blob: b63ec2772e4db480948a36e36cb1251102f84314 [file] [log] [blame]
Sebastian Pop59b61b92012-10-11 07:32:34 +00001//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an (incomplete) implementation of the approach
12// described in
13//
14// Practical Dependence Testing
15// Goff, Kennedy, Tseng
16// PLDI 1991
17//
18// There's a single entry point that analyzes the dependence between a pair
19// of memory references in a function, returning either NULL, for no dependence,
20// or a more-or-less detailed description of the dependence between them.
21//
22// Currently, the implementation cannot propagate constraints between
23// coupled RDIV subscripts and lacks a multi-subscript MIV test.
24// Both of these are conservative weaknesses;
25// that is, not a source of correctness problems.
26//
Sebastian Popbf6e1c22018-03-06 21:55:59 +000027// Since Clang linearizes some array subscripts, the dependence
Sebastian Pop7ee14722013-11-13 22:37:58 +000028// analysis is using SCEV->delinearize to recover the representation of multiple
29// subscripts, and thus avoid the more expensive and less precise MIV tests. The
30// delinearization is controlled by the flag -da-delinearize.
Sebastian Pop59b61b92012-10-11 07:32:34 +000031//
32// We should pay some careful attention to the possibility of integer overflow
33// in the implementation of the various tests. This could happen with Add,
34// Subtract, or Multiply, with both APInt's and SCEV's.
35//
36// Some non-linear subscript pairs can be handled by the GCD test
37// (and perhaps other tests).
38// Should explore how often these things occur.
39//
40// Finally, it seems like certain test cases expose weaknesses in the SCEV
41// simplification, especially in the handling of sign and zero extensions.
42// It could be useful to spend time exploring these.
43//
44// Please note that this is work in progress and the interface is subject to
45// change.
46//
47//===----------------------------------------------------------------------===//
48// //
49// In memory of Ken Kennedy, 1945 - 2007 //
50// //
51//===----------------------------------------------------------------------===//
52
Sebastian Pop59b61b92012-10-11 07:32:34 +000053#include "llvm/Analysis/DependenceAnalysis.h"
Benjamin Kramer0a446fd2015-03-01 21:28:53 +000054#include "llvm/ADT/STLExtras.h"
Sebastian Pop59b61b92012-10-11 07:32:34 +000055#include "llvm/ADT/Statistic.h"
Benjamin Kramer71a35122012-10-25 16:15:22 +000056#include "llvm/Analysis/AliasAnalysis.h"
57#include "llvm/Analysis/LoopInfo.h"
Benjamin Kramer71a35122012-10-25 16:15:22 +000058#include "llvm/Analysis/ScalarEvolution.h"
59#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000060#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth83948572014-03-04 10:30:26 +000061#include "llvm/IR/InstIterator.h"
Mehdi Aminia28d91d2015-03-10 02:37:25 +000062#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000063#include "llvm/IR/Operator.h"
Sebastian Popc62c6792013-11-12 22:47:20 +000064#include "llvm/Support/CommandLine.h"
Sebastian Pop59b61b92012-10-11 07:32:34 +000065#include "llvm/Support/Debug.h"
66#include "llvm/Support/ErrorHandling.h"
Benjamin Kramer71a35122012-10-25 16:15:22 +000067#include "llvm/Support/raw_ostream.h"
Sebastian Pop59b61b92012-10-11 07:32:34 +000068
69using namespace llvm;
70
Chandler Carruthf1221bd2014-04-22 02:48:03 +000071#define DEBUG_TYPE "da"
72
Sebastian Pop59b61b92012-10-11 07:32:34 +000073//===----------------------------------------------------------------------===//
74// statistics
75
76STATISTIC(TotalArrayPairs, "Array pairs tested");
77STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
78STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
79STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
80STATISTIC(ZIVapplications, "ZIV applications");
81STATISTIC(ZIVindependence, "ZIV independence");
82STATISTIC(StrongSIVapplications, "Strong SIV applications");
83STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
84STATISTIC(StrongSIVindependence, "Strong SIV independence");
85STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
86STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
87STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
88STATISTIC(ExactSIVapplications, "Exact SIV applications");
89STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
90STATISTIC(ExactSIVindependence, "Exact SIV independence");
91STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
92STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
93STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
94STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
95STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
96STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
97STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
98STATISTIC(DeltaApplications, "Delta applications");
99STATISTIC(DeltaSuccesses, "Delta successes");
100STATISTIC(DeltaIndependence, "Delta independence");
101STATISTIC(DeltaPropagations, "Delta propagations");
102STATISTIC(GCDapplications, "GCD applications");
103STATISTIC(GCDsuccesses, "GCD successes");
104STATISTIC(GCDindependence, "GCD independence");
105STATISTIC(BanerjeeApplications, "Banerjee applications");
106STATISTIC(BanerjeeIndependence, "Banerjee independence");
107STATISTIC(BanerjeeSuccesses, "Banerjee successes");
108
Sebastian Popc62c6792013-11-12 22:47:20 +0000109static cl::opt<bool>
110Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
111 cl::desc("Try to delinearize array references."));
112
Sebastian Pop59b61b92012-10-11 07:32:34 +0000113//===----------------------------------------------------------------------===//
114// basics
115
Chandler Carruth49c22192016-05-12 22:19:39 +0000116DependenceAnalysis::Result
117DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
118 auto &AA = FAM.getResult<AAManager>(F);
119 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
120 auto &LI = FAM.getResult<LoopAnalysis>(F);
121 return DependenceInfo(&F, &AA, &SE, &LI);
122}
123
Chandler Carruthdab4eae2016-11-23 17:53:26 +0000124AnalysisKey DependenceAnalysis::Key;
Chandler Carruth49c22192016-05-12 22:19:39 +0000125
126INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
Sebastian Pop59b61b92012-10-11 07:32:34 +0000127 "Dependence Analysis", true, true)
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000128INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000129INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Chandler Carruth7b560d42015-09-09 17:55:00 +0000130INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth49c22192016-05-12 22:19:39 +0000131INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
132 true, true)
Sebastian Pop59b61b92012-10-11 07:32:34 +0000133
Chandler Carruth49c22192016-05-12 22:19:39 +0000134char DependenceAnalysisWrapperPass::ID = 0;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000135
Chandler Carruth49c22192016-05-12 22:19:39 +0000136FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
137 return new DependenceAnalysisWrapperPass();
Sebastian Pop59b61b92012-10-11 07:32:34 +0000138}
139
Chandler Carruth49c22192016-05-12 22:19:39 +0000140bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
141 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
142 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
143 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
144 info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
Sebastian Pop59b61b92012-10-11 07:32:34 +0000145 return false;
146}
147
Chandler Carruth49c22192016-05-12 22:19:39 +0000148DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000149
Chandler Carruth49c22192016-05-12 22:19:39 +0000150void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000151
Chandler Carruth49c22192016-05-12 22:19:39 +0000152void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000153 AU.setPreservesAll();
Chandler Carruth7b560d42015-09-09 17:55:00 +0000154 AU.addRequiredTransitive<AAResultsWrapperPass>();
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000155 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000156 AU.addRequiredTransitive<LoopInfoWrapperPass>();
Sebastian Pop59b61b92012-10-11 07:32:34 +0000157}
158
159
160// Used to test the dependence analyzer.
Benjamin Kramer3eb15632012-11-13 12:12:02 +0000161// Looks through the function, noting loads and stores.
162// Calls depends() on every possible pair and prints out the result.
Sebastian Pop59b61b92012-10-11 07:32:34 +0000163// Ignores all other instructions.
Chandler Carruth49c22192016-05-12 22:19:39 +0000164static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
165 auto *F = DA->getFunction();
166 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
167 ++SrcI) {
Benjamin Kramer3eb15632012-11-13 12:12:02 +0000168 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000169 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
170 DstI != DstE; ++DstI) {
Benjamin Kramer3eb15632012-11-13 12:12:02 +0000171 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000172 OS << "da analyze - ";
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +0000173 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000174 D->dump(OS);
175 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
176 if (D->isSplitable(Level)) {
177 OS << "da analyze - split level = " << Level;
Dylan Noblesmithd96ce662014-08-25 00:28:35 +0000178 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
Sebastian Pop59b61b92012-10-11 07:32:34 +0000179 OS << "!\n";
180 }
181 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000182 }
183 else
184 OS << "none!\n";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000185 }
186 }
187 }
188 }
189}
190
Chandler Carruth49c22192016-05-12 22:19:39 +0000191void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
192 const Module *) const {
193 dumpExampleDependence(OS, info.get());
Sebastian Pop59b61b92012-10-11 07:32:34 +0000194}
195
196//===----------------------------------------------------------------------===//
197// Dependence methods
198
199// Returns true if this is an input dependence.
200bool Dependence::isInput() const {
201 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
202}
203
204
205// Returns true if this is an output dependence.
206bool Dependence::isOutput() const {
207 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
208}
209
210
211// Returns true if this is an flow (aka true) dependence.
212bool Dependence::isFlow() const {
213 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
214}
215
216
217// Returns true if this is an anti dependence.
218bool Dependence::isAnti() const {
219 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
220}
221
222
223// Returns true if a particular level is scalar; that is,
224// if no subscript in the source or destination mention the induction
225// variable associated with the loop at this level.
226// Leave this out of line, so it will serve as a virtual method anchor
227bool Dependence::isScalar(unsigned level) const {
228 return false;
229}
230
231
232//===----------------------------------------------------------------------===//
233// FullDependence methods
234
NAKAMURA Takumi478559a2015-03-05 01:25:19 +0000235FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
Sebastian Pop59b61b92012-10-11 07:32:34 +0000236 bool PossiblyLoopIndependent,
NAKAMURA Takumi478559a2015-03-05 01:25:19 +0000237 unsigned CommonLevels)
238 : Dependence(Source, Destination), Levels(CommonLevels),
239 LoopIndependent(PossiblyLoopIndependent) {
NAKAMURA Takumie110d642015-03-05 01:25:06 +0000240 Consistent = true;
David Blaikie47039dc2015-07-31 21:37:09 +0000241 if (CommonLevels)
242 DV = make_unique<DVEntry[]>(CommonLevels);
NAKAMURA Takumie110d642015-03-05 01:25:06 +0000243}
Sebastian Pop59b61b92012-10-11 07:32:34 +0000244
245// The rest are simple getters that hide the implementation.
246
247// getDirection - Returns the direction associated with a particular level.
248unsigned FullDependence::getDirection(unsigned Level) const {
249 assert(0 < Level && Level <= Levels && "Level out of range");
250 return DV[Level - 1].Direction;
251}
252
253
254// Returns the distance (or NULL) associated with a particular level.
255const SCEV *FullDependence::getDistance(unsigned Level) const {
256 assert(0 < Level && Level <= Levels && "Level out of range");
257 return DV[Level - 1].Distance;
258}
259
260
261// Returns true if a particular level is scalar; that is,
262// if no subscript in the source or destination mention the induction
263// variable associated with the loop at this level.
264bool FullDependence::isScalar(unsigned Level) const {
265 assert(0 < Level && Level <= Levels && "Level out of range");
266 return DV[Level - 1].Scalar;
267}
268
269
270// Returns true if peeling the first iteration from this loop
271// will break this dependence.
272bool FullDependence::isPeelFirst(unsigned Level) const {
273 assert(0 < Level && Level <= Levels && "Level out of range");
274 return DV[Level - 1].PeelFirst;
275}
276
277
278// Returns true if peeling the last iteration from this loop
279// will break this dependence.
280bool FullDependence::isPeelLast(unsigned Level) const {
281 assert(0 < Level && Level <= Levels && "Level out of range");
282 return DV[Level - 1].PeelLast;
283}
284
285
286// Returns true if splitting this loop will break the dependence.
287bool FullDependence::isSplitable(unsigned Level) const {
288 assert(0 < Level && Level <= Levels && "Level out of range");
289 return DV[Level - 1].Splitable;
290}
291
292
293//===----------------------------------------------------------------------===//
Chandler Carruth49c22192016-05-12 22:19:39 +0000294// DependenceInfo::Constraint methods
Sebastian Pop59b61b92012-10-11 07:32:34 +0000295
296// If constraint is a point <X, Y>, returns X.
297// Otherwise assert.
Chandler Carruth49c22192016-05-12 22:19:39 +0000298const SCEV *DependenceInfo::Constraint::getX() const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000299 assert(Kind == Point && "Kind should be Point");
300 return A;
301}
302
303
304// If constraint is a point <X, Y>, returns Y.
305// Otherwise assert.
Chandler Carruth49c22192016-05-12 22:19:39 +0000306const SCEV *DependenceInfo::Constraint::getY() const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000307 assert(Kind == Point && "Kind should be Point");
308 return B;
309}
310
311
312// If constraint is a line AX + BY = C, returns A.
313// Otherwise assert.
Chandler Carruth49c22192016-05-12 22:19:39 +0000314const SCEV *DependenceInfo::Constraint::getA() const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000315 assert((Kind == Line || Kind == Distance) &&
316 "Kind should be Line (or Distance)");
317 return A;
318}
319
320
321// If constraint is a line AX + BY = C, returns B.
322// Otherwise assert.
Chandler Carruth49c22192016-05-12 22:19:39 +0000323const SCEV *DependenceInfo::Constraint::getB() const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000324 assert((Kind == Line || Kind == Distance) &&
325 "Kind should be Line (or Distance)");
326 return B;
327}
328
329
330// If constraint is a line AX + BY = C, returns C.
331// Otherwise assert.
Chandler Carruth49c22192016-05-12 22:19:39 +0000332const SCEV *DependenceInfo::Constraint::getC() const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000333 assert((Kind == Line || Kind == Distance) &&
334 "Kind should be Line (or Distance)");
335 return C;
336}
337
338
339// If constraint is a distance, returns D.
340// Otherwise assert.
Chandler Carruth49c22192016-05-12 22:19:39 +0000341const SCEV *DependenceInfo::Constraint::getD() const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000342 assert(Kind == Distance && "Kind should be Distance");
343 return SE->getNegativeSCEV(C);
344}
345
346
347// Returns the loop associated with this constraint.
Chandler Carruth49c22192016-05-12 22:19:39 +0000348const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000349 assert((Kind == Distance || Kind == Line || Kind == Point) &&
350 "Kind should be Distance, Line, or Point");
351 return AssociatedLoop;
352}
353
Chandler Carruth49c22192016-05-12 22:19:39 +0000354void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
355 const Loop *CurLoop) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000356 Kind = Point;
357 A = X;
358 B = Y;
359 AssociatedLoop = CurLoop;
360}
361
Chandler Carruth49c22192016-05-12 22:19:39 +0000362void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
363 const SCEV *CC, const Loop *CurLoop) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000364 Kind = Line;
365 A = AA;
366 B = BB;
367 C = CC;
368 AssociatedLoop = CurLoop;
369}
370
Chandler Carruth49c22192016-05-12 22:19:39 +0000371void DependenceInfo::Constraint::setDistance(const SCEV *D,
372 const Loop *CurLoop) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000373 Kind = Distance;
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000374 A = SE->getOne(D->getType());
Sebastian Pop59b61b92012-10-11 07:32:34 +0000375 B = SE->getNegativeSCEV(A);
376 C = SE->getNegativeSCEV(D);
377 AssociatedLoop = CurLoop;
378}
379
Chandler Carruth49c22192016-05-12 22:19:39 +0000380void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000381
Chandler Carruth49c22192016-05-12 22:19:39 +0000382void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000383 SE = NewSE;
384 Kind = Any;
385}
386
Aaron Ballman615eb472017-10-15 14:32:27 +0000387#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Sebastian Pop59b61b92012-10-11 07:32:34 +0000388// For debugging purposes. Dumps the constraint out to OS.
Matthias Braun8c209aa2017-01-28 02:02:38 +0000389LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000390 if (isEmpty())
391 OS << " Empty\n";
392 else if (isAny())
393 OS << " Any\n";
394 else if (isPoint())
395 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
396 else if (isDistance())
397 OS << " Distance is " << *getD() <<
398 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
399 else if (isLine())
400 OS << " Line is " << *getA() << "*X + " <<
401 *getB() << "*Y = " << *getC() << "\n";
402 else
403 llvm_unreachable("unknown constraint type in Constraint::dump");
404}
Matthias Braun8c209aa2017-01-28 02:02:38 +0000405#endif
Sebastian Pop59b61b92012-10-11 07:32:34 +0000406
407
408// Updates X with the intersection
409// of the Constraints X and Y. Returns true if X has changed.
410// Corresponds to Figure 4 from the paper
411//
412// Practical Dependence Testing
413// Goff, Kennedy, Tseng
414// PLDI 1991
Chandler Carruth49c22192016-05-12 22:19:39 +0000415bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000416 ++DeltaApplications;
417 DEBUG(dbgs() << "\tintersect constraints\n");
418 DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
419 DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
420 assert(!Y->isPoint() && "Y must not be a Point");
421 if (X->isAny()) {
422 if (Y->isAny())
423 return false;
424 *X = *Y;
425 return true;
426 }
427 if (X->isEmpty())
428 return false;
429 if (Y->isEmpty()) {
430 X->setEmpty();
431 return true;
432 }
433
434 if (X->isDistance() && Y->isDistance()) {
435 DEBUG(dbgs() << "\t intersect 2 distances\n");
436 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
437 return false;
438 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
439 X->setEmpty();
440 ++DeltaSuccesses;
441 return true;
442 }
443 // Hmmm, interesting situation.
444 // I guess if either is constant, keep it and ignore the other.
445 if (isa<SCEVConstant>(Y->getD())) {
446 *X = *Y;
447 return true;
448 }
449 return false;
450 }
451
452 // At this point, the pseudo-code in Figure 4 of the paper
453 // checks if (X->isPoint() && Y->isPoint()).
