Tom Stellard | 084124a | 2015-04-02 17:01:52 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2014,2015 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | * of this software and associated documentation files (the "Software"), to deal |
| 6 | * in the Software without restriction, including without limitation the rights |
| 7 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | * copies of the Software, and to permit persons to whom the Software is |
| 9 | * furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | * THE SOFTWARE. |
| 21 | */ |
| 22 | |
| 23 | #include <clc/clc.h> |
| 24 | |
| 25 | #include "math.h" |
| 26 | #include "../clcmacro.h" |
| 27 | |
| 28 | _CLC_OVERLOAD _CLC_DEF float acospi(float x) { |
| 29 | // Computes arccos(x). |
| 30 | // The argument is first reduced by noting that arccos(x) |
| 31 | // is invalid for abs(x) > 1. For denormal and small |
| 32 | // arguments arccos(x) = pi/2 to machine accuracy. |
| 33 | // Remaining argument ranges are handled as follows. |
| 34 | // For abs(x) <= 0.5 use |
| 35 | // arccos(x) = pi/2 - arcsin(x) |
| 36 | // = pi/2 - (x + x^3*R(x^2)) |
| 37 | // where R(x^2) is a rational minimax approximation to |
| 38 | // (arcsin(x) - x)/x^3. |
| 39 | // For abs(x) > 0.5 exploit the identity: |
| 40 | // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2) |
| 41 | // together with the above rational approximation, and |
| 42 | // reconstruct the terms carefully. |
| 43 | |
| 44 | |
| 45 | // Some constants and split constants. |
| 46 | const float pi = 3.1415926535897933e+00f; |
| 47 | const float piby2_head = 1.5707963267948965580e+00f; /* 0x3ff921fb54442d18 */ |
| 48 | const float piby2_tail = 6.12323399573676603587e-17f; /* 0x3c91a62633145c07 */ |
| 49 | |
| 50 | uint ux = as_uint(x); |
| 51 | uint aux = ux & ~SIGNBIT_SP32; |
| 52 | int xneg = ux != aux; |
| 53 | int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32; |
| 54 | |
| 55 | float y = as_float(aux); |
| 56 | |
| 57 | // transform if |x| >= 0.5 |
| 58 | int transform = xexp >= -1; |
| 59 | |
| 60 | float y2 = y * y; |
| 61 | float yt = 0.5f * (1.0f - y); |
| 62 | float r = transform ? yt : y2; |
| 63 | |
| 64 | // Use a rational approximation for [0.0, 0.5] |
| 65 | float a = mad(r, mad(r, mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F), |
| 66 | -0.0565298683201845211985026327361F), |
| 67 | 0.184161606965100694821398249421F); |
| 68 | float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F); |
| 69 | float u = r * MATH_DIVIDE(a, b); |
| 70 | |
| 71 | float s = MATH_SQRT(r); |
| 72 | y = s; |
| 73 | float s1 = as_float(as_uint(s) & 0xffff0000); |
| 74 | float c = MATH_DIVIDE(r - s1 * s1, s + s1); |
| 75 | // float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + (y * u - piby2_tail)), pi); |
| 76 | float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + mad(y, u, -piby2_tail)), pi); |
| 77 | // float rettp = MATH_DIVIDE(2.0F * s1 + (2.0F * c + 2.0F * y * u), pi); |
| 78 | float rettp = MATH_DIVIDE(2.0f*(s1 + mad(y, u, c)), pi); |
| 79 | float rett = xneg ? rettn : rettp; |
| 80 | // float ret = MATH_DIVIDE(piby2_head - (x - (piby2_tail - x * u)), pi); |
| 81 | float ret = MATH_DIVIDE(piby2_head - (x - mad(x, -u, piby2_tail)), pi); |
| 82 | |
| 83 | ret = transform ? rett : ret; |
| 84 | ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret; |
| 85 | ret = ux == 0x3f800000U ? 0.0f : ret; |
