Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 1 | //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Function evaluator for LLVM IR. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Utils/Evaluator.h" |
| 15 | #include "llvm/Analysis/ConstantFolding.h" |
| 16 | #include "llvm/IR/BasicBlock.h" |
| 17 | #include "llvm/IR/CallSite.h" |
| 18 | #include "llvm/IR/Constants.h" |
| 19 | #include "llvm/IR/DerivedTypes.h" |
| 20 | #include "llvm/IR/DiagnosticPrinter.h" |
| 21 | #include "llvm/IR/GlobalVariable.h" |
| 22 | #include "llvm/IR/IntrinsicInst.h" |
| 23 | #include "llvm/IR/Instructions.h" |
| 24 | #include "llvm/IR/Operator.h" |
| 25 | #include "llvm/Support/Debug.h" |
Peter Collingbourne | 83cc981 | 2016-02-03 03:16:37 +0000 | [diff] [blame] | 26 | #include "llvm/Support/raw_ostream.h" |
Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 27 | |
| 28 | #define DEBUG_TYPE "evaluator" |
| 29 | |
| 30 | using namespace llvm; |
| 31 | |
| 32 | static inline bool |
| 33 | isSimpleEnoughValueToCommit(Constant *C, |
| 34 | SmallPtrSetImpl<Constant *> &SimpleConstants, |
| 35 | const DataLayout &DL); |
| 36 | |
| 37 | /// Return true if the specified constant can be handled by the code generator. |
| 38 | /// We don't want to generate something like: |
| 39 | /// void *X = &X/42; |
| 40 | /// because the code generator doesn't have a relocation that can handle that. |
| 41 | /// |
| 42 | /// This function should be called if C was not found (but just got inserted) |
| 43 | /// in SimpleConstants to avoid having to rescan the same constants all the |
| 44 | /// time. |
| 45 | static bool |
| 46 | isSimpleEnoughValueToCommitHelper(Constant *C, |
| 47 | SmallPtrSetImpl<Constant *> &SimpleConstants, |
| 48 | const DataLayout &DL) { |
| 49 | // Simple global addresses are supported, do not allow dllimport or |
| 50 | // thread-local globals. |
| 51 | if (auto *GV = dyn_cast<GlobalValue>(C)) |
| 52 | return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); |
| 53 | |
| 54 | // Simple integer, undef, constant aggregate zero, etc are all supported. |
| 55 | if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) |
| 56 | return true; |
| 57 | |
| 58 | // Aggregate values are safe if all their elements are. |
Duncan P. N. Exon Smith | 1de3c7e | 2016-04-05 21:10:45 +0000 | [diff] [blame] | 59 | if (isa<ConstantAggregate>(C)) { |
Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 60 | for (Value *Op : C->operands()) |
| 61 | if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) |
| 62 | return false; |
| 63 | return true; |
| 64 | } |
| 65 | |
| 66 | // We don't know exactly what relocations are allowed in constant expressions, |
| 67 | // so we allow &global+constantoffset, which is safe and uniformly supported |
| 68 | // across targets. |
| 69 | ConstantExpr *CE = cast<ConstantExpr>(C); |
| 70 | switch (CE->getOpcode()) { |
| 71 | case Instruction::BitCast: |
| 72 | // Bitcast is fine if the casted value is fine. |
| 73 | return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); |
| 74 | |
| 75 | case Instruction::IntToPtr: |
| 76 | case Instruction::PtrToInt: |
| 77 | // int <=> ptr is fine if the int type is the same size as the |
| 78 | // pointer type. |
| 79 | if (DL.getTypeSizeInBits(CE->getType()) != |
| 80 | DL.getTypeSizeInBits(CE->getOperand(0)->getType())) |
| 81 | return false; |
| 82 | return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); |
| 83 | |
| 84 | // GEP is fine if it is simple + constant offset. |
| 85 | case Instruction::GetElementPtr: |
| 86 | for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) |
| 87 | if (!isa<ConstantInt>(CE->getOperand(i))) |
| 88 | return false; |
| 89 | return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); |
| 90 | |
| 91 | case Instruction::Add: |
| 92 | // We allow simple+cst. |
| 93 | if (!isa<ConstantInt>(CE->getOperand(1))) |
| 94 | return false; |
| 95 | return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); |
| 96 | } |
| 97 | return false; |
| 98 | } |
| 99 | |
| 100 | static inline bool |
| 101 | isSimpleEnoughValueToCommit(Constant *C, |
| 102 | SmallPtrSetImpl<Constant *> &SimpleConstants, |
| 103 | const DataLayout &DL) { |
| 104 | // If we already checked this constant, we win. |
| 105 | if (!SimpleConstants.insert(C).second) |
| 106 | return true; |
