Alexander Kornienko | 0497084 | 2015-08-19 09:11:46 +0000 | [diff] [blame^] | 1 | //===--- LoopConvertUtils.cpp - clang-tidy --------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #include "LoopConvertUtils.h" |
| 11 | |
| 12 | using namespace clang::ast_matchers; |
| 13 | using namespace clang::tooling; |
| 14 | using namespace clang; |
| 15 | using namespace llvm; |
| 16 | |
| 17 | namespace clang { |
| 18 | namespace tidy { |
| 19 | namespace modernize { |
| 20 | |
| 21 | /// \brief Tracks a stack of parent statements during traversal. |
| 22 | /// |
| 23 | /// All this really does is inject push_back() before running |
| 24 | /// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop |
| 25 | /// the stack is the parent of the current statement (NULL for the topmost |
| 26 | /// statement). |
| 27 | bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) { |
| 28 | StmtAncestors.insert(std::make_pair(Statement, StmtStack.back())); |
| 29 | StmtStack.push_back(Statement); |
| 30 | RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement); |
| 31 | StmtStack.pop_back(); |
| 32 | return true; |
| 33 | } |
| 34 | |
| 35 | /// \brief Keep track of the DeclStmt associated with each VarDecl. |
| 36 | /// |
| 37 | /// Combined with StmtAncestors, this provides roughly the same information as |
| 38 | /// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree |
| 39 | /// using StmtAncestors. |
| 40 | bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Decls) { |
| 41 | for (const auto *decl : Decls->decls()) { |
| 42 | if (const auto *V = dyn_cast<VarDecl>(decl)) |
| 43 | DeclParents.insert(std::make_pair(V, Decls)); |
| 44 | } |
| 45 | return true; |
| 46 | } |
| 47 | |
| 48 | /// \brief record the DeclRefExpr as part of the parent expression. |
| 49 | bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) { |
| 50 | Components.push_back(E); |
| 51 | return true; |
| 52 | } |
| 53 | |
| 54 | /// \brief record the MemberExpr as part of the parent expression. |
| 55 | bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) { |
| 56 | Components.push_back(Member); |
| 57 | return true; |
| 58 | } |
| 59 | |
| 60 | /// \brief Forward any DeclRefExprs to a check on the referenced variable |
| 61 | /// declaration. |
| 62 | bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) { |
| 63 | if (auto *V = dyn_cast_or_null<VarDecl>(DeclRef->getDecl())) |
| 64 | return VisitVarDecl(V); |
| 65 | return true; |
| 66 | } |
| 67 | |
| 68 | /// \brief Determine if any this variable is declared inside the ContainingStmt. |
| 69 | bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *V) { |
| 70 | const Stmt *Curr = DeclParents->lookup(V); |
| 71 | // First, see if the variable was declared within an inner scope of the loop. |
| 72 | while (Curr != nullptr) { |
| 73 | if (Curr == ContainingStmt) { |
| 74 | DependsOnInsideVariable = true; |
| 75 | return false; |
| 76 | } |
| 77 | Curr = StmtParents->lookup(Curr); |
| 78 | } |
| 79 | |
| 80 | // Next, check if the variable was removed from existence by an earlier |
| 81 | // iteration. |
| 82 | for (const auto &I : *ReplacedVars) { |
| 83 | if (I.second == V) { |
| 84 | DependsOnInsideVariable = true; |
| 85 | return false; |
| 86 | } |
| 87 | } |
| 88 | return true; |
| 89 | } |
| 90 | |
| 91 | /// \brief If we already created a variable for TheLoop, check to make sure |
| 92 | /// that the name was not already taken. |
| 93 | bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) { |
| 94 | StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop); |
| 95 | if (I != GeneratedDecls->end() && I->second == Name) { |
| 96 | Found = true; |
| 97 | return false; |
| 98 | } |
| 99 | return true; |
| 100 | } |
| 101 | |
| 102 | /// \brief If any named declaration within the AST subtree has the same name, |
| 103 | /// then consider Name already taken. |
| 104 | bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *D) { |
| 105 | const IdentifierInfo *Ident = D->getIdentifier(); |
| 106 | if (Ident && Ident->getName() == Name) { |
| 107 | Found = true; |
| 108 | return false; |
| 109 | } |
| 110 | return true; |
| 111 | } |
| 112 | |
