blob: 44185f491111fe2e21f2798db2de792a45331ec9 [file] [log] [blame]
Kannan Narayananacb089e2017-04-12 03:25:12 +00001//===-- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===/
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Insert wait instructions for memory reads and writes.
12///
13/// Memory reads and writes are issued asynchronously, so we need to insert
14/// S_WAITCNT instructions when we want to access any of their results or
15/// overwrite any register that's used asynchronously.
16//
17//===----------------------------------------------------------------------===//
18
19#include "AMDGPU.h"
20#include "AMDGPUSubtarget.h"
21#include "SIDefines.h"
22#include "SIInstrInfo.h"
23#include "SIMachineFunctionInfo.h"
24#include "Utils/AMDGPUBaseInfo.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30
31#define DEBUG_TYPE "si-insert-waitcnts"
32
33using namespace llvm;
34
35namespace {
36
37// Class of object that encapsulates latest instruction counter score
38// associated with the operand. Used for determining whether
39// s_waitcnt instruction needs to be emited.
40
41#define CNT_MASK(t) (1u << (t))
42
43enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS };
44
45typedef std::pair<signed, signed> RegInterval;
46
47struct {
48 int32_t VmcntMax;
49 int32_t ExpcntMax;
50 int32_t LgkmcntMax;
51 int32_t NumVGPRsMax;
52 int32_t NumSGPRsMax;
53} HardwareLimits;
54
55struct {
56 unsigned VGPR0;
57 unsigned VGPRL;
58 unsigned SGPR0;
59 unsigned SGPRL;
60} RegisterEncoding;
61
62enum WaitEventType {
63 VMEM_ACCESS, // vector-memory read & write
64 LDS_ACCESS, // lds read & write
65 GDS_ACCESS, // gds read & write
66 SQ_MESSAGE, // send message
67 SMEM_ACCESS, // scalar-memory read & write
68 EXP_GPR_LOCK, // export holding on its data src
69 GDS_GPR_LOCK, // GDS holding on its data and addr src
70 EXP_POS_ACCESS, // write to export position
71 EXP_PARAM_ACCESS, // write to export parameter
72 VMW_GPR_LOCK, // vector-memory write holding on its data src
73 NUM_WAIT_EVENTS,
74};
75
76// The mapping is:
77// 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs
78// SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots
79// NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
80// We reserve a fixed number of VGPR slots in the scoring tables for
81// special tokens like SCMEM_LDS (needed for buffer load to LDS).
82enum RegisterMapping {
83 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
84 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
85 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS.
86 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses.
87 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
88};
89
90#define ForAllWaitEventType(w) \
91 for (enum WaitEventType w = (enum WaitEventType)0; \
92 (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \
93 (w) = (enum WaitEventType)((w) + 1))
94
95// This is a per-basic-block object that maintains current score brackets
96// of each wait-counter, and a per-register scoreboard for each wait-couner.
97// We also maintain the latest score for every event type that can change the
98// waitcnt in order to know if there are multiple types of events within
99// the brackets. When multiple types of event happen in the bracket,
100// wait-count may get decreased out of order, therefore we need to put in
101// "s_waitcnt 0" before use.
102class BlockWaitcntBrackets {
103public:
104 static int32_t getWaitCountMax(InstCounterType T) {
105 switch (T) {
106 case VM_CNT:
107 return HardwareLimits.VmcntMax;
108 case LGKM_CNT:
109 return HardwareLimits.LgkmcntMax;
110 case EXP_CNT:
111 return HardwareLimits.ExpcntMax;
112 default:
113 break;
114 }
115 return 0;
116 };
117
118 void setScoreLB(InstCounterType T, int32_t Val) {
119 assert(T < NUM_INST_CNTS);
120 if (T >= NUM_INST_CNTS)
121 return;
122 ScoreLBs[T] = Val;
123 };
124
125 void setScoreUB(InstCounterType T, int32_t Val) {
126 assert(T < NUM_INST_CNTS);
127 if (T >= NUM_INST_CNTS)
128 return;
129 ScoreUBs[T] = Val;
130 if (T == EXP_CNT) {
131 int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT));
132 if (ScoreLBs[T] < UB)
133 ScoreLBs[T] = UB;
134 }
135 };
136
137 int32_t getScoreLB(InstCounterType T) {
138 assert(T < NUM_INST_CNTS);
139 if (T >= NUM_INST_CNTS)
140 return 0;
141 return ScoreLBs[T];
142 };
143
144 int32_t getScoreUB(InstCounterType T) {
145 assert(T < NUM_INST_CNTS);
146 if (T >= NUM_INST_CNTS)
147 return 0;
148 return ScoreUBs[T];
149 };
150
151 // Mapping from event to counter.
