Tom Stellard | 37406a2 | 2015-05-12 14:48:26 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2014,2015 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | * of this software and associated documentation files (the "Software"), to deal |
| 6 | * in the Software without restriction, including without limitation the rights |
| 7 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | * copies of the Software, and to permit persons to whom the Software is |
| 9 | * furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | * THE SOFTWARE. |
| 21 | */ |
| 22 | |
| 23 | #include <clc/clc.h> |
| 24 | |
| 25 | #include "math.h" |
| 26 | #include "tables.h" |
| 27 | #include "../clcmacro.h" |
| 28 | |
| 29 | _CLC_OVERLOAD _CLC_DEF float atan2pi(float y, float x) { |
| 30 | const float pi = 0x1.921fb6p+1f; |
| 31 | |
| 32 | float ax = fabs(x); |
| 33 | float ay = fabs(y); |
| 34 | float v = min(ax, ay); |
| 35 | float u = max(ax, ay); |
| 36 | |
| 37 | // Scale since u could be large, as in "regular" divide |
| 38 | float s = u > 0x1.0p+96f ? 0x1.0p-32f : 1.0f; |
| 39 | float vbyu = s * MATH_DIVIDE(v, s*u); |
| 40 | |
| 41 | float vbyu2 = vbyu * vbyu; |
| 42 | |
| 43 | float p = mad(vbyu2, mad(vbyu2, -0x1.7e1f78p-9f, -0x1.7d1b98p-3f), -0x1.5554d0p-2f) * vbyu2 * vbyu; |
| 44 | float q = mad(vbyu2, mad(vbyu2, 0x1.1a714cp-2f, 0x1.287c56p+0f), 1.0f); |
| 45 | |
| 46 | // Octant 0 result |
| 47 | float a = MATH_DIVIDE(mad(p, MATH_RECIP(q), vbyu), pi); |
| 48 | |
| 49 | // Fix up 3 other octants |
| 50 | float at = 0.5f - a; |
| 51 | a = ay > ax ? at : a; |
| 52 | at = 1.0f - a; |
| 53 | a = x < 0.0F ? at : a; |
| 54 | |
| 55 | // y == 0 => 0 for x >= 0, pi for x < 0 |
| 56 | at = as_int(x) < 0 ? 1.0f : 0.0f; |
| 57 | a = y == 0.0f ? at : a; |
| 58 | |
| 59 | // if (!FINITE_ONLY()) { |
| 60 | // x and y are +- Inf |
| 61 | at = x > 0.0f ? 0.25f : 0.75f; |
| 62 | a = ax == INFINITY & ay == INFINITY ? at : a; |
| 63 | |
| 64 | // x or y is NaN |
| 65 | a = isnan(x) | isnan(y) ? as_float(QNANBITPATT_SP32) : a; |
| 66 | // } |
| 67 | |
| 68 | // Fixup sign and return |
| 69 | return copysign(a, y); |
| 70 | } |
| 71 | |
| 72 | _CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, atan2pi, float, float) |
| 73 | |
| 74 | #ifdef cl_khr_fp64 |
| 75 | #pragma OPENCL EXTENSION cl_khr_fp64 : enable |
| 76 | |
| 77 | _CLC_OVERLOAD _CLC_DEF double atan2pi(double y, double x) { |
| 78 | const double pi = 3.1415926535897932e+00; /* 0x400921fb54442d18 */ |
| 79 | const double pi_head = 3.1415926218032836e+00; /* 0x400921fb50000000 */ |
| 80 | const double pi_tail = 3.1786509547056392e-08; /* 0x3e6110b4611a6263 */ |
| 81 | const double piby2_head = 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */ |
| 82 | const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */ |
| 83 | |
| 84 | double x2 = x; |
| 85 | int xneg = as_int2(x).hi < 0; |
| 86 | int xexp = (as_int2(x).hi >> 20) & 0x7ff; |
| 87 | |
| 88 | double y2 = y; |
| 89 | int yneg = as_int2(y).hi < 0; |
| 90 | int yexp = (as_int2(y).hi >> 20) & 0x7ff; |
| 91 | |
| 92 | int cond2 = (xexp < 1021) & (yexp < 1021); |
| 93 | int diffexp = yexp - xexp; |
| 94 | |
| 95 | // Scale up both x and y if they are both below 1/4 |
| 96 | double x1 = ldexp(x, 1024); |
| 97 | int xexp1 = (as_int2(x1).hi >> 20) & 0x7ff; |
| 98 | double y1 = ldexp(y, 1024); |
| 99 | int yexp1 = (as_int2(y1).hi >> 20) & 0x7ff; |
| 100 | int diffexp1 = yexp1 - xexp1; |
| 101 | |
| 102 | diffexp = cond2 ? diffexp1 : diffexp; |
| 103 | x = cond2 ? x1 : x; |
| 104 | y = cond2 ? y1 : y; |
| 105 | |
| 106 | // General case: take absolute values of arguments |
| 107 | double u = fabs(x); |
| 108 | double v = fabs(y); |
| 109 | |
| 110 | // Swap u and v if necessary to obtain 0 < v < u. Compute v/u. |
| 111 | int swap_vu = u < v; |
| 112 | double uu = u; |
