blob: 00182e2c779f59a2239acb4e16550025830482e4 [file] [log] [blame]
Dehao Chen65dd23e2017-05-12 19:29:27 +00001//===-- LiveRangeShrink.cpp - Move instructions to shrink live range ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8///===---------------------------------------------------------------------===//
9///
10/// \file
11/// This pass moves instructions close to the definition of its operands to
12/// shrink live range of the def instruction. The code motion is limited within
13/// the basic block. The moved instruction should have 1 def, and more than one
14/// uses, all of which are the only use of the def.
15///
16///===---------------------------------------------------------------------===//
17#include "llvm/CodeGen/MachineFunctionPass.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Support/Debug.h"
22
23#define DEBUG_TYPE "lrshrink"
24
25STATISTIC(NumInstrsHoistedToShrinkLiveRange,
26 "Number of insructions hoisted to shrink live range.");
27
28using namespace llvm;
29
30namespace {
31class LiveRangeShrink : public MachineFunctionPass {
32public:
33 static char ID;
34
35 LiveRangeShrink() : MachineFunctionPass(ID) {
36 initializeLiveRangeShrinkPass(*PassRegistry::getPassRegistry());
37 }
38
39 void getAnalysisUsage(AnalysisUsage &AU) const override {
40 AU.setPreservesCFG();
41 MachineFunctionPass::getAnalysisUsage(AU);
42 }
43
44 StringRef getPassName() const override { return "Live Range Shrink"; }
45
46 bool runOnMachineFunction(MachineFunction &MF) override;
47};
48} // End anonymous namespace.
49
50char LiveRangeShrink::ID = 0;
51char &llvm::LiveRangeShrinkID = LiveRangeShrink::ID;
52
53INITIALIZE_PASS(LiveRangeShrink, "lrshrink", "Live Range Shrink Pass", false,
54 false)
55namespace {
56typedef DenseMap<MachineInstr *, unsigned> InstOrderMap;
57
58/// Returns \p New if it's dominated by \p Old, otherwise return \p Old.
59/// \p M maintains a map from instruction to its dominating order that satisfies
60/// M[A] > M[B] guarantees that A is dominated by B.
61/// If \p New is not in \p M, return \p Old. Otherwise if \p Old is null, return
62/// \p New.
63MachineInstr *FindDominatedInstruction(MachineInstr &New, MachineInstr *Old,
64 const InstOrderMap &M) {
65 auto NewIter = M.find(&New);
66 if (NewIter == M.end())
67 return Old;
68 if (Old == nullptr)
69 return &New;
70 unsigned OrderOld = M.find(Old)->second;
71 unsigned OrderNew = NewIter->second;
72 if (OrderOld != OrderNew)
73 return OrderOld < OrderNew ? &New : Old;
74 // OrderOld == OrderNew, we need to iterate down from Old to see if it
75 // can reach New, if yes, New is dominated by Old.
76 for (MachineInstr *I = Old->getNextNode(); M.find(I)->second == OrderNew;
77 I = I->getNextNode())
78 if (I == &New)
79 return &New;
80 return Old;
81}
82
83/// Builds Instruction to its dominating order number map \p M by traversing
84/// from instruction \p Start.
85void BuildInstOrderMap(MachineBasicBlock::iterator Start, InstOrderMap &M) {
86 M.clear();
87 unsigned i = 0;
88 for (MachineInstr &I : make_range(Start, Start->getParent()->end()))
89 M[&I] = i++;
90}
91} // end anonymous namespace
92
93bool LiveRangeShrink::runOnMachineFunction(MachineFunction &MF) {
94 if (skipFunction(*MF.getFunction()))
95 return false;
96
97 MachineRegisterInfo &MRI = MF.getRegInfo();
98
99 DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
100
101 InstOrderMap IOM;
102 // Map from register to instruction order (value of IOM) where the
103 // register is used last. When moving instructions up, we need to
104 // make sure all its defs (including dead def) will not cross its
105 // last use when moving up.