| 113 | /// \brief Forward any declaration references to the actual check on the |
| 114 | /// referenced declaration. |
| 115 | bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) { |
| 116 | if (auto *D = dyn_cast<NamedDecl>(DeclRef->getDecl())) |
| 117 | return VisitNamedDecl(D); |
| 118 | return true; |
| 119 | } |
| 120 | |
| 121 | /// \brief If the new variable name conflicts with any type used in the loop, |
| 122 | /// then we mark that variable name as taken. |
| 123 | bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) { |
| 124 | QualType QType = TL.getType(); |
| 125 | |
| 126 | // Check if our name conflicts with a type, to handle for typedefs. |
| 127 | if (QType.getAsString() == Name) { |
| 128 | Found = true; |
| 129 | return false; |
| 130 | } |
| 131 | // Check for base type conflicts. For example, when a struct is being |
| 132 | // referenced in the body of the loop, the above getAsString() will return the |
| 133 | // whole type (ex. "struct s"), but will be caught here. |
| 134 | if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) { |
| 135 | if (Ident->getName() == Name) { |
| 136 | Found = true; |
| 137 | return false; |
| 138 | } |
| 139 | } |
| 140 | return true; |
| 141 | } |
| 142 | |
| 143 | /// \brief Look through conversion/copy constructors to find the explicit |
| 144 | /// initialization expression, returning it is found. |
| 145 | /// |
| 146 | /// The main idea is that given |
| 147 | /// vector<int> v; |
| 148 | /// we consider either of these initializations |
| 149 | /// vector<int>::iterator it = v.begin(); |
| 150 | /// vector<int>::iterator it(v.begin()); |
| 151 | /// and retrieve `v.begin()` as the expression used to initialize `it` but do |
| 152 | /// not include |
| 153 | /// vector<int>::iterator it; |
| 154 | /// vector<int>::iterator it(v.begin(), 0); // if this constructor existed |
| 155 | /// as being initialized from `v.begin()` |
| 156 | const Expr *digThroughConstructors(const Expr *E) { |
| 157 | if (!E) |
| 158 | return nullptr; |
| 159 | E = E->IgnoreParenImpCasts(); |
| 160 | if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) { |
| 161 | // The initial constructor must take exactly one parameter, but base class |
| 162 | // and deferred constructors can take more. |
| 163 | if (ConstructExpr->getNumArgs() != 1 || |
| 164 | ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete) |
| 165 | return nullptr; |
| 166 | E = ConstructExpr->getArg(0); |
| 167 | if (const auto *Temp = dyn_cast<MaterializeTemporaryExpr>(E)) |
| 168 | E = Temp->GetTemporaryExpr(); |
| 169 | return digThroughConstructors(E); |
| 170 | } |
| 171 | return E; |
| 172 | } |
| 173 | |
| 174 | /// \brief Returns true when two Exprs are equivalent. |
| 175 | bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second) { |
| 176 | if (!First || !Second) |
| 177 | return false; |
| 178 | |
| 179 | llvm::FoldingSetNodeID FirstID, SecondID; |
| 180 | First->Profile(FirstID, *Context, true); |
| 181 | Second->Profile(SecondID, *Context, true); |
| 182 | return FirstID == SecondID; |
| 183 | } |
| 184 | |
| 185 | /// \brief Returns the DeclRefExpr represented by E, or NULL if there isn't one. |
| 186 | const DeclRefExpr *getDeclRef(const Expr *E) { |
| 187 | return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); |
| 188 | } |
| 189 | |
| 190 | /// \brief Returns true when two ValueDecls are the same variable. |
| 191 | bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) { |
| 192 | return First && Second && |
| 193 | First->getCanonicalDecl() == Second->getCanonicalDecl(); |
| 194 | } |
| 195 | |
| 196 | /// \brief Determines if an expression is a declaration reference to a |
| 197 | /// particular variable. |
| 198 | static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) { |
| 199 | if (!Target || !E) |
| 200 | return false; |
| 201 | const DeclRefExpr *Decl = getDeclRef(E); |
| 202 | return Decl && areSameVariable(Target, Decl->getDecl()); |
| 203 | } |
| 204 | |
| 205 | /// \brief If the expression is a dereference or call to operator*(), return the |
| 206 | /// operand. Otherwise, return NULL. |
| 207 | static const Expr *getDereferenceOperand(const Expr *E) { |
