gather_q_pd_256: | 
|  | case Intrinsic::x86_avx2_gather_d_ps: | 
|  | case Intrinsic::x86_avx2_gather_d_ps_256: | 
|  | case Intrinsic::x86_avx2_gather_q_ps: | 
|  | case Intrinsic::x86_avx2_gather_q_ps_256: | 
|  | case Intrinsic::x86_avx2_gather_d_q: | 
|  | case Intrinsic::x86_avx2_gather_d_q_256: | 
|  | case Intrinsic::x86_avx2_gather_q_q: | 
|  | case Intrinsic::x86_avx2_gather_q_q_256: | 
|  | case Intrinsic::x86_avx2_gather_d_d: | 
|  | case Intrinsic::x86_avx2_gather_d_d_256: | 
|  | case Intrinsic::x86_avx2_gather_q_d: | 
|  | case Intrinsic::x86_avx2_gather_q_d_256: { | 
|  | if (!Subtarget->hasAVX2()) | 
|  | break; | 
|  | unsigned Opc; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic"); | 
|  | case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break; | 
|  | case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break; | 
|  | case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break; | 
|  | case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break; | 
|  | case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break; | 
|  | case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break; | 
|  | case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break; | 
|  | case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break; | 
|  | case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break; | 
|  | case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break; | 
|  | case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break; | 
|  | case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break; | 
|  | case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break; | 
|  | case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break; | 
|  | case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break; | 
|  | case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break; | 
|  | } | 
|  | SDNode *RetVal = SelectGather(Node, Opc); | 
|  | if (RetVal) | 
|  | // We already called ReplaceUses inside SelectGather. | 
|  | return NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86ISD::GlobalBaseReg: | 
|  | return getGlobalBaseReg(); | 
|  |  | 
|  |  | 
|  | case X86ISD::ATOMOR64_DAG: | 
|  | case X86ISD::ATOMXOR64_DAG: | 
|  | case X86ISD::ATOMADD64_DAG: | 
|  | case X86ISD::ATOMSUB64_DAG: | 
|  | case X86ISD::ATOMNAND64_DAG: | 
|  | case X86ISD::ATOMAND64_DAG: | 
|  | case X86ISD::ATOMMAX64_DAG: | 
|  | case X86ISD::ATOMMIN64_DAG: | 
|  | case X86ISD::ATOMUMAX64_DAG: | 
|  | case X86ISD::ATOMUMIN64_DAG: | 
|  | case X86ISD::ATOMSWAP64_DAG: { | 
|  | unsigned Opc; | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Impossible opcode"); | 
|  | case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break; | 
|  | case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break; | 
|  | case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break; | 
|  | case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break; | 
|  | case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break; | 
|  | case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break; | 
|  | case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break; | 
|  | case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break; | 
|  | case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break; | 
|  | case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break; | 
|  | case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break; | 
|  | } | 
|  | SDNode *RetVal = SelectAtomic64(Node, Opc); | 
|  | if (RetVal) | 
|  | return RetVal; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_ADD: { | 
|  | SDNode *RetVal = SelectAtomicLoadArith(Node, NVT); | 
|  | if (RetVal) | 
|  | return RetVal; | 
|  | break; | 
|  | } | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | // For operations of the form (x << C1) op C2, check if we can use a smaller | 
|  | // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) | 
|  | break; | 
|  |  | 
|  | // i8 is unshrinkable, i16 should be promoted to i32. | 
|  | if (NVT != MVT::i32 && NVT != MVT::i64) | 
|  | break; | 
|  |  | 
|  | ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); | 
|  | ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); | 
|  | if (!Cst || !ShlCst) | 
|  | break; | 
|  |  | 
|  | int64_t Val = Cst->getSExtValue(); | 
|  | uint64_t ShlVal = ShlCst->getZExtValue(); | 
|  |  | 
|  | // Make sure that we don't change the operation by removing bits. | 
|  | // This only matters for OR and XOR, AND is unaffected. | 
