Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 1 | //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// |
| 2 | // |
Chandler Carruth | 2946cd7 | 2019-01-19 08:50:56 +0000 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file "describes" induction and recurrence variables. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Analysis/IVDescriptors.h" |
| 14 | #include "llvm/ADT/ScopeExit.h" |
| 15 | #include "llvm/Analysis/AliasAnalysis.h" |
| 16 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
| 17 | #include "llvm/Analysis/GlobalsModRef.h" |
| 18 | #include "llvm/Analysis/InstructionSimplify.h" |
| 19 | #include "llvm/Analysis/LoopInfo.h" |
| 20 | #include "llvm/Analysis/LoopPass.h" |
| 21 | #include "llvm/Analysis/MustExecute.h" |
| 22 | #include "llvm/Analysis/ScalarEvolution.h" |
| 23 | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" |
| 24 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| 25 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 26 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 27 | #include "llvm/Analysis/ValueTracking.h" |
| 28 | #include "llvm/IR/DomTreeUpdater.h" |
| 29 | #include "llvm/IR/Dominators.h" |
| 30 | #include "llvm/IR/Instructions.h" |
| 31 | #include "llvm/IR/Module.h" |
| 32 | #include "llvm/IR/PatternMatch.h" |
| 33 | #include "llvm/IR/ValueHandle.h" |
| 34 | #include "llvm/Pass.h" |
| 35 | #include "llvm/Support/Debug.h" |
| 36 | #include "llvm/Support/KnownBits.h" |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 37 | |
| 38 | using namespace llvm; |
| 39 | using namespace llvm::PatternMatch; |
| 40 | |
| 41 | #define DEBUG_TYPE "iv-descriptors" |
| 42 | |
| 43 | bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, |
| 44 | SmallPtrSetImpl<Instruction *> &Set) { |
| 45 | for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) |
| 46 | if (!Set.count(dyn_cast<Instruction>(*Use))) |
| 47 | return false; |
| 48 | return true; |
| 49 | } |
| 50 | |
| 51 | bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { |
| 52 | switch (Kind) { |
| 53 | default: |
| 54 | break; |
| 55 | case RK_IntegerAdd: |
| 56 | case RK_IntegerMult: |
| 57 | case RK_IntegerOr: |
| 58 | case RK_IntegerAnd: |
| 59 | case RK_IntegerXor: |
| 60 | case RK_IntegerMinMax: |
| 61 | return true; |
| 62 | } |
| 63 | return false; |
| 64 | } |
| 65 | |
| 66 | bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { |
| 67 | return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); |
| 68 | } |
| 69 | |
| 70 | bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { |
| 71 | switch (Kind) { |
| 72 | default: |
| 73 | break; |
| 74 | case RK_IntegerAdd: |
| 75 | case RK_IntegerMult: |
| 76 | case RK_FloatAdd: |
| 77 | case RK_FloatMult: |
| 78 | return true; |
| 79 | } |
| 80 | return false; |
| 81 | } |
| 82 | |
| 83 | /// Determines if Phi may have been type-promoted. If Phi has a single user |
| 84 | /// that ANDs the Phi with a type mask, return the user. RT is updated to |
| 85 | /// account for the narrower bit width represented by the mask, and the AND |
| 86 | /// instruction is added to CI. |
| 87 | static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, |
| 88 | SmallPtrSetImpl<Instruction *> &Visited, |
| 89 | SmallPtrSetImpl<Instruction *> &CI) { |
| 90 | if (!Phi->hasOneUse()) |
| 91 | return Phi; |
| 92 | |
| 93 | const APInt *M = nullptr; |
| 94 | Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); |
| 95 | |
| 96 | // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT |
| 97 | // with a new integer type of the corresponding bit width. |
| 98 | if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { |
| 99 | int32_t Bits = (*M + 1).exactLogBase2(); |
| 100 | if (Bits > 0) { |
| 101 | RT = IntegerType::get(Phi->getContext(), Bits); |
| 102 | Visited.insert(Phi); |
| 103 | CI.insert(J); |
| 104 | return J; |
| 105 | } |
| 106 | } |
| 107 | return Phi; |
| 108 | } |
| 109 | |
| 110 | /// Compute the minimal bit width needed to represent a reduction whose exit |
| 111 | /// instruction is given by Exit. |
| 112 | static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, |
| 113 | DemandedBits *DB, |
| 114 | AssumptionCache *AC, |
| 115 | DominatorTree *DT) { |
| 116 | bool IsSigned = false; |
| 117 | const DataLayout &DL = Exit->getModule()->getDataLayout(); |
| 118 | uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); |
| 119 | |
| 120 | if (DB) { |
| 121 | // Use the demanded bits analysis to determine the bits that are live out |
| 122 | // of the exit instruction, rounding up to the nearest power of two. If the |
| 123 | // use of demanded bits results in a smaller bit width, we know the value |
| 124 | // must be positive (i.e., IsSigned = false), because if this were not the |
| 125 | // case, the sign bit would have been demanded. |
| 126 | auto Mask = DB->getDemandedBits(Exit); |
| 127 | MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); |
| 128 | } |
| 129 | |
| 130 | if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { |
| 131 | // If demanded bits wasn't able to limit the bit width, we can try to use |
| 132 | // value tracking instead. This can be the case, for example, if the value |
| 133 | // may be negative. |
| 134 | auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); |
| 135 | auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); |
| 136 | MaxBitWidth = NumTypeBits - NumSignBits; |
| 137 | KnownBits Bits = computeKnownBits(Exit, DL); |
| 138 | if (!Bits.isNonNegative()) { |
| 139 | // If the value is not known to be non-negative, we set IsSigned to true, |
| 140 | // meaning that we will use sext instructions instead of zext |
| 141 | // instructions to restore the original type. |
| 142 | IsSigned = true; |
| 143 | if (!Bits.isNegative()) |
| 144 | // If the value is not known to be negative, we don't known what the |
| 145 | // upper bit is, and therefore, we don't know what kind of extend we |