| 208 | if (const auto *Uop = dyn_cast<UnaryOperator>(E)) |
| 209 | return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : nullptr; |
| 210 | |
| 211 | if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) { |
| 212 | return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 |
| 213 | ? OpCall->getArg(0) |
| 214 | : nullptr; |
| 215 | } |
| 216 | |
| 217 | return nullptr; |
| 218 | } |
| 219 | |
| 220 | /// \brief Returns true when the Container contains an Expr equivalent to E. |
| 221 | template <typename ContainerT> |
| 222 | static bool containsExpr(ASTContext *Context, const ContainerT *Container, |
| 223 | const Expr *E) { |
| 224 | llvm::FoldingSetNodeID ID; |
| 225 | E->Profile(ID, *Context, true); |
| 226 | for (const auto &I : *Container) { |
| 227 | if (ID == I.second) |
| 228 | return true; |
| 229 | } |
| 230 | return false; |
| 231 | } |
| 232 | |
| 233 | /// \brief Returns true when the index expression is a declaration reference to |
| 234 | /// IndexVar. |
| 235 | /// |
| 236 | /// If the index variable is `index`, this function returns true on |
| 237 | /// arrayExpression[index]; |
| 238 | /// containerExpression[index]; |
| 239 | /// but not |
| 240 | /// containerExpression[notIndex]; |
| 241 | static bool isIndexInSubscriptExpr(const Expr *IndexExpr, |
| 242 | const VarDecl *IndexVar) { |
| 243 | const DeclRefExpr *Idx = getDeclRef(IndexExpr); |
| 244 | return Idx && Idx->getType()->isIntegerType() && |
| 245 | areSameVariable(IndexVar, Idx->getDecl()); |
| 246 | } |
| 247 | |
| 248 | /// \brief Returns true when the index expression is a declaration reference to |
| 249 | /// IndexVar, Obj is the same expression as SourceExpr after all parens and |
| 250 | /// implicit casts are stripped off. |
| 251 | /// |
| 252 | /// If PermitDeref is true, IndexExpression may |
| 253 | /// be a dereference (overloaded or builtin operator*). |
| 254 | /// |
| 255 | /// This function is intended for array-like containers, as it makes sure that |
| 256 | /// both the container and the index match. |
| 257 | /// If the loop has index variable `index` and iterates over `container`, then |
| 258 | /// isIndexInSubscriptExpr returns true for |
| 259 | /// \code |
| 260 | /// container[index] |
| 261 | /// container.at(index) |
| 262 | /// container->at(index) |
| 263 | /// \endcode |
| 264 | /// but not for |
| 265 | /// \code |
| 266 | /// container[notIndex] |
| 267 | /// notContainer[index] |
| 268 | /// \endcode |
| 269 | /// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns |
| 270 | /// true on these expressions: |
| 271 | /// \code |
| 272 | /// (*container)[index] |
| 273 | /// (*container).at(index) |
| 274 | /// \endcode |
| 275 | static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr, |
| 276 | const VarDecl *IndexVar, const Expr *Obj, |
| 277 | const Expr *SourceExpr, bool PermitDeref) { |
| 278 | if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar)) |
| 279 | return false; |
| 280 | |
| 281 | if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(), |
| 282 | Obj->IgnoreParenImpCasts())) |
| 283 | return true; |
| 284 | |
| 285 | if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts())) |
| 286 | if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(), |
| 287 | InnerObj->IgnoreParenImpCasts())) |
| 288 | return true; |
| 289 | |
| 290 | return false; |
| 291 | } |
| 292 | |
| 293 | /// \brief Returns true when Opcall is a call a one-parameter dereference of |
| 294 | /// IndexVar. |
| 295 | /// |
| 296 | /// For example, if the index variable is `index`, returns true for |
| 297 | /// *index |
| 298 | /// but not |
| 299 | /// index |
| 300 | /// *notIndex |
| 301 | static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall, |
| 302 | const VarDecl *IndexVar) { |
| 303 | return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 && |
| 304 | exprReferencesVariable(IndexVar, OpCall->getArg(0)); |
| 305 | } |
| 306 | |
| 307 | /// \brief Returns true when Uop is a dereference of IndexVar. |
| 308 | /// |
| 309 | /// For example, if the index variable is `index`, returns true for |
| 310 | /// *index |