| 107 | // Check the constant. |
| 108 | return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); |
| 109 | } |
| 110 | |
| 111 | /// Return true if this constant is simple enough for us to understand. In |
| 112 | /// particular, if it is a cast to anything other than from one pointer type to |
| 113 | /// another pointer type, we punt. We basically just support direct accesses to |
| 114 | /// globals and GEP's of globals. This should be kept up to date with |
| 115 | /// CommitValueTo. |
| 116 | static bool isSimpleEnoughPointerToCommit(Constant *C) { |
| 117 | // Conservatively, avoid aggregate types. This is because we don't |
| 118 | // want to worry about them partially overlapping other stores. |
| 119 | if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) |
| 120 | return false; |
| 121 | |
| 122 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) |
| 123 | // Do not allow weak/*_odr/linkonce linkage or external globals. |
| 124 | return GV->hasUniqueInitializer(); |
| 125 | |
| 126 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| 127 | // Handle a constantexpr gep. |
| 128 | if (CE->getOpcode() == Instruction::GetElementPtr && |
| 129 | isa<GlobalVariable>(CE->getOperand(0)) && |
| 130 | cast<GEPOperator>(CE)->isInBounds()) { |
| 131 | GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); |
| 132 | // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or |
| 133 | // external globals. |
| 134 | if (!GV->hasUniqueInitializer()) |
| 135 | return false; |
| 136 | |
| 137 | // The first index must be zero. |
| 138 | ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); |
| 139 | if (!CI || !CI->isZero()) return false; |
| 140 | |
| 141 | // The remaining indices must be compile-time known integers within the |
| 142 | // notional bounds of the corresponding static array types. |
| 143 | if (!CE->isGEPWithNoNotionalOverIndexing()) |
| 144 | return false; |
| 145 | |
| 146 | return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); |
| 147 | |
| 148 | // A constantexpr bitcast from a pointer to another pointer is a no-op, |
| 149 | // and we know how to evaluate it by moving the bitcast from the pointer |
| 150 | // operand to the value operand. |
| 151 | } else if (CE->getOpcode() == Instruction::BitCast && |
| 152 | isa<GlobalVariable>(CE->getOperand(0))) { |
| 153 | // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or |
| 154 | // external globals. |
| 155 | return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | return false; |
| 160 | } |
| 161 | |
| 162 | /// Return the value that would be computed by a load from P after the stores |
| 163 | /// reflected by 'memory' have been performed. If we can't decide, return null. |
| 164 | Constant *Evaluator::ComputeLoadResult(Constant *P) { |
| 165 | // If this memory location has been recently stored, use the stored value: it |
| 166 | // is the most up-to-date. |
| 167 | DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); |
| 168 | if (I != MutatedMemory.end()) return I->second; |
| 169 | |
| 170 | // Access it. |
| 171 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { |
| 172 | if (GV->hasDefinitiveInitializer()) |
| 173 | return GV->getInitializer(); |
| 174 | return nullptr; |
| 175 | } |
| 176 | |
| 177 | // Handle a constantexpr getelementptr. |
| 178 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) |
| 179 | if (CE->getOpcode() == Instruction::GetElementPtr && |
| 180 | isa<GlobalVariable>(CE->getOperand(0))) { |
| 181 | GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); |
| 182 | if (GV->hasDefinitiveInitializer()) |
| 183 | return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); |
| 184 | } |
| 185 | |
| 186 | return nullptr; // don't know how to evaluate. |
| 187 | } |
| 188 | |
| 189 | /// Evaluate all instructions in block BB, returning true if successful, false |
| 190 | /// if we can't evaluate it. NewBB returns the next BB that control flows into, |
| 191 | /// or null upon return. |
| 192 | bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, |
| 193 | BasicBlock *&NextBB) { |
| 194 | // This is the main evaluation loop. |
| 195 | while (1) { |
| 196 | Constant *InstResult = nullptr; |
| 197 | |
| 198 | DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); |
| 199 | |
| 200 | if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { |
