blob: e8b8785afb4339079bd6c3b7cf91d616507734ee [file] [log] [blame]
Chris Lattner3d874ae2004-01-09 06:22:34 +00001//===-- InstrSelectionSupport.cpp -----------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Target-independent instruction selection code. See SparcInstrSelection.cpp
11// for usage.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/InstrSelectionSupport.h"
16#include "llvm/CodeGen/InstrSelection.h"
17#include "llvm/CodeGen/MachineInstrAnnot.h"
18#include "llvm/CodeGen/MachineCodeForInstruction.h"
19#include "llvm/CodeGen/InstrForest.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetRegInfo.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Constants.h"
24#include "llvm/BasicBlock.h"
25#include "llvm/DerivedTypes.h"
26#include "../SparcInstrSelectionSupport.h"
27
28namespace llvm {
29
30// Generate code to load the constant into a TmpInstruction (virtual reg) and
31// returns the virtual register.
32//
33static TmpInstruction*
34InsertCodeToLoadConstant(Function *F,
35 Value* opValue,
36 Instruction* vmInstr,
37 std::vector<MachineInstr*>& loadConstVec,
38 TargetMachine& target)
39{
40 // Create a tmp virtual register to hold the constant.
41 MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
42 TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue);
43
44 target.getInstrInfo().CreateCodeToLoadConst(target, F, opValue, tmpReg,
45 loadConstVec, mcfi);
46
47 // Record the mapping from the tmp VM instruction to machine instruction.
48 // Do this for all machine instructions that were not mapped to any
49 // other temp values created by
50 // tmpReg->addMachineInstruction(loadConstVec.back());
51
52 return tmpReg;
53}
54
55
56MachineOperand::MachineOperandType
57ChooseRegOrImmed(int64_t intValue,
58 bool isSigned,
59 MachineOpCode opCode,
60 const TargetMachine& target,
61 bool canUseImmed,
62 unsigned int& getMachineRegNum,
63 int64_t& getImmedValue)
64{
65 MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister;
66 getMachineRegNum = 0;
67 getImmedValue = 0;
68
69 if (canUseImmed &&
70 target.getInstrInfo().constantFitsInImmedField(opCode, intValue)) {
71 opType = isSigned? MachineOperand::MO_SignExtendedImmed
72 : MachineOperand::MO_UnextendedImmed;
73 getImmedValue = intValue;
74 } else if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0) {
75 opType = MachineOperand::MO_MachineRegister;
76 getMachineRegNum = target.getRegInfo().getZeroRegNum();
77 }
78
79 return opType;
80}
81
82
83MachineOperand::MachineOperandType
84ChooseRegOrImmed(Value* val,
85 MachineOpCode opCode,
86 const TargetMachine& target,
87 bool canUseImmed,
88 unsigned int& getMachineRegNum,
89 int64_t& getImmedValue)
90{
91 getMachineRegNum = 0;
92 getImmedValue = 0;
93
94 // To use reg or immed, constant needs to be integer, bool, or a NULL pointer
95 // TargetInstrInfo::ConvertConstantToIntType() does the right conversions:
96 bool isValidConstant;
97 uint64_t valueToUse =
98 target.getInstrInfo().ConvertConstantToIntType(target, val, val->getType(),
99 isValidConstant);
100 if (! isValidConstant)
101 return MachineOperand::MO_VirtualRegister;
102
103 // Now check if the constant value fits in the IMMED field.
104 //
105 return ChooseRegOrImmed((int64_t) valueToUse, val->getType()->isSigned(),
106 opCode, target, canUseImmed,
107 getMachineRegNum, getImmedValue);
108}
109
110//---------------------------------------------------------------------------
111// Function: FixConstantOperandsForInstr
112//
113// Purpose:
114// Special handling for constant operands of a machine instruction
115// -- if the constant is 0, use the hardwired 0 register, if any;
116// -- if the constant fits in the IMMEDIATE field, use that field;
117// -- else create instructions to put the constant into a register, either
118// directly or by loading explicitly from the constant pool.
119//
120// In the first 2 cases, the operand of `minstr' is modified in place.
121// Returns a vector of machine instructions generated for operands that
122// fall under case 3; these must be inserted before `minstr'.