454 // This case can't occur in our implementation,
455 // since a Point can only arise as the result of intersecting
456 // two Line constraints, and the right-hand value, Y, is never
457 // the result of an intersection.
458 assert(!(X->isPoint() && Y->isPoint()) &&
459 "We shouldn't ever see X->isPoint() && Y->isPoint()");
460
461 if (X->isLine() && Y->isLine()) {
462 DEBUG(dbgs() << "\t intersect 2 lines\n");
463 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
464 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
465 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
466 // slopes are equal, so lines are parallel
467 DEBUG(dbgs() << "\t\tsame slope\n");
468 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
469 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
470 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
471 return false;
472 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
473 X->setEmpty();
474 ++DeltaSuccesses;
475 return true;
476 }
477 return false;
478 }
479 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
480 // slopes differ, so lines intersect
481 DEBUG(dbgs() << "\t\tdifferent slopes\n");
482 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
483 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
484 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
485 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
486 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
487 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
488 const SCEVConstant *C1A2_C2A1 =
489 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
490 const SCEVConstant *C1B2_C2B1 =
491 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
492 const SCEVConstant *A1B2_A2B1 =
493 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
494 const SCEVConstant *A2B1_A1B2 =
495 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
496 if (!C1B2_C2B1 || !C1A2_C2A1 ||
497 !A1B2_A2B1 || !A2B1_A1B2)
498 return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000499 APInt Xtop = C1B2_C2B1->getAPInt();
500 APInt Xbot = A1B2_A2B1->getAPInt();
501 APInt Ytop = C1A2_C2A1->getAPInt();
502 APInt Ybot = A2B1_A1B2->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +0000503 DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
504 DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
505 DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
506 DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
507 APInt Xq = Xtop; // these need to be initialized, even
508 APInt Xr = Xtop; // though they're just going to be overwritten
509 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
510 APInt Yq = Ytop;
Jakub Staszak340c7802013-08-06 16:40:40 +0000511 APInt Yr = Ytop;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000512 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
513 if (Xr != 0 || Yr != 0) {
514 X->setEmpty();
515 ++DeltaSuccesses;
516 return true;
517 }
518 DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
519 if (Xq.slt(0) || Yq.slt(0)) {
520 X->setEmpty();
521 ++DeltaSuccesses;
522 return true;
523 }
524 if (const SCEVConstant *CUB =
525 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +0000526 const APInt &UpperBound = CUB->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +0000527 DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
528 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
529 X->setEmpty();
530 ++DeltaSuccesses;
531 return true;
532 }
533 }
534 X->setPoint(SE->getConstant(Xq),
535 SE->getConstant(Yq),
536 X->getAssociatedLoop());
537 ++DeltaSuccesses;
538 return true;
539 }
540 return false;
541 }
542
543 // if (X->isLine() && Y->isPoint()) This case can't occur.
544 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
545
546 if (X->isPoint() && Y->isLine()) {
547 DEBUG(dbgs() << "\t intersect Point and Line\n");
548 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
549 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
550 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
551 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
552 return false;
553 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
554 X->setEmpty();
555 ++DeltaSuccesses;
556 return true;
557 }
558 return false;
559 }
560
561 llvm_unreachable("shouldn't reach the end of Constraint intersection");
562 return false;
563}
564
565
566//===----------------------------------------------------------------------===//
Chandler Carruth49c22192016-05-12 22:19:39 +0000567// DependenceInfo methods
Sebastian Pop59b61b92012-10-11 07:32:34 +0000568
569// For debugging purposes. Dumps a dependence to OS.
570void Dependence::dump(raw_ostream &OS) const {
571 bool Splitable = false;
572 if (isConfused())
573 OS << "confused";
574 else {
575 if (isConsistent())
576 OS << "consistent ";
577 if (isFlow())
578 OS << "flow";
579 else if (isOutput())
580 OS << "output";
581 else if (isAnti())
582 OS << "anti";
583 else if (isInput())
584 OS << "input";
585 unsigned Levels = getLevels();
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000586 OS << " [";
587 for (unsigned II = 1; II <= Levels; ++II) {
588 if (isSplitable(II))
589 Splitable = true;
590 if (isPeelFirst(II))
591 OS << 'p';
592 const SCEV *Distance = getDistance(II);
593 if (Distance)
594 OS << *Distance;
595 else if (isScalar(II))
596 OS << "S";
597 else {
598 unsigned Direction = getDirection(II);
599 if (Direction == DVEntry::ALL)
600 OS << "*";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000601 else {
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000602 if (Direction & DVEntry::LT)
603 OS << "<";
604 if (Direction & DVEntry::EQ)
605 OS << "=";
606 if (Direction & DVEntry::GT)
607 OS << ">";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000608 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000609 }
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000610 if (isPeelLast(II))
611 OS << 'p';
612 if (II < Levels)
613 OS << " ";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000614 }
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000615 if (isLoopIndependent())
616 OS << "|<";
617 OS << "]";
618 if (Splitable)
619 OS << " splitable";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000620 }
621 OS << "!\n";
622}
623
Chandler Carruthc3f49eb2015-06-22 02:16:51 +0000624static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
625 const DataLayout &DL, const Value *A,
626 const Value *B) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000627 const Value *AObj = GetUnderlyingObject(A, DL);
628 const Value *BObj = GetUnderlyingObject(B, DL);
Chandler Carruth50fee932015-08-06 02:05:46 +0000629 return AA->alias(AObj, DL.getTypeStoreSize(AObj->getType()),
630 BObj, DL.getTypeStoreSize(BObj->getType()));
Sebastian Pop59b61b92012-10-11 07:32:34 +0000631}
632
633
634// Returns true if the load or store can be analyzed. Atomic and volatile
635// operations have properties which this analysis does not understand.
636static
637bool isLoadOrStore(const Instruction *I) {
638 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
639 return LI->isUnordered();
640 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
641 return SI->isUnordered();
642 return false;
643}
644
645
Sebastian Pop59b61b92012-10-11 07:32:34 +0000646// Examines the loop nesting of the Src and Dst
647// instructions and establishes their shared loops. Sets the variables
648// CommonLevels, SrcLevels, and MaxLevels.
649// The source and destination instructions needn't be contained in the same
650// loop. The routine establishNestingLevels finds the level of most deeply
651// nested loop that contains them both, CommonLevels. An instruction that's
652// not contained in a loop is at level = 0. MaxLevels is equal to the level
653// of the source plus the level of the destination, minus CommonLevels.
654// This lets us allocate vectors MaxLevels in length, with room for every
655// distinct loop referenced in both the source and destination subscripts.
656// The variable SrcLevels is the nesting depth of the source instruction.
657// It's used to help calculate distinct loops referenced by the destination.
658// Here's the map from loops to levels:
659// 0 - unused
660// 1 - outermost common loop
661// ... - other common loops
662// CommonLevels - innermost common loop
663// ... - loops containing Src but not Dst
664// SrcLevels - innermost loop containing Src but not Dst
665// ... - loops containing Dst but not Src
666// MaxLevels - innermost loops containing Dst but not Src
667// Consider the follow code fragment:
668// for (a = ...) {
669// for (b = ...) {
670// for (c = ...) {
671// for (d = ...) {
672// A[] = ...;
673// }
674// }
675// for (e = ...) {
676// for (f = ...) {
677// for (g = ...) {
678// ... = A[];
679// }
680// }
681// }
682// }
683// }
684// If we're looking at the possibility of a dependence between the store
685// to A (the Src) and the load from A (the Dst), we'll note that they
686// have 2 loops in common, so CommonLevels will equal 2 and the direction
687// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
688// A map from loop names to loop numbers would look like
689// a - 1
690// b - 2 = CommonLevels
691// c - 3
692// d - 4 = SrcLevels
693// e - 5
694// f - 6
695// g - 7 = MaxLevels
Chandler Carruth49c22192016-05-12 22:19:39 +0000696void DependenceInfo::establishNestingLevels(const Instruction *Src,
697 const Instruction *Dst) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000698 const BasicBlock *SrcBlock = Src->getParent();
699 const BasicBlock *DstBlock = Dst->getParent();
700 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
701 unsigned DstLevel = LI->getLoopDepth(DstBlock);
702 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
703 const Loop *DstLoop = LI->getLoopFor(DstBlock);
704 SrcLevels = SrcLevel;
705 MaxLevels = SrcLevel + DstLevel;
706 while (SrcLevel > DstLevel) {
707 SrcLoop = SrcLoop->getParentLoop();
708 SrcLevel--;
709 }
710 while (DstLevel > SrcLevel) {
711 DstLoop = DstLoop->getParentLoop();
712 DstLevel--;
713 }
714 while (SrcLoop != DstLoop) {
715 SrcLoop = SrcLoop->getParentLoop();
716 DstLoop = DstLoop->getParentLoop();
717 SrcLevel--;
718 }
719 CommonLevels = SrcLevel;
720 MaxLevels -= CommonLevels;
721}
722
723
724// Given one of the loops containing the source, return
725// its level index in our numbering scheme.
Chandler Carruth49c22192016-05-12 22:19:39 +0000726unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000727 return SrcLoop->getLoopDepth();
728}
729
730
731// Given one of the loops containing the destination,
732// return its level index in our numbering scheme.
Chandler Carruth49c22192016-05-12 22:19:39 +0000733unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000734 unsigned D = DstLoop->getLoopDepth();
735 if (D > CommonLevels)
736 return D - CommonLevels + SrcLevels;
737 else
738 return D;
739}
740
741
742// Returns true if Expression is loop invariant in LoopNest.
Chandler Carruth49c22192016-05-12 22:19:39 +0000743bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
744 const Loop *LoopNest) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000745 if (!LoopNest)
746 return true;
747 return SE->isLoopInvariant(Expression, LoopNest) &&
748 isLoopInvariant(Expression, LoopNest->getParentLoop());
749}
750
751
752
753// Finds the set of loops from the LoopNest that
754// have a level <= CommonLevels and are referred to by the SCEV Expression.
Chandler Carruth49c22192016-05-12 22:19:39 +0000755void DependenceInfo::collectCommonLoops(const SCEV *Expression,
756 const Loop *LoopNest,
757 SmallBitVector &Loops) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000758 while (LoopNest) {
759 unsigned Level = LoopNest->getLoopDepth();
760 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
761 Loops.set(Level);
762 LoopNest = LoopNest->getParentLoop();
763 }
764}
765
Chandler Carruth49c22192016-05-12 22:19:39 +0000766void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
Jingyue Wua84feb12015-05-29 16:58:08 +0000767
768 unsigned widestWidthSeen = 0;
769 Type *widestType;
770
771 // Go through each pair and find the widest bit to which we need
772 // to extend all of them.
Benjamin Krameraa209152016-06-26 17:27:42 +0000773 for (Subscript *Pair : Pairs) {
774 const SCEV *Src = Pair->Src;
775 const SCEV *Dst = Pair->Dst;
Jingyue Wua84feb12015-05-29 16:58:08 +0000776 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
777 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
778 if (SrcTy == nullptr || DstTy == nullptr) {
779 assert(SrcTy == DstTy && "This function only unify integer types and "
780 "expect Src and Dst share the same type "
781 "otherwise.");
782 continue;
783 }
784 if (SrcTy->getBitWidth() > widestWidthSeen) {
785 widestWidthSeen = SrcTy->getBitWidth();
786 widestType = SrcTy;
787 }
788 if (DstTy->getBitWidth() > widestWidthSeen) {
789 widestWidthSeen = DstTy->getBitWidth();
790 widestType = DstTy;
791 }
Jingyue Wu0fa125a2014-11-16 16:52:44 +0000792 }
Jingyue Wua84feb12015-05-29 16:58:08 +0000793
794
795 assert(widestWidthSeen > 0);
796
797 // Now extend each pair to the widest seen.
Benjamin Krameraa209152016-06-26 17:27:42 +0000798 for (Subscript *Pair : Pairs) {
799 const SCEV *Src = Pair->Src;
800 const SCEV *Dst = Pair->Dst;
Jingyue Wua84feb12015-05-29 16:58:08 +0000801 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
802 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
803 if (SrcTy == nullptr || DstTy == nullptr) {
804 assert(SrcTy == DstTy && "This function only unify integer types and "
805 "expect Src and Dst share the same type "
806 "otherwise.");
807 continue;
808 }
809 if (SrcTy->getBitWidth() < widestWidthSeen)
810 // Sign-extend Src to widestType
Benjamin Krameraa209152016-06-26 17:27:42 +0000811 Pair->Src = SE->getSignExtendExpr(Src, widestType);
Jingyue Wua84feb12015-05-29 16:58:08 +0000812 if (DstTy->getBitWidth() < widestWidthSeen) {
813 // Sign-extend Dst to widestType
Benjamin Krameraa209152016-06-26 17:27:42 +0000814 Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
Jingyue Wua84feb12015-05-29 16:58:08 +0000815 }
Jingyue Wu0fa125a2014-11-16 16:52:44 +0000816 }
817}
Sebastian Pop59b61b92012-10-11 07:32:34 +0000818
819// removeMatchingExtensions - Examines a subscript pair.
820// If the source and destination are identically sign (or zero)
821// extended, it strips off the extension in an effect to simplify
822// the actual analysis.
Chandler Carruth49c22192016-05-12 22:19:39 +0000823void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000824 const SCEV *Src = Pair->Src;
825 const SCEV *Dst = Pair->Dst;
826 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
827 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
828 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
829 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
Jingyue Wu0fa125a2014-11-16 16:52:44 +0000830 const SCEV *SrcCastOp = SrcCast->getOperand();
831 const SCEV *DstCastOp = DstCast->getOperand();
832 if (SrcCastOp->getType() == DstCastOp->getType()) {
833 Pair->Src = SrcCastOp;
834 Pair->Dst = DstCastOp;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000835 }
836 }
837}
838
839
840// Examine the scev and return true iff it's linear.
841// Collect any loops mentioned in the set of "Loops".
Chandler Carruth49c22192016-05-12 22:19:39 +0000842bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
843 SmallBitVector &Loops) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000844 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
845 if (!AddRec)
846 return isLoopInvariant(Src, LoopNest);
847 const SCEV *Start = AddRec->getStart();
848 const SCEV *Step = AddRec->getStepRecurrence(*SE);
James Molloyc0661ae2015-05-15 12:17:22 +0000849 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
850 if (!isa<SCEVCouldNotCompute>(UB)) {
851 if (SE->getTypeSizeInBits(Start->getType()) <
852 SE->getTypeSizeInBits(UB->getType())) {
853 if (!AddRec->getNoWrapFlags())
854 return false;
855 }
856 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000857 if (!isLoopInvariant(Step, LoopNest))
858 return false;
859 Loops.set(mapSrcLoop(AddRec->getLoop()));
860 return checkSrcSubscript(Start, LoopNest, Loops);
861}
862
863
864
865// Examine the scev and return true iff it's linear.
866// Collect any loops mentioned in the set of "Loops".
Chandler Carruth49c22192016-05-12 22:19:39 +0000867bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
868 SmallBitVector &Loops) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000869 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
870 if (!AddRec)
871 return isLoopInvariant(Dst, LoopNest);
872 const SCEV *Start = AddRec->getStart();
873 const SCEV *Step = AddRec->getStepRecurrence(*SE);
James Molloyc0661ae2015-05-15 12:17:22 +0000874 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
875 if (!isa<SCEVCouldNotCompute>(UB)) {
876 if (SE->getTypeSizeInBits(Start->getType()) <
877 SE->getTypeSizeInBits(UB->getType())) {
878 if (!AddRec->getNoWrapFlags())
879 return false;
880 }
881 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000882 if (!isLoopInvariant(Step, LoopNest))
883 return false;
884 Loops.set(mapDstLoop(AddRec->getLoop()));
885 return checkDstSubscript(Start, LoopNest, Loops);
886}
887
888
889// Examines the subscript pair (the Src and Dst SCEVs)
890// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
891// Collects the associated loops in a set.
Chandler Carruth49c22192016-05-12 22:19:39 +0000892DependenceInfo::Subscript::ClassificationKind
893DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
894 const SCEV *Dst, const Loop *DstLoopNest,
895 SmallBitVector &Loops) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000896 SmallBitVector SrcLoops(MaxLevels + 1);
897 SmallBitVector DstLoops(MaxLevels + 1);
898 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
899 return Subscript::NonLinear;
900 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
901 return Subscript::NonLinear;
902 Loops = SrcLoops;
903 Loops |= DstLoops;
904 unsigned N = Loops.count();
905 if (N == 0)
906 return Subscript::ZIV;
907 if (N == 1)
908 return Subscript::SIV;
909 if (N == 2 && (SrcLoops.count() == 0 ||
910 DstLoops.count() == 0 ||
911 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
912 return Subscript::RDIV;
913 return Subscript::MIV;
914}
915
916
917// A wrapper around SCEV::isKnownPredicate.
918// Looks for cases where we're interested in comparing for equality.
919// If both X and Y have been identically sign or zero extended,
920// it strips off the (confusing) extensions before invoking
921// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
922// will be similarly updated.
923//
924// If SCEV::isKnownPredicate can't prove the predicate,
925// we try simple subtraction, which seems to help in some cases
926// involving symbolics.