| 146 | // will need. In this case, just increase the bit width by one bit and |
| 147 | // use sext. |
| 148 | ++MaxBitWidth; |
| 149 | } |
| 150 | } |
| 151 | if (!isPowerOf2_64(MaxBitWidth)) |
| 152 | MaxBitWidth = NextPowerOf2(MaxBitWidth); |
| 153 | |
| 154 | return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), |
| 155 | IsSigned); |
| 156 | } |
| 157 | |
| 158 | /// Collect cast instructions that can be ignored in the vectorizer's cost |
| 159 | /// model, given a reduction exit value and the minimal type in which the |
| 160 | /// reduction can be represented. |
| 161 | static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, |
| 162 | Type *RecurrenceType, |
| 163 | SmallPtrSetImpl<Instruction *> &Casts) { |
| 164 | |
| 165 | SmallVector<Instruction *, 8> Worklist; |
| 166 | SmallPtrSet<Instruction *, 8> Visited; |
| 167 | Worklist.push_back(Exit); |
| 168 | |
| 169 | while (!Worklist.empty()) { |
| 170 | Instruction *Val = Worklist.pop_back_val(); |
| 171 | Visited.insert(Val); |
| 172 | if (auto *Cast = dyn_cast<CastInst>(Val)) |
| 173 | if (Cast->getSrcTy() == RecurrenceType) { |
| 174 | // If the source type of a cast instruction is equal to the recurrence |
| 175 | // type, it will be eliminated, and should be ignored in the vectorizer |
| 176 | // cost model. |
| 177 | Casts.insert(Cast); |
| 178 | continue; |
| 179 | } |
| 180 | |
| 181 | // Add all operands to the work list if they are loop-varying values that |
| 182 | // we haven't yet visited. |
| 183 | for (Value *O : cast<User>(Val)->operands()) |
| 184 | if (auto *I = dyn_cast<Instruction>(O)) |
| 185 | if (TheLoop->contains(I) && !Visited.count(I)) |
| 186 | Worklist.push_back(I); |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, |
| 191 | Loop *TheLoop, bool HasFunNoNaNAttr, |
| 192 | RecurrenceDescriptor &RedDes, |
| 193 | DemandedBits *DB, |
| 194 | AssumptionCache *AC, |
| 195 | DominatorTree *DT) { |
| 196 | if (Phi->getNumIncomingValues() != 2) |
| 197 | return false; |
| 198 | |
| 199 | // Reduction variables are only found in the loop header block. |
| 200 | if (Phi->getParent() != TheLoop->getHeader()) |
| 201 | return false; |
| 202 | |
| 203 | // Obtain the reduction start value from the value that comes from the loop |
| 204 | // preheader. |
| 205 | Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); |
| 206 | |
| 207 | // ExitInstruction is the single value which is used outside the loop. |
| 208 | // We only allow for a single reduction value to be used outside the loop. |
| 209 | // This includes users of the reduction, variables (which form a cycle |
| 210 | // which ends in the phi node). |
| 211 | Instruction *ExitInstruction = nullptr; |
| 212 | // Indicates that we found a reduction operation in our scan. |
| 213 | bool FoundReduxOp = false; |
| 214 | |
| 215 | // We start with the PHI node and scan for all of the users of this |
| 216 | // instruction. All users must be instructions that can be used as reduction |
| 217 | // variables (such as ADD). We must have a single out-of-block user. The cycle |
| 218 | // must include the original PHI. |
| 219 | bool FoundStartPHI = false; |
| 220 | |
| 221 | // To recognize min/max patterns formed by a icmp select sequence, we store |
| 222 | // the number of instruction we saw from the recognized min/max pattern, |
| 223 | // to make sure we only see exactly the two instructions. |
| 224 | unsigned NumCmpSelectPatternInst = 0; |
| 225 | InstDesc ReduxDesc(false, nullptr); |
| 226 | |
| 227 | // Data used for determining if the recurrence has been type-promoted. |
| 228 | Type *RecurrenceType = Phi->getType(); |
| 229 | SmallPtrSet<Instruction *, 4> CastInsts; |
| 230 | Instruction *Start = Phi; |
| 231 | bool IsSigned = false; |
| 232 | |
| 233 | SmallPtrSet<Instruction *, 8> VisitedInsts; |
| 234 | SmallVector<Instruction *, 8> Worklist; |
| 235 | |
| 236 | // Return early if the recurrence kind does not match the type of Phi. If the |
| 237 | // recurrence kind is arithmetic, we attempt to look through AND operations |
| 238 | // resulting from the type promotion performed by InstCombine. Vector |
| 239 | // operations are not limited to the legal integer widths, so we may be able |
| 240 | // to evaluate the reduction in the narrower width. |
| 241 | if (RecurrenceType->isFloatingPointTy()) { |
| 242 | if (!isFloatingPointRecurrenceKind(Kind)) |
| 243 | return false; |
| 244 | } else { |
| 245 | if (!isIntegerRecurrenceKind(Kind)) |
| 246 | return false; |
| 247 | if (isArithmeticRecurrenceKind(Kind)) |
| 248 | Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); |
| 249 | } |
| 250 | |
| 251 | Worklist.push_back(Start); |
| 252 | VisitedInsts.insert(Start); |
| 253 | |
| 254 | // A value in the reduction can be used: |
| 255 | // - By the reduction: |
| 256 | // - Reduction operation: |
| 257 | // - One use of reduction value (safe). |
| 258 | // - Multiple use of reduction value (not safe). |
| 259 | // - PHI: |
| 260 | // - All uses of the PHI must be the reduction (safe). |
| 261 | // - Otherwise, not safe. |
| 262 | // - By instructions outside of the loop (safe). |
| 263 | // * One value may have several outside users, but all outside |
| 264 | // uses must be of the same value. |
| 265 | // - By an instruction that is not part of the reduction (not safe). |
| 266 | // This is either: |
| 267 | // * An instruction type other than PHI or the reduction operation. |
| 268 | // * A PHI in the header other than the initial PHI. |
| 269 | while (!Worklist.empty()) { |
| 270 | Instruction *Cur = Worklist.back(); |
| 271 | Worklist.pop_back(); |
| 272 | |
| 273 | // No Users. |
| 274 | // If the instruction has no users then this is a broken chain and can't be |
| 275 | // a reduction variable. |
| 276 | if (Cur->use_empty()) |
| 277 | return false; |
| 278 | |
| 279 | bool IsAPhi = isa<PHINode>(Cur); |
| 280 | |
| 281 | // A header PHI use other than the original PHI. |
| 282 | if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) |