123//---------------------------------------------------------------------------
124
125std::vector<MachineInstr*>
126FixConstantOperandsForInstr(Instruction* vmInstr,
127 MachineInstr* minstr,
128 TargetMachine& target)
129{
130 std::vector<MachineInstr*> MVec;
131
132 MachineOpCode opCode = minstr->getOpCode();
133 const TargetInstrInfo& instrInfo = target.getInstrInfo();
134 int resultPos = instrInfo.getResultPos(opCode);
135 int immedPos = instrInfo.getImmedConstantPos(opCode);
136
137 Function *F = vmInstr->getParent()->getParent();
138
139 for (unsigned op=0; op < minstr->getNumOperands(); op++)
140 {
141 const MachineOperand& mop = minstr->getOperand(op);
142
143 // Skip the result position, preallocated machine registers, or operands
144 // that cannot be constants (CC regs or PC-relative displacements)
145 if (resultPos == (int)op ||
146 mop.getType() == MachineOperand::MO_MachineRegister ||
147 mop.getType() == MachineOperand::MO_CCRegister ||
148 mop.getType() == MachineOperand::MO_PCRelativeDisp)
149 continue;
150
151 bool constantThatMustBeLoaded = false;
152 unsigned int machineRegNum = 0;
153 int64_t immedValue = 0;
154 Value* opValue = NULL;
155 MachineOperand::MachineOperandType opType =
156 MachineOperand::MO_VirtualRegister;
157
158 // Operand may be a virtual register or a compile-time constant
159 if (mop.getType() == MachineOperand::MO_VirtualRegister) {
160 assert(mop.getVRegValue() != NULL);
161 opValue = mop.getVRegValue();
162 if (Constant *opConst = dyn_cast<Constant>(opValue)) {
163 opType = ChooseRegOrImmed(opConst, opCode, target,
164 (immedPos == (int)op), machineRegNum,
165 immedValue);
166 if (opType == MachineOperand::MO_VirtualRegister)
167 constantThatMustBeLoaded = true;
168 }
169 } else {
170 //
171 // If the operand is from the constant pool, don't try to change it.
172 //
173 if (mop.getType() == MachineOperand::MO_ConstantPoolIndex) {
174 continue;
175 }
176 assert(mop.isImmediate());
177 bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
178
179 // Bit-selection flags indicate an instruction that is extracting
180 // bits from its operand so ignore this even if it is a big constant.
181 if (mop.isHiBits32() || mop.isLoBits32() ||
182 mop.isHiBits64() || mop.isLoBits64())
183 continue;
184
185 opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
186 opCode, target, (immedPos == (int)op),
187 machineRegNum, immedValue);
188
189 if (opType == MachineOperand::MO_SignExtendedImmed ||
190 opType == MachineOperand::MO_UnextendedImmed) {
191 // The optype is an immediate value
192 // This means we need to change the opcode, e.g. ADDr -> ADDi
193 unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
194 minstr->setOpcode(newOpcode);
195 }
196
197 if (opType == mop.getType())
198 continue; // no change: this is the most common case
199
200 if (opType == MachineOperand::MO_VirtualRegister) {
201 constantThatMustBeLoaded = true;
202 opValue = isSigned
203 ? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
204 : (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
205 }
206 }
207
208 if (opType == MachineOperand::MO_MachineRegister)
209 minstr->SetMachineOperandReg(op, machineRegNum);
210 else if (opType == MachineOperand::MO_SignExtendedImmed ||
211 opType == MachineOperand::MO_UnextendedImmed) {
212 minstr->SetMachineOperandConst(op, opType, immedValue);
213 // The optype is or has become an immediate
214 // This means we need to change the opcode, e.g. ADDr -> ADDi
215 unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
216 minstr->setOpcode(newOpcode);
217 } else if (constantThatMustBeLoaded ||
218 (opValue && isa<GlobalValue>(opValue)))
219 { // opValue is a constant that must be explicitly loaded into a reg
220 assert(opValue);
221 TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
222 MVec, target);
223 minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
224 tmpReg);
225 }
226 }
227
228 // Also, check for implicit operands used by the machine instruction
229 // (no need to check those defined since they cannot be constants).
230 // These include:
231 // -- arguments to a Call
232 // -- return value of a Return
233 // Any such operand that is a constant value needs to be fixed also.
234 // The current instructions with implicit refs (viz., Call and Return)
235 // have no immediate fields, so the constant always needs to be loaded
236 // into a register.
237 //
238 bool isCall = instrInfo.isCall(opCode);
239 unsigned lastCallArgNum = 0; // unused if not a call
240 CallArgsDescriptor* argDesc = NULL; // unused if not a call
241 if (isCall)
242 argDesc = CallArgsDescriptor::get(minstr);
243
244 for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
245 if (isa<Constant>(minstr->getImplicitRef(i)) ||
246 isa<GlobalValue>(minstr->getImplicitRef(i)))
247 {
248 Value* oldVal = minstr->getImplicitRef(i);
249 TmpInstruction* tmpReg =
250 InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target);
251 minstr->setImplicitRef(i, tmpReg);
252
253 if (isCall) {
254 // find and replace the argument in the CallArgsDescriptor
255 unsigned i=lastCallArgNum;
256 while (argDesc->getArgInfo(i).getArgVal() != oldVal)
257 ++i;
258 assert(i < argDesc->getNumArgs() &&
259 "Constant operands to a call *must* be in the arg list");
260 lastCallArgNum = i;
261 argDesc->getArgInfo(i).replaceArgVal(tmpReg);
262 }
263 }
264
265 return MVec;
266}
267
268} // End llvm namespace