blob: f472b21543143f520c65d01a9dc11851dc271cad [file] [log] [blame]
Jia Liub22310f2012-02-18 12:03:15 +00001//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
Evan Cheng10043e22007-01-19 07:51:42 +00002//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Evan Cheng10043e22007-01-19 07:51:42 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the ARM addressing mode implementation stuff.
11//
12//===----------------------------------------------------------------------===//
13
Benjamin Kramera7c40ef2014-08-13 16:26:38 +000014#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
15#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
Evan Cheng10043e22007-01-19 07:51:42 +000016
Jim Grosbachefc761a2011-09-30 00:50:06 +000017#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/APInt.h"
Craig Toppere55c5562012-02-07 02:50:20 +000019#include "llvm/Support/ErrorHandling.h"
Evan Cheng10043e22007-01-19 07:51:42 +000020#include "llvm/Support/MathExtras.h"
21#include <cassert>
22
23namespace llvm {
Jim Grosbachf24f9d92009-08-11 15:33:49 +000024
Evan Cheng10043e22007-01-19 07:51:42 +000025/// ARM_AM - ARM Addressing Mode Stuff
26namespace ARM_AM {
27 enum ShiftOpc {
28 no_shift = 0,
29 asr,
30 lsl,
31 lsr,
32 ror,
33 rrx
34 };
Jim Grosbachf24f9d92009-08-11 15:33:49 +000035
Evan Cheng10043e22007-01-19 07:51:42 +000036 enum AddrOpc {
Jim Grosbachd3595712011-08-03 23:50:40 +000037 sub = 0,
38 add
Evan Cheng10043e22007-01-19 07:51:42 +000039 };
Jim Grosbachf24f9d92009-08-11 15:33:49 +000040
David Blaikiec70b3922017-10-24 21:29:21 +000041 inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
Johnny Chen8f3004c2010-03-17 17:52:21 +000042
David Blaikiec70b3922017-10-24 21:29:21 +000043 inline const char *getShiftOpcStr(ShiftOpc Op) {
Evan Cheng10043e22007-01-19 07:51:42 +000044 switch (Op) {
Craig Toppere55c5562012-02-07 02:50:20 +000045 default: llvm_unreachable("Unknown shift opc!");
Evan Cheng10043e22007-01-19 07:51:42 +000046 case ARM_AM::asr: return "asr";
47 case ARM_AM::lsl: return "lsl";
48 case ARM_AM::lsr: return "lsr";
49 case ARM_AM::ror: return "ror";
50 case ARM_AM::rrx: return "rrx";
51 }
52 }
Jim Grosbachf24f9d92009-08-11 15:33:49 +000053
David Blaikiec70b3922017-10-24 21:29:21 +000054 inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
Jim Grosbachb7c29622010-10-11 23:16:21 +000055 switch (Op) {
Craig Toppere55c5562012-02-07 02:50:20 +000056 default: llvm_unreachable("Unknown shift opc!");
Jim Grosbachb7c29622010-10-11 23:16:21 +000057 case ARM_AM::asr: return 2;
58 case ARM_AM::lsl: return 0;
59 case ARM_AM::lsr: return 1;
60 case ARM_AM::ror: return 3;
61 }
62 }
63
Evan Cheng10043e22007-01-19 07:51:42 +000064 enum AMSubMode {
65 bad_am_submode = 0,
66 ia,
67 ib,
68 da,
69 db
70 };
71
David Blaikiec70b3922017-10-24 21:29:21 +000072 inline const char *getAMSubModeStr(AMSubMode Mode) {
Evan Cheng10043e22007-01-19 07:51:42 +000073 switch (Mode) {
Craig Toppere55c5562012-02-07 02:50:20 +000074 default: llvm_unreachable("Unknown addressing sub-mode!");
Evan Cheng10043e22007-01-19 07:51:42 +000075 case ARM_AM::ia: return "ia";
76 case ARM_AM::ib: return "ib";
77 case ARM_AM::da: return "da";
78 case ARM_AM::db: return "db";
79 }
80 }
81
Evan Cheng10043e22007-01-19 07:51:42 +000082 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
83 ///
David Blaikiec70b3922017-10-24 21:29:21 +000084 inline unsigned rotr32(unsigned Val, unsigned Amt) {
Evan Cheng10043e22007-01-19 07:51:42 +000085 assert(Amt < 32 && "Invalid rotate amount");
86 return (Val >> Amt) | (Val << ((32-Amt)&31));
87 }
Jim Grosbachf24f9d92009-08-11 15:33:49 +000088
Evan Cheng10043e22007-01-19 07:51:42 +000089 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
90 ///
David Blaikiec70b3922017-10-24 21:29:21 +000091 inline unsigned rotl32(unsigned Val, unsigned Amt) {
Evan Cheng10043e22007-01-19 07:51:42 +000092 assert(Amt < 32 && "Invalid rotate amount");
93 return (Val << Amt) | (Val >> ((32-Amt)&31));
94 }
Jim Grosbachf24f9d92009-08-11 15:33:49 +000095
Evan Cheng10043e22007-01-19 07:51:42 +000096 //===--------------------------------------------------------------------===//
97 // Addressing Mode #1: shift_operand with registers
98 //===--------------------------------------------------------------------===//
99 //
100 // This 'addressing mode' is used for arithmetic instructions. It can
101 // represent things like:
102 // reg
103 // reg [asr|lsl|lsr|ror|rrx] reg
104 // reg [asr|lsl|lsr|ror|rrx] imm
105 //
106 // This is stored three operands [rega, regb, opc]. The first is the base
107 // reg, the second is the shift amount (or reg0 if not present or imm). The
108 // third operand encodes the shift opcode and the imm if a reg isn't present.