| 283 | return false; |
| 284 | |
| 285 | // Reductions of instructions such as Div, and Sub is only possible if the |
| 286 | // LHS is the reduction variable. |
| 287 | if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && |
| 288 | !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && |
| 289 | !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) |
| 290 | return false; |
| 291 | |
| 292 | // Any reduction instruction must be of one of the allowed kinds. We ignore |
| 293 | // the starting value (the Phi or an AND instruction if the Phi has been |
| 294 | // type-promoted). |
| 295 | if (Cur != Start) { |
| 296 | ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); |
| 297 | if (!ReduxDesc.isRecurrence()) |
| 298 | return false; |
| 299 | } |
| 300 | |
Renato Golin | 135e72e | 2018-11-30 13:40:10 +0000 | [diff] [blame] | 301 | bool IsASelect = isa<SelectInst>(Cur); |
| 302 | |
| 303 | // A conditional reduction operation must only have 2 or less uses in |
| 304 | // VisitedInsts. |
| 305 | if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) && |
| 306 | hasMultipleUsesOf(Cur, VisitedInsts, 2)) |
| 307 | return false; |
| 308 | |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 309 | // A reduction operation must only have one use of the reduction value. |
Renato Golin | 135e72e | 2018-11-30 13:40:10 +0000 | [diff] [blame] | 310 | if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax && |
| 311 | Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1)) |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 312 | return false; |
| 313 | |
| 314 | // All inputs to a PHI node must be a reduction value. |
| 315 | if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) |
| 316 | return false; |
| 317 | |
| 318 | if (Kind == RK_IntegerMinMax && |
| 319 | (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) |
| 320 | ++NumCmpSelectPatternInst; |
| 321 | if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) |
| 322 | ++NumCmpSelectPatternInst; |
| 323 | |
| 324 | // Check whether we found a reduction operator. |
| 325 | FoundReduxOp |= !IsAPhi && Cur != Start; |
| 326 | |
| 327 | // Process users of current instruction. Push non-PHI nodes after PHI nodes |
| 328 | // onto the stack. This way we are going to have seen all inputs to PHI |
| 329 | // nodes once we get to them. |
| 330 | SmallVector<Instruction *, 8> NonPHIs; |
| 331 | SmallVector<Instruction *, 8> PHIs; |
| 332 | for (User *U : Cur->users()) { |
| 333 | Instruction *UI = cast<Instruction>(U); |
| 334 | |
| 335 | // Check if we found the exit user. |
| 336 | BasicBlock *Parent = UI->getParent(); |
| 337 | if (!TheLoop->contains(Parent)) { |
| 338 | // If we already know this instruction is used externally, move on to |
| 339 | // the next user. |
| 340 | if (ExitInstruction == Cur) |
| 341 | continue; |
| 342 | |
| 343 | // Exit if you find multiple values used outside or if the header phi |
| 344 | // node is being used. In this case the user uses the value of the |
| 345 | // previous iteration, in which case we would loose "VF-1" iterations of |
| 346 | // the reduction operation if we vectorize. |
| 347 | if (ExitInstruction != nullptr || Cur == Phi) |
| 348 | return false; |
| 349 | |
| 350 | // The instruction used by an outside user must be the last instruction |
| 351 | // before we feed back to the reduction phi. Otherwise, we loose VF-1 |
| 352 | // operations on the value. |
| 353 | if (!is_contained(Phi->operands(), Cur)) |
| 354 | return false; |
| 355 | |
| 356 | ExitInstruction = Cur; |
| 357 | continue; |
| 358 | } |
| 359 | |
| 360 | // Process instructions only once (termination). Each reduction cycle |
| 361 | // value must only be used once, except by phi nodes and min/max |
| 362 | // reductions which are represented as a cmp followed by a select. |
| 363 | InstDesc IgnoredVal(false, nullptr); |
| 364 | if (VisitedInsts.insert(UI).second) { |
| 365 | if (isa<PHINode>(UI)) |
| 366 | PHIs.push_back(UI); |
| 367 | else |
| 368 | NonPHIs.push_back(UI); |
| 369 | } else if (!isa<PHINode>(UI) && |
| 370 | ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && |
| 371 | !isa<SelectInst>(UI)) || |
Renato Golin | 135e72e | 2018-11-30 13:40:10 +0000 | [diff] [blame] | 372 | (!isConditionalRdxPattern(Kind, UI).isRecurrence() && |
| 373 | !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 374 | return false; |
| 375 | |
| 376 | // Remember that we completed the cycle. |
| 377 | if (UI == Phi) |
| 378 | FoundStartPHI = true; |
| 379 | } |
| 380 | Worklist.append(PHIs.begin(), PHIs.end()); |
| 381 | Worklist.append(NonPHIs.begin(), NonPHIs.end()); |
| 382 | } |
| 383 | |
| 384 | // This means we have seen one but not the other instruction of the |
| 385 | // pattern or more than just a select and cmp. |
| 386 | if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && |
| 387 | NumCmpSelectPatternInst != 2) |
| 388 | return false; |
| 389 | |
| 390 | if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) |
| 391 | return false; |
| 392 | |
| 393 | if (Start != Phi) { |
| 394 | // If the starting value is not the same as the phi node, we speculatively |
| 395 | // looked through an 'and' instruction when evaluating a potential |
| 396 | // arithmetic reduction to determine if it may have been type-promoted. |
| 397 | // |
| 398 | // We now compute the minimal bit width that is required to represent the |
| 399 | // reduction. If this is the same width that was indicated by the 'and', we |
| 400 | // can represent the reduction in the smaller type. The 'and' instruction |
| 401 | // will be eliminated since it will essentially be a cast instruction that |
| 402 | // can be ignore in the cost model. If we compute a different type than we |
| 403 | // did when evaluating the 'and', the 'and' will not be eliminated, and we |
| 404 | // will end up with different kinds of operations in the recurrence |