Chandler Carruth49c22192016-05-12 22:19:39 +0000927bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
928 const SCEV *Y) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000929 if (Pred == CmpInst::ICMP_EQ ||
930 Pred == CmpInst::ICMP_NE) {
931 if ((isa<SCEVSignExtendExpr>(X) &&
932 isa<SCEVSignExtendExpr>(Y)) ||
933 (isa<SCEVZeroExtendExpr>(X) &&
934 isa<SCEVZeroExtendExpr>(Y))) {
935 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
936 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
937 const SCEV *Xop = CX->getOperand();
938 const SCEV *Yop = CY->getOperand();
939 if (Xop->getType() == Yop->getType()) {
940 X = Xop;
941 Y = Yop;
942 }
943 }
944 }
945 if (SE->isKnownPredicate(Pred, X, Y))
946 return true;
947 // If SE->isKnownPredicate can't prove the condition,
948 // we try the brute-force approach of subtracting
949 // and testing the difference.
950 // By testing with SE->isKnownPredicate first, we avoid
951 // the possibility of overflow when the arguments are constants.
952 const SCEV *Delta = SE->getMinusSCEV(X, Y);
953 switch (Pred) {
954 case CmpInst::ICMP_EQ:
955 return Delta->isZero();
956 case CmpInst::ICMP_NE:
957 return SE->isKnownNonZero(Delta);
958 case CmpInst::ICMP_SGE:
959 return SE->isKnownNonNegative(Delta);
960 case CmpInst::ICMP_SLE:
961 return SE->isKnownNonPositive(Delta);
962 case CmpInst::ICMP_SGT:
963 return SE->isKnownPositive(Delta);
964 case CmpInst::ICMP_SLT:
965 return SE->isKnownNegative(Delta);
966 default:
967 llvm_unreachable("unexpected predicate in isKnownPredicate");
968 }
969}
970
971
972// All subscripts are all the same type.
973// Loop bound may be smaller (e.g., a char).
974// Should zero extend loop bound, since it's always >= 0.
James Molloyc0661ae2015-05-15 12:17:22 +0000975// This routine collects upper bound and extends or truncates if needed.
976// Truncating is safe when subscripts are known not to wrap. Cases without
977// nowrap flags should have been rejected earlier.
Sebastian Pop59b61b92012-10-11 07:32:34 +0000978// Return null if no bound available.
Chandler Carruth49c22192016-05-12 22:19:39 +0000979const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000980 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
981 const SCEV *UB = SE->getBackedgeTakenCount(L);
James Molloyc0661ae2015-05-15 12:17:22 +0000982 return SE->getTruncateOrZeroExtend(UB, T);
Sebastian Pop59b61b92012-10-11 07:32:34 +0000983 }
Craig Topper9f008862014-04-15 04:59:12 +0000984 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000985}
986
987
988// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
989// If the cast fails, returns NULL.
Chandler Carruth49c22192016-05-12 22:19:39 +0000990const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
991 Type *T) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000992 if (const SCEV *UB = collectUpperBound(L, T))
993 return dyn_cast<SCEVConstant>(UB);
Craig Topper9f008862014-04-15 04:59:12 +0000994 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000995}
996
997
998// testZIV -
999// When we have a pair of subscripts of the form [c1] and [c2],
1000// where c1 and c2 are both loop invariant, we attack it using
1001// the ZIV test. Basically, we test by comparing the two values,
1002// but there are actually three possible results:
1003// 1) the values are equal, so there's a dependence
1004// 2) the values are different, so there's no dependence
1005// 3) the values might be equal, so we have to assume a dependence.
1006//
1007// Return true if dependence disproved.
Chandler Carruth49c22192016-05-12 22:19:39 +00001008bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1009 FullDependence &Result) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001010 DEBUG(dbgs() << " src = " << *Src << "\n");
1011 DEBUG(dbgs() << " dst = " << *Dst << "\n");
1012 ++ZIVapplications;
1013 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1014 DEBUG(dbgs() << " provably dependent\n");
1015 return false; // provably dependent
1016 }
1017 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1018 DEBUG(dbgs() << " provably independent\n");
1019 ++ZIVindependence;
1020 return true; // provably independent
1021 }
1022 DEBUG(dbgs() << " possibly dependent\n");
1023 Result.Consistent = false;
1024 return false; // possibly dependent
1025}
1026
1027
1028// strongSIVtest -
1029// From the paper, Practical Dependence Testing, Section 4.2.1
1030//
1031// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1032// where i is an induction variable, c1 and c2 are loop invariant,
1033// and a is a constant, we can solve it exactly using the Strong SIV test.
1034//
1035// Can prove independence. Failing that, can compute distance (and direction).
1036// In the presence of symbolic terms, we can sometimes make progress.
1037//
1038// If there's a dependence,
1039//
1040// c1 + a*i = c2 + a*i'
1041//
1042// The dependence distance is
1043//
1044// d = i' - i = (c1 - c2)/a
1045//
1046// A dependence only exists if d is an integer and abs(d) <= U, where U is the
1047// loop's upper bound. If a dependence exists, the dependence direction is
1048// defined as
1049//
1050// { < if d > 0
1051// direction = { = if d = 0
1052// { > if d < 0
1053//
1054// Return true if dependence disproved.
Chandler Carruth49c22192016-05-12 22:19:39 +00001055bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1056 const SCEV *DstConst, const Loop *CurLoop,
1057 unsigned Level, FullDependence &Result,
1058 Constraint &NewConstraint) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001059 DEBUG(dbgs() << "\tStrong SIV test\n");
1060 DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1061 DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1062 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1063 DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1064 DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1065 DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1066 ++StrongSIVapplications;
1067 assert(0 < Level && Level <= CommonLevels && "level out of range");
1068 Level--;
1069
1070 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1071 DEBUG(dbgs() << "\t Delta = " << *Delta);
1072 DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1073
1074 // check that |Delta| < iteration count
1075 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1076 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1077 DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1078 const SCEV *AbsDelta =
1079 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1080 const SCEV *AbsCoeff =
1081 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1082 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1083 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1084 // Distance greater than trip count - no dependence
1085 ++StrongSIVindependence;
1086 ++StrongSIVsuccesses;
1087 return true;
1088 }
1089 }
1090
1091 // Can we compute distance?
1092 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001093 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1094 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00001095 APInt Distance = ConstDelta; // these need to be initialized
1096 APInt Remainder = ConstDelta;
1097 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1098 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1099 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1100 // Make sure Coeff divides Delta exactly
1101 if (Remainder != 0) {
1102 // Coeff doesn't divide Distance, no dependence
1103 ++StrongSIVindependence;
1104 ++StrongSIVsuccesses;
1105 return true;
1106 }
1107 Result.DV[Level].Distance = SE->getConstant(Distance);
1108 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1109 if (Distance.sgt(0))
1110 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1111 else if (Distance.slt(0))
1112 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1113 else
1114 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1115 ++StrongSIVsuccesses;
1116 }
1117 else if (Delta->isZero()) {
1118 // since 0/X == 0
1119 Result.DV[Level].Distance = Delta;
1120 NewConstraint.setDistance(Delta, CurLoop);
1121 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1122 ++StrongSIVsuccesses;
1123 }
1124 else {
1125 if (Coeff->isOne()) {
1126 DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1127 Result.DV[Level].Distance = Delta; // since X/1 == X
1128 NewConstraint.setDistance(Delta, CurLoop);
1129 }
1130 else {
1131 Result.Consistent = false;
1132 NewConstraint.setLine(Coeff,
1133 SE->getNegativeSCEV(Coeff),
1134 SE->getNegativeSCEV(Delta), CurLoop);
1135 }
1136
1137 // maybe we can get a useful direction
1138 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1139 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1140 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1141 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1142 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1143 // The double negatives above are confusing.
1144 // It helps to read !SE->isKnownNonZero(Delta)
1145 // as "Delta might be Zero"
1146 unsigned NewDirection = Dependence::DVEntry::NONE;
1147 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1148 (DeltaMaybeNegative && CoeffMaybeNegative))
1149 NewDirection = Dependence::DVEntry::LT;
1150 if (DeltaMaybeZero)
1151 NewDirection |= Dependence::DVEntry::EQ;
1152 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1153 (DeltaMaybePositive && CoeffMaybeNegative))
1154 NewDirection |= Dependence::DVEntry::GT;
1155 if (NewDirection < Result.DV[Level].Direction)
1156 ++StrongSIVsuccesses;
1157 Result.DV[Level].Direction &= NewDirection;
1158 }
1159 return false;
1160}
1161
1162
1163// weakCrossingSIVtest -
1164// From the paper, Practical Dependence Testing, Section 4.2.2
1165//
1166// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1167// where i is an induction variable, c1 and c2 are loop invariant,
1168// and a is a constant, we can solve it exactly using the
1169// Weak-Crossing SIV test.
1170//
1171// Given c1 + a*i = c2 - a*i', we can look for the intersection of
1172// the two lines, where i = i', yielding
1173//
1174// c1 + a*i = c2 - a*i
1175// 2a*i = c2 - c1
1176// i = (c2 - c1)/2a
1177//
1178// If i < 0, there is no dependence.
1179// If i > upperbound, there is no dependence.
1180// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1181// If i = upperbound, there's a dependence with distance = 0.
1182// If i is integral, there's a dependence (all directions).
1183// If the non-integer part = 1/2, there's a dependence (<> directions).
1184// Otherwise, there's no dependence.
1185//
1186// Can prove independence. Failing that,
1187// can sometimes refine the directions.
1188// Can determine iteration for splitting.
1189//
1190// Return true if dependence disproved.
Chandler Carruth49c22192016-05-12 22:19:39 +00001191bool DependenceInfo::weakCrossingSIVtest(
1192 const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1193 const Loop *CurLoop, unsigned Level, FullDependence &Result,
1194 Constraint &NewConstraint, const SCEV *&SplitIter) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001195 DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1196 DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1197 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1198 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1199 ++WeakCrossingSIVapplications;
1200 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1201 Level--;
1202 Result.Consistent = false;
1203 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1204 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1205 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1206 if (Delta->isZero()) {
Sebastian Pope96232612012-10-12 02:04:32 +00001207 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1208 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001209 ++WeakCrossingSIVsuccesses;
1210 if (!Result.DV[Level].Direction) {
1211 ++WeakCrossingSIVindependence;
1212 return true;
1213 }
1214 Result.DV[Level].Distance = Delta; // = 0
1215 return false;
1216 }
1217 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1218 if (!ConstCoeff)
1219 return false;
1220
1221 Result.DV[Level].Splitable = true;
1222 if (SE->isKnownNegative(ConstCoeff)) {
1223 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1224 assert(ConstCoeff &&
1225 "dynamic cast of negative of ConstCoeff should yield constant");
1226 Delta = SE->getNegativeSCEV(Delta);
1227 }
1228 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1229
Chandler Carruth49c22192016-05-12 22:19:39 +00001230 // compute SplitIter for use by DependenceInfo::getSplitIteration()
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001231 SplitIter = SE->getUDivExpr(
1232 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1233 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
Sebastian Pop59b61b92012-10-11 07:32:34 +00001234 DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1235
1236 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1237 if (!ConstDelta)
1238 return false;
1239
1240 // We're certain that ConstCoeff > 0; therefore,
1241 // if Delta < 0, then no dependence.
1242 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1243 DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1244 if (SE->isKnownNegative(Delta)) {
1245 // No dependence, Delta < 0
1246 ++WeakCrossingSIVindependence;
1247 ++WeakCrossingSIVsuccesses;
1248 return true;
1249 }
1250
1251 // We're certain that Delta > 0 and ConstCoeff > 0.
1252 // Check Delta/(2*ConstCoeff) against upper loop bound
1253 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1254 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1255 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1256 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1257 ConstantTwo);
1258 DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1259 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1260 // Delta too big, no dependence
1261 ++WeakCrossingSIVindependence;
1262 ++WeakCrossingSIVsuccesses;
1263 return true;
1264 }
1265 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1266 // i = i' = UB
Sebastian Pope96232612012-10-12 02:04:32 +00001267 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1268 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001269 ++WeakCrossingSIVsuccesses;
1270 if (!Result.DV[Level].Direction) {
1271 ++WeakCrossingSIVindependence;
1272 return true;
1273 }
1274 Result.DV[Level].Splitable = false;
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001275 Result.DV[Level].Distance = SE->getZero(Delta->getType());
Sebastian Pop59b61b92012-10-11 07:32:34 +00001276 return false;
1277 }
1278 }
1279
1280 // check that Coeff divides Delta
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001281 APInt APDelta = ConstDelta->getAPInt();
1282 APInt APCoeff = ConstCoeff->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00001283 APInt Distance = APDelta; // these need to be initialzed
1284 APInt Remainder = APDelta;
1285 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1286 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1287 if (Remainder != 0) {
1288 // Coeff doesn't divide Delta, no dependence
1289 ++WeakCrossingSIVindependence;
1290 ++WeakCrossingSIVsuccesses;
1291 return true;
1292 }
1293 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1294
1295 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1296 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1297 Remainder = Distance.srem(Two);
1298 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1299 if (Remainder != 0) {
1300 // Equal direction isn't possible
Sebastian Pope96232612012-10-12 02:04:32 +00001301 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001302 ++WeakCrossingSIVsuccesses;
1303 }
1304 return false;
1305}
1306
1307
1308// Kirch's algorithm, from
1309//
1310// Optimizing Supercompilers for Supercomputers
1311// Michael Wolfe
1312// MIT Press, 1989
1313//
1314// Program 2.1, page 29.
1315// Computes the GCD of AM and BM.
Mingjie Xing9deac1b2014-01-07 01:54:16 +00001316// Also finds a solution to the equation ax - by = gcd(a, b).
1317// Returns true if dependence disproved; i.e., gcd does not divide Delta.
Benjamin Kramerc321e532016-06-08 19:09:22 +00001318static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1319 const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001320 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1321 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1322 APInt G0 = AM.abs();
1323 APInt G1 = BM.abs();
1324 APInt Q = G0; // these need to be initialized
1325 APInt R = G0;
1326 APInt::sdivrem(G0, G1, Q, R);
1327 while (R != 0) {
1328 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1329 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1330 G0 = G1; G1 = R;
1331 APInt::sdivrem(G0, G1, Q, R);
1332 }
1333 G = G1;
1334 DEBUG(dbgs() << "\t GCD = " << G << "\n");
1335 X = AM.slt(0) ? -A1 : A1;
1336 Y = BM.slt(0) ? B1 : -B1;
1337
1338 // make sure gcd divides Delta
1339 R = Delta.srem(G);
1340 if (R != 0)
1341 return true; // gcd doesn't divide Delta, no dependence
1342 Q = Delta.sdiv(G);
1343 X *= Q;
1344 Y *= Q;
1345 return false;
1346}
1347
Benjamin Kramerc321e532016-06-08 19:09:22 +00001348static APInt floorOfQuotient(const APInt &A, const APInt &B) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001349 APInt Q = A; // these need to be initialized
1350 APInt R = A;
1351 APInt::sdivrem(A, B, Q, R);
1352 if (R == 0)
1353 return Q;
1354 if ((A.sgt(0) && B.sgt(0)) ||
1355 (A.slt(0) && B.slt(0)))
1356 return Q;
1357 else
1358 return Q - 1;
1359}
1360
Benjamin Kramerc321e532016-06-08 19:09:22 +00001361static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001362 APInt Q = A; // these need to be initialized
1363 APInt R = A;
1364 APInt::sdivrem(A, B, Q, R);
1365 if (R == 0)
1366 return Q;
1367 if ((A.sgt(0) && B.sgt(0)) ||
1368 (A.slt(0) && B.slt(0)))
1369 return Q + 1;
1370 else
1371 return Q;
1372}
1373
1374
1375static
1376APInt maxAPInt(APInt A, APInt B) {
1377 return A.sgt(B) ? A : B;
1378}
1379
1380
1381static
1382APInt minAPInt(APInt A, APInt B) {
1383 return A.slt(B) ? A : B;
1384}
1385
1386
1387// exactSIVtest -
1388// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1389// where i is an induction variable, c1 and c2 are loop invariant, and a1
1390// and a2 are constant, we can solve it exactly using an algorithm developed
1391// by Banerjee and Wolfe. See Section 2.5.3 in
1392//
1393// Optimizing Supercompilers for Supercomputers
1394// Michael Wolfe
1395// MIT Press, 1989
1396//
1397// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1398// so use them if possible. They're also a bit better with symbolics and,
1399// in the case of the strong SIV test, can compute Distances.
1400//
1401// Return true if dependence disproved.