|  | uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1; | 
|  | if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) | 
|  | break; | 
|  |  | 
|  | unsigned ShlOp, Op; | 
|  | MVT CstVT = NVT; | 
|  |  | 
|  | // Check the minimum bitwidth for the new constant. | 
|  | // TODO: AND32ri is the same as AND64ri32 with zext imm. | 
|  | // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr | 
|  | // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. | 
|  | if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) | 
|  | CstVT = MVT::i8; | 
|  | else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) | 
|  | CstVT = MVT::i32; | 
|  |  | 
|  | // Bail if there is no smaller encoding. | 
|  | if (NVT == CstVT) | 
|  | break; | 
|  |  | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i32: | 
|  | assert(CstVT == MVT::i8); | 
|  | ShlOp = X86::SHL32ri; | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Impossible opcode"); | 
|  | case ISD::AND: Op = X86::AND32ri8; break; | 
|  | case ISD::OR:  Op =  X86::OR32ri8; break; | 
|  | case ISD::XOR: Op = X86::XOR32ri8; break; | 
|  | } | 
|  | break; | 
|  | case MVT::i64: | 
|  | assert(CstVT == MVT::i8 || CstVT == MVT::i32); | 
|  | ShlOp = X86::SHL64ri; | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Impossible opcode"); | 
|  | case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; | 
|  | case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break; | 
|  | case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Emit the smaller op and the shift. | 
|  | SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT); | 
|  | SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); | 
|  | return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), | 
|  | getI8Imm(ShlVal)); | 
|  | } | 
|  | case X86ISD::UMUL: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | unsigned LoReg; | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break; | 
|  | case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break; | 
|  | case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; | 
|  | case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; | 
|  | } | 
|  |  | 
|  | SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, | 
|  | N0, SDValue()).getValue(1); | 
|  |  | 
|  | SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); | 
|  | SDValue Ops[] = {N1, InFlag}; | 
|  | SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); | 
|  |  | 
|  | ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); | 
|  | ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); | 
|  | ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | bool isSigned = Opcode == ISD::SMUL_LOHI; | 
|  | bool hasBMI2 = Subtarget->hasBMI2(); | 
|  | if (!isSigned) { | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break; | 
|  | case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; | 
|  | case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r; | 
|  | MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break; | 
|  | case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r; | 
|  | MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break; | 
|  | } | 
|  | } else { | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break; | 
|  | case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; | 
|  | case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; | 
|  | case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SrcReg, LoReg, HiReg; | 
|  | switch (Opc) { | 
|  | default: llvm_unreachable("Unknown MUL opcode!"); | 
|  | case X86::IMUL8r: | 
|  | case X86::MUL8r: | 
|  | SrcReg = LoReg = X86::AL; HiReg = X86::AH; | 
|  | break; | 
|  | case X86::IMUL16r: | 
|  | case X86::MUL16r: | 
|  | SrcReg = LoReg = X86::AX; HiReg = X86::DX; | 
|  | break; | 
|  | case X86::IMUL32r: | 
|  | case X86::MUL32r: | 
|  | SrcReg = LoReg = X86::EAX; HiReg = X86::EDX; | 
|  | break; | 
|  | case X86::IMUL64r: | 
|  | case X86::MUL64r: | 
|  | SrcReg = LoReg = X86::RAX; HiReg = X86::RDX; | 
|  | break; | 
|  | case X86::MULX32rr: | 
|  | SrcReg = X86::EDX; LoReg = HiReg = 0; | 
|  | break; | 
|  | case X86::MULX64rr: | 
|  | SrcReg = X86::RDX; LoReg = HiReg = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | // Multiply is commmutative. | 
|  | if (!foldedLoad) { | 
|  | foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | if (foldedLoad) | 
|  | std::swap(N0, N1); | 
|  | } | 
|  |  | 
|  | SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg, | 
|  | N0, SDValue()).getValue(1); | 