| 86 | ret = ux == 0xbf800000U ? 1.0f : ret; |
| 87 | ret = xexp < -26 ? 0.5f : ret; |
| 88 | return ret; |
| 89 | } |
| 90 | |
| 91 | _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acospi, float) |
| 92 | |
| 93 | #ifdef cl_khr_fp64 |
| 94 | #pragma OPENCL EXTENSION cl_khr_fp64 : enable |
| 95 | |
| 96 | _CLC_OVERLOAD _CLC_DEF double acospi(double x) { |
| 97 | // Computes arccos(x). |
| 98 | // The argument is first reduced by noting that arccos(x) |
| 99 | // is invalid for abs(x) > 1. For denormal and small |
| 100 | // arguments arccos(x) = pi/2 to machine accuracy. |
| 101 | // Remaining argument ranges are handled as follows. |
| 102 | // For abs(x) <= 0.5 use |
| 103 | // arccos(x) = pi/2 - arcsin(x) |
| 104 | // = pi/2 - (x + x^3*R(x^2)) |
| 105 | // where R(x^2) is a rational minimax approximation to |
| 106 | // (arcsin(x) - x)/x^3. |
| 107 | // For abs(x) > 0.5 exploit the identity: |
| 108 | // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2) |
| 109 | // together with the above rational approximation, and |
| 110 | // reconstruct the terms carefully. |
| 111 | |
| 112 | const double pi = 0x1.921fb54442d18p+1; |
| 113 | const double piby2_tail = 6.12323399573676603587e-17; /* 0x3c91a62633145c07 */ |
| 114 | |
| 115 | double y = fabs(x); |
| 116 | int xneg = as_int2(x).hi < 0; |
| 117 | int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64; |
| 118 | |
| 119 | // abs(x) >= 0.5 |
| 120 | int transform = xexp >= -1; |
| 121 | |
| 122 | // Transform y into the range [0,0.5) |
| 123 | double r1 = 0.5 * (1.0 - y); |
| 124 | double s = sqrt(r1); |
| 125 | double r = y * y; |
| 126 | r = transform ? r1 : r; |
| 127 | y = transform ? s : y; |
| 128 | |
| 129 | // Use a rational approximation for [0.0, 0.5] |
| 130 | double un = fma(r, |
| 131 | fma(r, |
| 132 | fma(r, |
| 133 | fma(r, |
| 134 | fma(r, 0.0000482901920344786991880522822991, |
| 135 | 0.00109242697235074662306043804220), |
| 136 | -0.0549989809235685841612020091328), |
| 137 | 0.275558175256937652532686256258), |
| 138 | -0.445017216867635649900123110649), |
| 139 | 0.227485835556935010735943483075); |
| 140 | |
| 141 | double ud = fma(r, |
| 142 | fma(r, |
| 143 | fma(r, |
| 144 | fma(r, 0.105869422087204370341222318533, |
| 145 | -0.943639137032492685763471240072), |
| 146 | 2.76568859157270989520376345954), |
| 147 | -3.28431505720958658909889444194), |
| 148 | 1.36491501334161032038194214209); |
| 149 | |
| 150 | double u = r * MATH_DIVIDE(un, ud); |
| 151 | |
| 152 | // Reconstruct acos carefully in transformed region |
| 153 | double res1 = fma(-2.0, MATH_DIVIDE(s + fma(y, u, -piby2_tail), pi), 1.0); |
| 154 | double s1 = as_double(as_ulong(s) & 0xffffffff00000000UL); |
| 155 | double c = MATH_DIVIDE(fma(-s1, s1, r), s + s1); |
| 156 | double res2 = MATH_DIVIDE(fma(2.0, s1, fma(2.0, c, 2.0 * y * u)), pi); |
| 157 | res1 = xneg ? res1 : res2; |
| 158 | res2 = 0.5 - fma(x, u, x) / pi; |
| 159 | res1 = transform ? res1 : res2; |
| 160 | |
| 161 | const double qnan = as_double(QNANBITPATT_DP64); |
| 162 | res2 = x == 1.0 ? 0.0 : qnan; |
| 163 | res2 = x == -1.0 ? 1.0 : res2; |
| 164 | res1 = xexp >= 0 ? res2 : res1; |
| 165 | res1 = xexp < -56 ? 0.5 : res1; |
| 166 | |
| 167 | return res1; |
| 168 | } |
| 169 | |
| 170 | _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acospi, double) |
| 171 | |
| 172 | #endif |