| 311 | /// but not |
| 312 | /// index |
| 313 | /// *notIndex |
| 314 | static bool isDereferenceOfUop(const UnaryOperator *Uop, |
| 315 | const VarDecl *IndexVar) { |
| 316 | return Uop->getOpcode() == UO_Deref && |
| 317 | exprReferencesVariable(IndexVar, Uop->getSubExpr()); |
| 318 | } |
| 319 | |
| 320 | /// \brief Determines whether the given Decl defines a variable initialized to |
| 321 | /// the loop object. |
| 322 | /// |
| 323 | /// This is intended to find cases such as |
| 324 | /// \code |
| 325 | /// for (int i = 0; i < arraySize(arr); ++i) { |
| 326 | /// T t = arr[i]; |
| 327 | /// // use t, do not use i |
| 328 | /// } |
| 329 | /// \endcode |
| 330 | /// and |
| 331 | /// \code |
| 332 | /// for (iterator i = container.begin(), e = container.end(); i != e; ++i) { |
| 333 | /// T t = *i; |
| 334 | /// // use t, do not use i |
| 335 | /// } |
| 336 | /// \endcode |
| 337 | static bool isAliasDecl(const Decl *TheDecl, const VarDecl *IndexVar) { |
| 338 | const auto *VDecl = dyn_cast<VarDecl>(TheDecl); |
| 339 | if (!VDecl) |
| 340 | return false; |
| 341 | if (!VDecl->hasInit()) |
| 342 | return false; |
| 343 | |
| 344 | const Expr *Init = |
| 345 | digThroughConstructors(VDecl->getInit()->IgnoreParenImpCasts()); |
| 346 | if (!Init) |
| 347 | return false; |
| 348 | |
| 349 | switch (Init->getStmtClass()) { |
| 350 | case Stmt::ArraySubscriptExprClass: { |
| 351 | const auto *E = cast<ArraySubscriptExpr>(Init); |
| 352 | // We don't really care which array is used here. We check to make sure |
| 353 | // it was the correct one later, since the AST will traverse it next. |
| 354 | return isIndexInSubscriptExpr(E->getIdx(), IndexVar); |
| 355 | } |
| 356 | |
| 357 | case Stmt::UnaryOperatorClass: |
| 358 | return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar); |
| 359 | |
| 360 | case Stmt::CXXOperatorCallExprClass: { |
| 361 | const auto *OpCall = cast<CXXOperatorCallExpr>(Init); |
| 362 | if (OpCall->getOperator() == OO_Star) |
| 363 | return isDereferenceOfOpCall(OpCall, IndexVar); |
| 364 | if (OpCall->getOperator() == OO_Subscript) { |
| 365 | assert(OpCall->getNumArgs() == 2); |
| 366 | return true; |
| 367 | } |
| 368 | break; |
| 369 | } |
| 370 | |
| 371 | case Stmt::CXXMemberCallExprClass: |
| 372 | return true; |
| 373 | |
| 374 | default: |
| 375 | break; |
| 376 | } |
| 377 | return false; |
| 378 | } |
| 379 | |
| 380 | /// \brief Determines whether the bound of a for loop condition expression is |
| 381 | /// the same as the statically computable size of ArrayType. |
| 382 | /// |
| 383 | /// Given |
| 384 | /// \code |
| 385 | /// const int N = 5; |
| 386 | /// int arr[N]; |
| 387 | /// \endcode |
| 388 | /// This is intended to permit |
| 389 | /// \code |
| 390 | /// for (int i = 0; i < N; ++i) { /* use arr[i] */ } |
| 391 | /// for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ } |
| 392 | /// \endcode |
| 393 | static bool arrayMatchesBoundExpr(ASTContext *Context, |
| 394 | const QualType &ArrayType, |
| 395 | const Expr *ConditionExpr) { |
| 396 | if (!ConditionExpr || ConditionExpr->isValueDependent()) |
| 397 | return false; |
| 398 | const ConstantArrayType *ConstType = |
| 399 | Context->getAsConstantArrayType(ArrayType); |
| 400 | if (!ConstType) |
| 401 | return false; |
| 402 | llvm::APSInt ConditionSize; |
| 403 | if (!ConditionExpr->isIntegerConstantExpr(ConditionSize, *Context)) |
| 404 | return false; |
| 405 | llvm::APSInt ArraySize(ConstType->getSize()); |
| 406 | return llvm::APSInt::isSameValue(ConditionSize, ArraySize); |
| 407 | } |
| 408 | |
| 409 | ForLoopIndexUseVisitor::ForLoopIndexUseVisitor(ASTContext *Context, |
| 410 | const VarDecl *IndexVar, |
| 411 | const VarDecl *EndVar, |
| 412 | const Expr *ContainerExpr, |
| 413 | const Expr *ArrayBoundExpr, |
| 414 | bool ContainerNeedsDereference) |
| 415 | : Context(Context), IndexVar(IndexVar), EndVar(EndVar), |
| 416 | ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr), |
| 417 | ContainerNeedsDereference(ContainerNeedsDereference), |
| 418 | OnlyUsedAsIndex(true), AliasDecl(nullptr), |
| 419 | ConfidenceLevel(Confidence::CL_Safe), NextStmtParent(nullptr), |