106 DenseMap<unsigned, unsigned> UseMap;
107
108 for (MachineBasicBlock &MBB : MF) {
109 if (MBB.empty())
110 continue;
111 bool SawStore = false;
112 BuildInstOrderMap(MBB.begin(), IOM);
113 UseMap.clear();
114
115 for (MachineBasicBlock::iterator Next = MBB.begin(); Next != MBB.end();) {
116 MachineInstr &MI = *Next;
117 ++Next;
118 if (MI.isPHI() || MI.isDebugValue())
119 continue;
120 if (MI.mayStore())
121 SawStore = true;
122
123 unsigned CurrentOrder = IOM[&MI];
124 unsigned Barrier = 0;
125 for (const MachineOperand &MO : MI.operands()) {
126 if (!MO.isReg() || MO.isDebug())
127 continue;
128 if (MO.isUse())
129 UseMap[MO.getReg()] = CurrentOrder;
130 else if (MO.isDead() && UseMap.count(MO.getReg()))
131 // Barrier is the last instruction where MO get used. MI should not
132 // be moved above Barrier.
133 Barrier = std::max(Barrier, UseMap[MO.getReg()]);
134 }
135
136 if (!MI.isSafeToMove(nullptr, SawStore)) {
137 // If MI has side effects, it should become a barrier for code motion.
138 // IOM is rebuild from the next instruction to prevent later
139 // instructions from being moved before this MI.
140 if (MI.hasUnmodeledSideEffects() && Next != MBB.end()) {
141 BuildInstOrderMap(Next, IOM);
142 SawStore = false;
143 }
144 continue;
145 }
146
147 const MachineOperand *DefMO = nullptr;
148 MachineInstr *Insert = nullptr;
149
150 // Number of live-ranges that will be shortened. We do not count
151 // live-ranges that are defined by a COPY as it could be coalesced later.
152 unsigned NumEligibleUse = 0;
153
154 for (const MachineOperand &MO : MI.operands()) {
155 if (!MO.isReg() || MO.isDead() || MO.isDebug())
156 continue;
157 unsigned Reg = MO.getReg();
158 // Do not move the instruction if it def/uses a physical register,
159 // unless it is a constant physical register.
160 if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
161 !MRI.isConstantPhysReg(Reg)) {
162 Insert = nullptr;
163 break;
164 }
165 if (MO.isDef()) {
166 // Do not move if there is more than one def.
167 if (DefMO) {
168 Insert = nullptr;
169 break;
170 }
171 DefMO = &MO;
172 } else if (MRI.hasOneNonDBGUse(Reg) && MRI.hasOneDef(Reg)) {
173 MachineInstr &DefInstr = *MRI.def_instr_begin(Reg);
174 if (!DefInstr.isCopy())
175 NumEligibleUse++;
176 Insert = FindDominatedInstruction(DefInstr, Insert, IOM);
177 } else {
178 Insert = nullptr;
179 break;
180 }
181 }
182 // Move the instruction when # of shrunk live range > 1.
183 if (DefMO && Insert && NumEligibleUse > 1 && Barrier <= IOM[Insert]) {
184 MachineBasicBlock::iterator I = std::next(Insert->getIterator());
185 // Skip all the PHI and debug instructions.
186 while (I != MBB.end() && (I->isPHI() || I->isDebugValue()))
187 I = std::next(I);
188 if (I == MI.getIterator())
189 continue;
190
191 // Update the dominator order to be the same as the insertion point.
192 // We do this to maintain a non-decreasing order without need to update
193 // all instruction orders after the insertion point.
194 unsigned NewOrder = IOM[&*I];
195 IOM[&MI] = NewOrder;
196 NumInstrsHoistedToShrinkLiveRange++;
197
198 // Find MI's debug value following MI.
199 MachineBasicBlock::iterator EndIter = std::next(MI.getIterator());
200 if (MI.getOperand(0).isReg())
201 for (; EndIter != MBB.end() && EndIter->isDebugValue() &&
202 EndIter->getOperand(0).isReg() &&
203 EndIter->getOperand(0).getReg() == MI.getOperand(0).getReg();
204 ++EndIter, ++Next)
205 IOM[&*EndIter] = NewOrder;
206 MBB.splice(I, &MBB, MI.getIterator(), EndIter);
207 }
208 }
209 }
210 return false;
211}