|  | SDValue ResHi, ResLo; | 
|  |  | 
|  | if (foldedLoad) { | 
|  | SDValue Chain; | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), | 
|  | InFlag }; | 
|  | if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) { | 
|  | SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue); | 
|  | SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); | 
|  | ResHi = SDValue(CNode, 0); | 
|  | ResLo = SDValue(CNode, 1); | 
|  | Chain = SDValue(CNode, 2); | 
|  | InFlag = SDValue(CNode, 3); | 
|  | } else { | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); | 
|  | SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); | 
|  | Chain = SDValue(CNode, 0); | 
|  | InFlag = SDValue(CNode, 1); | 
|  | } | 
|  |  | 
|  | // Update the chain. | 
|  | ReplaceUses(N1.getValue(1), Chain); | 
|  | } else { | 
|  | SDValue Ops[] = { N1, InFlag }; | 
|  | if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) { | 
|  | SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue); | 
|  | SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); | 
|  | ResHi = SDValue(CNode, 0); | 
|  | ResLo = SDValue(CNode, 1); | 
|  | InFlag = SDValue(CNode, 2); | 
|  | } else { | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::Glue); | 
|  | SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); | 
|  | InFlag = SDValue(CNode, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prevent use of AH in a REX instruction by referencing AX instead. | 
|  | if (HiReg == X86::AH && Subtarget->is64Bit() && | 
|  | !SDValue(Node, 1).use_empty()) { | 
|  | SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | X86::AX, MVT::i16, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | // Get the low part if needed. Don't use getCopyFromReg for aliasing | 
|  | // registers. | 
|  | if (!SDValue(Node, 0).use_empty()) | 
|  | ReplaceUses(SDValue(Node, 1), | 
|  | CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); | 
|  |  | 
|  | // Shift AX down 8 bits. | 
|  | Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, | 
|  | Result, | 
|  | CurDAG->getTargetConstant(8, MVT::i8)), 0); | 
|  | // Then truncate it down to i8. | 
|  | ReplaceUses(SDValue(Node, 1), | 
|  | CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); | 
|  | } | 
|  | // Copy the low half of the result, if it is needed. | 
|  | if (!SDValue(Node, 0).use_empty()) { | 
|  | if (ResLo.getNode() == 0) { | 
|  | assert(LoReg && "Register for low half is not defined!"); | 
|  | ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, | 
|  | InFlag); | 
|  | InFlag = ResLo.getValue(2); | 
|  | } | 
|  | ReplaceUses(SDValue(Node, 0), ResLo); | 
|  | DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n'); | 
|  | } | 
|  | // Copy the high half of the result, if it is needed. | 
|  | if (!SDValue(Node, 1).use_empty()) { | 
|  | if (ResHi.getNode() == 0) { | 
|  | assert(HiReg && "Register for high half is not defined!"); | 
|  | ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, | 
|  | InFlag); | 
|  | InFlag = ResHi.getValue(2); | 
|  | } | 
|  | ReplaceUses(SDValue(Node, 1), ResHi); | 
|  | DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n'); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | bool isSigned = Opcode == ISD::SDIVREM; | 
|  | if (!isSigned) { | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break; | 
|  | case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; | 
|  | case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; | 
|  | case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; | 
|  | } | 
|  | } else { | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break; | 
|  | case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; | 
|  | case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; | 
|  | case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned LoReg, HiReg, ClrReg; | 
|  | unsigned SExtOpcode; | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8: | 
|  | LoReg = X86::AL;  ClrReg = HiReg = X86::AH; | 
|  | SExtOpcode = X86::CBW; | 
|  | break; | 
|  | case MVT::i16: | 
|  | LoReg = X86::AX;  HiReg = X86::DX; | 
|  | ClrReg = X86::DX; | 
|  | SExtOpcode = X86::CWD; | 
|  | break; | 
|  | case MVT::i32: | 
|  | LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; | 
|  | SExtOpcode = X86::CDQ; | 
|  | break; | 
|  | case MVT::i64: | 
|  | LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; | 
|  | SExtOpcode = X86::CQO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | bool signBitIsZero = CurDAG->SignBitIsZero(N0); | 