109 //
David Blaikiec70b3922017-10-24 21:29:21 +0000110 inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
Evan Cheng10043e22007-01-19 07:51:42 +0000111 return ShOp | (Imm << 3);
112 }
David Blaikiec70b3922017-10-24 21:29:21 +0000113 inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
114 inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
Evan Cheng10043e22007-01-19 07:51:42 +0000115
116 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
117 /// the 8-bit imm value.
David Blaikiec70b3922017-10-24 21:29:21 +0000118 inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
Bob Wilson57178e82009-03-30 18:49:37 +0000119 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
Evan Cheng10043e22007-01-19 07:51:42 +0000120 /// the rotate amount.
David Blaikiec70b3922017-10-24 21:29:21 +0000121 inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000122
Evan Cheng10043e22007-01-19 07:51:42 +0000123 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
124 /// computing the rotate amount to use. If this immediate value cannot be
125 /// handled with a single shifter-op, determine a good rotate amount that will
126 /// take a maximal chunk of bits out of the immediate.
David Blaikiec70b3922017-10-24 21:29:21 +0000127 inline unsigned getSOImmValRotate(unsigned Imm) {
Evan Cheng10043e22007-01-19 07:51:42 +0000128 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
129 // of zero.
130 if ((Imm & ~255U) == 0) return 0;
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000131
Evan Cheng10043e22007-01-19 07:51:42 +0000132 // Use CTZ to compute the rotate amount.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000133 unsigned TZ = countTrailingZeros(Imm);
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000134
Evan Cheng10043e22007-01-19 07:51:42 +0000135 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
136 // not 9.
137 unsigned RotAmt = TZ & ~1;
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000138
Evan Cheng10043e22007-01-19 07:51:42 +0000139 // If we can handle this spread, return it.
140 if ((rotr32(Imm, RotAmt) & ~255U) == 0)
141 return (32-RotAmt)&31; // HW rotates right, not left.
142
Johnny Chen44d7d182010-04-13 20:35:16 +0000143 // For values like 0xF000000F, we should ignore the low 6 bits, then
Evan Cheng10043e22007-01-19 07:51:42 +0000144 // retry the hunt.
Johnny Chen44d7d182010-04-13 20:35:16 +0000145 if (Imm & 63U) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000146 unsigned TZ2 = countTrailingZeros(Imm & ~63U);
Bob Wilsonaf7674c2010-04-13 02:11:48 +0000147 unsigned RotAmt2 = TZ2 & ~1;
148 if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
149 return (32-RotAmt2)&31; // HW rotates right, not left.
Evan Cheng10043e22007-01-19 07:51:42 +0000150 }
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000151
Evan Cheng10043e22007-01-19 07:51:42 +0000152 // Otherwise, we have no way to cover this span of bits with a single
153 // shifter_op immediate. Return a chunk of bits that will be useful to
154 // handle.
155 return (32-RotAmt)&31; // HW rotates right, not left.
156 }
157
158 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
159 /// into an shifter_operand immediate operand, return the 12-bit encoding for
160 /// it. If not, return -1.
David Blaikiec70b3922017-10-24 21:29:21 +0000161 inline int getSOImmVal(unsigned Arg) {
Evan Cheng10043e22007-01-19 07:51:42 +0000162 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
163 // of zero.
164 if ((Arg & ~255U) == 0) return Arg;
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000165
Johnny Chen6e81f672010-03-17 18:32:39 +0000166 unsigned RotAmt = getSOImmValRotate(Arg);
Evan Cheng10043e22007-01-19 07:51:42 +0000167
168 // If this cannot be handled with a single shifter_op, bail out.
169 if (rotr32(~255U, RotAmt) & Arg)
170 return -1;
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000171
Evan Cheng10043e22007-01-19 07:51:42 +0000172 // Encode this correctly.
173 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
174 }
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000175
Evan Cheng10043e22007-01-19 07:51:42 +0000176 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
177 /// or'ing together two SOImmVal's.