| 405 | // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is |
| 406 | // the case. |
| 407 | // |
| 408 | // The vectorizer relies on InstCombine to perform the actual |
| 409 | // type-shrinking. It does this by inserting instructions to truncate the |
| 410 | // exit value of the reduction to the width indicated by RecurrenceType and |
| 411 | // then extend this value back to the original width. If IsSigned is false, |
| 412 | // a 'zext' instruction will be generated; otherwise, a 'sext' will be |
| 413 | // used. |
| 414 | // |
| 415 | // TODO: We should not rely on InstCombine to rewrite the reduction in the |
| 416 | // smaller type. We should just generate a correctly typed expression |
| 417 | // to begin with. |
| 418 | Type *ComputedType; |
| 419 | std::tie(ComputedType, IsSigned) = |
| 420 | computeRecurrenceType(ExitInstruction, DB, AC, DT); |
| 421 | if (ComputedType != RecurrenceType) |
| 422 | return false; |
| 423 | |
| 424 | // The recurrence expression will be represented in a narrower type. If |
| 425 | // there are any cast instructions that will be unnecessary, collect them |
| 426 | // in CastInsts. Note that the 'and' instruction was already included in |
| 427 | // this list. |
| 428 | // |
| 429 | // TODO: A better way to represent this may be to tag in some way all the |
| 430 | // instructions that are a part of the reduction. The vectorizer cost |
| 431 | // model could then apply the recurrence type to these instructions, |
| 432 | // without needing a white list of instructions to ignore. |
| 433 | collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); |
| 434 | } |
| 435 | |
| 436 | // We found a reduction var if we have reached the original phi node and we |
| 437 | // only have a single instruction with out-of-loop users. |
| 438 | |
| 439 | // The ExitInstruction(Instruction which is allowed to have out-of-loop users) |
| 440 | // is saved as part of the RecurrenceDescriptor. |
| 441 | |
| 442 | // Save the description of this reduction variable. |
| 443 | RecurrenceDescriptor RD( |
| 444 | RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), |
| 445 | ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); |
| 446 | RedDes = RD; |
| 447 | |
| 448 | return true; |
| 449 | } |
| 450 | |
| 451 | /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction |
| 452 | /// pattern corresponding to a min(X, Y) or max(X, Y). |
| 453 | RecurrenceDescriptor::InstDesc |
| 454 | RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { |
| 455 | |
| 456 | assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && |
| 457 | "Expect a select instruction"); |
| 458 | Instruction *Cmp = nullptr; |
| 459 | SelectInst *Select = nullptr; |
| 460 | |
| 461 | // We must handle the select(cmp()) as a single instruction. Advance to the |
| 462 | // select. |
| 463 | if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { |
| 464 | if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) |
| 465 | return InstDesc(false, I); |
| 466 | return InstDesc(Select, Prev.getMinMaxKind()); |
| 467 | } |
| 468 | |
| 469 | // Only handle single use cases for now. |
| 470 | if (!(Select = dyn_cast<SelectInst>(I))) |
| 471 | return InstDesc(false, I); |
| 472 | if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && |
| 473 | !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) |
| 474 | return InstDesc(false, I); |
| 475 | if (!Cmp->hasOneUse()) |
| 476 | return InstDesc(false, I); |
| 477 | |
| 478 | Value *CmpLeft; |
| 479 | Value *CmpRight; |
| 480 | |
| 481 | // Look for a min/max pattern. |
| 482 | if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| 483 | return InstDesc(Select, MRK_UIntMin); |
| 484 | else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| 485 | return InstDesc(Select, MRK_UIntMax); |
| 486 | else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| 487 | return InstDesc(Select, MRK_SIntMax); |
| 488 | else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| 489 | return InstDesc(Select, MRK_SIntMin); |
| 490 | else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| 491 | return InstDesc(Select, MRK_FloatMin); |
| 492 | else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| 493 | return InstDesc(Select, MRK_FloatMax); |
| 494 | else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| 495 | return InstDesc(Select, MRK_FloatMin); |
| 496 | else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| 497 | return InstDesc(Select, MRK_FloatMax); |
| 498 | |
| 499 | return InstDesc(false, I); |
| 500 | } |
| 501 | |
Renato Golin | 135e72e | 2018-11-30 13:40:10 +0000 | [diff] [blame] | 502 | /// Returns true if the select instruction has users in the compare-and-add |
| 503 | /// reduction pattern below. The select instruction argument is the last one |
| 504 | /// in the sequence. |
| 505 | /// |
| 506 | /// %sum.1 = phi ... |
| 507 | /// ... |
| 508 | /// %cmp = fcmp pred %0, %CFP |
| 509 | /// %add = fadd %0, %sum.1 |
| 510 | /// %sum.2 = select %cmp, %add, %sum.1 |
| 511 | RecurrenceDescriptor::InstDesc |
| 512 | RecurrenceDescriptor::isConditionalRdxPattern( |
| 513 | RecurrenceKind Kind, Instruction *I) { |
| 514 | SelectInst *SI = dyn_cast<SelectInst>(I); |
| 515 | if (!SI) |
| 516 | return InstDesc(false, I); |
| 517 | |
| 518 | CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); |
| 519 | // Only handle single use cases for now. |
| 520 | if (!CI || !CI->hasOneUse()) |
| 521 | return InstDesc(false, I); |
| 522 | |
| 523 | Value *TrueVal = SI->getTrueValue(); |
| 524 | Value *FalseVal = SI->getFalseValue(); |
| 525 | // Handle only when either of operands of select instruction is a PHI |
| 526 | // node for now. |
| 527 | if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || |
| 528 | (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) |
| 529 | return InstDesc(false, I); |
| 530 | |
| 531 | Instruction *I1 = |
| 532 | isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) |