| 420 | CurrStmtParent(nullptr), ReplaceWithAliasUse(false), |
| 421 | AliasFromForInit(false) { |
| 422 | if (ContainerExpr) { |
| 423 | addComponent(ContainerExpr); |
| 424 | FoldingSetNodeID ID; |
| 425 | const Expr *E = ContainerExpr->IgnoreParenImpCasts(); |
| 426 | E->Profile(ID, *Context, true); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | bool ForLoopIndexUseVisitor::findAndVerifyUsages(const Stmt *Body) { |
| 431 | TraverseStmt(const_cast<Stmt *>(Body)); |
| 432 | return OnlyUsedAsIndex && ContainerExpr; |
| 433 | } |
| 434 | |
| 435 | void ForLoopIndexUseVisitor::addComponents(const ComponentVector &Components) { |
| 436 | // FIXME: add sort(on ID)+unique to avoid extra work. |
| 437 | for (const auto &I : Components) |
| 438 | addComponent(I); |
| 439 | } |
| 440 | |
| 441 | void ForLoopIndexUseVisitor::addComponent(const Expr *E) { |
| 442 | FoldingSetNodeID ID; |
| 443 | const Expr *Node = E->IgnoreParenImpCasts(); |
| 444 | Node->Profile(ID, *Context, true); |
| 445 | DependentExprs.push_back(std::make_pair(Node, ID)); |
| 446 | } |
| 447 | |
| 448 | /// \brief If the unary operator is a dereference of IndexVar, include it |
| 449 | /// as a valid usage and prune the traversal. |
| 450 | /// |
| 451 | /// For example, if container.begin() and container.end() both return pointers |
| 452 | /// to int, this makes sure that the initialization for `k` is not counted as an |
| 453 | /// unconvertible use of the iterator `i`. |
| 454 | /// \code |
| 455 | /// for (int *i = container.begin(), *e = container.end(); i != e; ++i) { |
| 456 | /// int k = *i + 2; |
| 457 | /// } |
| 458 | /// \endcode |
| 459 | bool ForLoopIndexUseVisitor::TraverseUnaryDeref(UnaryOperator *Uop) { |
| 460 | // If we dereference an iterator that's actually a pointer, count the |
| 461 | // occurrence. |
| 462 | if (isDereferenceOfUop(Uop, IndexVar)) { |
| 463 | Usages.push_back(Usage(Uop)); |
| 464 | return true; |
| 465 | } |
| 466 | |
| 467 | return VisitorBase::TraverseUnaryOperator(Uop); |
| 468 | } |
| 469 | |
| 470 | /// \brief If the member expression is operator-> (overloaded or not) on |
| 471 | /// IndexVar, include it as a valid usage and prune the traversal. |
| 472 | /// |
| 473 | /// For example, given |
| 474 | /// \code |
| 475 | /// struct Foo { int bar(); int x; }; |
| 476 | /// vector<Foo> v; |
| 477 | /// \endcode |
| 478 | /// the following uses will be considered convertible: |
| 479 | /// \code |
| 480 | /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) { |
| 481 | /// int b = i->bar(); |
| 482 | /// int k = i->x + 1; |
| 483 | /// } |
| 484 | /// \endcode |
| 485 | /// though |
| 486 | /// \code |
| 487 | /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) { |
| 488 | /// int k = i.insert(1); |
| 489 | /// } |
| 490 | /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) { |
| 491 | /// int b = e->bar(); |
| 492 | /// } |
| 493 | /// \endcode |
| 494 | /// will not. |
| 495 | bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) { |
| 496 | const Expr *Base = Member->getBase(); |
| 497 | const DeclRefExpr *Obj = getDeclRef(Base); |
| 498 | const Expr *ResultExpr = Member; |
| 499 | QualType ExprType; |
| 500 | if (const auto *Call = |
| 501 | dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) { |
| 502 | // If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then |
| 503 | // the MemberExpr does not have the expression we want. We therefore catch |
| 504 | // that instance here. |
| 505 | // For example, if vector<Foo>::iterator defines operator->(), then the |
| 506 | // example `i->bar()` at the top of this function is a CXXMemberCallExpr |
| 507 | // referring to `i->` as the member function called. We want just `i`, so |
| 508 | // we take the argument to operator->() as the base object. |
| 509 | if (Call->getOperator() == OO_Arrow) { |
| 510 | assert(Call->getNumArgs() == 1 && |
| 511 | "Operator-> takes more than one argument"); |
| 512 | Obj = getDeclRef(Call->getArg(0)); |
| 513 | ResultExpr = Obj; |
| 514 | ExprType = Call->getCallReturnType(*Context); |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | if (Member->isArrow() && Obj && exprReferencesVariable(IndexVar, Obj)) { |