David Blaikiec70b3922017-10-24 21:29:21 +0000178 inline bool isSOImmTwoPartVal(unsigned V) {
Evan Cheng10043e22007-01-19 07:51:42 +0000179 // If this can be handled with a single shifter_op, bail out.
180 V = rotr32(~255U, getSOImmValRotate(V)) & V;
181 if (V == 0)
182 return false;
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000183
Evan Cheng10043e22007-01-19 07:51:42 +0000184 // If this can be handled with two shifter_op's, accept.
185 V = rotr32(~255U, getSOImmValRotate(V)) & V;
186 return V == 0;
187 }
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000188
Evan Cheng10043e22007-01-19 07:51:42 +0000189 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
190 /// return the first chunk of it.
David Blaikiec70b3922017-10-24 21:29:21 +0000191 inline unsigned getSOImmTwoPartFirst(unsigned V) {
Evan Cheng10043e22007-01-19 07:51:42 +0000192 return rotr32(255U, getSOImmValRotate(V)) & V;
193 }
194
195 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
196 /// return the second chunk of it.
David Blaikiec70b3922017-10-24 21:29:21 +0000197 inline unsigned getSOImmTwoPartSecond(unsigned V) {
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000198 // Mask out the first hunk.
Evan Cheng10043e22007-01-19 07:51:42 +0000199 V = rotr32(~255U, getSOImmValRotate(V)) & V;
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000200
Evan Cheng10043e22007-01-19 07:51:42 +0000201 // Take what's left.
202 assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
203 return V;
204 }
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000205
Evan Cheng10043e22007-01-19 07:51:42 +0000206 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
207 /// by a left shift. Returns the shift amount to use.
David Blaikiec70b3922017-10-24 21:29:21 +0000208 inline unsigned getThumbImmValShift(unsigned Imm) {
Evan Cheng10043e22007-01-19 07:51:42 +0000209 // 8-bit (or less) immediates are trivially immediate operand with a shift
210 // of zero.
211 if ((Imm & ~255U) == 0) return 0;
212
213 // Use CTZ to compute the shift amount.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000214 return countTrailingZeros(Imm);
Evan Cheng10043e22007-01-19 07:51:42 +0000215 }
216
217 /// isThumbImmShiftedVal - Return true if the specified value can be obtained
218 /// by left shifting a 8-bit immediate.
David Blaikiec70b3922017-10-24 21:29:21 +0000219 inline bool isThumbImmShiftedVal(unsigned V) {
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000220 // If this can be handled with
Evan Cheng10043e22007-01-19 07:51:42 +0000221 V = (~255U << getThumbImmValShift(V)) & V;
222 return V == 0;
223 }
224
Evan Cheng431cf562009-06-23 17:48:47 +0000225 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
226 /// by a left shift. Returns the shift amount to use.
David Blaikiec70b3922017-10-24 21:29:21 +0000227 inline unsigned getThumbImm16ValShift(unsigned Imm) {
Evan Cheng431cf562009-06-23 17:48:47 +0000228 // 16-bit (or less) immediates are trivially immediate operand with a shift
229 // of zero.
230 if ((Imm & ~65535U) == 0) return 0;
231
232 // Use CTZ to compute the shift amount.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000233 return countTrailingZeros(Imm);
Evan Cheng431cf562009-06-23 17:48:47 +0000234 }
235
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000236 /// isThumbImm16ShiftedVal - Return true if the specified value can be
Evan Cheng431cf562009-06-23 17:48:47 +0000237 /// obtained by left shifting a 16-bit immediate.
David Blaikiec70b3922017-10-24 21:29:21 +0000238 inline bool isThumbImm16ShiftedVal(unsigned V) {
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000239 // If this can be handled with
Evan Cheng431cf562009-06-23 17:48:47 +0000240 V = (~65535U << getThumbImm16ValShift(V)) & V;
241 return V == 0;
242 }
243
Evan Cheng10043e22007-01-19 07:51:42 +0000244 /// getThumbImmNonShiftedVal - If V is a value that satisfies
245 /// isThumbImmShiftedVal, return the non-shiftd value.
David Blaikiec70b3922017-10-24 21:29:21 +0000246 inline unsigned getThumbImmNonShiftedVal(unsigned V) {
Evan Cheng10043e22007-01-19 07:51:42 +0000247 return V >> getThumbImmValShift(V);
248 }
249
Evan Cheng780748d2009-07-28 05:48:47 +0000250
Evan Cheng431cf562009-06-23 17:48:47 +0000251 /// getT2SOImmValSplat - Return the 12-bit encoded representation
252 /// if the specified value can be obtained by splatting the low 8 bits
253 /// into every other byte or every byte of a 32-bit value. i.e.,
254 /// 00000000 00000000 00000000 abcdefgh control = 0
255 /// 00000000 abcdefgh 00000000 abcdefgh control = 1
256 /// abcdefgh 00000000 abcdefgh 00000000 control = 2
257 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
258 /// Return -1 if none of the above apply.
259 /// See ARM Reference Manual A6.3.2.