| 533 | : dyn_cast<Instruction>(TrueVal); |
| 534 | if (!I1 || !I1->isBinaryOp()) |
| 535 | return InstDesc(false, I); |
| 536 | |
| 537 | Value *Op1, *Op2; |
Renato Golin | de4b88e | 2018-11-30 13:54:36 +0000 | [diff] [blame] | 538 | if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || |
| 539 | m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && |
| 540 | I1->isFast()) |
Renato Golin | 135e72e | 2018-11-30 13:40:10 +0000 | [diff] [blame] | 541 | return InstDesc(Kind == RK_FloatAdd, SI); |
| 542 | |
| 543 | if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) |
| 544 | return InstDesc(Kind == RK_FloatMult, SI); |
| 545 | |
| 546 | return InstDesc(false, I); |
| 547 | } |
| 548 | |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 549 | RecurrenceDescriptor::InstDesc |
| 550 | RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, |
| 551 | InstDesc &Prev, bool HasFunNoNaNAttr) { |
| 552 | bool FP = I->getType()->isFloatingPointTy(); |
| 553 | Instruction *UAI = Prev.getUnsafeAlgebraInst(); |
| 554 | if (!UAI && FP && !I->isFast()) |
| 555 | UAI = I; // Found an unsafe (unvectorizable) algebra instruction. |
| 556 | |
| 557 | switch (I->getOpcode()) { |
| 558 | default: |
| 559 | return InstDesc(false, I); |
| 560 | case Instruction::PHI: |
| 561 | return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); |
| 562 | case Instruction::Sub: |
| 563 | case Instruction::Add: |
| 564 | return InstDesc(Kind == RK_IntegerAdd, I); |
| 565 | case Instruction::Mul: |
| 566 | return InstDesc(Kind == RK_IntegerMult, I); |
| 567 | case Instruction::And: |
| 568 | return InstDesc(Kind == RK_IntegerAnd, I); |
| 569 | case Instruction::Or: |
| 570 | return InstDesc(Kind == RK_IntegerOr, I); |
| 571 | case Instruction::Xor: |
| 572 | return InstDesc(Kind == RK_IntegerXor, I); |
| 573 | case Instruction::FMul: |
| 574 | return InstDesc(Kind == RK_FloatMult, I, UAI); |
| 575 | case Instruction::FSub: |
| 576 | case Instruction::FAdd: |
| 577 | return InstDesc(Kind == RK_FloatAdd, I, UAI); |
Renato Golin | 135e72e | 2018-11-30 13:40:10 +0000 | [diff] [blame] | 578 | case Instruction::Select: |
| 579 | if (Kind == RK_FloatAdd || Kind == RK_FloatMult) |
| 580 | return isConditionalRdxPattern(Kind, I); |
| 581 | LLVM_FALLTHROUGH; |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 582 | case Instruction::FCmp: |
| 583 | case Instruction::ICmp: |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 584 | if (Kind != RK_IntegerMinMax && |
| 585 | (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) |
| 586 | return InstDesc(false, I); |
| 587 | return isMinMaxSelectCmpPattern(I, Prev); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | bool RecurrenceDescriptor::hasMultipleUsesOf( |
Renato Golin | 135e72e | 2018-11-30 13:40:10 +0000 | [diff] [blame] | 592 | Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, |
| 593 | unsigned MaxNumUses) { |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 594 | unsigned NumUses = 0; |
| 595 | for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; |
| 596 | ++Use) { |
| 597 | if (Insts.count(dyn_cast<Instruction>(*Use))) |
| 598 | ++NumUses; |
Renato Golin | 135e72e | 2018-11-30 13:40:10 +0000 | [diff] [blame] | 599 | if (NumUses > MaxNumUses) |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 600 | return true; |
| 601 | } |
| 602 | |
| 603 | return false; |
| 604 | } |
| 605 | bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, |
| 606 | RecurrenceDescriptor &RedDes, |
| 607 | DemandedBits *DB, AssumptionCache *AC, |
| 608 | DominatorTree *DT) { |
| 609 | |
| 610 | BasicBlock *Header = TheLoop->getHeader(); |
| 611 | Function &F = *Header->getParent(); |
| 612 | bool HasFunNoNaNAttr = |
| 613 | F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; |
| 614 | |
| 615 | if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| 616 | AC, DT)) { |
| 617 | LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); |
| 618 | return true; |
| 619 | } |
| 620 | if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| 621 | AC, DT)) { |
| 622 | LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); |
| 623 | return true; |
| 624 | } |
| 625 | if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| 626 | AC, DT)) { |
| 627 | LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); |
| 628 | return true; |
| 629 | } |
| 630 | if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| 631 | AC, DT)) { |
| 632 | LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); |
| 633 | return true; |
| 634 | } |
| 635 | if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| 636 | AC, DT)) { |
| 637 | LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); |
| 638 | return true; |
| 639 | } |
| 640 | if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes, |
| 641 | DB, AC, DT)) { |
| 642 | LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); |
| 643 | return true; |
| 644 | } |
| 645 | if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| 646 | AC, DT)) { |
| 647 | LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); |
| 648 | return true; |
| 649 | } |
| 650 | if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| 651 | AC, DT)) { |
| 652 | LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); |
| 653 | return true; |
| 654 | } |
| 655 | if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| 656 | AC, DT)) { |
| 657 | LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi |
| 658 | << "\n"); |
| 659 | return true; |
| 660 | } |
| 661 | // Not a reduction of known type. |
| 662 | return false; |
| 663 | } |
| 664 | |
| 665 | bool RecurrenceDescriptor::isFirstOrderRecurrence( |
| 666 | PHINode *Phi, Loop *TheLoop, |
| 667 | DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { |
| 668 | |
| 669 | // Ensure the phi node is in the loop header and has two incoming values. |
| 670 | if (Phi->getParent() != TheLoop->getHeader() || |
| 671 | Phi->getNumIncomingValues() != 2) |