Chandler Carruth49c22192016-05-12 22:19:39 +00001402bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1403 const SCEV *SrcConst, const SCEV *DstConst,
1404 const Loop *CurLoop, unsigned Level,
1405 FullDependence &Result,
1406 Constraint &NewConstraint) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001407 DEBUG(dbgs() << "\tExact SIV test\n");
1408 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1409 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1410 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1411 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1412 ++ExactSIVapplications;
1413 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1414 Level--;
1415 Result.Consistent = false;
1416 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1417 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1418 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1419 Delta, CurLoop);
1420 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1421 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1422 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1423 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1424 return false;
1425
1426 // find gcd
1427 APInt G, X, Y;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001428 APInt AM = ConstSrcCoeff->getAPInt();
1429 APInt BM = ConstDstCoeff->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00001430 unsigned Bits = AM.getBitWidth();
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001431 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001432 // gcd doesn't divide Delta, no dependence
1433 ++ExactSIVindependence;
1434 ++ExactSIVsuccesses;
1435 return true;
1436 }
1437
1438 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1439
1440 // since SCEV construction normalizes, LM = 0
1441 APInt UM(Bits, 1, true);
1442 bool UMvalid = false;
1443 // UM is perhaps unavailable, let's check
1444 if (const SCEVConstant *CUB =
1445 collectConstantUpperBound(CurLoop, Delta->getType())) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001446 UM = CUB->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00001447 DEBUG(dbgs() << "\t UM = " << UM << "\n");
1448 UMvalid = true;
1449 }
1450
1451 APInt TU(APInt::getSignedMaxValue(Bits));
1452 APInt TL(APInt::getSignedMinValue(Bits));
1453
1454 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1455 APInt TMUL = BM.sdiv(G);
1456 if (TMUL.sgt(0)) {
1457 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1458 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1459 if (UMvalid) {
1460 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1461 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1462 }
1463 }
1464 else {
1465 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1466 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1467 if (UMvalid) {
1468 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1469 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1470 }
1471 }
1472
1473 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1474 TMUL = AM.sdiv(G);
1475 if (TMUL.sgt(0)) {
1476 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1477 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1478 if (UMvalid) {
1479 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1480 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1481 }
1482 }
1483 else {
1484 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1485 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1486 if (UMvalid) {
1487 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1488 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1489 }
1490 }
1491 if (TL.sgt(TU)) {
1492 ++ExactSIVindependence;
1493 ++ExactSIVsuccesses;
1494 return true;
1495 }
1496
1497 // explore directions
1498 unsigned NewDirection = Dependence::DVEntry::NONE;
1499
1500 // less than
1501 APInt SaveTU(TU); // save these
1502 APInt SaveTL(TL);
1503 DEBUG(dbgs() << "\t exploring LT direction\n");
1504 TMUL = AM - BM;
1505 if (TMUL.sgt(0)) {
1506 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1507 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1508 }
1509 else {
1510 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1511 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1512 }
1513 if (TL.sle(TU)) {
1514 NewDirection |= Dependence::DVEntry::LT;
1515 ++ExactSIVsuccesses;
1516 }
1517
1518 // equal
1519 TU = SaveTU; // restore
1520 TL = SaveTL;
1521 DEBUG(dbgs() << "\t exploring EQ direction\n");
1522 if (TMUL.sgt(0)) {
1523 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1524 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1525 }
1526 else {
1527 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1528 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1529 }
1530 TMUL = BM - AM;
1531 if (TMUL.sgt(0)) {
1532 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1533 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1534 }
1535 else {
1536 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1537 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1538 }
1539 if (TL.sle(TU)) {
1540 NewDirection |= Dependence::DVEntry::EQ;
1541 ++ExactSIVsuccesses;
1542 }
1543
1544 // greater than
1545 TU = SaveTU; // restore
1546 TL = SaveTL;
1547 DEBUG(dbgs() << "\t exploring GT direction\n");
1548 if (TMUL.sgt(0)) {
1549 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1550 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1551 }
1552 else {
1553 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1554 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1555 }
1556 if (TL.sle(TU)) {
1557 NewDirection |= Dependence::DVEntry::GT;
1558 ++ExactSIVsuccesses;
1559 }
1560
1561 // finished
1562 Result.DV[Level].Direction &= NewDirection;
1563 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1564 ++ExactSIVindependence;
1565 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1566}
1567
1568
1569
1570// Return true if the divisor evenly divides the dividend.
1571static
1572bool isRemainderZero(const SCEVConstant *Dividend,
1573 const SCEVConstant *Divisor) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001574 const APInt &ConstDividend = Dividend->getAPInt();
1575 const APInt &ConstDivisor = Divisor->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00001576 return ConstDividend.srem(ConstDivisor) == 0;
1577}
1578
1579
1580// weakZeroSrcSIVtest -
1581// From the paper, Practical Dependence Testing, Section 4.2.2
1582//
1583// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1584// where i is an induction variable, c1 and c2 are loop invariant,
1585// and a is a constant, we can solve it exactly using the
1586// Weak-Zero SIV test.
1587//
1588// Given
1589//
1590// c1 = c2 + a*i
1591//
1592// we get
1593//
1594// (c1 - c2)/a = i
1595//
1596// If i is not an integer, there's no dependence.
1597// If i < 0 or > UB, there's no dependence.
1598// If i = 0, the direction is <= and peeling the
1599// 1st iteration will break the dependence.
1600// If i = UB, the direction is >= and peeling the
1601// last iteration will break the dependence.
1602// Otherwise, the direction is *.
1603//
1604// Can prove independence. Failing that, we can sometimes refine
1605// the directions. Can sometimes show that first or last
1606// iteration carries all the dependences (so worth peeling).
1607//
1608// (see also weakZeroDstSIVtest)
1609//
1610// Return true if dependence disproved.
Chandler Carruth49c22192016-05-12 22:19:39 +00001611bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1612 const SCEV *SrcConst,
1613 const SCEV *DstConst,
1614 const Loop *CurLoop, unsigned Level,
1615 FullDependence &Result,
1616 Constraint &NewConstraint) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001617 // For the WeakSIV test, it's possible the loop isn't common to
1618 // the Src and Dst loops. If it isn't, then there's no need to
1619 // record a direction.
1620 DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1621 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1622 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1623 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1624 ++WeakZeroSIVapplications;
1625 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1626 Level--;
1627 Result.Consistent = false;
1628 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001629 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1630 CurLoop);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001631 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1632 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1633 if (Level < CommonLevels) {
1634 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1635 Result.DV[Level].PeelFirst = true;
1636 ++WeakZeroSIVsuccesses;
1637 }
1638 return false; // dependences caused by first iteration
1639 }
1640 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1641 if (!ConstCoeff)
1642 return false;
1643 const SCEV *AbsCoeff =
1644 SE->isKnownNegative(ConstCoeff) ?
1645 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1646 const SCEV *NewDelta =
1647 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1648
1649 // check that Delta/SrcCoeff < iteration count
1650 // really check NewDelta < count*AbsCoeff
1651 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1652 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1653 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1654 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1655 ++WeakZeroSIVindependence;
1656 ++WeakZeroSIVsuccesses;
1657 return true;
1658 }
1659 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1660 // dependences caused by last iteration
1661 if (Level < CommonLevels) {
1662 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1663 Result.DV[Level].PeelLast = true;
1664 ++WeakZeroSIVsuccesses;
1665 }
1666 return false;
1667 }
1668 }
1669
1670 // check that Delta/SrcCoeff >= 0
1671 // really check that NewDelta >= 0
1672 if (SE->isKnownNegative(NewDelta)) {
1673 // No dependence, newDelta < 0
1674 ++WeakZeroSIVindependence;
1675 ++WeakZeroSIVsuccesses;
1676 return true;
1677 }
1678
1679 // if SrcCoeff doesn't divide Delta, then no dependence
1680 if (isa<SCEVConstant>(Delta) &&
1681 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1682 ++WeakZeroSIVindependence;
1683 ++WeakZeroSIVsuccesses;
1684 return true;
1685 }
1686 return false;
1687}
1688
1689
1690// weakZeroDstSIVtest -
1691// From the paper, Practical Dependence Testing, Section 4.2.2
1692//
1693// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1694// where i is an induction variable, c1 and c2 are loop invariant,
1695// and a is a constant, we can solve it exactly using the
1696// Weak-Zero SIV test.
1697//
1698// Given
1699//
1700// c1 + a*i = c2
1701//
1702// we get
1703//
1704// i = (c2 - c1)/a
1705//
1706// If i is not an integer, there's no dependence.
1707// If i < 0 or > UB, there's no dependence.
1708// If i = 0, the direction is <= and peeling the
1709// 1st iteration will break the dependence.
1710// If i = UB, the direction is >= and peeling the
1711// last iteration will break the dependence.
1712// Otherwise, the direction is *.
1713//
1714// Can prove independence. Failing that, we can sometimes refine
1715// the directions. Can sometimes show that first or last
1716// iteration carries all the dependences (so worth peeling).
1717//
1718// (see also weakZeroSrcSIVtest)
1719//
1720// Return true if dependence disproved.
Chandler Carruth49c22192016-05-12 22:19:39 +00001721bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1722 const SCEV *SrcConst,
1723 const SCEV *DstConst,
1724 const Loop *CurLoop, unsigned Level,
1725 FullDependence &Result,
1726 Constraint &NewConstraint) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001727 // For the WeakSIV test, it's possible the loop isn't common to the
1728 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1729 DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1730 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1731 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1732 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1733 ++WeakZeroSIVapplications;
1734 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1735 Level--;
1736 Result.Consistent = false;
1737 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001738 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1739 CurLoop);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001740 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1741 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1742 if (Level < CommonLevels) {
1743 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1744 Result.DV[Level].PeelFirst = true;
1745 ++WeakZeroSIVsuccesses;
1746 }
1747 return false; // dependences caused by first iteration
1748 }
1749 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1750 if (!ConstCoeff)
1751 return false;
1752 const SCEV *AbsCoeff =
1753 SE->isKnownNegative(ConstCoeff) ?
1754 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1755 const SCEV *NewDelta =
1756 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1757
1758 // check that Delta/SrcCoeff < iteration count
1759 // really check NewDelta < count*AbsCoeff
1760 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1761 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1762 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1763 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1764 ++WeakZeroSIVindependence;
1765 ++WeakZeroSIVsuccesses;
1766 return true;
1767 }
1768 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1769 // dependences caused by last iteration
1770 if (Level < CommonLevels) {
1771 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1772 Result.DV[Level].PeelLast = true;
1773 ++WeakZeroSIVsuccesses;
1774 }
1775 return false;
1776 }
1777 }
1778
1779 // check that Delta/SrcCoeff >= 0
1780 // really check that NewDelta >= 0
1781 if (SE->isKnownNegative(NewDelta)) {
1782 // No dependence, newDelta < 0
1783 ++WeakZeroSIVindependence;
1784 ++WeakZeroSIVsuccesses;
1785 return true;
1786 }
1787
1788 // if SrcCoeff doesn't divide Delta, then no dependence
1789 if (isa<SCEVConstant>(Delta) &&
1790 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1791 ++WeakZeroSIVindependence;
1792 ++WeakZeroSIVsuccesses;
1793 return true;
1794 }
1795 return false;
1796}
1797
1798
1799// exactRDIVtest - Tests the RDIV subscript pair for dependence.
1800// Things of the form [c1 + a*i] and [c2 + b*j],
1801// where i and j are induction variable, c1 and c2 are loop invariant,
1802// and a and b are constants.
1803// Returns true if any possible dependence is disproved.
Benjamin Kramerc914ab62012-10-31 11:25:32 +00001804// Marks the result as inconsistent.
Sebastian Pop59b61b92012-10-11 07:32:34 +00001805// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
Chandler Carruth49c22192016-05-12 22:19:39 +00001806bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1807 const SCEV *SrcConst, const SCEV *DstConst,
1808 const Loop *SrcLoop, const Loop *DstLoop,
1809 FullDependence &Result) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001810 DEBUG(dbgs() << "\tExact RDIV test\n");
1811 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1812 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1813 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1814 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1815 ++ExactRDIVapplications;
1816 Result.Consistent = false;
1817 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1818 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1819 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1820 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1821 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1822 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1823 return false;
1824
1825 // find gcd
1826 APInt G, X, Y;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001827 APInt AM = ConstSrcCoeff->getAPInt();
1828 APInt BM = ConstDstCoeff->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00001829 unsigned Bits = AM.getBitWidth();
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001830 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001831 // gcd doesn't divide Delta, no dependence
1832 ++ExactRDIVindependence;
1833 return true;
1834 }
1835
1836 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1837
1838 // since SCEV construction seems to normalize, LM = 0
1839 APInt SrcUM(Bits, 1, true);
1840 bool SrcUMvalid = false;
1841 // SrcUM is perhaps unavailable, let's check
1842 if (const SCEVConstant *UpperBound =
1843 collectConstantUpperBound(SrcLoop, Delta->getType())) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001844 SrcUM = UpperBound->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00001845 DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1846 SrcUMvalid = true;
1847 }
1848
1849 APInt DstUM(Bits, 1, true);
1850 bool DstUMvalid = false;
1851 // UM is perhaps unavailable, let's check
1852 if (const SCEVConstant *UpperBound =
1853 collectConstantUpperBound(DstLoop, Delta->getType())) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001854 DstUM = UpperBound->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00001855 DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1856 DstUMvalid = true;
1857 }
1858
1859 APInt TU(APInt::getSignedMaxValue(Bits));
1860 APInt TL(APInt::getSignedMinValue(Bits));
1861
1862 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1863 APInt TMUL = BM.sdiv(G);
1864 if (TMUL.sgt(0)) {
1865 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1866 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1867 if (SrcUMvalid) {
1868 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1869 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1870 }
1871 }
1872 else {
1873 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1874 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1875 if (SrcUMvalid) {
1876 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1877 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1878 }
1879 }
1880
1881 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1882 TMUL = AM.sdiv(G);
1883 if (TMUL.sgt(0)) {
1884 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1885 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1886 if (DstUMvalid) {
1887 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1888 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1889 }
1890 }
1891 else {
1892 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1893 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1894 if (DstUMvalid) {
1895 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1896 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1897 }
1898 }
1899 if (TL.sgt(TU))
1900 ++ExactRDIVindependence;
1901 return TL.sgt(TU);
1902}
1903
1904
1905// symbolicRDIVtest -
1906// In Section 4.5 of the Practical Dependence Testing paper,the authors
1907// introduce a special case of Banerjee's Inequalities (also called the
1908// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1909// particularly cases with symbolics. Since it's only able to disprove
1910// dependence (not compute distances or directions), we'll use it as a
1911// fall back for the other tests.
1912//
1913// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1914// where i and j are induction variables and c1 and c2 are loop invariants,
1915// we can use the symbolic tests to disprove some dependences, serving as a
1916// backup for the RDIV test. Note that i and j can be the same variable,
1917// letting this test serve as a backup for the various SIV tests.
1918//
1919// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1920// 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1921// loop bounds for the i and j loops, respectively. So, ...
1922//
1923// c1 + a1*i = c2 + a2*j
1924// a1*i - a2*j = c2 - c1
1925//
1926// To test for a dependence, we compute c2 - c1 and make sure it's in the
1927// range of the maximum and minimum possible values of a1*i - a2*j.
1928// Considering the signs of a1 and a2, we have 4 possible cases:
1929//
1930// 1) If a1 >= 0 and a2 >= 0, then
1931// a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1932// -a2*N2 <= c2 - c1 <= a1*N1
1933//
1934// 2) If a1 >= 0 and a2 <= 0, then
1935// a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1936// 0 <= c2 - c1 <= a1*N1 - a2*N2
1937//
1938// 3) If a1 <= 0 and a2 >= 0, then
1939// a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1940// a1*N1 - a2*N2 <= c2 - c1 <= 0
1941//
1942// 4) If a1 <= 0 and a2 <= 0, then
1943// a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
1944// a1*N1 <= c2 - c1 <= -a2*N2
1945//
1946// return true if dependence disproved
Chandler Carruth49c22192016-05-12 22:19:39 +00001947bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
1948 const SCEV *C1, const SCEV *C2,
1949 const Loop *Loop1,
1950 const Loop *Loop2) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00001951 ++SymbolicRDIVapplications;
1952 DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1953 DEBUG(dbgs() << "\t A1 = " << *A1);
1954 DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1955 DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
1956 DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
1957 DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
1958 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1959 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1960 DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
1961 DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
1962 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1963 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1964 DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
1965 DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
1966 if (SE->isKnownNonNegative(A1)) {
1967 if (SE->isKnownNonNegative(A2)) {
1968 // A1 >= 0 && A2 >= 0
1969 if (N1) {
1970 // make sure that c2 - c1 <= a1*N1
1971 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1972 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
1973 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1974 ++SymbolicRDIVindependence;
1975 return true;
1976 }
1977 }
1978 if (N2) {
1979 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1980 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1981 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
1982 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1983 ++SymbolicRDIVindependence;
1984 return true;
1985 }
1986 }
1987 }
1988 else if (SE->isKnownNonPositive(A2)) {
1989 // a1 >= 0 && a2 <= 0
1990 if (N1 && N2) {
1991 // make sure that c2 - c1 <= a1*N1 - a2*N2
1992 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1993 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1994 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1995 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1996 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
1997 ++SymbolicRDIVindependence;
1998 return true;
1999 }
2000 }
2001 // make sure that 0 <= c2 - c1
2002 if (SE->isKnownNegative(C2_C1)) {
2003 ++SymbolicRDIVindependence;
2004 return true;
2005 }
2006 }
2007 }
2008 else if (SE->isKnownNonPositive(A1)) {
2009 if (SE->isKnownNonNegative(A2)) {
2010 // a1 <= 0 && a2 >= 0
2011 if (N1 && N2) {
2012 // make sure that a1*N1 - a2*N2 <= c2 - c1
2013 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2014 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2015 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2016 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2017 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2018 ++SymbolicRDIVindependence;
2019 return true;
2020 }
2021 }
2022 // make sure that c2 - c1 <= 0
2023 if (SE->isKnownPositive(C2_C1)) {
2024 ++SymbolicRDIVindependence;
2025 return true;
2026 }
2027 }
2028 else if (SE->isKnownNonPositive(A2)) {
2029 // a1 <= 0 && a2 <= 0
2030 if (N1) {
2031 // make sure that a1*N1 <= c2 - c1
2032 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2033 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2034 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2035 ++SymbolicRDIVindependence;
2036 return true;
2037 }
2038 }
2039 if (N2) {
2040 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2041 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2042 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2043 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2044 ++SymbolicRDIVindependence;
2045 return true;
2046 }
2047 }
2048 }
2049 }
2050 return false;
2051}
2052
2053
2054// testSIV -
2055// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2056// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2057// a2 are constant, we attack it with an SIV test. While they can all be
2058// solved with the Exact SIV test, it's worthwhile to use simpler tests when
2059// they apply; they're cheaper and sometimes more precise.
2060//
2061// Return true if dependence disproved.