David Blaikiec70b3922017-10-24 21:29:21 +0000260 inline int getT2SOImmValSplatVal(unsigned V) {
Evan Cheng431cf562009-06-23 17:48:47 +0000261 unsigned u, Vs, Imm;
262 // control = 0
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000263 if ((V & 0xffffff00) == 0)
Evan Cheng431cf562009-06-23 17:48:47 +0000264 return V;
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000265
Evan Cheng431cf562009-06-23 17:48:47 +0000266 // If the value is zeroes in the first byte, just shift those off
267 Vs = ((V & 0xff) == 0) ? V >> 8 : V;
268 // Any passing value only has 8 bits of payload, splatted across the word
269 Imm = Vs & 0xff;
270 // Likewise, any passing values have the payload splatted into the 3rd byte
271 u = Imm | (Imm << 16);
272
273 // control = 1 or 2
274 if (Vs == u)
275 return (((Vs == V) ? 1 : 2) << 8) | Imm;
276
277 // control = 3
278 if (Vs == (u | (u << 8)))
279 return (3 << 8) | Imm;
280
281 return -1;
282 }
283
Evan Cheng780748d2009-07-28 05:48:47 +0000284 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
Evan Cheng431cf562009-06-23 17:48:47 +0000285 /// specified value is a rotated 8-bit value. Return -1 if no rotation
286 /// encoding is possible.
287 /// See ARM Reference Manual A6.3.2.
David Blaikiec70b3922017-10-24 21:29:21 +0000288 inline int getT2SOImmValRotateVal(unsigned V) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000289 unsigned RotAmt = countLeadingZeros(V);
Evan Cheng431cf562009-06-23 17:48:47 +0000290 if (RotAmt >= 24)
291 return -1;
292
293 // If 'Arg' can be handled with a single shifter_op return the value.
294 if ((rotr32(0xff000000U, RotAmt) & V) == V)
295 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
296
297 return -1;
298 }
299
300 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000301 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
Evan Cheng431cf562009-06-23 17:48:47 +0000302 /// encoding for it. If not, return -1.
303 /// See ARM Reference Manual A6.3.2.
David Blaikiec70b3922017-10-24 21:29:21 +0000304 inline int getT2SOImmVal(unsigned Arg) {
Evan Cheng431cf562009-06-23 17:48:47 +0000305 // If 'Arg' is an 8-bit splat, then get the encoded value.
Evan Cheng780748d2009-07-28 05:48:47 +0000306 int Splat = getT2SOImmValSplatVal(Arg);
Evan Cheng431cf562009-06-23 17:48:47 +0000307 if (Splat != -1)
308 return Splat;
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000309
Evan Cheng431cf562009-06-23 17:48:47 +0000310 // If 'Arg' can be handled with a single shifter_op return the value.
Evan Cheng780748d2009-07-28 05:48:47 +0000311 int Rot = getT2SOImmValRotateVal(Arg);
Evan Cheng431cf562009-06-23 17:48:47 +0000312 if (Rot != -1)
313 return Rot;
314
315 return -1;
316 }
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000317
David Blaikiec70b3922017-10-24 21:29:21 +0000318 inline unsigned getT2SOImmValRotate(unsigned V) {
Jim Grosbacha93ca3c2009-10-21 20:44:34 +0000319 if ((V & ~255U) == 0) return 0;
320 // Use CTZ to compute the rotate amount.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000321 unsigned RotAmt = countTrailingZeros(V);
Jim Grosbacha93ca3c2009-10-21 20:44:34 +0000322 return (32 - RotAmt) & 31;
323 }
324
David Blaikiec70b3922017-10-24 21:29:21 +0000325 inline bool isT2SOImmTwoPartVal(unsigned Imm) {
Jim Grosbacha93ca3c2009-10-21 20:44:34 +0000326 unsigned V = Imm;
327 // Passing values can be any combination of splat values and shifter
328 // values. If this can be handled with a single shifter or splat, bail
329 // out. Those should be handled directly, not with a two-part val.
330 if (getT2SOImmValSplatVal(V) != -1)
331 return false;
332 V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
333 if (V == 0)
334 return false;
335
336 // If this can be handled as an immediate, accept.
337 if (getT2SOImmVal(V) != -1) return true;
338
339 // Likewise, try masking out a splat value first.
340 V = Imm;
341 if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
342 V &= ~0xff00ff00U;
343 else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
344 V &= ~0x00ff00ffU;
345 // If what's left can be handled as an immediate, accept.
346 if (getT2SOImmVal(V) != -1) return true;
347
348 // Otherwise, do not accept.
349 return false;
350 }
351
David Blaikiec70b3922017-10-24 21:29:21 +0000352 inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
Jim Grosbacha93ca3c2009-10-21 20:44:34 +0000353 assert (isT2SOImmTwoPartVal(Imm) &&
354 "Immedate cannot be encoded as two part immediate!");
355 // Try a shifter operand as one part
356 unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
357 // If the rest is encodable as an immediate, then return it.