| 672 | return false; |
| 673 | |
| 674 | // Ensure the loop has a preheader and a single latch block. The loop |
| 675 | // vectorizer will need the latch to set up the next iteration of the loop. |
| 676 | auto *Preheader = TheLoop->getLoopPreheader(); |
| 677 | auto *Latch = TheLoop->getLoopLatch(); |
| 678 | if (!Preheader || !Latch) |
| 679 | return false; |
| 680 | |
| 681 | // Ensure the phi node's incoming blocks are the loop preheader and latch. |
| 682 | if (Phi->getBasicBlockIndex(Preheader) < 0 || |
| 683 | Phi->getBasicBlockIndex(Latch) < 0) |
| 684 | return false; |
| 685 | |
| 686 | // Get the previous value. The previous value comes from the latch edge while |
| 687 | // the initial value comes form the preheader edge. |
| 688 | auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); |
| 689 | if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || |
| 690 | SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. |
| 691 | return false; |
| 692 | |
| 693 | // Ensure every user of the phi node is dominated by the previous value. |
| 694 | // The dominance requirement ensures the loop vectorizer will not need to |
| 695 | // vectorize the initial value prior to the first iteration of the loop. |
| 696 | // TODO: Consider extending this sinking to handle other kinds of instructions |
| 697 | // and expressions, beyond sinking a single cast past Previous. |
| 698 | if (Phi->hasOneUse()) { |
| 699 | auto *I = Phi->user_back(); |
| 700 | if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() && |
| 701 | DT->dominates(Previous, I->user_back())) { |
| 702 | if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking. |
| 703 | SinkAfter[I] = Previous; |
| 704 | return true; |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | for (User *U : Phi->users()) |
| 709 | if (auto *I = dyn_cast<Instruction>(U)) { |
| 710 | if (!DT->dominates(Previous, I)) |
| 711 | return false; |
| 712 | } |
| 713 | |
| 714 | return true; |
| 715 | } |
| 716 | |
| 717 | /// This function returns the identity element (or neutral element) for |
| 718 | /// the operation K. |
| 719 | Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, |
| 720 | Type *Tp) { |
| 721 | switch (K) { |
| 722 | case RK_IntegerXor: |
| 723 | case RK_IntegerAdd: |
| 724 | case RK_IntegerOr: |
| 725 | // Adding, Xoring, Oring zero to a number does not change it. |
| 726 | return ConstantInt::get(Tp, 0); |
| 727 | case RK_IntegerMult: |
| 728 | // Multiplying a number by 1 does not change it. |
| 729 | return ConstantInt::get(Tp, 1); |
| 730 | case RK_IntegerAnd: |
| 731 | // AND-ing a number with an all-1 value does not change it. |
| 732 | return ConstantInt::get(Tp, -1, true); |
| 733 | case RK_FloatMult: |
| 734 | // Multiplying a number by 1 does not change it. |
| 735 | return ConstantFP::get(Tp, 1.0L); |
| 736 | case RK_FloatAdd: |
| 737 | // Adding zero to a number does not change it. |
| 738 | return ConstantFP::get(Tp, 0.0L); |
| 739 | default: |
| 740 | llvm_unreachable("Unknown recurrence kind"); |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | /// This function translates the recurrence kind to an LLVM binary operator. |
| 745 | unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { |
| 746 | switch (Kind) { |
| 747 | case RK_IntegerAdd: |
| 748 | return Instruction::Add; |
| 749 | case RK_IntegerMult: |
| 750 | return Instruction::Mul; |
| 751 | case RK_IntegerOr: |
| 752 | return Instruction::Or; |
| 753 | case RK_IntegerAnd: |
| 754 | return Instruction::And; |
| 755 | case RK_IntegerXor: |
| 756 | return Instruction::Xor; |
| 757 | case RK_FloatMult: |
| 758 | return Instruction::FMul; |
| 759 | case RK_FloatAdd: |
| 760 | return Instruction::FAdd; |
| 761 | case RK_IntegerMinMax: |
| 762 | return Instruction::ICmp; |
| 763 | case RK_FloatMinMax: |
| 764 | return Instruction::FCmp; |
| 765 | default: |
| 766 | llvm_unreachable("Unknown recurrence operation"); |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, |
| 771 | const SCEV *Step, BinaryOperator *BOp, |
| 772 | SmallVectorImpl<Instruction *> *Casts) |
| 773 | : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { |
| 774 | assert(IK != IK_NoInduction && "Not an induction"); |
| 775 | |
| 776 | // Start value type should match the induction kind and the value |
| 777 | // itself should not be null. |
| 778 | assert(StartValue && "StartValue is null"); |
| 779 | assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && |
| 780 | "StartValue is not a pointer for pointer induction"); |
| 781 | assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && |
| 782 | "StartValue is not an integer for integer induction"); |
| 783 | |
| 784 | // Check the Step Value. It should be non-zero integer value. |
| 785 | assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && |
| 786 | "Step value is zero"); |
| 787 | |
| 788 | assert((IK != IK_PtrInduction || getConstIntStepValue()) && |
| 789 | "Step value should be constant for pointer induction"); |
| 790 | assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && |
| 791 | "StepValue is not an integer"); |
| 792 | |
| 793 | assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && |
| 794 | "StepValue is not FP for FpInduction"); |
| 795 | assert((IK != IK_FpInduction || |
| 796 | (InductionBinOp && |
| 797 | (InductionBinOp->getOpcode() == Instruction::FAdd || |
| 798 | InductionBinOp->getOpcode() == Instruction::FSub))) && |
| 799 | "Binary opcode should be specified for FP induction"); |
| 800 | |
| 801 | if (Casts) { |
| 802 | for (auto &Inst : *Casts) { |
| 803 | RedundantCasts.push_back(Inst); |
| 804 | } |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | int InductionDescriptor::getConsecutiveDirection() const { |
| 809 | ConstantInt *ConstStep = getConstIntStepValue(); |
| 810 | if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) |
| 811 | return ConstStep->getSExtValue(); |
| 812 | return 0; |
| 813 | } |
| 814 | |