| 201 | if (!SI->isSimple()) { |
| 202 | DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); |
| 203 | return false; // no volatile/atomic accesses. |
| 204 | } |
| 205 | Constant *Ptr = getVal(SI->getOperand(1)); |
David Majnemer | d536f23 | 2016-07-29 03:27:26 +0000 | [diff] [blame] | 206 | if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { |
Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 207 | DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); |
David Majnemer | d536f23 | 2016-07-29 03:27:26 +0000 | [diff] [blame] | 208 | Ptr = FoldedPtr; |
Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 209 | DEBUG(dbgs() << "; To: " << *Ptr << "\n"); |
| 210 | } |
| 211 | if (!isSimpleEnoughPointerToCommit(Ptr)) { |
| 212 | // If this is too complex for us to commit, reject it. |
| 213 | DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); |
| 214 | return false; |
| 215 | } |
| 216 | |
| 217 | Constant *Val = getVal(SI->getOperand(0)); |
| 218 | |
| 219 | // If this might be too difficult for the backend to handle (e.g. the addr |
| 220 | // of one global variable divided by another) then we can't commit it. |
| 221 | if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { |
| 222 | DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val |
| 223 | << "\n"); |
| 224 | return false; |
| 225 | } |
| 226 | |
| 227 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { |
| 228 | if (CE->getOpcode() == Instruction::BitCast) { |
| 229 | DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); |
| 230 | // If we're evaluating a store through a bitcast, then we need |
| 231 | // to pull the bitcast off the pointer type and push it onto the |
| 232 | // stored value. |
| 233 | Ptr = CE->getOperand(0); |
| 234 | |
| 235 | Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); |
| 236 | |
| 237 | // In order to push the bitcast onto the stored value, a bitcast |
| 238 | // from NewTy to Val's type must be legal. If it's not, we can try |
| 239 | // introspecting NewTy to find a legal conversion. |
| 240 | while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { |
| 241 | // If NewTy is a struct, we can convert the pointer to the struct |
| 242 | // into a pointer to its first member. |
| 243 | // FIXME: This could be extended to support arrays as well. |
| 244 | if (StructType *STy = dyn_cast<StructType>(NewTy)) { |
| 245 | NewTy = STy->getTypeAtIndex(0U); |
| 246 | |
| 247 | IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); |
| 248 | Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); |
| 249 | Constant * const IdxList[] = {IdxZero, IdxZero}; |
| 250 | |
| 251 | Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList); |
David Majnemer | d536f23 | 2016-07-29 03:27:26 +0000 | [diff] [blame] | 252 | if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) |
| 253 | Ptr = FoldedPtr; |
Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 254 | |
| 255 | // If we can't improve the situation by introspecting NewTy, |
| 256 | // we have to give up. |
| 257 | } else { |
| 258 | DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " |
| 259 | "evaluate.\n"); |
| 260 | return false; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | // If we found compatible types, go ahead and push the bitcast |
| 265 | // onto the stored value. |
| 266 | Val = ConstantExpr::getBitCast(Val, NewTy); |
| 267 | |
| 268 | DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | MutatedMemory[Ptr] = Val; |
| 273 | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { |
| 274 | InstResult = ConstantExpr::get(BO->getOpcode(), |
| 275 | getVal(BO->getOperand(0)), |
| 276 | getVal(BO->getOperand(1))); |
| 277 | DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult |
| 278 | << "\n"); |
| 279 | } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { |
| 280 | InstResult = ConstantExpr::getCompare(CI->getPredicate(), |
| 281 | getVal(CI->getOperand(0)), |
| 282 | getVal(CI->getOperand(1))); |
| 283 | DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult |
| 284 | << "\n"); |
| 285 | } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { |
| 286 | InstResult = ConstantExpr::getCast(CI->getOpcode(), |
| 287 | getVal(CI->getOperand(0)), |
| 288 | CI->getType()); |
| 289 | DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult |
| 290 | << "\n"); |