358 if (getT2SOImmVal(V) != -1) return V;
359
360 // Try masking out a splat value first.
361 if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
362 return Imm & 0xff00ff00U;
363
364 // The other splat is all that's left as an option.
365 assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
366 return Imm & 0x00ff00ffU;
367 }
368
David Blaikiec70b3922017-10-24 21:29:21 +0000369 inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
Jim Grosbacha93ca3c2009-10-21 20:44:34 +0000370 // Mask out the first hunk
371 Imm ^= getT2SOImmTwoPartFirst(Imm);
372 // Return what's left
373 assert (getT2SOImmVal(Imm) != -1 &&
374 "Unable to encode second part of T2 two part SO immediate");
375 return Imm;
376 }
377
Evan Cheng431cf562009-06-23 17:48:47 +0000378
Evan Cheng10043e22007-01-19 07:51:42 +0000379 //===--------------------------------------------------------------------===//
380 // Addressing Mode #2
381 //===--------------------------------------------------------------------===//
382 //
383 // This is used for most simple load/store instructions.
384 //
385 // addrmode2 := reg +/- reg shop imm
386 // addrmode2 := reg +/- imm12
387 //
388 // The first operand is always a Reg. The second operand is a reg if in
389 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
Bruno Cardoso Lopesab830502011-03-31 23:26:08 +0000390 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
Bruno Cardoso Lopesbda36322011-04-04 17:18:19 +0000391 // fourth operand 16-17 encodes the index mode.
Evan Cheng10043e22007-01-19 07:51:42 +0000392 //
393 // If this addressing mode is a frame index (before prolog/epilog insertion
394 // and code rewriting), this operand will have the form: FI#, reg0, <offs>
395 // with no shift amount for the frame offset.
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000396 //
David Blaikiec70b3922017-10-24 21:29:21 +0000397 inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
398 unsigned IdxMode = 0) {
Evan Cheng10043e22007-01-19 07:51:42 +0000399 assert(Imm12 < (1 << 12) && "Imm too large!");
400 bool isSub = Opc == sub;
Bruno Cardoso Lopesab830502011-03-31 23:26:08 +0000401 return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
Evan Cheng10043e22007-01-19 07:51:42 +0000402 }
David Blaikiec70b3922017-10-24 21:29:21 +0000403 inline unsigned getAM2Offset(unsigned AM2Opc) {
Evan Cheng10043e22007-01-19 07:51:42 +0000404 return AM2Opc & ((1 << 12)-1);
405 }
David Blaikiec70b3922017-10-24 21:29:21 +0000406 inline AddrOpc getAM2Op(unsigned AM2Opc) {
Evan Cheng10043e22007-01-19 07:51:42 +0000407 return ((AM2Opc >> 12) & 1) ? sub : add;
408 }
David Blaikiec70b3922017-10-24 21:29:21 +0000409 inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
Bruno Cardoso Lopesab830502011-03-31 23:26:08 +0000410 return (ShiftOpc)((AM2Opc >> 13) & 7);
411 }
David Blaikiec70b3922017-10-24 21:29:21 +0000412 inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000413
Evan Cheng10043e22007-01-19 07:51:42 +0000414 //===--------------------------------------------------------------------===//
415 // Addressing Mode #3
416 //===--------------------------------------------------------------------===//
417 //
418 // This is used for sign-extending loads, and load/store-pair instructions.
419 //
420 // addrmode3 := reg +/- reg
421 // addrmode3 := reg +/- imm8
422 //
423 // The first operand is always a Reg. The second operand is a reg if in
424 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
Bruno Cardoso Lopesbda36322011-04-04 17:18:19 +0000425 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
426 // index mode.
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000427
Evan Cheng10043e22007-01-19 07:51:42 +0000428 /// getAM3Opc - This function encodes the addrmode3 opc field.
David Blaikiec70b3922017-10-24 21:29:21 +0000429 inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
430 unsigned IdxMode = 0) {
Evan Cheng10043e22007-01-19 07:51:42 +0000431 bool isSub = Opc == sub;
Bruno Cardoso Lopesbda36322011-04-04 17:18:19 +0000432 return ((int)isSub << 8) | Offset | (IdxMode << 9);
Evan Cheng10043e22007-01-19 07:51:42 +0000433 }
David Blaikiec70b3922017-10-24 21:29:21 +0000434 inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
435 inline AddrOpc getAM3Op(unsigned AM3Opc) {
Evan Cheng10043e22007-01-19 07:51:42 +0000436 return ((AM3Opc >> 8) & 1) ? sub : add;
437 }
David Blaikiec70b3922017-10-24 21:29:21 +0000438 inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000439
Evan Cheng10043e22007-01-19 07:51:42 +0000440 //===--------------------------------------------------------------------===//
441 // Addressing Mode #4
442 //===--------------------------------------------------------------------===//
443 //
444 // This is used for load / store multiple instructions.