| 519 | if (ExprType.isNull()) |
| 520 | ExprType = Obj->getType(); |
| 521 | |
| 522 | assert(ExprType->isPointerType() && "Operator-> returned non-pointer type"); |
| 523 | // FIXME: This works around not having the location of the arrow operator. |
| 524 | // Consider adding OperatorLoc to MemberExpr? |
| 525 | SourceLocation ArrowLoc = Lexer::getLocForEndOfToken( |
| 526 | Base->getExprLoc(), 0, Context->getSourceManager(), |
| 527 | Context->getLangOpts()); |
| 528 | // If something complicated is happening (i.e. the next token isn't an |
| 529 | // arrow), give up on making this work. |
| 530 | if (!ArrowLoc.isInvalid()) { |
| 531 | Usages.push_back(Usage(ResultExpr, /*IsArrow=*/true, |
| 532 | SourceRange(Base->getExprLoc(), ArrowLoc))); |
| 533 | return true; |
| 534 | } |
| 535 | } |
| 536 | return TraverseStmt(Member->getBase()); |
| 537 | } |
| 538 | |
| 539 | /// \brief If a member function call is the at() accessor on the container with |
| 540 | /// IndexVar as the single argument, include it as a valid usage and prune |
| 541 | /// the traversal. |
| 542 | /// |
| 543 | /// Member calls on other objects will not be permitted. |
| 544 | /// Calls on the iterator object are not permitted, unless done through |
| 545 | /// operator->(). The one exception is allowing vector::at() for pseudoarrays. |
| 546 | bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr( |
| 547 | CXXMemberCallExpr *MemberCall) { |
| 548 | auto *Member = |
| 549 | dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts()); |
| 550 | if (!Member) |
| 551 | return VisitorBase::TraverseCXXMemberCallExpr(MemberCall); |
| 552 | |
| 553 | // We specifically allow an accessor named "at" to let STL in, though |
| 554 | // this is restricted to pseudo-arrays by requiring a single, integer |
| 555 | // argument. |
| 556 | const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier(); |
| 557 | if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) { |
| 558 | if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar, |
| 559 | Member->getBase(), ContainerExpr, |
| 560 | ContainerNeedsDereference)) { |
| 561 | Usages.push_back(Usage(MemberCall)); |
| 562 | return true; |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | if (containsExpr(Context, &DependentExprs, Member->getBase())) |
| 567 | ConfidenceLevel.lowerTo(Confidence::CL_Risky); |
| 568 | |
| 569 | return VisitorBase::TraverseCXXMemberCallExpr(MemberCall); |
| 570 | } |
| 571 | |
| 572 | /// \brief If an overloaded operator call is a dereference of IndexVar or |
| 573 | /// a subscript of a the container with IndexVar as the single argument, |
| 574 | /// include it as a valid usage and prune the traversal. |
| 575 | /// |
| 576 | /// For example, given |
| 577 | /// \code |
| 578 | /// struct Foo { int bar(); int x; }; |
| 579 | /// vector<Foo> v; |
| 580 | /// void f(Foo); |
| 581 | /// \endcode |
| 582 | /// the following uses will be considered convertible: |
| 583 | /// \code |
| 584 | /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) { |
| 585 | /// f(*i); |
| 586 | /// } |
| 587 | /// for (int i = 0; i < v.size(); ++i) { |
| 588 | /// int i = v[i] + 1; |
| 589 | /// } |
| 590 | /// \endcode |
| 591 | bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr( |
| 592 | CXXOperatorCallExpr *OpCall) { |
| 593 | switch (OpCall->getOperator()) { |
| 594 | case OO_Star: |
| 595 | if (isDereferenceOfOpCall(OpCall, IndexVar)) { |
| 596 | Usages.push_back(Usage(OpCall)); |
| 597 | return true; |
| 598 | } |
| 599 | break; |
| 600 | |
| 601 | case OO_Subscript: |
| 602 | if (OpCall->getNumArgs() != 2) |
| 603 | break; |
| 604 | if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar, |
| 605 | OpCall->getArg(0), ContainerExpr, |
| 606 | ContainerNeedsDereference)) { |
| 607 | Usages.push_back(Usage(OpCall)); |
| 608 | return true; |
| 609 | } |
| 610 | break; |
| 611 | |
| 612 | default: |
| 613 | break; |
| 614 | } |
| 615 | return VisitorBase::TraverseCXXOperatorCallExpr(OpCall); |
| 616 | } |
| 617 | |
| 618 | /// \brief If we encounter an array with IndexVar as the index of an |