| 291 | } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { |
| 292 | InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), |
| 293 | getVal(SI->getOperand(1)), |
| 294 | getVal(SI->getOperand(2))); |
| 295 | DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult |
| 296 | << "\n"); |
| 297 | } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { |
| 298 | InstResult = ConstantExpr::getExtractValue( |
| 299 | getVal(EVI->getAggregateOperand()), EVI->getIndices()); |
| 300 | DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult |
| 301 | << "\n"); |
| 302 | } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { |
| 303 | InstResult = ConstantExpr::getInsertValue( |
| 304 | getVal(IVI->getAggregateOperand()), |
| 305 | getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); |
| 306 | DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult |
| 307 | << "\n"); |
| 308 | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { |
| 309 | Constant *P = getVal(GEP->getOperand(0)); |
| 310 | SmallVector<Constant*, 8> GEPOps; |
| 311 | for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); |
| 312 | i != e; ++i) |
| 313 | GEPOps.push_back(getVal(*i)); |
| 314 | InstResult = |
| 315 | ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, |
| 316 | cast<GEPOperator>(GEP)->isInBounds()); |
| 317 | DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult |
| 318 | << "\n"); |
| 319 | } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { |
| 320 | |
| 321 | if (!LI->isSimple()) { |
| 322 | DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); |
| 323 | return false; // no volatile/atomic accesses. |
| 324 | } |
| 325 | |
| 326 | Constant *Ptr = getVal(LI->getOperand(0)); |
David Majnemer | d536f23 | 2016-07-29 03:27:26 +0000 | [diff] [blame] | 327 | if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { |
| 328 | Ptr = FoldedPtr; |
Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 329 | DEBUG(dbgs() << "Found a constant pointer expression, constant " |
| 330 | "folding: " << *Ptr << "\n"); |
| 331 | } |
| 332 | InstResult = ComputeLoadResult(Ptr); |
| 333 | if (!InstResult) { |
| 334 | DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." |
| 335 | "\n"); |
| 336 | return false; // Could not evaluate load. |
| 337 | } |
| 338 | |
| 339 | DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); |
| 340 | } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { |
| 341 | if (AI->isArrayAllocation()) { |
| 342 | DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); |
| 343 | return false; // Cannot handle array allocs. |
| 344 | } |
| 345 | Type *Ty = AI->getAllocatedType(); |
| 346 | AllocaTmps.push_back( |
| 347 | make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage, |
| 348 | UndefValue::get(Ty), AI->getName())); |
| 349 | InstResult = AllocaTmps.back().get(); |
| 350 | DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); |
| 351 | } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { |
| 352 | CallSite CS(&*CurInst); |
| 353 | |
| 354 | // Debug info can safely be ignored here. |
| 355 | if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { |
| 356 | DEBUG(dbgs() << "Ignoring debug info.\n"); |
| 357 | ++CurInst; |
| 358 | continue; |
| 359 | } |
| 360 | |
| 361 | // Cannot handle inline asm. |
| 362 | if (isa<InlineAsm>(CS.getCalledValue())) { |
| 363 | DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); |
| 364 | return false; |
| 365 | } |
| 366 | |
| 367 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { |
| 368 | if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { |
| 369 | if (MSI->isVolatile()) { |
| 370 | DEBUG(dbgs() << "Can not optimize a volatile memset " << |
| 371 | "intrinsic.\n"); |
| 372 | return false; |
| 373 | } |
| 374 | Constant *Ptr = getVal(MSI->getDest()); |
| 375 | Constant *Val = getVal(MSI->getValue()); |
| 376 | Constant *DestVal = ComputeLoadResult(getVal(Ptr)); |
| 377 | if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { |
| 378 | // This memset is a no-op. |
| 379 | DEBUG(dbgs() << "Ignoring no-op memset.\n"); |
| 380 | ++CurInst; |
| 381 | continue; |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | if (II->getIntrinsicID() == Intrinsic::lifetime_start || |
| 386 | II->getIntrinsicID() == Intrinsic::lifetime_end) { |
| 387 | DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); |