445 //
446 // addrmode4 := reg, <mode>
447 //
448 // The four modes are:
449 // IA - Increment after
450 // IB - Increment before
451 // DA - Decrement after
452 // DB - Decrement before
Bob Wilson13ce07f2010-08-27 23:18:17 +0000453 // For VFP instructions, only the IA and DB modes are valid.
Evan Cheng10043e22007-01-19 07:51:42 +0000454
David Blaikiec70b3922017-10-24 21:29:21 +0000455 inline AMSubMode getAM4SubMode(unsigned Mode) {
Evan Cheng10043e22007-01-19 07:51:42 +0000456 return (AMSubMode)(Mode & 0x7);
457 }
458
David Blaikiec70b3922017-10-24 21:29:21 +0000459 inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
Evan Cheng10043e22007-01-19 07:51:42 +0000460
461 //===--------------------------------------------------------------------===//
462 // Addressing Mode #5
463 //===--------------------------------------------------------------------===//
464 //
465 // This is used for coprocessor instructions, such as FP load/stores.
466 //
467 // addrmode5 := reg +/- imm8*4
468 //
Bob Wilsonbbbf8052009-07-01 21:22:45 +0000469 // The first operand is always a Reg. The second operand encodes the
Oliver Stannard65b85382016-01-25 10:26:26 +0000470 // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
Jim Grosbachf24f9d92009-08-11 15:33:49 +0000471
Evan Cheng10043e22007-01-19 07:51:42 +0000472 /// getAM5Opc - This function encodes the addrmode5 opc field.
David Blaikiec70b3922017-10-24 21:29:21 +0000473 inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
Evan Cheng10043e22007-01-19 07:51:42 +0000474 bool isSub = Opc == sub;
475 return ((int)isSub << 8) | Offset;
476 }
David Blaikiec70b3922017-10-24 21:29:21 +0000477 inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
478 inline AddrOpc getAM5Op(unsigned AM5Opc) {
Evan Cheng10043e22007-01-19 07:51:42 +0000479 return ((AM5Opc >> 8) & 1) ? sub : add;
480 }
481
Bob Wilsondeb35af2009-07-01 23:16:05 +0000482 //===--------------------------------------------------------------------===//
Oliver Stannard65b85382016-01-25 10:26:26 +0000483 // Addressing Mode #5 FP16
484 //===--------------------------------------------------------------------===//
485 //
486 // This is used for coprocessor instructions, such as 16-bit FP load/stores.
487 //
488 // addrmode5fp16 := reg +/- imm8*2
489 //
490 // The first operand is always a Reg. The second operand encodes the
491 // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
492
493 /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
David Blaikiec70b3922017-10-24 21:29:21 +0000494 inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
Oliver Stannard65b85382016-01-25 10:26:26 +0000495 bool isSub = Opc == sub;
496 return ((int)isSub << 8) | Offset;
497 }
David Blaikiec70b3922017-10-24 21:29:21 +0000498 inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
Oliver Stannard65b85382016-01-25 10:26:26 +0000499 return AM5Opc & 0xFF;
500 }
David Blaikiec70b3922017-10-24 21:29:21 +0000501 inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
Oliver Stannard65b85382016-01-25 10:26:26 +0000502 return ((AM5Opc >> 8) & 1) ? sub : add;
503 }
504
505 //===--------------------------------------------------------------------===//
Bob Wilsondeb35af2009-07-01 23:16:05 +0000506 // Addressing Mode #6
507 //===--------------------------------------------------------------------===//
508 //
509 // This is used for NEON load / store instructions.
510 //
Bob Wilsonae08a732010-03-20 22:13:40 +0000511 // addrmode6 := reg with optional alignment
Bob Wilsondeb35af2009-07-01 23:16:05 +0000512 //
Bob Wilsonae08a732010-03-20 22:13:40 +0000513 // This is stored in two operands [regaddr, align]. The first is the
514 // address register. The second operand is the value of the alignment
Bob Wilson0b9aafd2010-07-14 23:54:43 +0000515 // specifier in bytes or zero if no explicit alignment.
516 // Valid alignments depend on the specific instruction.
Bob Wilsondeb35af2009-07-01 23:16:05 +0000517
Bob Wilsonc1c6f472010-07-13 04:44:34 +0000518 //===--------------------------------------------------------------------===//
519 // NEON Modified Immediates
520 //===--------------------------------------------------------------------===//
521 //
522 // Several NEON instructions (e.g., VMOV) take a "modified immediate"
523 // vector operand, where a small immediate encoded in the instruction
524 // specifies a full NEON vector value. These modified immediates are
525 // represented here as encoded integers. The low 8 bits hold the immediate
526 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
527 // the "Cmode" field of the instruction. The interfaces below treat the
528 // Op and Cmode values as a single 5-bit value.