| 619 | /// ArraySubsriptExpression, note it as a consistent usage and prune the |
| 620 | /// AST traversal. |
| 621 | /// |
| 622 | /// For example, given |
| 623 | /// \code |
| 624 | /// const int N = 5; |
| 625 | /// int arr[N]; |
| 626 | /// \endcode |
| 627 | /// This is intended to permit |
| 628 | /// \code |
| 629 | /// for (int i = 0; i < N; ++i) { /* use arr[i] */ } |
| 630 | /// \endcode |
| 631 | /// but not |
| 632 | /// \code |
| 633 | /// for (int i = 0; i < N; ++i) { /* use notArr[i] */ } |
| 634 | /// \endcode |
| 635 | /// and further checking needs to be done later to ensure that exactly one array |
| 636 | /// is referenced. |
| 637 | bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *E) { |
| 638 | Expr *Arr = E->getBase(); |
| 639 | if (!isIndexInSubscriptExpr(E->getIdx(), IndexVar)) |
| 640 | return VisitorBase::TraverseArraySubscriptExpr(E); |
| 641 | |
| 642 | if ((ContainerExpr && |
| 643 | !areSameExpr(Context, Arr->IgnoreParenImpCasts(), |
| 644 | ContainerExpr->IgnoreParenImpCasts())) || |
| 645 | !arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(), |
| 646 | ArrayBoundExpr)) { |
| 647 | // If we have already discovered the array being indexed and this isn't it |
| 648 | // or this array doesn't match, mark this loop as unconvertible. |
| 649 | OnlyUsedAsIndex = false; |
| 650 | return VisitorBase::TraverseArraySubscriptExpr(E); |
| 651 | } |
| 652 | |
| 653 | if (!ContainerExpr) |
| 654 | ContainerExpr = Arr; |
| 655 | |
| 656 | Usages.push_back(Usage(E)); |
| 657 | return true; |
| 658 | } |
| 659 | |
| 660 | /// \brief If we encounter a reference to IndexVar in an unpruned branch of the |
| 661 | /// traversal, mark this loop as unconvertible. |
| 662 | /// |
| 663 | /// This implements the whitelist for convertible loops: any usages of IndexVar |
| 664 | /// not explicitly considered convertible by this traversal will be caught by |
| 665 | /// this function. |
| 666 | /// |
| 667 | /// Additionally, if the container expression is more complex than just a |
| 668 | /// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower |
| 669 | /// our confidence in the transformation. |
| 670 | /// |
| 671 | /// For example, these are not permitted: |
| 672 | /// \code |
| 673 | /// for (int i = 0; i < N; ++i) { printf("arr[%d] = %d", i, arr[i]); } |
| 674 | /// for (vector<int>::iterator i = container.begin(), e = container.end(); |
| 675 | /// i != e; ++i) |
| 676 | /// i.insert(0); |
| 677 | /// for (vector<int>::iterator i = container.begin(), e = container.end(); |
| 678 | /// i != e; ++i) |
| 679 | /// i.insert(0); |
| 680 | /// for (vector<int>::iterator i = container.begin(), e = container.end(); |
| 681 | /// i != e; ++i) |
| 682 | /// if (i + 1 != e) |
| 683 | /// printf("%d", *i); |
| 684 | /// \endcode |
| 685 | /// |
| 686 | /// And these will raise the risk level: |
| 687 | /// \code |
| 688 | /// int arr[10][20]; |
| 689 | /// int l = 5; |
| 690 | /// for (int j = 0; j < 20; ++j) |
| 691 | /// int k = arr[l][j] + l; // using l outside arr[l] is considered risky |
| 692 | /// for (int i = 0; i < obj.getVector().size(); ++i) |
| 693 | /// obj.foo(10); // using `obj` is considered risky |
| 694 | /// \endcode |
| 695 | bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *E) { |
| 696 | const ValueDecl *TheDecl = E->getDecl(); |
| 697 | if (areSameVariable(IndexVar, TheDecl) || areSameVariable(EndVar, TheDecl)) |
| 698 | OnlyUsedAsIndex = false; |
| 699 | if (containsExpr(Context, &DependentExprs, E)) |
| 700 | ConfidenceLevel.lowerTo(Confidence::CL_Risky); |
| 701 | return true; |
| 702 | } |
| 703 | |
| 704 | /// \brief If we find that another variable is created just to refer to the loop |
| 705 | /// element, note it for reuse as the loop variable. |
| 706 | /// |
| 707 | /// See the comments for isAliasDecl. |
| 708 | bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *S) { |
| 709 | if (!AliasDecl && S->isSingleDecl() && |
| 710 | isAliasDecl(S->getSingleDecl(), IndexVar)) { |
| 711 | AliasDecl = S; |
| 712 | if (CurrStmtParent) { |
| 713 | if (isa<IfStmt>(CurrStmtParent) || isa<WhileStmt>(CurrStmtParent) || |
| 714 | isa<SwitchStmt>(CurrStmtParent)) |