| 388 | ++CurInst; |
| 389 | continue; |
| 390 | } |
| 391 | |
| 392 | if (II->getIntrinsicID() == Intrinsic::invariant_start) { |
| 393 | // We don't insert an entry into Values, as it doesn't have a |
| 394 | // meaningful return value. |
| 395 | if (!II->use_empty()) { |
| 396 | DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n"); |
| 397 | return false; |
| 398 | } |
| 399 | ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); |
| 400 | Value *PtrArg = getVal(II->getArgOperand(1)); |
| 401 | Value *Ptr = PtrArg->stripPointerCasts(); |
| 402 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { |
| 403 | Type *ElemTy = GV->getValueType(); |
| 404 | if (!Size->isAllOnesValue() && |
| 405 | Size->getValue().getLimitedValue() >= |
| 406 | DL.getTypeStoreSize(ElemTy)) { |
| 407 | Invariants.insert(GV); |
| 408 | DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV |
| 409 | << "\n"); |
| 410 | } else { |
| 411 | DEBUG(dbgs() << "Found a global var, but can not treat it as an " |
| 412 | "invariant.\n"); |
| 413 | } |
| 414 | } |
| 415 | // Continue even if we do nothing. |
| 416 | ++CurInst; |
| 417 | continue; |
| 418 | } else if (II->getIntrinsicID() == Intrinsic::assume) { |
| 419 | DEBUG(dbgs() << "Skipping assume intrinsic.\n"); |
| 420 | ++CurInst; |
| 421 | continue; |
| 422 | } |
| 423 | |
| 424 | DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); |
| 425 | return false; |
| 426 | } |
| 427 | |
| 428 | // Resolve function pointers. |
| 429 | Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); |
Sanjoy Das | 5ce3272 | 2016-04-08 00:48:30 +0000 | [diff] [blame] | 430 | if (!Callee || Callee->isInterposable()) { |
Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 431 | DEBUG(dbgs() << "Can not resolve function pointer.\n"); |
| 432 | return false; // Cannot resolve. |
| 433 | } |
| 434 | |
| 435 | SmallVector<Constant*, 8> Formals; |
| 436 | for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) |
| 437 | Formals.push_back(getVal(*i)); |
| 438 | |
| 439 | if (Callee->isDeclaration()) { |
| 440 | // If this is a function we can constant fold, do it. |
| 441 | if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { |
| 442 | InstResult = C; |
| 443 | DEBUG(dbgs() << "Constant folded function call. Result: " << |
| 444 | *InstResult << "\n"); |
| 445 | } else { |
| 446 | DEBUG(dbgs() << "Can not constant fold function call.\n"); |
| 447 | return false; |
| 448 | } |
| 449 | } else { |
| 450 | if (Callee->getFunctionType()->isVarArg()) { |
| 451 | DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); |
| 452 | return false; |
| 453 | } |
| 454 | |
| 455 | Constant *RetVal = nullptr; |
| 456 | // Execute the call, if successful, use the return value. |
| 457 | ValueStack.emplace_back(); |
| 458 | if (!EvaluateFunction(Callee, RetVal, Formals)) { |
| 459 | DEBUG(dbgs() << "Failed to evaluate function.\n"); |
| 460 | return false; |
| 461 | } |
| 462 | ValueStack.pop_back(); |
| 463 | InstResult = RetVal; |
| 464 | |
| 465 | if (InstResult) { |
| 466 | DEBUG(dbgs() << "Successfully evaluated function. Result: " |
| 467 | << *InstResult << "\n\n"); |
| 468 | } else { |
| 469 | DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); |
| 470 | } |
| 471 | } |
| 472 | } else if (isa<TerminatorInst>(CurInst)) { |
| 473 | DEBUG(dbgs() << "Found a terminator instruction.\n"); |
| 474 | |
| 475 | if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { |
| 476 | if (BI->isUnconditional()) { |
| 477 | NextBB = BI->getSuccessor(0); |
| 478 | } else { |
| 479 | ConstantInt *Cond = |
| 480 | dyn_cast<ConstantInt>(getVal(BI->getCondition())); |
| 481 | if (!Cond) return false; // Cannot determine. |
| 482 | |
| 483 | NextBB = BI->getSuccessor(!Cond->getZExtValue()); |
| 484 | } |
| 485 | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { |
| 486 | ConstantInt *Val = |
| 487 | dyn_cast<ConstantInt>(getVal(SI->getCondition())); |
| 488 | if (!Val) return false; // Cannot determine. |
| 489 | NextBB = SI->findCaseValue(Val).getCaseSuccessor(); |
| 490 | } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { |
| 491 | Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); |
| 492 | if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) |
| 493 | NextBB = BA->getBasicBlock(); |
| 494 | else |