529
David Blaikiec70b3922017-10-24 21:29:21 +0000530 inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
Bob Wilsonc1c6f472010-07-13 04:44:34 +0000531 return (OpCmode << 8) | Val;
532 }
David Blaikiec70b3922017-10-24 21:29:21 +0000533 inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
Bob Wilsonc1c6f472010-07-13 04:44:34 +0000534 return (ModImm >> 8) & 0x1f;
535 }
David Blaikiec70b3922017-10-24 21:29:21 +0000536 inline unsigned getNEONModImmVal(unsigned ModImm) { return ModImm & 0xff; }
Bob Wilsonc1c6f472010-07-13 04:44:34 +0000537
538 /// decodeNEONModImm - Decode a NEON modified immediate value into the
539 /// element value and the element size in bits. (If the element size is
540 /// smaller than the vector, it is splatted into all the elements.)
David Blaikiec70b3922017-10-24 21:29:21 +0000541 inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
Bob Wilsonc1c6f472010-07-13 04:44:34 +0000542 unsigned OpCmode = getNEONModImmOpCmode(ModImm);
543 unsigned Imm8 = getNEONModImmVal(ModImm);
544 uint64_t Val = 0;
545
546 if (OpCmode == 0xe) {
547 // 8-bit vector elements
548 Val = Imm8;
549 EltBits = 8;
550 } else if ((OpCmode & 0xc) == 0x8) {
551 // 16-bit vector elements
552 unsigned ByteNum = (OpCmode & 0x6) >> 1;
553 Val = Imm8 << (8 * ByteNum);
554 EltBits = 16;
555 } else if ((OpCmode & 0x8) == 0) {
556 // 32-bit vector elements, zero with one byte set
557 unsigned ByteNum = (OpCmode & 0x6) >> 1;
558 Val = Imm8 << (8 * ByteNum);
559 EltBits = 32;
560 } else if ((OpCmode & 0xe) == 0xc) {
561 // 32-bit vector elements, one byte with low bits set
562 unsigned ByteNum = 1 + (OpCmode & 0x1);
563 Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
564 EltBits = 32;
565 } else if (OpCmode == 0x1e) {
566 // 64-bit vector elements
567 for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
568 if ((ModImm >> ByteNum) & 1)
569 Val |= (uint64_t)0xff << (8 * ByteNum);
570 }
571 EltBits = 64;
572 } else {
Craig Toppere55c5562012-02-07 02:50:20 +0000573 llvm_unreachable("Unsupported NEON immediate");
Bob Wilsonc1c6f472010-07-13 04:44:34 +0000574 }
575 return Val;
576 }
577
Renato Golinf5dd1da2014-09-25 11:31:24 +0000578 // Generic validation for single-byte immediate (0X00, 00X0, etc).
David Blaikiec70b3922017-10-24 21:29:21 +0000579 inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
Renato Golinf5dd1da2014-09-25 11:31:24 +0000580 assert(Size >= 1 && Size <= 4 && "Invalid size");
581 unsigned count = 0;
582 for (unsigned i = 0; i < Size; ++i) {
583 if (Value & 0xff) count++;
584 Value >>= 8;
585 }
586 return count == 1;
587 }
588
589 /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
David Blaikiec70b3922017-10-24 21:29:21 +0000590 inline bool isNEONi16splat(unsigned Value) {
Renato Golinf5dd1da2014-09-25 11:31:24 +0000591 if (Value > 0xffff)
592 return false;
593 // i16 value with set bits only in one byte X0 or 0X.
594 return Value == 0 || isNEONBytesplat(Value, 2);
595 }
596
597 // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
David Blaikiec70b3922017-10-24 21:29:21 +0000598 inline unsigned encodeNEONi16splat(unsigned Value) {
Renato Golinf5dd1da2014-09-25 11:31:24 +0000599 assert(isNEONi16splat(Value) && "Invalid NEON splat value");
600 if (Value >= 0x100)
601 Value = (Value >> 8) | 0xa00;
602 else
603 Value |= 0x800;
604 return Value;
605 }
606
607 /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
David Blaikiec70b3922017-10-24 21:29:21 +0000608 inline bool isNEONi32splat(unsigned Value) {
Renato Golinf5dd1da2014-09-25 11:31:24 +0000609 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
610 return Value == 0 || isNEONBytesplat(Value, 4);
611 }
612
613 /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
David Blaikiec70b3922017-10-24 21:29:21 +0000614 inline unsigned encodeNEONi32splat(unsigned Value) {
Renato Golinf5dd1da2014-09-25 11:31:24 +0000615 assert(isNEONi32splat(Value) && "Invalid NEON splat value");
616 if (Value >= 0x100 && Value <= 0xff00)
617 Value = (Value >> 8) | 0x200;
618 else if (Value > 0xffff && Value <= 0xff0000)
619 Value = (Value >> 16) | 0x400;
620 else if (Value > 0xffffff)
621 Value = (Value >> 24) | 0x600;
622 return Value;
623 }
624
Jim Grosbachefc761a2011-09-30 00:50:06 +0000625 //===--------------------------------------------------------------------===//
626 // Floating-point Immediates
627 //
David Blaikiec70b3922017-10-24 21:29:21 +0000628 inline float getFPImmFloat(unsigned Imm) {
Jim Grosbachefc761a2011-09-30 00:50:06 +0000629 // We expect an 8-bit binary encoding of a floating-point number here.