Chandler Carruth49c22192016-05-12 22:19:39 +00002062bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2063 FullDependence &Result, Constraint &NewConstraint,
2064 const SCEV *&SplitIter) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002065 DEBUG(dbgs() << " src = " << *Src << "\n");
2066 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2067 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2068 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2069 if (SrcAddRec && DstAddRec) {
2070 const SCEV *SrcConst = SrcAddRec->getStart();
2071 const SCEV *DstConst = DstAddRec->getStart();
2072 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2073 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2074 const Loop *CurLoop = SrcAddRec->getLoop();
2075 assert(CurLoop == DstAddRec->getLoop() &&
2076 "both loops in SIV should be same");
2077 Level = mapSrcLoop(CurLoop);
2078 bool disproven;
2079 if (SrcCoeff == DstCoeff)
2080 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2081 Level, Result, NewConstraint);
2082 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2083 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2084 Level, Result, NewConstraint, SplitIter);
2085 else
2086 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2087 Level, Result, NewConstraint);
2088 return disproven ||
2089 gcdMIVtest(Src, Dst, Result) ||
2090 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2091 }
2092 if (SrcAddRec) {
2093 const SCEV *SrcConst = SrcAddRec->getStart();
2094 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2095 const SCEV *DstConst = Dst;
2096 const Loop *CurLoop = SrcAddRec->getLoop();
2097 Level = mapSrcLoop(CurLoop);
2098 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2099 Level, Result, NewConstraint) ||
2100 gcdMIVtest(Src, Dst, Result);
2101 }
2102 if (DstAddRec) {
2103 const SCEV *DstConst = DstAddRec->getStart();
2104 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2105 const SCEV *SrcConst = Src;
2106 const Loop *CurLoop = DstAddRec->getLoop();
2107 Level = mapDstLoop(CurLoop);
2108 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2109 CurLoop, Level, Result, NewConstraint) ||
2110 gcdMIVtest(Src, Dst, Result);
2111 }
2112 llvm_unreachable("SIV test expected at least one AddRec");
2113 return false;
2114}
2115
2116
2117// testRDIV -
2118// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2119// where i and j are induction variables, c1 and c2 are loop invariant,
2120// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2121// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2122// It doesn't make sense to talk about distance or direction in this case,
2123// so there's no point in making special versions of the Strong SIV test or
2124// the Weak-crossing SIV test.
2125//
2126// With minor algebra, this test can also be used for things like
2127// [c1 + a1*i + a2*j][c2].
2128//
2129// Return true if dependence disproved.
Chandler Carruth49c22192016-05-12 22:19:39 +00002130bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2131 FullDependence &Result) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002132 // we have 3 possible situations here:
2133 // 1) [a*i + b] and [c*j + d]
2134 // 2) [a*i + c*j + b] and [d]
2135 // 3) [b] and [a*i + c*j + d]
2136 // We need to find what we've got and get organized
2137
2138 const SCEV *SrcConst, *DstConst;
2139 const SCEV *SrcCoeff, *DstCoeff;
2140 const Loop *SrcLoop, *DstLoop;
2141
2142 DEBUG(dbgs() << " src = " << *Src << "\n");
2143 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2144 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2145 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2146 if (SrcAddRec && DstAddRec) {
2147 SrcConst = SrcAddRec->getStart();
2148 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2149 SrcLoop = SrcAddRec->getLoop();
2150 DstConst = DstAddRec->getStart();
2151 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2152 DstLoop = DstAddRec->getLoop();
2153 }
2154 else if (SrcAddRec) {
2155 if (const SCEVAddRecExpr *tmpAddRec =
2156 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2157 SrcConst = tmpAddRec->getStart();
2158 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2159 SrcLoop = tmpAddRec->getLoop();
2160 DstConst = Dst;
2161 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2162 DstLoop = SrcAddRec->getLoop();
2163 }
2164 else
2165 llvm_unreachable("RDIV reached by surprising SCEVs");
2166 }
2167 else if (DstAddRec) {
2168 if (const SCEVAddRecExpr *tmpAddRec =
2169 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2170 DstConst = tmpAddRec->getStart();
2171 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2172 DstLoop = tmpAddRec->getLoop();
2173 SrcConst = Src;
2174 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2175 SrcLoop = DstAddRec->getLoop();
2176 }
2177 else
2178 llvm_unreachable("RDIV reached by surprising SCEVs");
2179 }
2180 else
2181 llvm_unreachable("RDIV expected at least one AddRec");
2182 return exactRDIVtest(SrcCoeff, DstCoeff,
2183 SrcConst, DstConst,
2184 SrcLoop, DstLoop,
2185 Result) ||
2186 gcdMIVtest(Src, Dst, Result) ||
2187 symbolicRDIVtest(SrcCoeff, DstCoeff,
2188 SrcConst, DstConst,
2189 SrcLoop, DstLoop);
2190}
2191
2192
2193// Tests the single-subscript MIV pair (Src and Dst) for dependence.
2194// Return true if dependence disproved.
2195// Can sometimes refine direction vectors.
Chandler Carruth49c22192016-05-12 22:19:39 +00002196bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2197 const SmallBitVector &Loops,
2198 FullDependence &Result) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002199 DEBUG(dbgs() << " src = " << *Src << "\n");
2200 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2201 Result.Consistent = false;
2202 return gcdMIVtest(Src, Dst, Result) ||
2203 banerjeeMIVtest(Src, Dst, Loops, Result);
2204}
2205
2206
2207// Given a product, e.g., 10*X*Y, returns the first constant operand,
2208// in this case 10. If there is no constant part, returns NULL.
2209static
Brendon Cahoonbe2da822016-04-19 16:46:57 +00002210const SCEVConstant *getConstantPart(const SCEV *Expr) {
2211 if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2212 return Constant;
2213 else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2214 if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
Sebastian Pop59b61b92012-10-11 07:32:34 +00002215 return Constant;
Craig Topper9f008862014-04-15 04:59:12 +00002216 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002217}
2218
2219
2220//===----------------------------------------------------------------------===//
2221// gcdMIVtest -
2222// Tests an MIV subscript pair for dependence.
2223// Returns true if any possible dependence is disproved.
Benjamin Kramerc914ab62012-10-31 11:25:32 +00002224// Marks the result as inconsistent.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002225// Can sometimes disprove the equal direction for 1 or more loops,
2226// as discussed in Michael Wolfe's book,
2227// High Performance Compilers for Parallel Computing, page 235.
2228//
2229// We spend some effort (code!) to handle cases like
2230// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2231// but M and N are just loop-invariant variables.
2232// This should help us handle linearized subscripts;
2233// also makes this test a useful backup to the various SIV tests.
2234//
2235// It occurs to me that the presence of loop-invariant variables
2236// changes the nature of the test from "greatest common divisor"
Preston Briggs4eb7ee52012-11-29 04:30:52 +00002237// to "a common divisor".
Chandler Carruth49c22192016-05-12 22:19:39 +00002238bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2239 FullDependence &Result) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002240 DEBUG(dbgs() << "starting gcd\n");
2241 ++GCDapplications;
Preston Briggs3ad39492012-11-21 23:50:04 +00002242 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
Sebastian Pop59b61b92012-10-11 07:32:34 +00002243 APInt RunningGCD = APInt::getNullValue(BitWidth);
2244
2245 // Examine Src coefficients.
2246 // Compute running GCD and record source constant.
2247 // Because we're looking for the constant at the end of the chain,
2248 // we can't quit the loop just because the GCD == 1.
2249 const SCEV *Coefficients = Src;
2250 while (const SCEVAddRecExpr *AddRec =
2251 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2252 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
Brendon Cahoonbe2da822016-04-19 16:46:57 +00002253 // If the coefficient is the product of a constant and other stuff,
2254 // we can use the constant in the GCD computation.
2255 const auto *Constant = getConstantPart(Coeff);
Sebastian Pop59b61b92012-10-11 07:32:34 +00002256 if (!Constant)
2257 return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002258 APInt ConstCoeff = Constant->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00002259 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2260 Coefficients = AddRec->getStart();
2261 }
2262 const SCEV *SrcConst = Coefficients;
2263
2264 // Examine Dst coefficients.
2265 // Compute running GCD and record destination constant.
2266 // Because we're looking for the constant at the end of the chain,
2267 // we can't quit the loop just because the GCD == 1.
2268 Coefficients = Dst;
2269 while (const SCEVAddRecExpr *AddRec =
2270 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2271 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
Brendon Cahoonbe2da822016-04-19 16:46:57 +00002272 // If the coefficient is the product of a constant and other stuff,
2273 // we can use the constant in the GCD computation.
2274 const auto *Constant = getConstantPart(Coeff);
Sebastian Pop59b61b92012-10-11 07:32:34 +00002275 if (!Constant)
2276 return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002277 APInt ConstCoeff = Constant->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00002278 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2279 Coefficients = AddRec->getStart();
2280 }
2281 const SCEV *DstConst = Coefficients;
2282
2283 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2284 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2285 DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2286 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2287 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2288 // If Delta is a sum of products, we may be able to make further progress.
2289 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2290 const SCEV *Operand = Sum->getOperand(Op);
2291 if (isa<SCEVConstant>(Operand)) {
2292 assert(!Constant && "Surprised to find multiple constants");
2293 Constant = cast<SCEVConstant>(Operand);
2294 }
Benjamin Kramer24c643b2012-10-31 09:20:38 +00002295 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002296 // Search for constant operand to participate in GCD;
2297 // If none found; return false.
Benjamin Kramer24c643b2012-10-31 09:20:38 +00002298 const SCEVConstant *ConstOp = getConstantPart(Product);
2299 if (!ConstOp)
2300 return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002301 APInt ConstOpValue = ConstOp->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00002302 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2303 ConstOpValue.abs());
2304 }
2305 else
2306 return false;
2307 }
2308 }
2309 if (!Constant)
2310 return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002311 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00002312 DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2313 if (ConstDelta == 0)
2314 return false;
2315 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2316 DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2317 APInt Remainder = ConstDelta.srem(RunningGCD);
2318 if (Remainder != 0) {
2319 ++GCDindependence;
2320 return true;
2321 }
2322
2323 // Try to disprove equal directions.
2324 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2325 // the code above can't disprove the dependence because the GCD = 1.
2326 // So we consider what happen if i = i' and what happens if j = j'.
2327 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2328 // which is infeasible, so we can disallow the = direction for the i level.
2329 // Setting j = j' doesn't help matters, so we end up with a direction vector
2330 // of [<>, *]
2331 //
2332 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2333 // we need to remember that the constant part is 5 and the RunningGCD should
2334 // be initialized to ExtraGCD = 30.
2335 DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2336
2337 bool Improved = false;
2338 Coefficients = Src;
2339 while (const SCEVAddRecExpr *AddRec =
2340 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2341 Coefficients = AddRec->getStart();
2342 const Loop *CurLoop = AddRec->getLoop();
2343 RunningGCD = ExtraGCD;
2344 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2345 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2346 const SCEV *Inner = Src;
2347 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2348 AddRec = cast<SCEVAddRecExpr>(Inner);
2349 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2350 if (CurLoop == AddRec->getLoop())
2351 ; // SrcCoeff == Coeff
2352 else {
Brendon Cahoonbe2da822016-04-19 16:46:57 +00002353 // If the coefficient is the product of a constant and other stuff,
2354 // we can use the constant in the GCD computation.
2355 Constant = getConstantPart(Coeff);
Brendon Cahoon86f783e2016-04-04 18:13:18 +00002356 if (!Constant)
2357 return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002358 APInt ConstCoeff = Constant->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00002359 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2360 }
2361 Inner = AddRec->getStart();
2362 }
2363 Inner = Dst;
2364 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2365 AddRec = cast<SCEVAddRecExpr>(Inner);
2366 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2367 if (CurLoop == AddRec->getLoop())
2368 DstCoeff = Coeff;
2369 else {
Brendon Cahoonbe2da822016-04-19 16:46:57 +00002370 // If the coefficient is the product of a constant and other stuff,
2371 // we can use the constant in the GCD computation.
2372 Constant = getConstantPart(Coeff);
Brendon Cahoon86f783e2016-04-04 18:13:18 +00002373 if (!Constant)
2374 return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002375 APInt ConstCoeff = Constant->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00002376 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2377 }
2378 Inner = AddRec->getStart();
2379 }
2380 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
Brendon Cahoonbe2da822016-04-19 16:46:57 +00002381 // If the coefficient is the product of a constant and other stuff,
2382 // we can use the constant in the GCD computation.
2383 Constant = getConstantPart(Delta);
2384 if (!Constant)
Sebastian Pop59b61b92012-10-11 07:32:34 +00002385 // The difference of the two coefficients might not be a product
2386 // or constant, in which case we give up on this direction.
2387 continue;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002388 APInt ConstCoeff = Constant->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00002389 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2390 DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2391 if (RunningGCD != 0) {
2392 Remainder = ConstDelta.srem(RunningGCD);
2393 DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2394 if (Remainder != 0) {
2395 unsigned Level = mapSrcLoop(CurLoop);
Sebastian Pope96232612012-10-12 02:04:32 +00002396 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Pop59b61b92012-10-11 07:32:34 +00002397 Improved = true;
2398 }
2399 }
2400 }
2401 if (Improved)
2402 ++GCDsuccesses;
2403 DEBUG(dbgs() << "all done\n");
2404 return false;
2405}
2406
2407
2408//===----------------------------------------------------------------------===//
2409// banerjeeMIVtest -
2410// Use Banerjee's Inequalities to test an MIV subscript pair.
2411// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2412// Generally follows the discussion in Section 2.5.2 of
2413//
2414// Optimizing Supercompilers for Supercomputers
2415// Michael Wolfe
2416//
2417// The inequalities given on page 25 are simplified in that loops are
2418// normalized so that the lower bound is always 0 and the stride is always 1.
2419// For example, Wolfe gives
2420//
2421// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2422//
2423// where A_k is the coefficient of the kth index in the source subscript,
2424// B_k is the coefficient of the kth index in the destination subscript,
2425// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2426// index, and N_k is the stride of the kth index. Since all loops are normalized
2427// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2428// equation to
2429//
2430// LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2431// = (A^-_k - B_k)^- (U_k - 1) - B_k
2432//
2433// Similar simplifications are possible for the other equations.
2434//
2435// When we can't determine the number of iterations for a loop,
2436// we use NULL as an indicator for the worst case, infinity.
2437// When computing the upper bound, NULL denotes +inf;
2438// for the lower bound, NULL denotes -inf.
2439//
2440// Return true if dependence disproved.
Chandler Carruth49c22192016-05-12 22:19:39 +00002441bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2442 const SmallBitVector &Loops,
2443 FullDependence &Result) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002444 DEBUG(dbgs() << "starting Banerjee\n");
2445 ++BanerjeeApplications;
2446 DEBUG(dbgs() << " Src = " << *Src << '\n');
2447 const SCEV *A0;
Dylan Noblesmith4ffafef2014-08-26 02:03:38 +00002448 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
Sebastian Pop59b61b92012-10-11 07:32:34 +00002449 DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2450 const SCEV *B0;
Dylan Noblesmith4ffafef2014-08-26 02:03:38 +00002451 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2452 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
Sebastian Pop59b61b92012-10-11 07:32:34 +00002453 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2454 DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2455
2456 // Compute bounds for all the * directions.
2457 DEBUG(dbgs() << "\tBounds[*]\n");
2458 for (unsigned K = 1; K <= MaxLevels; ++K) {
2459 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2460 Bound[K].Direction = Dependence::DVEntry::ALL;
2461 Bound[K].DirSet = Dependence::DVEntry::NONE;
2462 findBoundsALL(A, B, Bound, K);
2463#ifndef NDEBUG
2464 DEBUG(dbgs() << "\t " << K << '\t');
2465 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2466 DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2467 else
2468 DEBUG(dbgs() << "-inf\t");
2469 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2470 DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2471 else
2472 DEBUG(dbgs() << "+inf\n");
2473#endif
2474 }
2475
2476 // Test the *, *, *, ... case.
2477 bool Disproved = false;
2478 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2479 // Explore the direction vector hierarchy.
2480 unsigned DepthExpanded = 0;
2481 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2482 Loops, DepthExpanded, Delta);
2483 if (NewDeps > 0) {
2484 bool Improved = false;
2485 for (unsigned K = 1; K <= CommonLevels; ++K) {
2486 if (Loops[K]) {
2487 unsigned Old = Result.DV[K - 1].Direction;
2488 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2489 Improved |= Old != Result.DV[K - 1].Direction;
2490 if (!Result.DV[K - 1].Direction) {
2491 Improved = false;
2492 Disproved = true;
2493 break;
2494 }
2495 }
2496 }
2497 if (Improved)
2498 ++BanerjeeSuccesses;
2499 }
2500 else {
2501 ++BanerjeeIndependence;
2502 Disproved = true;
2503 }
2504 }
2505 else {
2506 ++BanerjeeIndependence;
2507 Disproved = true;
2508 }
Dylan Noblesmith4ffafef2014-08-26 02:03:38 +00002509 delete [] Bound;
2510 delete [] A;
2511 delete [] B;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002512 return Disproved;
2513}
2514
2515
2516// Hierarchically expands the direction vector
2517// search space, combining the directions of discovered dependences
2518// in the DirSet field of Bound. Returns the number of distinct
2519// dependences discovered. If the dependence is disproved,
2520// it will return 0.