|  |  | 
|  | SDValue InFlag; | 
|  | if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { | 
|  | // Special case for div8, just use a move with zero extension to AX to | 
|  | // clear the upper 8 bits (AH). | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; | 
|  | if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; | 
|  | Move = | 
|  | SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, | 
|  | MVT::Other, Ops), 0); | 
|  | Chain = Move.getValue(1); | 
|  | ReplaceUses(N0.getValue(1), Chain); | 
|  | } else { | 
|  | Move = | 
|  | SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); | 
|  | Chain = CurDAG->getEntryNode(); | 
|  | } | 
|  | Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); | 
|  | InFlag = Chain.getValue(1); | 
|  | } else { | 
|  | InFlag = | 
|  | CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, | 
|  | LoReg, N0, SDValue()).getValue(1); | 
|  | if (isSigned && !signBitIsZero) { | 
|  | // Sign extend the low part into the high part. | 
|  | InFlag = | 
|  | SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); | 
|  | } else { | 
|  | // Zero out the high part, effectively zero extending the input. | 
|  | SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0); | 
|  | switch (NVT.SimpleTy) { | 
|  | case MVT::i16: | 
|  | ClrNode = | 
|  | SDValue(CurDAG->getMachineNode( | 
|  | TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode, | 
|  | CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)), | 
|  | 0); | 
|  | break; | 
|  | case MVT::i32: | 
|  | break; | 
|  | case MVT::i64: | 
|  | ClrNode = | 
|  | SDValue(CurDAG->getMachineNode( | 
|  | TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, | 
|  | CurDAG->getTargetConstant(0, MVT::i64), ClrNode, | 
|  | CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)), | 
|  | 0); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected division source"); | 
|  | } | 
|  |  | 
|  | InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, | 
|  | ClrNode, InFlag).getValue(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (foldedLoad) { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), | 
|  | InFlag }; | 
|  | SDNode *CNode = | 
|  | CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops); | 
|  | InFlag = SDValue(CNode, 1); | 
|  | // Update the chain. | 
|  | ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); | 
|  | } else { | 
|  | InFlag = | 
|  | SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); | 
|  | } | 
|  |  | 
|  | // Prevent use of AH in a REX instruction by referencing AX instead. | 
|  | // Shift it down 8 bits. | 
|  | // | 
|  | // The current assumption of the register allocator is that isel | 
|  | // won't generate explicit references to the GPR8_NOREX registers. If | 
|  | // the allocator and/or the backend get enhanced to be more robust in | 
|  | // that regard, this can be, and should be, removed. | 
|  | if (HiReg == X86::AH && Subtarget->is64Bit() && | 
|  | !SDValue(Node, 1).use_empty()) { | 
|  | SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | X86::AX, MVT::i16, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  |  | 
|  | // If we also need AL (the quotient), get it by extracting a subreg from | 
|  | // Result. The fast register allocator does not like multiple CopyFromReg | 
|  | // nodes using aliasing registers. | 
|  | if (!SDValue(Node, 0).use_empty()) | 
|  | ReplaceUses(SDValue(Node, 0), | 
|  | CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); | 
|  |  | 
|  | // Shift AX right by 8 bits instead of using AH. | 
|  | Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, | 
|  | Result, | 
|  | CurDAG->getTargetConstant(8, MVT::i8)), | 
|  | 0); | 
|  | ReplaceUses(SDValue(Node, 1), | 
|  | CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); | 
|  | } | 
|  | // Copy the division (low) result, if it is needed. | 
|  | if (!SDValue(Node, 0).use_empty()) { | 
|  | SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | LoReg, NVT, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | ReplaceUses(SDValue(Node, 0), Result); | 
|  | DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); | 
|  | } | 
|  | // Copy the remainder (high) result, if it is needed. | 
|  | if (!SDValue(Node, 1).use_empty()) { | 
|  | SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | HiReg, NVT, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | ReplaceUses(SDValue(Node, 1), Result); | 
|  | DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | case X86ISD::CMP: | 