630 union {
631 uint32_t I;
632 float F;
633 } FPUnion;
634
635 uint8_t Sign = (Imm >> 7) & 0x1;
636 uint8_t Exp = (Imm >> 4) & 0x7;
637 uint8_t Mantissa = Imm & 0xf;
638
639 // 8-bit FP iEEEE Float Encoding
640 // abcd efgh aBbbbbbc defgh000 00000000 00000000
641 //
642 // where B = NOT(b);
643
644 FPUnion.I = 0;
645 FPUnion.I |= Sign << 31;
646 FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
647 FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
648 FPUnion.I |= (Exp & 0x3) << 23;
649 FPUnion.I |= Mantissa << 19;
650 return FPUnion.F;
651 }
652
Oliver Stannard65b85382016-01-25 10:26:26 +0000653 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
654 /// floating-point value. If the value cannot be represented as an 8-bit
655 /// floating-point value, then return -1.
David Blaikiec70b3922017-10-24 21:29:21 +0000656 inline int getFP16Imm(const APInt &Imm) {
Oliver Stannard65b85382016-01-25 10:26:26 +0000657 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
658 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
659 int64_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
660
661 // We can handle 4 bits of mantissa.
662 // mantissa = (16+UInt(e:f:g:h))/16.
663 if (Mantissa & 0x3f)
664 return -1;
665 Mantissa >>= 6;
666
667 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
668 if (Exp < -3 || Exp > 4)
669 return -1;
670 Exp = ((Exp+3) & 0x7) ^ 4;
671
672 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
673 }
674
David Blaikiec70b3922017-10-24 21:29:21 +0000675 inline int getFP16Imm(const APFloat &FPImm) {
Oliver Stannard65b85382016-01-25 10:26:26 +0000676 return getFP16Imm(FPImm.bitcastToAPInt());
677 }
678
Jim Grosbachefc761a2011-09-30 00:50:06 +0000679 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
680 /// floating-point value. If the value cannot be represented as an 8-bit
681 /// floating-point value, then return -1.
David Blaikiec70b3922017-10-24 21:29:21 +0000682 inline int getFP32Imm(const APInt &Imm) {
Jim Grosbachefc761a2011-09-30 00:50:06 +0000683 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
684 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
685 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
686
687 // We can handle 4 bits of mantissa.
688 // mantissa = (16+UInt(e:f:g:h))/16.
689 if (Mantissa & 0x7ffff)
690 return -1;
691 Mantissa >>= 19;
692 if ((Mantissa & 0xf) != Mantissa)
693 return -1;
694
695 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
696 if (Exp < -3 || Exp > 4)
697 return -1;
698 Exp = ((Exp+3) & 0x7) ^ 4;
699
700 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
701 }
702
David Blaikiec70b3922017-10-24 21:29:21 +0000703 inline int getFP32Imm(const APFloat &FPImm) {
Jim Grosbachefc761a2011-09-30 00:50:06 +0000704 return getFP32Imm(FPImm.bitcastToAPInt());
705 }
706
707 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
708 /// floating-point value. If the value cannot be represented as an 8-bit
709 /// floating-point value, then return -1.
David Blaikiec70b3922017-10-24 21:29:21 +0000710 inline int getFP64Imm(const APInt &Imm) {
Jim Grosbachefc761a2011-09-30 00:50:06 +0000711 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
Jim Grosbach69e6f902011-10-03 23:03:26 +0000712 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
Jim Grosbachefc761a2011-09-30 00:50:06 +0000713 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
714
715 // We can handle 4 bits of mantissa.
716 // mantissa = (16+UInt(e:f:g:h))/16.
717 if (Mantissa & 0xffffffffffffULL)
718 return -1;
719 Mantissa >>= 48;
720 if ((Mantissa & 0xf) != Mantissa)
721 return -1;
722
723 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
724 if (Exp < -3 || Exp > 4)
725 return -1;
726 Exp = ((Exp+3) & 0x7) ^ 4;
727
728 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
729 }
730
David Blaikiec70b3922017-10-24 21:29:21 +0000731 inline int getFP64Imm(const APFloat &FPImm) {
Jim Grosbachefc761a2011-09-30 00:50:06 +0000732 return getFP64Imm(FPImm.bitcastToAPInt());
733 }
734
Evan Cheng10043e22007-01-19 07:51:42 +0000735} // end namespace ARM_AM
736} // end namespace llvm
737
738#endif
739