| 815 | ConstantInt *InductionDescriptor::getConstIntStepValue() const { |
| 816 | if (isa<SCEVConstant>(Step)) |
| 817 | return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); |
| 818 | return nullptr; |
| 819 | } |
| 820 | |
| 821 | bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, |
| 822 | ScalarEvolution *SE, |
| 823 | InductionDescriptor &D) { |
| 824 | |
| 825 | // Here we only handle FP induction variables. |
| 826 | assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); |
| 827 | |
| 828 | if (TheLoop->getHeader() != Phi->getParent()) |
| 829 | return false; |
| 830 | |
| 831 | // The loop may have multiple entrances or multiple exits; we can analyze |
| 832 | // this phi if it has a unique entry value and a unique backedge value. |
| 833 | if (Phi->getNumIncomingValues() != 2) |
| 834 | return false; |
| 835 | Value *BEValue = nullptr, *StartValue = nullptr; |
| 836 | if (TheLoop->contains(Phi->getIncomingBlock(0))) { |
| 837 | BEValue = Phi->getIncomingValue(0); |
| 838 | StartValue = Phi->getIncomingValue(1); |
| 839 | } else { |
| 840 | assert(TheLoop->contains(Phi->getIncomingBlock(1)) && |
| 841 | "Unexpected Phi node in the loop"); |
| 842 | BEValue = Phi->getIncomingValue(1); |
| 843 | StartValue = Phi->getIncomingValue(0); |
| 844 | } |
| 845 | |
| 846 | BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); |
| 847 | if (!BOp) |
| 848 | return false; |
| 849 | |
| 850 | Value *Addend = nullptr; |
| 851 | if (BOp->getOpcode() == Instruction::FAdd) { |
| 852 | if (BOp->getOperand(0) == Phi) |
| 853 | Addend = BOp->getOperand(1); |
| 854 | else if (BOp->getOperand(1) == Phi) |
| 855 | Addend = BOp->getOperand(0); |
| 856 | } else if (BOp->getOpcode() == Instruction::FSub) |
| 857 | if (BOp->getOperand(0) == Phi) |
| 858 | Addend = BOp->getOperand(1); |
| 859 | |
| 860 | if (!Addend) |
| 861 | return false; |
| 862 | |
| 863 | // The addend should be loop invariant |
| 864 | if (auto *I = dyn_cast<Instruction>(Addend)) |
| 865 | if (TheLoop->contains(I)) |
| 866 | return false; |
| 867 | |
| 868 | // FP Step has unknown SCEV |
| 869 | const SCEV *Step = SE->getUnknown(Addend); |
| 870 | D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); |
| 871 | return true; |
| 872 | } |
| 873 | |
| 874 | /// This function is called when we suspect that the update-chain of a phi node |
| 875 | /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, |
| 876 | /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime |
| 877 | /// predicate P under which the SCEV expression for the phi can be the |
| 878 | /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the |
| 879 | /// cast instructions that are involved in the update-chain of this induction. |
| 880 | /// A caller that adds the required runtime predicate can be free to drop these |
| 881 | /// cast instructions, and compute the phi using \p AR (instead of some scev |
| 882 | /// expression with casts). |
| 883 | /// |
| 884 | /// For example, without a predicate the scev expression can take the following |
| 885 | /// form: |
| 886 | /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) |
| 887 | /// |
| 888 | /// It corresponds to the following IR sequence: |
| 889 | /// %for.body: |
| 890 | /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] |
| 891 | /// %casted_phi = "ExtTrunc i64 %x" |
| 892 | /// %add = add i64 %casted_phi, %step |
| 893 | /// |
| 894 | /// where %x is given in \p PN, |
| 895 | /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, |
| 896 | /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of |
| 897 | /// several forms, for example, such as: |
| 898 | /// ExtTrunc1: %casted_phi = and %x, 2^n-1 |
| 899 | /// or: |
| 900 | /// ExtTrunc2: %t = shl %x, m |
| 901 | /// %casted_phi = ashr %t, m |
| 902 | /// |
| 903 | /// If we are able to find such sequence, we return the instructions |
| 904 | /// we found, namely %casted_phi and the instructions on its use-def chain up |
| 905 | /// to the phi (not including the phi). |
| 906 | static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, |
| 907 | const SCEVUnknown *PhiScev, |
| 908 | const SCEVAddRecExpr *AR, |
| 909 | SmallVectorImpl<Instruction *> &CastInsts) { |
| 910 | |
| 911 | assert(CastInsts.empty() && "CastInsts is expected to be empty."); |
| 912 | auto *PN = cast<PHINode>(PhiScev->getValue()); |
| 913 | assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); |
| 914 | const Loop *L = AR->getLoop(); |
| 915 | |
| 916 | // Find any cast instructions that participate in the def-use chain of |
| 917 | // PhiScev in the loop. |
| 918 | // FORNOW/TODO: We currently expect the def-use chain to include only |
| 919 | // two-operand instructions, where one of the operands is an invariant. |
| 920 | // createAddRecFromPHIWithCasts() currently does not support anything more |
| 921 | // involved than that, so we keep the search simple. This can be |
| 922 | // extended/generalized as needed. |
| 923 | |
| 924 | auto getDef = [&](const Value *Val) -> Value * { |
| 925 | const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); |
| 926 | if (!BinOp) |
| 927 | return nullptr; |
| 928 | Value *Op0 = BinOp->getOperand(0); |
| 929 | Value *Op1 = BinOp->getOperand(1); |
| 930 | Value *Def = nullptr; |
| 931 | if (L->isLoopInvariant(Op0)) |
| 932 | Def = Op1; |
| 933 | else if (L->isLoopInvariant(Op1)) |
| 934 | Def = Op0; |
| 935 | return Def; |
| 936 | }; |
| 937 | |
| 938 | // Look for the instruction that defines the induction via the |
| 939 | // loop backedge. |
| 940 | BasicBlock *Latch = L->getLoopLatch(); |
| 941 | if (!Latch) |
| 942 | return false; |
| 943 | Value *Val = PN->getIncomingValueForBlock(Latch); |
| 944 | if (!Val) |
| 945 | return false; |
| 946 | |
| 947 | // Follow the def-use chain until the induction phi is reached. |
| 948 | // If on the way we encounter a Value that has the same SCEV Expr as the |
| 949 | // phi node, we can consider the instructions we visit from that point |