Chandler Carruth49c22192016-05-12 22:19:39 +00002521unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2522 CoefficientInfo *B, BoundInfo *Bound,
2523 const SmallBitVector &Loops,
2524 unsigned &DepthExpanded,
2525 const SCEV *Delta) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002526 if (Level > CommonLevels) {
2527 // record result
2528 DEBUG(dbgs() << "\t[");
2529 for (unsigned K = 1; K <= CommonLevels; ++K) {
2530 if (Loops[K]) {
2531 Bound[K].DirSet |= Bound[K].Direction;
2532#ifndef NDEBUG
2533 switch (Bound[K].Direction) {
2534 case Dependence::DVEntry::LT:
2535 DEBUG(dbgs() << " <");
2536 break;
2537 case Dependence::DVEntry::EQ:
2538 DEBUG(dbgs() << " =");
2539 break;
2540 case Dependence::DVEntry::GT:
2541 DEBUG(dbgs() << " >");
2542 break;
2543 case Dependence::DVEntry::ALL:
2544 DEBUG(dbgs() << " *");
2545 break;
2546 default:
2547 llvm_unreachable("unexpected Bound[K].Direction");
2548 }
2549#endif
2550 }
2551 }
2552 DEBUG(dbgs() << " ]\n");
2553 return 1;
2554 }
2555 if (Loops[Level]) {
2556 if (Level > DepthExpanded) {
2557 DepthExpanded = Level;
2558 // compute bounds for <, =, > at current level
2559 findBoundsLT(A, B, Bound, Level);
2560 findBoundsGT(A, B, Bound, Level);
2561 findBoundsEQ(A, B, Bound, Level);
2562#ifndef NDEBUG
2563 DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2564 DEBUG(dbgs() << "\t <\t");
2565 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2566 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2567 else
2568 DEBUG(dbgs() << "-inf\t");
2569 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2570 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2571 else
2572 DEBUG(dbgs() << "+inf\n");
2573 DEBUG(dbgs() << "\t =\t");
2574 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2575 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2576 else
2577 DEBUG(dbgs() << "-inf\t");
2578 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2579 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2580 else
2581 DEBUG(dbgs() << "+inf\n");
2582 DEBUG(dbgs() << "\t >\t");
2583 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2584 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2585 else
2586 DEBUG(dbgs() << "-inf\t");
2587 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2588 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2589 else
2590 DEBUG(dbgs() << "+inf\n");
2591#endif
2592 }
2593
2594 unsigned NewDeps = 0;
2595
2596 // test bounds for <, *, *, ...
2597 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2598 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2599 Loops, DepthExpanded, Delta);
2600
2601 // Test bounds for =, *, *, ...
2602 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2603 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2604 Loops, DepthExpanded, Delta);
2605
2606 // test bounds for >, *, *, ...
2607 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2608 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2609 Loops, DepthExpanded, Delta);
2610
2611 Bound[Level].Direction = Dependence::DVEntry::ALL;
2612 return NewDeps;
2613 }
2614 else
2615 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2616}
2617
2618
2619// Returns true iff the current bounds are plausible.
Chandler Carruth49c22192016-05-12 22:19:39 +00002620bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2621 BoundInfo *Bound, const SCEV *Delta) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002622 Bound[Level].Direction = DirKind;
2623 if (const SCEV *LowerBound = getLowerBound(Bound))
2624 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2625 return false;
2626 if (const SCEV *UpperBound = getUpperBound(Bound))
2627 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2628 return false;
2629 return true;
2630}
2631
2632
2633// Computes the upper and lower bounds for level K
2634// using the * direction. Records them in Bound.
2635// Wolfe gives the equations
2636//
2637// LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2638// UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2639//
2640// Since we normalize loops, we can simplify these equations to
2641//
2642// LB^*_k = (A^-_k - B^+_k)U_k
2643// UB^*_k = (A^+_k - B^-_k)U_k
2644//
2645// We must be careful to handle the case where the upper bound is unknown.
2646// Note that the lower bound is always <= 0
2647// and the upper bound is always >= 0.
Chandler Carruth49c22192016-05-12 22:19:39 +00002648void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2649 BoundInfo *Bound, unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002650 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2651 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002652 if (Bound[K].Iterations) {
2653 Bound[K].Lower[Dependence::DVEntry::ALL] =
2654 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2655 Bound[K].Iterations);
2656 Bound[K].Upper[Dependence::DVEntry::ALL] =
2657 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2658 Bound[K].Iterations);
2659 }
2660 else {
2661 // If the difference is 0, we won't need to know the number of iterations.
2662 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2663 Bound[K].Lower[Dependence::DVEntry::ALL] =
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002664 SE->getZero(A[K].Coeff->getType());
Sebastian Pop59b61b92012-10-11 07:32:34 +00002665 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2666 Bound[K].Upper[Dependence::DVEntry::ALL] =
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002667 SE->getZero(A[K].Coeff->getType());
Sebastian Pop59b61b92012-10-11 07:32:34 +00002668 }
2669}
2670
2671
2672// Computes the upper and lower bounds for level K
2673// using the = direction. Records them in Bound.
2674// Wolfe gives the equations
2675//
2676// LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2677// UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2678//
2679// Since we normalize loops, we can simplify these equations to
2680//
2681// LB^=_k = (A_k - B_k)^- U_k
2682// UB^=_k = (A_k - B_k)^+ U_k
2683//
2684// We must be careful to handle the case where the upper bound is unknown.
2685// Note that the lower bound is always <= 0
2686// and the upper bound is always >= 0.
Chandler Carruth49c22192016-05-12 22:19:39 +00002687void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2688 BoundInfo *Bound, unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002689 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2690 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002691 if (Bound[K].Iterations) {
2692 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2693 const SCEV *NegativePart = getNegativePart(Delta);
2694 Bound[K].Lower[Dependence::DVEntry::EQ] =
2695 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2696 const SCEV *PositivePart = getPositivePart(Delta);
2697 Bound[K].Upper[Dependence::DVEntry::EQ] =
2698 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2699 }
2700 else {
2701 // If the positive/negative part of the difference is 0,
2702 // we won't need to know the number of iterations.
2703 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2704 const SCEV *NegativePart = getNegativePart(Delta);
2705 if (NegativePart->isZero())
2706 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2707 const SCEV *PositivePart = getPositivePart(Delta);
2708 if (PositivePart->isZero())
2709 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2710 }
2711}
2712
2713
2714// Computes the upper and lower bounds for level K
2715// using the < direction. Records them in Bound.
2716// Wolfe gives the equations
2717//
2718// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2719// UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2720//
2721// Since we normalize loops, we can simplify these equations to
2722//
2723// LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2724// UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2725//
2726// We must be careful to handle the case where the upper bound is unknown.
Chandler Carruth49c22192016-05-12 22:19:39 +00002727void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2728 BoundInfo *Bound, unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002729 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2730 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002731 if (Bound[K].Iterations) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002732 const SCEV *Iter_1 = SE->getMinusSCEV(
2733 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
Sebastian Pop59b61b92012-10-11 07:32:34 +00002734 const SCEV *NegPart =
2735 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2736 Bound[K].Lower[Dependence::DVEntry::LT] =
2737 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2738 const SCEV *PosPart =
2739 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2740 Bound[K].Upper[Dependence::DVEntry::LT] =
2741 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2742 }
2743 else {
2744 // If the positive/negative part of the difference is 0,
2745 // we won't need to know the number of iterations.
2746 const SCEV *NegPart =
2747 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2748 if (NegPart->isZero())
2749 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2750 const SCEV *PosPart =
2751 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2752 if (PosPart->isZero())
2753 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2754 }
2755}
2756
2757
2758// Computes the upper and lower bounds for level K
2759// using the > direction. Records them in Bound.
2760// Wolfe gives the equations
2761//
2762// LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2763// UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2764//
2765// Since we normalize loops, we can simplify these equations to
2766//
2767// LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2768// UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2769//
2770// We must be careful to handle the case where the upper bound is unknown.
Chandler Carruth49c22192016-05-12 22:19:39 +00002771void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2772 BoundInfo *Bound, unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002773 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2774 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002775 if (Bound[K].Iterations) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002776 const SCEV *Iter_1 = SE->getMinusSCEV(
2777 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
Sebastian Pop59b61b92012-10-11 07:32:34 +00002778 const SCEV *NegPart =
2779 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2780 Bound[K].Lower[Dependence::DVEntry::GT] =
2781 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2782 const SCEV *PosPart =
2783 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2784 Bound[K].Upper[Dependence::DVEntry::GT] =
2785 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2786 }
2787 else {
2788 // If the positive/negative part of the difference is 0,
2789 // we won't need to know the number of iterations.
2790 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2791 if (NegPart->isZero())
2792 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2793 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2794 if (PosPart->isZero())
2795 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2796 }
2797}
2798
2799
2800// X^+ = max(X, 0)
Chandler Carruth49c22192016-05-12 22:19:39 +00002801const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002802 return SE->getSMaxExpr(X, SE->getZero(X->getType()));
Sebastian Pop59b61b92012-10-11 07:32:34 +00002803}
2804
2805
2806// X^- = min(X, 0)
Chandler Carruth49c22192016-05-12 22:19:39 +00002807const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002808 return SE->getSMinExpr(X, SE->getZero(X->getType()));
Sebastian Pop59b61b92012-10-11 07:32:34 +00002809}
2810
2811
2812// Walks through the subscript,
2813// collecting each coefficient, the associated loop bounds,
2814// and recording its positive and negative parts for later use.
Chandler Carruth49c22192016-05-12 22:19:39 +00002815DependenceInfo::CoefficientInfo *
2816DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2817 const SCEV *&Constant) const {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002818 const SCEV *Zero = SE->getZero(Subscript->getType());
Dylan Noblesmith4ffafef2014-08-26 02:03:38 +00002819 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
Sebastian Pop59b61b92012-10-11 07:32:34 +00002820 for (unsigned K = 1; K <= MaxLevels; ++K) {
2821 CI[K].Coeff = Zero;
2822 CI[K].PosPart = Zero;
2823 CI[K].NegPart = Zero;
Craig Topper9f008862014-04-15 04:59:12 +00002824 CI[K].Iterations = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002825 }
2826 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2827 const Loop *L = AddRec->getLoop();
2828 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2829 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2830 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2831 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2832 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2833 Subscript = AddRec->getStart();
2834 }
2835 Constant = Subscript;
2836#ifndef NDEBUG
2837 DEBUG(dbgs() << "\tCoefficient Info\n");
2838 for (unsigned K = 1; K <= MaxLevels; ++K) {
2839 DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2840 DEBUG(dbgs() << "\tPos Part = ");
2841 DEBUG(dbgs() << *CI[K].PosPart);
2842 DEBUG(dbgs() << "\tNeg Part = ");
2843 DEBUG(dbgs() << *CI[K].NegPart);
2844 DEBUG(dbgs() << "\tUpper Bound = ");
2845 if (CI[K].Iterations)
2846 DEBUG(dbgs() << *CI[K].Iterations);
2847 else
2848 DEBUG(dbgs() << "+inf");
2849 DEBUG(dbgs() << '\n');
2850 }
2851 DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2852#endif
2853 return CI;
2854}
2855
2856
2857// Looks through all the bounds info and
2858// computes the lower bound given the current direction settings
2859// at each level. If the lower bound for any level is -inf,
2860// the result is -inf.
Chandler Carruth49c22192016-05-12 22:19:39 +00002861const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002862 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2863 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2864 if (Bound[K].Lower[Bound[K].Direction])
2865 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2866 else
Craig Topper9f008862014-04-15 04:59:12 +00002867 Sum = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002868 }
2869 return Sum;
2870}
2871
2872
2873// Looks through all the bounds info and
2874// computes the upper bound given the current direction settings
2875// at each level. If the upper bound at any level is +inf,
2876// the result is +inf.
Chandler Carruth49c22192016-05-12 22:19:39 +00002877const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002878 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2879 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2880 if (Bound[K].Upper[Bound[K].Direction])
2881 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2882 else
Craig Topper9f008862014-04-15 04:59:12 +00002883 Sum = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002884 }
2885 return Sum;
2886}
2887
2888
2889//===----------------------------------------------------------------------===//
2890// Constraint manipulation for Delta test.
2891
2892// Given a linear SCEV,
2893// return the coefficient (the step)
2894// corresponding to the specified loop.
2895// If there isn't one, return 0.
Jingyue Wua84feb12015-05-29 16:58:08 +00002896// For example, given a*i + b*j + c*k, finding the coefficient
Sebastian Pop59b61b92012-10-11 07:32:34 +00002897// corresponding to the j loop would yield b.
Chandler Carruth49c22192016-05-12 22:19:39 +00002898const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2899 const Loop *TargetLoop) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002900 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2901 if (!AddRec)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002902 return SE->getZero(Expr->getType());
Sebastian Pop59b61b92012-10-11 07:32:34 +00002903 if (AddRec->getLoop() == TargetLoop)
2904 return AddRec->getStepRecurrence(*SE);
2905 return findCoefficient(AddRec->getStart(), TargetLoop);
2906}
2907
2908
2909// Given a linear SCEV,
2910// return the SCEV given by zeroing out the coefficient
2911// corresponding to the specified loop.
2912// For example, given a*i + b*j + c*k, zeroing the coefficient
2913// corresponding to the j loop would yield a*i + c*k.
Chandler Carruth49c22192016-05-12 22:19:39 +00002914const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
2915 const Loop *TargetLoop) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002916 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2917 if (!AddRec)
2918 return Expr; // ignore
2919 if (AddRec->getLoop() == TargetLoop)
2920 return AddRec->getStart();
2921 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2922 AddRec->getStepRecurrence(*SE),
2923 AddRec->getLoop(),
2924 AddRec->getNoWrapFlags());
2925}
2926
2927
2928// Given a linear SCEV Expr,
2929// return the SCEV given by adding some Value to the
2930// coefficient corresponding to the specified TargetLoop.
2931// For example, given a*i + b*j + c*k, adding 1 to the coefficient
2932// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
Chandler Carruth49c22192016-05-12 22:19:39 +00002933const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
2934 const Loop *TargetLoop,
2935 const SCEV *Value) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002936 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2937 if (!AddRec) // create a new addRec
2938 return SE->getAddRecExpr(Expr,
2939 Value,
2940 TargetLoop,
2941 SCEV::FlagAnyWrap); // Worst case, with no info.
2942 if (AddRec->getLoop() == TargetLoop) {
2943 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2944 if (Sum->isZero())
2945 return AddRec->getStart();
2946 return SE->getAddRecExpr(AddRec->getStart(),
2947 Sum,
2948 AddRec->getLoop(),
2949 AddRec->getNoWrapFlags());
2950 }
Preston Briggs6c286b62013-06-28 18:44:48 +00002951 if (SE->isLoopInvariant(AddRec, TargetLoop))
NAKAMURA Takumid0e13af2014-10-28 11:54:52 +00002952 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
2953 return SE->getAddRecExpr(
2954 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
2955 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
2956 AddRec->getNoWrapFlags());
Sebastian Pop59b61b92012-10-11 07:32:34 +00002957}
2958
2959
2960// Review the constraints, looking for opportunities
2961// to simplify a subscript pair (Src and Dst).
2962// Return true if some simplification occurs.
2963// If the simplification isn't exact (that is, if it is conservative
2964// in terms of dependence), set consistent to false.
2965// Corresponds to Figure 5 from the paper
2966//
2967// Practical Dependence Testing
2968// Goff, Kennedy, Tseng
2969// PLDI 1991
Chandler Carruth49c22192016-05-12 22:19:39 +00002970bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
2971 SmallBitVector &Loops,
2972 SmallVectorImpl<Constraint> &Constraints,
2973 bool &Consistent) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002974 bool Result = false;
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00002975 for (unsigned LI : Loops.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002976 DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
2977 DEBUG(Constraints[LI].dump(dbgs()));
2978 if (Constraints[LI].isDistance())
2979 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
2980 else if (Constraints[LI].isLine())
2981 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
2982 else if (Constraints[LI].isPoint())
2983 Result |= propagatePoint(Src, Dst, Constraints[LI]);
2984 }
2985 return Result;
2986}
2987
2988
2989// Attempt to propagate a distance
2990// constraint into a subscript pair (Src and Dst).
2991// Return true if some simplification occurs.
2992// If the simplification isn't exact (that is, if it is conservative
2993// in terms of dependence), set consistent to false.
Chandler Carruth49c22192016-05-12 22:19:39 +00002994bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
2995 Constraint &CurConstraint,
2996 bool &Consistent) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002997 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
2998 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
2999 const SCEV *A_K = findCoefficient(Src, CurLoop);
3000 if (A_K->isZero())
3001 return false;
3002 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3003 Src = SE->getMinusSCEV(Src, DA_K);
3004 Src = zeroCoefficient(Src, CurLoop);
3005 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3006 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3007 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3008 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3009 if (!findCoefficient(Dst, CurLoop)->isZero())
3010 Consistent = false;
3011 return true;
3012}
3013
3014
3015// Attempt to propagate a line
3016// constraint into a subscript pair (Src and Dst).
3017// Return true if some simplification occurs.
3018// If the simplification isn't exact (that is, if it is conservative
3019// in terms of dependence), set consistent to false.