| 113 | u = swap_vu ? v : u; |
| 114 | v = swap_vu ? uu : v; |
| 115 | |
| 116 | double vbyu = v / u; |
| 117 | double q1, q2; |
| 118 | |
| 119 | // General values of v/u. Use a look-up table and series expansion. |
| 120 | |
| 121 | { |
| 122 | double val = vbyu > 0.0625 ? vbyu : 0.063; |
| 123 | int index = convert_int(fma(256.0, val, 0.5)); |
| 124 | double2 tv = USE_TABLE(atan_jby256_tbl, (index - 16)); |
| 125 | q1 = tv.s0; |
| 126 | q2 = tv.s1; |
| 127 | double c = (double)index * 0x1.0p-8; |
| 128 | |
| 129 | // We're going to scale u and v by 2^(-u_exponent) to bring them close to 1 |
| 130 | // u_exponent could be EMAX so we have to do it in 2 steps |
| 131 | int m = -((int)(as_ulong(u) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64); |
| 132 | double um = ldexp(u, m); |
| 133 | double vm = ldexp(v, m); |
| 134 | |
| 135 | // 26 leading bits of u |
| 136 | double u1 = as_double(as_ulong(um) & 0xfffffffff8000000UL); |
| 137 | double u2 = um - u1; |
| 138 | |
| 139 | double r = MATH_DIVIDE(fma(-c, u2, fma(-c, u1, vm)), fma(c, vm, um)); |
| 140 | |
| 141 | // Polynomial approximation to atan(r) |
| 142 | double s = r * r; |
| 143 | q2 = q2 + fma((s * fma(-s, 0.19999918038989143496, 0.33333333333224095522)), -r, r); |
| 144 | } |
| 145 | |
| 146 | |
| 147 | double q3, q4; |
| 148 | { |
| 149 | q3 = 0.0; |
| 150 | q4 = vbyu; |
| 151 | } |
| 152 | |
| 153 | double q5, q6; |
| 154 | { |
| 155 | double u1 = as_double(as_ulong(u) & 0xffffffff00000000UL); |
| 156 | double u2 = u - u1; |
| 157 | double vu1 = as_double(as_ulong(vbyu) & 0xffffffff00000000UL); |
| 158 | double vu2 = vbyu - vu1; |
| 159 | |
| 160 | q5 = 0.0; |
| 161 | double s = vbyu * vbyu; |
| 162 | q6 = vbyu + fma(-vbyu * s, |
| 163 | fma(-s, |
| 164 | fma(-s, |
| 165 | fma(-s, |
| 166 | fma(-s, 0.90029810285449784439E-01, |
| 167 | 0.11110736283514525407), |
| 168 | 0.14285713561807169030), |
| 169 | 0.19999999999393223405), |
| 170 | 0.33333333333333170500), |
| 171 | MATH_DIVIDE(fma(-u, vu2, fma(-u2, vu1, fma(-u1, vu1, v))), u)); |
| 172 | } |
| 173 | |
| 174 | |
| 175 | q3 = vbyu < 0x1.d12ed0af1a27fp-27 ? q3 : q5; |
| 176 | q4 = vbyu < 0x1.d12ed0af1a27fp-27 ? q4 : q6; |
| 177 | |
| 178 | q1 = vbyu > 0.0625 ? q1 : q3; |
| 179 | q2 = vbyu > 0.0625 ? q2 : q4; |
| 180 | |
| 181 | // Tidy-up according to which quadrant the arguments lie in |
| 182 | double res1, res2, res3, res4; |
| 183 | q1 = swap_vu ? piby2_head - q1 : q1; |
| 184 | q2 = swap_vu ? piby2_tail - q2 : q2; |
| 185 | q1 = xneg ? pi_head - q1 : q1; |
| 186 | q2 = xneg ? pi_tail - q2 : q2; |
| 187 | q1 = MATH_DIVIDE(q1 + q2, pi); |
| 188 | res4 = yneg ? -q1 : q1; |
| 189 | |
| 190 | res1 = yneg ? -0.75 : 0.75; |
| 191 | res2 = yneg ? -0.25 : 0.25; |
| 192 | res3 = xneg ? res1 : res2; |
| 193 | |
| 194 | res3 = isinf(y2) & isinf(x2) ? res3 : res4; |
| 195 | res1 = yneg ? -1.0 : 1.0; |
| 196 | |
| 197 | // abs(x)/abs(y) > 2^56 and x < 0 |
| 198 | res3 = (diffexp < -56 && xneg) ? res1 : res3; |
| 199 | |
| 200 | res4 = MATH_DIVIDE(MATH_DIVIDE(y, x), pi); |
| 201 | // x positive and dominant over y by a factor of 2^28 |
| 202 | res3 = diffexp < -28 & xneg == 0 ? res4 : res3; |
| 203 | |
| 204 | // abs(y)/abs(x) > 2^56 |
| 205 | res4 = yneg ? -0.5 : 0.5; // atan(y/x) is insignificant compared to piby2 |
| 206 | res3 = diffexp > 56 ? res4 : res3; |
| 207 | |
| 208 | res3 = x2 == 0.0 ? res4 : res3; // Zero x gives +- pi/2 depending on sign of y |
| 209 | res4 = xneg ? res1 : y2; |
| 210 | |
| 211 | res3 = y2 == 0.0 ? res4 : res3; // Zero y gives +-0 for positive x and +-pi for negative x |
| 212 | res3 = isnan(y2) ? y2 : res3; |
| 213 | res3 = isnan(x2) ? x2 : res3; |
| 214 | |
| 215 | return res3; |
| 216 | } |
| 217 | |
| 218 | |
| 219 | _CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, atan2pi, double, double) |
| 220 | |
| 221 | #endif |