| 495 | return false; // Cannot determine. |
| 496 | } else if (isa<ReturnInst>(CurInst)) { |
| 497 | NextBB = nullptr; |
| 498 | } else { |
| 499 | // invoke, unwind, resume, unreachable. |
| 500 | DEBUG(dbgs() << "Can not handle terminator."); |
| 501 | return false; // Cannot handle this terminator. |
| 502 | } |
| 503 | |
| 504 | // We succeeded at evaluating this block! |
| 505 | DEBUG(dbgs() << "Successfully evaluated block.\n"); |
| 506 | return true; |
| 507 | } else { |
| 508 | // Did not know how to evaluate this! |
| 509 | DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." |
| 510 | "\n"); |
| 511 | return false; |
| 512 | } |
| 513 | |
| 514 | if (!CurInst->use_empty()) { |
David Majnemer | d536f23 | 2016-07-29 03:27:26 +0000 | [diff] [blame] | 515 | if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI)) |
| 516 | InstResult = FoldedInstResult; |
Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 517 | |
| 518 | setVal(&*CurInst, InstResult); |
| 519 | } |
| 520 | |
| 521 | // If we just processed an invoke, we finished evaluating the block. |
| 522 | if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { |
| 523 | NextBB = II->getNormalDest(); |
| 524 | DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); |
| 525 | return true; |
| 526 | } |
| 527 | |
| 528 | // Advance program counter. |
| 529 | ++CurInst; |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | /// Evaluate a call to function F, returning true if successful, false if we |
| 534 | /// can't evaluate it. ActualArgs contains the formal arguments for the |
| 535 | /// function. |
| 536 | bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, |
| 537 | const SmallVectorImpl<Constant*> &ActualArgs) { |
| 538 | // Check to see if this function is already executing (recursion). If so, |
| 539 | // bail out. TODO: we might want to accept limited recursion. |
David Majnemer | 0d955d0 | 2016-08-11 22:21:41 +0000 | [diff] [blame^] | 540 | if (is_contained(CallStack, F)) |
Peter Collingbourne | 9f7ec14 | 2016-02-03 02:51:00 +0000 | [diff] [blame] | 541 | return false; |
| 542 | |
| 543 | CallStack.push_back(F); |
| 544 | |
| 545 | // Initialize arguments to the incoming values specified. |
| 546 | unsigned ArgNo = 0; |
| 547 | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; |
| 548 | ++AI, ++ArgNo) |
| 549 | setVal(&*AI, ActualArgs[ArgNo]); |
| 550 | |
| 551 | // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, |
| 552 | // we can only evaluate any one basic block at most once. This set keeps |
| 553 | // track of what we have executed so we can detect recursive cases etc. |
| 554 | SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; |
| 555 | |
| 556 | // CurBB - The current basic block we're evaluating. |
| 557 | BasicBlock *CurBB = &F->front(); |
| 558 | |
| 559 | BasicBlock::iterator CurInst = CurBB->begin(); |
| 560 | |
| 561 | while (1) { |
| 562 | BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. |
| 563 | DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); |
| 564 | |
| 565 | if (!EvaluateBlock(CurInst, NextBB)) |
| 566 | return false; |
| 567 | |
| 568 | if (!NextBB) { |
| 569 | // Successfully running until there's no next block means that we found |
| 570 | // the return. Fill it the return value and pop the call stack. |
| 571 | ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); |
| 572 | if (RI->getNumOperands()) |
| 573 | RetVal = getVal(RI->getOperand(0)); |
| 574 | CallStack.pop_back(); |
| 575 | return true; |
| 576 | } |
| 577 | |
| 578 | // Okay, we succeeded in evaluating this control flow. See if we have |
| 579 | // executed the new block before. If so, we have a looping function, |
| 580 | // which we cannot evaluate in reasonable time. |
| 581 | if (!ExecutedBlocks.insert(NextBB).second) |
| 582 | return false; // looped! |
| 583 | |
| 584 | // Okay, we have never been in this block before. Check to see if there |
| 585 | // are any PHI nodes. If so, evaluate them with information about where |
| 586 | // we came from. |
| 587 | PHINode *PN = nullptr; |
| 588 | for (CurInst = NextBB->begin(); |
| 589 | (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) |
| 590 | setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); |
| 591 | |
| 592 | // Advance to the next block. |
| 593 | CurBB = NextBB; |
| 594 | } |
| 595 | } |
| 596 | |