| 715 | ReplaceWithAliasUse = true; |
| 716 | else if (isa<ForStmt>(CurrStmtParent)) { |
| 717 | if (cast<ForStmt>(CurrStmtParent)->getConditionVariableDeclStmt() == S) |
| 718 | ReplaceWithAliasUse = true; |
| 719 | else |
| 720 | // It's assumed S came the for loop's init clause. |
| 721 | AliasFromForInit = true; |
| 722 | } |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | return true; |
| 727 | } |
| 728 | |
| 729 | bool ForLoopIndexUseVisitor::TraverseStmt(Stmt *S) { |
| 730 | // All this pointer swapping is a mechanism for tracking immediate parentage |
| 731 | // of Stmts. |
| 732 | const Stmt *OldNextParent = NextStmtParent; |
| 733 | CurrStmtParent = NextStmtParent; |
| 734 | NextStmtParent = S; |
| 735 | bool Result = VisitorBase::TraverseStmt(S); |
| 736 | NextStmtParent = OldNextParent; |
| 737 | return Result; |
| 738 | } |
| 739 | |
| 740 | std::string VariableNamer::createIndexName() { |
| 741 | // FIXME: Add in naming conventions to handle: |
| 742 | // - Uppercase/lowercase indices. |
| 743 | // - How to handle conflicts. |
| 744 | // - An interactive process for naming. |
| 745 | std::string IteratorName; |
| 746 | std::string ContainerName; |
| 747 | if (TheContainer) |
| 748 | ContainerName = TheContainer->getName().str(); |
| 749 | |
| 750 | size_t Len = ContainerName.length(); |
| 751 | if (Len > 1 && ContainerName[Len - 1] == 's') |
| 752 | IteratorName = ContainerName.substr(0, Len - 1); |
| 753 | else |
| 754 | IteratorName = "elem"; |
| 755 | |
| 756 | if (!declarationExists(IteratorName)) |
| 757 | return IteratorName; |
| 758 | |
| 759 | IteratorName = ContainerName + "_" + OldIndex->getName().str(); |
| 760 | if (!declarationExists(IteratorName)) |
| 761 | return IteratorName; |
| 762 | |
| 763 | IteratorName = ContainerName + "_elem"; |
| 764 | if (!declarationExists(IteratorName)) |
| 765 | return IteratorName; |
| 766 | |
| 767 | IteratorName += "_elem"; |
| 768 | if (!declarationExists(IteratorName)) |
| 769 | return IteratorName; |
| 770 | |
| 771 | IteratorName = "_elem_"; |
| 772 | |
| 773 | // Someone defeated my naming scheme... |
| 774 | while (declarationExists(IteratorName)) |
| 775 | IteratorName += "i"; |
| 776 | return IteratorName; |
| 777 | } |
| 778 | |
| 779 | /// \brief Determines whether or not the the name \a Symbol conflicts with |
| 780 | /// language keywords or defined macros. Also checks if the name exists in |
| 781 | /// LoopContext, any of its parent contexts, or any of its child statements. |
| 782 | /// |
| 783 | /// We also check to see if the same identifier was generated by this loop |
| 784 | /// converter in a loop nested within SourceStmt. |
| 785 | bool VariableNamer::declarationExists(StringRef Symbol) { |
| 786 | assert(Context != nullptr && "Expected an ASTContext"); |
| 787 | IdentifierInfo &Ident = Context->Idents.get(Symbol); |
| 788 | |
| 789 | // Check if the symbol is not an identifier (ie. is a keyword or alias). |
| 790 | if (!isAnyIdentifier(Ident.getTokenID())) |
| 791 | return true; |
| 792 | |
| 793 | // Check for conflicting macro definitions. |
| 794 | if (Ident.hasMacroDefinition()) |
| 795 | return true; |
| 796 | |
| 797 | // Determine if the symbol was generated in a parent context. |
| 798 | for (const Stmt *S = SourceStmt; S != nullptr; S = ReverseAST->lookup(S)) { |
| 799 | StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S); |
| 800 | if (I != GeneratedDecls->end() && I->second == Symbol) |
| 801 | return true; |
| 802 | } |
| 803 | |
| 804 | // FIXME: Rather than detecting conflicts at their usages, we should check the |
| 805 | // parent context. |
| 806 | // For some reason, lookup() always returns the pair (NULL, NULL) because its |
| 807 | // StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside |
| 808 | // of DeclContext::lookup()). Why is this? |
| 809 | |
| 810 | // Finally, determine if the symbol was used in the loop or a child context. |
| 811 | DeclFinderASTVisitor DeclFinder(Symbol, GeneratedDecls); |
| 812 | return DeclFinder.findUsages(SourceStmt); |
| 813 | } |
| 814 | |
| 815 | } // namespace modernize |
| 816 | } // namespace tidy |
| 817 | } // namespace clang |