| 950 | // as part of the cast-sequence that can be ignored. |
| 951 | bool InCastSequence = false; |
| 952 | auto *Inst = dyn_cast<Instruction>(Val); |
| 953 | while (Val != PN) { |
| 954 | // If we encountered a phi node other than PN, or if we left the loop, |
| 955 | // we bail out. |
| 956 | if (!Inst || !L->contains(Inst)) { |
| 957 | return false; |
| 958 | } |
| 959 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); |
| 960 | if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) |
| 961 | InCastSequence = true; |
| 962 | if (InCastSequence) { |
| 963 | // Only the last instruction in the cast sequence is expected to have |
| 964 | // uses outside the induction def-use chain. |
| 965 | if (!CastInsts.empty()) |
| 966 | if (!Inst->hasOneUse()) |
| 967 | return false; |
| 968 | CastInsts.push_back(Inst); |
| 969 | } |
| 970 | Val = getDef(Val); |
| 971 | if (!Val) |
| 972 | return false; |
| 973 | Inst = dyn_cast<Instruction>(Val); |
| 974 | } |
| 975 | |
| 976 | return InCastSequence; |
| 977 | } |
| 978 | |
| 979 | bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, |
| 980 | PredicatedScalarEvolution &PSE, |
| 981 | InductionDescriptor &D, bool Assume) { |
| 982 | Type *PhiTy = Phi->getType(); |
| 983 | |
| 984 | // Handle integer and pointer inductions variables. |
| 985 | // Now we handle also FP induction but not trying to make a |
| 986 | // recurrent expression from the PHI node in-place. |
| 987 | |
| 988 | if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && |
| 989 | !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) |
| 990 | return false; |
| 991 | |
| 992 | if (PhiTy->isFloatingPointTy()) |
| 993 | return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); |
| 994 | |
| 995 | const SCEV *PhiScev = PSE.getSCEV(Phi); |
| 996 | const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); |
| 997 | |
| 998 | // We need this expression to be an AddRecExpr. |
| 999 | if (Assume && !AR) |
| 1000 | AR = PSE.getAsAddRec(Phi); |
| 1001 | |
| 1002 | if (!AR) { |
| 1003 | LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); |
| 1004 | return false; |
| 1005 | } |
| 1006 | |
| 1007 | // Record any Cast instructions that participate in the induction update |
| 1008 | const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); |
| 1009 | // If we started from an UnknownSCEV, and managed to build an addRecurrence |
| 1010 | // only after enabling Assume with PSCEV, this means we may have encountered |
| 1011 | // cast instructions that required adding a runtime check in order to |
Hiroshi Inoue | 02a2bb2 | 2019-02-05 08:30:48 +0000 | [diff] [blame^] | 1012 | // guarantee the correctness of the AddRecurrence respresentation of the |
Vikram TV | 7e98d69 | 2018-09-12 01:59:43 +0000 | [diff] [blame] | 1013 | // induction. |
| 1014 | if (PhiScev != AR && SymbolicPhi) { |
| 1015 | SmallVector<Instruction *, 2> Casts; |
| 1016 | if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) |
| 1017 | return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); |
| 1018 | } |
| 1019 | |
| 1020 | return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); |
| 1021 | } |
| 1022 | |
| 1023 | bool InductionDescriptor::isInductionPHI( |
| 1024 | PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, |
| 1025 | InductionDescriptor &D, const SCEV *Expr, |
| 1026 | SmallVectorImpl<Instruction *> *CastsToIgnore) { |
| 1027 | Type *PhiTy = Phi->getType(); |
| 1028 | // We only handle integer and pointer inductions variables. |
| 1029 | if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) |
| 1030 | return false; |
| 1031 | |
| 1032 | // Check that the PHI is consecutive. |
| 1033 | const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); |
| 1034 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); |
| 1035 | |
| 1036 | if (!AR) { |
| 1037 | LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); |
| 1038 | return false; |
| 1039 | } |
| 1040 | |
| 1041 | if (AR->getLoop() != TheLoop) { |
| 1042 | // FIXME: We should treat this as a uniform. Unfortunately, we |
| 1043 | // don't currently know how to handled uniform PHIs. |
| 1044 | LLVM_DEBUG( |
| 1045 | dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); |
| 1046 | return false; |
| 1047 | } |
| 1048 | |
| 1049 | Value *StartValue = |
| 1050 | Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); |
| 1051 | const SCEV *Step = AR->getStepRecurrence(*SE); |
| 1052 | // Calculate the pointer stride and check if it is consecutive. |
| 1053 | // The stride may be a constant or a loop invariant integer value. |
| 1054 | const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); |
| 1055 | if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) |
| 1056 | return false; |
| 1057 | |
| 1058 | if (PhiTy->isIntegerTy()) { |
| 1059 | D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/nullptr, |
| 1060 | CastsToIgnore); |
| 1061 | return true; |
| 1062 | } |
| 1063 | |
| 1064 | assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); |
| 1065 | // Pointer induction should be a constant. |
| 1066 | if (!ConstStep) |
| 1067 | return false; |
| 1068 | |
| 1069 | ConstantInt *CV = ConstStep->getValue(); |
| 1070 | Type *PointerElementType = PhiTy->getPointerElementType(); |
| 1071 | // The pointer stride cannot be determined if the pointer element type is not |
| 1072 | // sized. |
| 1073 | if (!PointerElementType->isSized()) |
| 1074 | return false; |
| 1075 | |
| 1076 | const DataLayout &DL = Phi->getModule()->getDataLayout(); |
| 1077 | int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); |
| 1078 | if (!Size) |
| 1079 | return false; |
| 1080 | |
| 1081 | int64_t CVSize = CV->getSExtValue(); |
| 1082 | if (CVSize % Size) |
| 1083 | return false; |
| 1084 | auto *StepValue = |
| 1085 | SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); |
| 1086 | D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); |
| 1087 | return true; |
| 1088 | } |