|  | case X86ISD::SUB: { | 
|  | // Sometimes a SUB is used to perform comparison. | 
|  | if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0)) | 
|  | // This node is not a CMP. | 
|  | break; | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to | 
|  | // use a smaller encoding. | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && | 
|  | HasNoSignedComparisonUses(Node)) | 
|  | // Look past the truncate if CMP is the only use of it. | 
|  | N0 = N0.getOperand(0); | 
|  | if ((N0.getNode()->getOpcode() == ISD::AND || | 
|  | (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) && | 
|  | N0.getNode()->hasOneUse() && | 
|  | N0.getValueType() != MVT::i8 && | 
|  | X86::isZeroNode(N1)) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); | 
|  | if (!C) break; | 
|  |  | 
|  | // For example, convert "testl %eax, $8" to "testb %al, $8" | 
|  | if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && | 
|  | (!(C->getZExtValue() & 0x80) || | 
|  | HasNoSignedComparisonUses(Node))) { | 
|  | SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); | 
|  | SDValue Reg = N0.getNode()->getOperand(0); | 
|  |  | 
|  | // On x86-32, only the ABCD registers have 8-bit subregisters. | 
|  | if (!Subtarget->is64Bit()) { | 
|  | const TargetRegisterClass *TRC; | 
|  | switch (N0.getSimpleValueType().SimpleTy) { | 
|  | case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; | 
|  | case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; | 
|  | default: llvm_unreachable("Unsupported TEST operand type!"); | 
|  | } | 
|  | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); | 
|  | Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, | 
|  | Reg.getValueType(), Reg, RC), 0); | 
|  | } | 
|  |  | 
|  | // Extract the l-register. | 
|  | SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, | 
|  | MVT::i8, Reg); | 
|  |  | 
|  | // Emit a testb. | 
|  | SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, | 
|  | Subreg, Imm); | 
|  | // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has | 
|  | // one, do not call ReplaceAllUsesWith. | 
|  | ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), | 
|  | SDValue(NewNode, 0)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // For example, "testl %eax, $2048" to "testb %ah, $8". | 
|  | if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && | 
|  | (!(C->getZExtValue() & 0x8000) || | 
|  | HasNoSignedComparisonUses(Node))) { | 
|  | // Shift the immediate right by 8 bits. | 
|  | SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, | 
|  | MVT::i8); | 
|  | SDValue Reg = N0.getNode()->getOperand(0); | 
|  |  | 
|  | // Put the value in an ABCD register. | 
|  | const TargetRegisterClass *TRC; | 
|  | switch (N0.getSimpleValueType().SimpleTy) { | 
|  | case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; | 
|  | case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; | 
|  | case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; | 
|  | default: llvm_unreachable("Unsupported TEST operand type!"); | 
|  | } | 
|  | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); | 
|  | Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, | 
|  | Reg.getValueType(), Reg, RC), 0); | 
|  |  | 
|  | // Extract the h-register. | 
|  | SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, | 
|  | MVT::i8, Reg); | 
|  |  | 
|  | // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only | 
|  | // target GR8_NOREX registers, so make sure the register class is | 
|  | // forced. | 
|  | SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, | 
|  | MVT::i32, Subreg, ShiftedImm); | 
|  | // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has | 
|  | // one, do not call ReplaceAllUsesWith. | 
|  | ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), | 
|  | SDValue(NewNode, 0)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // For example, "testl %eax, $32776" to "testw %ax, $32776". | 
|  | if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && | 
|  | N0.getValueType() != MVT::i16 && | 
|  | (!(C->getZExtValue() & 0x8000) || | 
|  | HasNoSignedComparisonUses(Node))) { | 
|  | SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); | 
|  | SDValue Reg = N0.getNode()->getOperand(0); | 
|  |  | 
|  | // Extract the 16-bit subregister. | 
|  | SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, | 
|  | MVT::i16, Reg); | 
|  |  | 
|  | // Emit a testw. | 
|  | SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, | 