Chandler Carruth49c22192016-05-12 22:19:39 +00003020bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3021 Constraint &CurConstraint,
3022 bool &Consistent) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003023 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3024 const SCEV *A = CurConstraint.getA();
3025 const SCEV *B = CurConstraint.getB();
3026 const SCEV *C = CurConstraint.getC();
3027 DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3028 DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3029 DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3030 if (A->isZero()) {
3031 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3032 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3033 if (!Bconst || !Cconst) return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003034 APInt Beta = Bconst->getAPInt();
3035 APInt Charlie = Cconst->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00003036 APInt CdivB = Charlie.sdiv(Beta);
3037 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3038 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3039 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3040 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3041 Dst = zeroCoefficient(Dst, CurLoop);
3042 if (!findCoefficient(Src, CurLoop)->isZero())
3043 Consistent = false;
3044 }
3045 else if (B->isZero()) {
3046 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3047 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3048 if (!Aconst || !Cconst) return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003049 APInt Alpha = Aconst->getAPInt();
3050 APInt Charlie = Cconst->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00003051 APInt CdivA = Charlie.sdiv(Alpha);
3052 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3053 const SCEV *A_K = findCoefficient(Src, CurLoop);
3054 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3055 Src = zeroCoefficient(Src, CurLoop);
3056 if (!findCoefficient(Dst, CurLoop)->isZero())
3057 Consistent = false;
3058 }
3059 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3060 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3061 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3062 if (!Aconst || !Cconst) return false;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003063 APInt Alpha = Aconst->getAPInt();
3064 APInt Charlie = Cconst->getAPInt();
Sebastian Pop59b61b92012-10-11 07:32:34 +00003065 APInt CdivA = Charlie.sdiv(Alpha);
3066 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3067 const SCEV *A_K = findCoefficient(Src, CurLoop);
3068 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3069 Src = zeroCoefficient(Src, CurLoop);
3070 Dst = addToCoefficient(Dst, CurLoop, A_K);
3071 if (!findCoefficient(Dst, CurLoop)->isZero())
3072 Consistent = false;
3073 }
3074 else {
3075 // paper is incorrect here, or perhaps just misleading
3076 const SCEV *A_K = findCoefficient(Src, CurLoop);
3077 Src = SE->getMulExpr(Src, A);
3078 Dst = SE->getMulExpr(Dst, A);
3079 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3080 Src = zeroCoefficient(Src, CurLoop);
3081 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3082 if (!findCoefficient(Dst, CurLoop)->isZero())
3083 Consistent = false;
3084 }
3085 DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3086 DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3087 return true;
3088}
3089
3090
3091// Attempt to propagate a point
3092// constraint into a subscript pair (Src and Dst).
3093// Return true if some simplification occurs.
Chandler Carruth49c22192016-05-12 22:19:39 +00003094bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3095 Constraint &CurConstraint) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003096 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3097 const SCEV *A_K = findCoefficient(Src, CurLoop);
3098 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3099 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3100 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3101 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3102 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3103 Src = zeroCoefficient(Src, CurLoop);
3104 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3105 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3106 Dst = zeroCoefficient(Dst, CurLoop);
3107 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3108 return true;
3109}
3110
3111
3112// Update direction vector entry based on the current constraint.
Chandler Carruth49c22192016-05-12 22:19:39 +00003113void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3114 const Constraint &CurConstraint) const {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003115 DEBUG(dbgs() << "\tUpdate direction, constraint =");
3116 DEBUG(CurConstraint.dump(dbgs()));
3117 if (CurConstraint.isAny())
3118 ; // use defaults
3119 else if (CurConstraint.isDistance()) {
3120 // this one is consistent, the others aren't
3121 Level.Scalar = false;
3122 Level.Distance = CurConstraint.getD();
3123 unsigned NewDirection = Dependence::DVEntry::NONE;
3124 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3125 NewDirection = Dependence::DVEntry::EQ;
3126 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3127 NewDirection |= Dependence::DVEntry::LT;
3128 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3129 NewDirection |= Dependence::DVEntry::GT;
3130 Level.Direction &= NewDirection;
3131 }
3132 else if (CurConstraint.isLine()) {
3133 Level.Scalar = false;
Craig Topper9f008862014-04-15 04:59:12 +00003134 Level.Distance = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003135 // direction should be accurate
3136 }
3137 else if (CurConstraint.isPoint()) {
3138 Level.Scalar = false;
Craig Topper9f008862014-04-15 04:59:12 +00003139 Level.Distance = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003140 unsigned NewDirection = Dependence::DVEntry::NONE;
3141 if (!isKnownPredicate(CmpInst::ICMP_NE,
3142 CurConstraint.getY(),
3143 CurConstraint.getX()))
3144 // if X may be = Y
3145 NewDirection |= Dependence::DVEntry::EQ;
3146 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3147 CurConstraint.getY(),
3148 CurConstraint.getX()))
3149 // if Y may be > X
3150 NewDirection |= Dependence::DVEntry::LT;
3151 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3152 CurConstraint.getY(),
3153 CurConstraint.getX()))
3154 // if Y may be < X
3155 NewDirection |= Dependence::DVEntry::GT;
3156 Level.Direction &= NewDirection;
3157 }
3158 else
3159 llvm_unreachable("constraint has unexpected kind");
3160}
3161
Sebastian Popc62c6792013-11-12 22:47:20 +00003162/// Check if we can delinearize the subscripts. If the SCEVs representing the
3163/// source and destination array references are recurrences on a nested loop,
Alp Tokercb402912014-01-24 17:20:08 +00003164/// this function flattens the nested recurrences into separate recurrences
Sebastian Popc62c6792013-11-12 22:47:20 +00003165/// for each loop level.
Chandler Carruth49c22192016-05-12 22:19:39 +00003166bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3167 SmallVectorImpl<Subscript> &Pair) {
Renato Golin038ede22018-03-09 21:05:58 +00003168 assert(isLoadOrStore(Src) && "instruction is not load or store");
3169 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3170 Value *SrcPtr = getLoadStorePointerOperand(Src);
3171 Value *DstPtr = getLoadStorePointerOperand(Dst);
Hal Finkel0ef2b102015-08-19 02:56:36 +00003172
3173 Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3174 Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3175
3176 // Below code mimics the code in Delinearization.cpp
3177 const SCEV *SrcAccessFn =
3178 SE->getSCEVAtScope(SrcPtr, SrcLoop);
3179 const SCEV *DstAccessFn =
3180 SE->getSCEVAtScope(DstPtr, DstLoop);
3181
Sebastian Pop28e6b972014-05-27 22:41:51 +00003182 const SCEVUnknown *SrcBase =
Hal Finkel0ef2b102015-08-19 02:56:36 +00003183 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
Sebastian Pop28e6b972014-05-27 22:41:51 +00003184 const SCEVUnknown *DstBase =
Hal Finkel0ef2b102015-08-19 02:56:36 +00003185 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
Sebastian Pop28e6b972014-05-27 22:41:51 +00003186
3187 if (!SrcBase || !DstBase || SrcBase != DstBase)
3188 return false;
3189
Hal Finkel0ef2b102015-08-19 02:56:36 +00003190 const SCEV *ElementSize = SE->getElementSize(Src);
3191 if (ElementSize != SE->getElementSize(Dst))
3192 return false;
3193
3194 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3195 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
Sebastian Pop28e6b972014-05-27 22:41:51 +00003196
Sebastian Popc62c6792013-11-12 22:47:20 +00003197 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3198 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3199 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3200 return false;
3201
Sebastian Pop448712b2014-05-07 18:01:20 +00003202 // First step: collect parametric terms in both array references.
3203 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00003204 SE->collectParametricTerms(SrcAR, Terms);
3205 SE->collectParametricTerms(DstAR, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00003206
Sebastian Pop448712b2014-05-07 18:01:20 +00003207 // Second step: find subscript sizes.
3208 SmallVector<const SCEV *, 4> Sizes;
Sebastian Popa6e58602014-05-27 22:41:45 +00003209 SE->findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop448712b2014-05-07 18:01:20 +00003210
3211 // Third step: compute the access functions for each subscript.
3212 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00003213 SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3214 SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
Sebastian Pop448712b2014-05-07 18:01:20 +00003215
Sebastian Pop5133d2e2014-02-21 18:15:07 +00003216 // Fail when there is only a subscript: that's a linearized access function.
Sebastian Pop448712b2014-05-07 18:01:20 +00003217 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3218 SrcSubscripts.size() != DstSubscripts.size())
Sebastian Popc62c6792013-11-12 22:47:20 +00003219 return false;
3220
Sebastian Pop448712b2014-05-07 18:01:20 +00003221 int size = SrcSubscripts.size();
Sebastian Pop29026d32014-02-21 18:15:11 +00003222
Sebastian Pop448712b2014-05-07 18:01:20 +00003223 DEBUG({
3224 dbgs() << "\nSrcSubscripts: ";
3225 for (int i = 0; i < size; i++)
3226 dbgs() << *SrcSubscripts[i];
3227 dbgs() << "\nDstSubscripts: ";
3228 for (int i = 0; i < size; i++)
3229 dbgs() << *DstSubscripts[i];
3230 });
Sebastian Popc62c6792013-11-12 22:47:20 +00003231
Sebastian Pop7ee14722013-11-13 22:37:58 +00003232 // The delinearization transforms a single-subscript MIV dependence test into
3233 // a multi-subscript SIV dependence test that is easier to compute. So we
3234 // resize Pair to contain as many pairs of subscripts as the delinearization
3235 // has found, and then initialize the pairs following the delinearization.
Sebastian Popc62c6792013-11-12 22:47:20 +00003236 Pair.resize(size);
3237 for (int i = 0; i < size; ++i) {
3238 Pair[i].Src = SrcSubscripts[i];
3239 Pair[i].Dst = DstSubscripts[i];
Jingyue Wu0fa125a2014-11-16 16:52:44 +00003240 unifySubscriptType(&Pair[i]);
Sebastian Pop7ee14722013-11-13 22:37:58 +00003241
3242 // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3243 // delinearization has found, and add these constraints to the dependence
3244 // check to avoid memory accesses overflow from one dimension into another.
3245 // This is related to the problem of determining the existence of data
3246 // dependences in array accesses using a different number of subscripts: in
3247 // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
Sebastian Popc62c6792013-11-12 22:47:20 +00003248 }
3249
3250 return true;
3251}
Sebastian Pop59b61b92012-10-11 07:32:34 +00003252
3253//===----------------------------------------------------------------------===//
3254
3255#ifndef NDEBUG
3256// For debugging purposes, dump a small bit vector to dbgs().
3257static void dumpSmallBitVector(SmallBitVector &BV) {
3258 dbgs() << "{";
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003259 for (unsigned VI : BV.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003260 dbgs() << VI;
3261 if (BV.find_next(VI) >= 0)
3262 dbgs() << ' ';
3263 }
3264 dbgs() << "}\n";
3265}
3266#endif
3267
Sebastian Pop59b61b92012-10-11 07:32:34 +00003268// depends -
3269// Returns NULL if there is no dependence.
3270// Otherwise, return a Dependence with as many details as possible.
3271// Corresponds to Section 3.1 in the paper
3272//
3273// Practical Dependence Testing
3274// Goff, Kennedy, Tseng
3275// PLDI 1991
3276//
Preston Briggs3ad39492012-11-21 23:50:04 +00003277// Care is required to keep the routine below, getSplitIteration(),
3278// up to date with respect to this routine.
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003279std::unique_ptr<Dependence>
Chandler Carruth49c22192016-05-12 22:19:39 +00003280DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3281 bool PossiblyLoopIndependent) {
Preston Briggs1084fa22012-11-27 06:41:46 +00003282 if (Src == Dst)
3283 PossiblyLoopIndependent = false;
3284
Sebastian Pop59b61b92012-10-11 07:32:34 +00003285 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3286 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3287 // if both instructions don't reference memory, there's no dependence
Craig Topper9f008862014-04-15 04:59:12 +00003288 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003289
Preston Briggs3ad39492012-11-21 23:50:04 +00003290 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003291 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
Preston Briggs3ad39492012-11-21 23:50:04 +00003292 DEBUG(dbgs() << "can only handle simple loads and stores\n");
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003293 return make_unique<Dependence>(Src, Dst);
Preston Briggs3ad39492012-11-21 23:50:04 +00003294 }
Sebastian Pop59b61b92012-10-11 07:32:34 +00003295
Renato Golin038ede22018-03-09 21:05:58 +00003296 assert(isLoadOrStore(Src) && "instruction is not load or store");
3297 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3298 Value *SrcPtr = getLoadStorePointerOperand(Src);
3299 Value *DstPtr = getLoadStorePointerOperand(Dst);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003300
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003301 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
3302 SrcPtr)) {
Chandler Carruthc3f49eb2015-06-22 02:16:51 +00003303 case MayAlias:
3304 case PartialAlias:
Sebastian Pop59b61b92012-10-11 07:32:34 +00003305 // cannot analyse objects if we don't understand their aliasing.
Preston Briggs3ad39492012-11-21 23:50:04 +00003306 DEBUG(dbgs() << "can't analyze may or partial alias\n");
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003307 return make_unique<Dependence>(Src, Dst);
Chandler Carruthc3f49eb2015-06-22 02:16:51 +00003308 case NoAlias:
Sebastian Pop59b61b92012-10-11 07:32:34 +00003309 // If the objects noalias, they are distinct, accesses are independent.
Preston Briggs3ad39492012-11-21 23:50:04 +00003310 DEBUG(dbgs() << "no alias\n");
Craig Topper9f008862014-04-15 04:59:12 +00003311 return nullptr;
Chandler Carruthc3f49eb2015-06-22 02:16:51 +00003312 case MustAlias:
Sebastian Pop59b61b92012-10-11 07:32:34 +00003313 break; // The underlying objects alias; test accesses for dependence.
3314 }
3315
Sebastian Pop59b61b92012-10-11 07:32:34 +00003316 // establish loop nesting levels
3317 establishNestingLevels(Src, Dst);
3318 DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3319 DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3320
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003321 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003322 ++TotalArrayPairs;
3323
Sebastian Popbf6e1c22018-03-06 21:55:59 +00003324 unsigned Pairs = 1;
3325 SmallVector<Subscript, 2> Pair(Pairs);
3326 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3327 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3328 DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3329 DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3330 Pair[0].Src = SrcSCEV;
3331 Pair[0].Dst = DstSCEV;
Preston Briggs3ad39492012-11-21 23:50:04 +00003332
Sebastian Popbf6e1c22018-03-06 21:55:59 +00003333 if (Delinearize) {
Hal Finkel0ef2b102015-08-19 02:56:36 +00003334 if (tryDelinearize(Src, Dst, Pair)) {
Sebastian Popbf6e1c22018-03-06 21:55:59 +00003335 DEBUG(dbgs() << " delinearized\n");
Hal Finkel0ef2b102015-08-19 02:56:36 +00003336 Pairs = Pair.size();
3337 }
Sebastian Popc62c6792013-11-12 22:47:20 +00003338 }
3339
Preston Briggs3ad39492012-11-21 23:50:04 +00003340 for (unsigned P = 0; P < Pairs; ++P) {
3341 Pair[P].Loops.resize(MaxLevels + 1);
3342 Pair[P].GroupLoops.resize(MaxLevels + 1);
3343 Pair[P].Group.resize(Pairs);
3344 removeMatchingExtensions(&Pair[P]);
3345 Pair[P].Classification =
3346 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3347 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3348 Pair[P].Loops);
3349 Pair[P].GroupLoops = Pair[P].Loops;
3350 Pair[P].Group.set(P);
3351 DEBUG(dbgs() << " subscript " << P << "\n");
3352 DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3353 DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3354 DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
Sebastian Pop59b61b92012-10-11 07:32:34 +00003355 DEBUG(dbgs() << "\tloops = ");
Preston Briggs3ad39492012-11-21 23:50:04 +00003356 DEBUG(dumpSmallBitVector(Pair[P].Loops));
Sebastian Pop59b61b92012-10-11 07:32:34 +00003357 }
3358
3359 SmallBitVector Separable(Pairs);
3360 SmallBitVector Coupled(Pairs);
3361
3362 // Partition subscripts into separable and minimally-coupled groups
3363 // Algorithm in paper is algorithmically better;
3364 // this may be faster in practice. Check someday.
3365 //
3366 // Here's an example of how it works. Consider this code:
3367 //
3368 // for (i = ...) {
3369 // for (j = ...) {
3370 // for (k = ...) {
3371 // for (l = ...) {
3372 // for (m = ...) {
3373 // A[i][j][k][m] = ...;
3374 // ... = A[0][j][l][i + j];
3375 // }
3376 // }
3377 // }
3378 // }
3379 // }
3380 //
3381 // There are 4 subscripts here:
3382 // 0 [i] and [0]
3383 // 1 [j] and [j]
3384 // 2 [k] and [l]
3385 // 3 [m] and [i + j]
3386 //
3387 // We've already classified each subscript pair as ZIV, SIV, etc.,
3388 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3389 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3390 // and set Pair[P].Group = {P}.
3391 //
3392 // Src Dst Classification Loops GroupLoops Group
3393 // 0 [i] [0] SIV {1} {1} {0}
3394 // 1 [j] [j] SIV {2} {2} {1}
3395 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3396 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3397 //
3398 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3399 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3400 //
3401 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3402 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3403 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3404 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3405 // to either Separable or Coupled).
3406 //
3407 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3408 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3409 // so Pair[3].Group = {0, 1, 3} and Done = false.
3410 //
3411 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3412 // Since Done remains true, we add 2 to the set of Separable pairs.
3413 //
3414 // Finally, we consider 3. There's nothing to compare it with,
3415 // so Done remains true and we add it to the Coupled set.
3416 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3417 //
3418 // In the end, we've got 1 separable subscript and 1 coupled group.