|  | Subreg, Imm); | 
|  | // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has | 
|  | // one, do not call ReplaceAllUsesWith. | 
|  | ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), | 
|  | SDValue(NewNode, 0)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // For example, "testq %rax, $268468232" to "testl %eax, $268468232". | 
|  | if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && | 
|  | N0.getValueType() == MVT::i64 && | 
|  | (!(C->getZExtValue() & 0x80000000) || | 
|  | HasNoSignedComparisonUses(Node))) { | 
|  | SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); | 
|  | SDValue Reg = N0.getNode()->getOperand(0); | 
|  |  | 
|  | // Extract the 32-bit subregister. | 
|  | SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl, | 
|  | MVT::i32, Reg); | 
|  |  | 
|  | // Emit a testl. | 
|  | SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, | 
|  | Subreg, Imm); | 
|  | // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has | 
|  | // one, do not call ReplaceAllUsesWith. | 
|  | ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), | 
|  | SDValue(NewNode, 0)); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::STORE: { | 
|  | // Change a chain of {load; incr or dec; store} of the same value into | 
|  | // a simple increment or decrement through memory of that value, if the | 
|  | // uses of the modified value and its address are suitable. | 
|  | // The DEC64m tablegen pattern is currently not able to match the case where | 
|  | // the EFLAGS on the original DEC are used. (This also applies to | 
|  | // {INC,DEC}X{64,32,16,8}.) | 
|  | // We'll need to improve tablegen to allow flags to be transferred from a | 
|  | // node in the pattern to the result node.  probably with a new keyword | 
|  | // for example, we have this | 
|  | // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", | 
|  | //  [(store (add (loadi64 addr:$dst), -1), addr:$dst), | 
|  | //   (implicit EFLAGS)]>; | 
|  | // but maybe need something like this | 
|  | // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", | 
|  | //  [(store (add (loadi64 addr:$dst), -1), addr:$dst), | 
|  | //   (transferrable EFLAGS)]>; | 
|  |  | 
|  | StoreSDNode *StoreNode = cast<StoreSDNode>(Node); | 
|  | SDValue StoredVal = StoreNode->getOperand(1); | 
|  | unsigned Opc = StoredVal->getOpcode(); | 
|  |  | 
|  | LoadSDNode *LoadNode = 0; | 
|  | SDValue InputChain; | 
|  | if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG, | 
|  | LoadNode, InputChain)) | 
|  | break; | 
|  |  | 
|  | SDValue Base, Scale, Index, Disp, Segment; | 
|  | if (!SelectAddr(LoadNode, LoadNode->getBasePtr(), | 
|  | Base, Scale, Index, Disp, Segment)) | 
|  | break; | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); | 
|  | MemOp[0] = StoreNode->getMemOperand(); | 
|  | MemOp[1] = LoadNode->getMemOperand(); | 
|  | const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain }; | 
|  | EVT LdVT = LoadNode->getMemoryVT(); | 
|  | unsigned newOpc = getFusedLdStOpcode(LdVT, Opc); | 
|  | MachineSDNode *Result = CurDAG->getMachineNode(newOpc, | 
|  | SDLoc(Node), | 
|  | MVT::i32, MVT::Other, Ops); | 
|  | Result->setMemRefs(MemOp, MemOp + 2); | 
|  |  | 
|  | ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); | 
|  | ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDNode *ResNode = SelectCode(Node); | 
|  |  | 
|  | DEBUG(dbgs() << "=> "; | 
|  | if (ResNode == NULL || ResNode == Node) | 
|  | Node->dump(CurDAG); | 
|  | else | 
|  | ResNode->dump(CurDAG); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | return ResNode; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel:: | 
|  | SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, | 
|  | std::vector<SDValue> &OutOps) { | 
|  | SDValue Op0, Op1, Op2, Op3, Op4; | 
|  | switch (ConstraintCode) { | 
|  | case 'o':   // offsetable        ?? | 
|  | case 'v':   // not offsetable    ?? | 
|  | default: return true; | 
|  | case 'm':   // memory | 
|  | if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | OutOps.push_back(Op0); | 
|  | OutOps.push_back(Op1); | 
|  | OutOps.push_back(Op2); | 
|  | OutOps.push_back(Op3); | 
|  | OutOps.push_back(Op4); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// createX86ISelDag - This pass converts a legalized DAG into a | 
|  | /// X86-specific DAG, ready for instruction scheduling. | 
|  | /// | 
|  | FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | return new X86DAGToDAGISel(TM, OptLevel); | 
|  | } |