3419 for (unsigned SI = 0; SI < Pairs; ++SI) {
3420 if (Pair[SI].Classification == Subscript::NonLinear) {
3421 // ignore these, but collect loops for later
3422 ++NonlinearSubscriptPairs;
3423 collectCommonLoops(Pair[SI].Src,
3424 LI->getLoopFor(Src->getParent()),
3425 Pair[SI].Loops);
3426 collectCommonLoops(Pair[SI].Dst,
3427 LI->getLoopFor(Dst->getParent()),
3428 Pair[SI].Loops);
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003429 Result.Consistent = false;
NAKAMURA Takumi478559a2015-03-05 01:25:19 +00003430 } else if (Pair[SI].Classification == Subscript::ZIV) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003431 // always separable
3432 Separable.set(SI);
3433 }
3434 else {
3435 // SIV, RDIV, or MIV, so check for coupled group
3436 bool Done = true;
3437 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3438 SmallBitVector Intersection = Pair[SI].GroupLoops;
3439 Intersection &= Pair[SJ].GroupLoops;
3440 if (Intersection.any()) {
3441 // accumulate set of all the loops in group
3442 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3443 // accumulate set of all subscripts in group
3444 Pair[SJ].Group |= Pair[SI].Group;
3445 Done = false;
3446 }
3447 }
3448 if (Done) {
3449 if (Pair[SI].Group.count() == 1) {
3450 Separable.set(SI);
3451 ++SeparableSubscriptPairs;
3452 }
3453 else {
3454 Coupled.set(SI);
3455 ++CoupledSubscriptPairs;
3456 }
3457 }
3458 }
3459 }
3460
3461 DEBUG(dbgs() << " Separable = ");
3462 DEBUG(dumpSmallBitVector(Separable));
3463 DEBUG(dbgs() << " Coupled = ");
3464 DEBUG(dumpSmallBitVector(Coupled));
3465
3466 Constraint NewConstraint;
3467 NewConstraint.setAny(SE);
3468
3469 // test separable subscripts
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003470 for (unsigned SI : Separable.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003471 DEBUG(dbgs() << "testing subscript " << SI);
3472 switch (Pair[SI].Classification) {
3473 case Subscript::ZIV:
3474 DEBUG(dbgs() << ", ZIV\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003475 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003476 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003477 break;
3478 case Subscript::SIV: {
3479 DEBUG(dbgs() << ", SIV\n");
3480 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003481 const SCEV *SplitIter = nullptr;
NAKAMURA Takumi478559a2015-03-05 01:25:19 +00003482 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3483 SplitIter))
Craig Topper9f008862014-04-15 04:59:12 +00003484 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003485 break;
3486 }
3487 case Subscript::RDIV:
3488 DEBUG(dbgs() << ", RDIV\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003489 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003490 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003491 break;
3492 case Subscript::MIV:
3493 DEBUG(dbgs() << ", MIV\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003494 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003495 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003496 break;
3497 default:
3498 llvm_unreachable("subscript has unexpected classification");
3499 }
3500 }
3501
3502 if (Coupled.count()) {
3503 // test coupled subscript groups
3504 DEBUG(dbgs() << "starting on coupled subscripts\n");
3505 DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3506 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3507 for (unsigned II = 0; II <= MaxLevels; ++II)
3508 Constraints[II].setAny(SE);
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003509 for (unsigned SI : Coupled.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003510 DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3511 SmallBitVector Group(Pair[SI].Group);
3512 SmallBitVector Sivs(Pairs);
3513 SmallBitVector Mivs(Pairs);
3514 SmallBitVector ConstrainedLevels(MaxLevels + 1);
Jingyue Wua84feb12015-05-29 16:58:08 +00003515 SmallVector<Subscript *, 4> PairsInGroup;
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003516 for (unsigned SJ : Group.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003517 DEBUG(dbgs() << SJ << " ");
3518 if (Pair[SJ].Classification == Subscript::SIV)
3519 Sivs.set(SJ);
3520 else
3521 Mivs.set(SJ);
Jingyue Wua84feb12015-05-29 16:58:08 +00003522 PairsInGroup.push_back(&Pair[SJ]);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003523 }
Jingyue Wua84feb12015-05-29 16:58:08 +00003524 unifySubscriptType(PairsInGroup);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003525 DEBUG(dbgs() << "}\n");
3526 while (Sivs.any()) {
3527 bool Changed = false;
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003528 for (unsigned SJ : Sivs.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003529 DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3530 // SJ is an SIV subscript that's part of the current coupled group
3531 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003532 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003533 DEBUG(dbgs() << "SIV\n");
NAKAMURA Takumi478559a2015-03-05 01:25:19 +00003534 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3535 SplitIter))
Craig Topper9f008862014-04-15 04:59:12 +00003536 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003537 ConstrainedLevels.set(Level);
3538 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3539 if (Constraints[Level].isEmpty()) {
3540 ++DeltaIndependence;
Craig Topper9f008862014-04-15 04:59:12 +00003541 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003542 }
3543 Changed = true;
3544 }
3545 Sivs.reset(SJ);
3546 }
3547 if (Changed) {
3548 // propagate, possibly creating new SIVs and ZIVs
3549 DEBUG(dbgs() << " propagating\n");
3550 DEBUG(dbgs() << "\tMivs = ");
3551 DEBUG(dumpSmallBitVector(Mivs));
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003552 for (unsigned SJ : Mivs.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003553 // SJ is an MIV subscript that's part of the current coupled group
3554 DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3555 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003556 Constraints, Result.Consistent)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003557 DEBUG(dbgs() << "\t Changed\n");
3558 ++DeltaPropagations;
3559 Pair[SJ].Classification =
3560 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3561 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3562 Pair[SJ].Loops);
3563 switch (Pair[SJ].Classification) {
3564 case Subscript::ZIV:
3565 DEBUG(dbgs() << "ZIV\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003566 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003567 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003568 Mivs.reset(SJ);
3569 break;
3570 case Subscript::SIV:
3571 Sivs.set(SJ);
3572 Mivs.reset(SJ);
3573 break;
3574 case Subscript::RDIV:
3575 case Subscript::MIV:
3576 break;
3577 default:
3578 llvm_unreachable("bad subscript classification");
3579 }
3580 }
3581 }
3582 }
3583 }
3584
3585 // test & propagate remaining RDIVs
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003586 for (unsigned SJ : Mivs.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003587 if (Pair[SJ].Classification == Subscript::RDIV) {
3588 DEBUG(dbgs() << "RDIV test\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003589 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003590 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003591 // I don't yet understand how to propagate RDIV results
3592 Mivs.reset(SJ);
3593 }
3594 }
3595
3596 // test remaining MIVs
3597 // This code is temporary.
3598 // Better to somehow test all remaining subscripts simultaneously.
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003599 for (unsigned SJ : Mivs.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003600 if (Pair[SJ].Classification == Subscript::MIV) {
3601 DEBUG(dbgs() << "MIV test\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003602 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003603 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003604 }
3605 else
3606 llvm_unreachable("expected only MIV subscripts at this point");
3607 }
3608
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003609 // update Result.DV from constraint vector
Sebastian Pop59b61b92012-10-11 07:32:34 +00003610 DEBUG(dbgs() << " updating\n");
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003611 for (unsigned SJ : ConstrainedLevels.set_bits()) {
3612 if (SJ > CommonLevels)
Karthik Bhat8d7f7ed2015-03-10 14:32:02 +00003613 break;
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003614 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3615 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
Craig Topper9f008862014-04-15 04:59:12 +00003616 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003617 }
3618 }
3619 }
3620
Preston Briggs4eb7ee52012-11-29 04:30:52 +00003621 // Make sure the Scalar flags are set correctly.
Sebastian Pop59b61b92012-10-11 07:32:34 +00003622 SmallBitVector CompleteLoops(MaxLevels + 1);
3623 for (unsigned SI = 0; SI < Pairs; ++SI)
3624 CompleteLoops |= Pair[SI].Loops;
3625 for (unsigned II = 1; II <= CommonLevels; ++II)
3626 if (CompleteLoops[II])
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003627 Result.DV[II - 1].Scalar = false;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003628
Sebastian Pop59b61b92012-10-11 07:32:34 +00003629 if (PossiblyLoopIndependent) {
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003630 // Make sure the LoopIndependent flag is set correctly.
3631 // All directions must include equal, otherwise no
3632 // loop-independent dependence is possible.
Sebastian Pop59b61b92012-10-11 07:32:34 +00003633 for (unsigned II = 1; II <= CommonLevels; ++II) {
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003634 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3635 Result.LoopIndependent = false;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003636 break;
3637 }
3638 }
3639 }
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003640 else {
3641 // On the other hand, if all directions are equal and there's no
3642 // loop-independent dependence possible, then no dependence exists.
3643 bool AllEqual = true;
3644 for (unsigned II = 1; II <= CommonLevels; ++II) {
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003645 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
Preston Briggs4eb7ee52012-11-29 04:30:52 +00003646 AllEqual = false;
3647 break;
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003648 }
3649 }
3650 if (AllEqual)
Craig Topper9f008862014-04-15 04:59:12 +00003651 return nullptr;
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003652 }
Sebastian Pop59b61b92012-10-11 07:32:34 +00003653
David Blaikie47039dc2015-07-31 21:37:09 +00003654 return make_unique<FullDependence>(std::move(Result));
Sebastian Pop59b61b92012-10-11 07:32:34 +00003655}
3656
3657
3658
3659//===----------------------------------------------------------------------===//
3660// getSplitIteration -
3661// Rather than spend rarely-used space recording the splitting iteration
3662// during the Weak-Crossing SIV test, we re-compute it on demand.
3663// The re-computation is basically a repeat of the entire dependence test,
3664// though simplified since we know that the dependence exists.
3665// It's tedious, since we must go through all propagations, etc.
3666//
Preston Briggs3ad39492012-11-21 23:50:04 +00003667// Care is required to keep this code up to date with respect to the routine
3668// above, depends().
Sebastian Pop59b61b92012-10-11 07:32:34 +00003669//
3670// Generally, the dependence analyzer will be used to build
3671// a dependence graph for a function (basically a map from instructions
3672// to dependences). Looking for cycles in the graph shows us loops
3673// that cannot be trivially vectorized/parallelized.
3674//
3675// We can try to improve the situation by examining all the dependences
3676// that make up the cycle, looking for ones we can break.
3677// Sometimes, peeling the first or last iteration of a loop will break
3678// dependences, and we've got flags for those possibilities.
3679// Sometimes, splitting a loop at some other iteration will do the trick,
3680// and we've got a flag for that case. Rather than waste the space to
3681// record the exact iteration (since we rarely know), we provide
3682// a method that calculates the iteration. It's a drag that it must work
3683// from scratch, but wonderful in that it's possible.
3684//
3685// Here's an example:
3686//
3687// for (i = 0; i < 10; i++)
3688// A[i] = ...
3689// ... = A[11 - i]
3690//
3691// There's a loop-carried flow dependence from the store to the load,
3692// found by the weak-crossing SIV test. The dependence will have a flag,
3693// indicating that the dependence can be broken by splitting the loop.
3694// Calling getSplitIteration will return 5.
3695// Splitting the loop breaks the dependence, like so:
3696//
3697// for (i = 0; i <= 5; i++)
3698// A[i] = ...
3699// ... = A[11 - i]
3700// for (i = 6; i < 10; i++)
3701// A[i] = ...
3702// ... = A[11 - i]
3703//
3704// breaks the dependence and allows us to vectorize/parallelize
3705// both loops.
Chandler Carruth49c22192016-05-12 22:19:39 +00003706const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3707 unsigned SplitLevel) {
Dylan Noblesmithd96ce662014-08-25 00:28:35 +00003708 assert(Dep.isSplitable(SplitLevel) &&
Sebastian Pop59b61b92012-10-11 07:32:34 +00003709 "Dep should be splitable at SplitLevel");
Dylan Noblesmithd96ce662014-08-25 00:28:35 +00003710 Instruction *Src = Dep.getSrc();
3711 Instruction *Dst = Dep.getDst();
Sebastian Pop59b61b92012-10-11 07:32:34 +00003712 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3713 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3714 assert(isLoadOrStore(Src));
3715 assert(isLoadOrStore(Dst));
Renato Golin038ede22018-03-09 21:05:58 +00003716 Value *SrcPtr = getLoadStorePointerOperand(Src);
3717 Value *DstPtr = getLoadStorePointerOperand(Dst);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003718 assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
Chandler Carruthc3f49eb2015-06-22 02:16:51 +00003719 SrcPtr) == MustAlias);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003720
3721 // establish loop nesting levels
3722 establishNestingLevels(Src, Dst);
3723
3724 FullDependence Result(Src, Dst, false, CommonLevels);
3725
Sebastian Popbf6e1c22018-03-06 21:55:59 +00003726 unsigned Pairs = 1;
3727 SmallVector<Subscript, 2> Pair(Pairs);
3728 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3729 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3730 Pair[0].Src = SrcSCEV;
3731 Pair[0].Dst = DstSCEV;
Preston Briggs3ad39492012-11-21 23:50:04 +00003732
Sebastian Popbf6e1c22018-03-06 21:55:59 +00003733 if (Delinearize) {
Hal Finkel0ef2b102015-08-19 02:56:36 +00003734 if (tryDelinearize(Src, Dst, Pair)) {
Sebastian Popbf6e1c22018-03-06 21:55:59 +00003735 DEBUG(dbgs() << " delinearized\n");
Hal Finkel0ef2b102015-08-19 02:56:36 +00003736 Pairs = Pair.size();
3737 }
Sebastian Popc62c6792013-11-12 22:47:20 +00003738 }
3739
Preston Briggs3ad39492012-11-21 23:50:04 +00003740 for (unsigned P = 0; P < Pairs; ++P) {
3741 Pair[P].Loops.resize(MaxLevels + 1);
3742 Pair[P].GroupLoops.resize(MaxLevels + 1);
3743 Pair[P].Group.resize(Pairs);
3744 removeMatchingExtensions(&Pair[P]);
3745 Pair[P].Classification =
3746 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3747 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3748 Pair[P].Loops);
3749 Pair[P].GroupLoops = Pair[P].Loops;
3750 Pair[P].Group.set(P);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003751 }
3752
3753 SmallBitVector Separable(Pairs);
3754 SmallBitVector Coupled(Pairs);
3755
3756 // partition subscripts into separable and minimally-coupled groups
3757 for (unsigned SI = 0; SI < Pairs; ++SI) {
3758 if (Pair[SI].Classification == Subscript::NonLinear) {
3759 // ignore these, but collect loops for later
3760 collectCommonLoops(Pair[SI].Src,
3761 LI->getLoopFor(Src->getParent()),
3762 Pair[SI].Loops);
3763 collectCommonLoops(Pair[SI].Dst,
3764 LI->getLoopFor(Dst->getParent()),
3765 Pair[SI].Loops);
3766 Result.Consistent = false;
3767 }
3768 else if (Pair[SI].Classification == Subscript::ZIV)
3769 Separable.set(SI);
3770 else {
3771 // SIV, RDIV, or MIV, so check for coupled group
3772 bool Done = true;
3773 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3774 SmallBitVector Intersection = Pair[SI].GroupLoops;
3775 Intersection &= Pair[SJ].GroupLoops;
3776 if (Intersection.any()) {
3777 // accumulate set of all the loops in group
3778 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3779 // accumulate set of all subscripts in group
3780 Pair[SJ].Group |= Pair[SI].Group;
3781 Done = false;
3782 }
3783 }
3784 if (Done) {
3785 if (Pair[SI].Group.count() == 1)
3786 Separable.set(SI);
3787 else
3788 Coupled.set(SI);
3789 }
3790 }
3791 }
3792
3793 Constraint NewConstraint;
3794 NewConstraint.setAny(SE);
3795
3796 // test separable subscripts
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003797 for (unsigned SI : Separable.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003798 switch (Pair[SI].Classification) {
3799 case Subscript::SIV: {
3800 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003801 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003802 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3803 Result, NewConstraint, SplitIter);
3804 if (Level == SplitLevel) {
Craig Topper9f008862014-04-15 04:59:12 +00003805 assert(SplitIter != nullptr);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003806 return SplitIter;
3807 }
3808 break;
3809 }
3810 case Subscript::ZIV:
3811 case Subscript::RDIV:
3812 case Subscript::MIV:
3813 break;
3814 default:
3815 llvm_unreachable("subscript has unexpected classification");
3816 }
3817 }
3818
3819 if (Coupled.count()) {
3820 // test coupled subscript groups
3821 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3822 for (unsigned II = 0; II <= MaxLevels; ++II)
3823 Constraints[II].setAny(SE);
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003824 for (unsigned SI : Coupled.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003825 SmallBitVector Group(Pair[SI].Group);
3826 SmallBitVector Sivs(Pairs);
3827 SmallBitVector Mivs(Pairs);
3828 SmallBitVector ConstrainedLevels(MaxLevels + 1);
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003829 for (unsigned SJ : Group.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003830 if (Pair[SJ].Classification == Subscript::SIV)
3831 Sivs.set(SJ);
3832 else
3833 Mivs.set(SJ);
3834 }
3835 while (Sivs.any()) {
3836 bool Changed = false;
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003837 for (unsigned SJ : Sivs.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003838 // SJ is an SIV subscript that's part of the current coupled group
3839 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003840 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003841 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3842 Result, NewConstraint, SplitIter);
3843 if (Level == SplitLevel && SplitIter)
3844 return SplitIter;
3845 ConstrainedLevels.set(Level);
3846 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3847 Changed = true;
3848 Sivs.reset(SJ);
3849 }
3850 if (Changed) {
3851 // propagate, possibly creating new SIVs and ZIVs
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003852 for (unsigned SJ : Mivs.set_bits()) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003853 // SJ is an MIV subscript that's part of the current coupled group
3854 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3855 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3856 Pair[SJ].Classification =
3857 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3858 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3859 Pair[SJ].Loops);
3860 switch (Pair[SJ].Classification) {
3861 case Subscript::ZIV:
3862 Mivs.reset(SJ);
3863 break;
3864 case Subscript::SIV:
3865 Sivs.set(SJ);
3866 Mivs.reset(SJ);
3867 break;
3868 case Subscript::RDIV:
3869 case Subscript::MIV:
3870 break;
3871 default:
3872 llvm_unreachable("bad subscript classification");
3873 }
3874 }
3875 }
3876 }
3877 }
3878 }
3879 }
3880 llvm_unreachable("somehow reached end of routine");
Craig Topper9f008862014-04-15 04:59:12 +00003881 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003882}