152 InstCounterType eventCounter(WaitEventType E) {
153 switch (E) {
154 case VMEM_ACCESS:
155 return VM_CNT;
156 case LDS_ACCESS:
157 case GDS_ACCESS:
158 case SQ_MESSAGE:
159 case SMEM_ACCESS:
160 return LGKM_CNT;
161 case EXP_GPR_LOCK:
162 case GDS_GPR_LOCK:
163 case VMW_GPR_LOCK:
164 case EXP_POS_ACCESS:
165 case EXP_PARAM_ACCESS:
166 return EXP_CNT;
167 default:
168 llvm_unreachable("unhandled event type");
169 }
170 return NUM_INST_CNTS;
171 }
172
173 void setRegScore(int GprNo, InstCounterType T, int32_t Val) {
174 if (GprNo < NUM_ALL_VGPRS) {
175 if (GprNo > VgprUB) {
176 VgprUB = GprNo;
177 }
178 VgprScores[T][GprNo] = Val;
179 } else {
180 assert(T == LGKM_CNT);
181 if (GprNo - NUM_ALL_VGPRS > SgprUB) {
182 SgprUB = GprNo - NUM_ALL_VGPRS;
183 }
184 SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
185 }
186 }
187
188 int32_t getRegScore(int GprNo, InstCounterType T) {
189 if (GprNo < NUM_ALL_VGPRS) {
190 return VgprScores[T][GprNo];
191 }
192 return SgprScores[GprNo - NUM_ALL_VGPRS];
193 }
194
195 void clear() {
196 memset(ScoreLBs, 0, sizeof(ScoreLBs));
197 memset(ScoreUBs, 0, sizeof(ScoreUBs));
198 memset(EventUBs, 0, sizeof(EventUBs));
199 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
200 T = (enum InstCounterType)(T + 1)) {
201 memset(VgprScores[T], 0, sizeof(VgprScores[T]));
202 }
203 memset(SgprScores, 0, sizeof(SgprScores));
204 }
205
206 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
207 const MachineRegisterInfo *MRI,
208 const SIRegisterInfo *TRI, unsigned OpNo,
209 bool Def) const;
210
211 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
212 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
213 unsigned OpNo, int32_t Val);
214
215 void setWaitAtBeginning() { WaitAtBeginning = true; }
216 void clearWaitAtBeginning() { WaitAtBeginning = false; }
217 bool getWaitAtBeginning() const { return WaitAtBeginning; }
218 void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; }
219 int32_t getMaxVGPR() const { return VgprUB; }
220 int32_t getMaxSGPR() const { return SgprUB; }
221 int32_t getEventUB(enum WaitEventType W) const {
222 assert(W < NUM_WAIT_EVENTS);
223 return EventUBs[W];
224 }
225 bool counterOutOfOrder(InstCounterType T);
226 unsigned int updateByWait(InstCounterType T, int ScoreToWait);
227 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
228 const MachineRegisterInfo *MRI, WaitEventType E,
229 MachineInstr &MI);
230
231 BlockWaitcntBrackets()
Mark Searles602ee932017-06-05 19:29:01 +0000232 : WaitAtBeginning(false), RevisitLoop(false), ValidLoop(false), MixedExpTypes(false),
Kannan Narayananacb089e2017-04-12 03:25:12 +0000233 LoopRegion(NULL), PostOrder(0), Waitcnt(NULL), VgprUB(0), SgprUB(0) {
234 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
235 T = (enum InstCounterType)(T + 1)) {
236 memset(VgprScores[T], 0, sizeof(VgprScores[T]));
237 }
238 }
239 ~BlockWaitcntBrackets(){};
240
241 bool hasPendingSMEM() const {
242 return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
243 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]);
244 }
245
246 bool hasPendingFlat() const {
247 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
248 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
249 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
250 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
251 }
252
253 void setPendingFlat() {
254 LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
255 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
256 }
257
258 int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; }
259
260 void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; }
261
262 bool getRevisitLoop() const { return RevisitLoop; }
263 void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; }
264
265 void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; }
266 int32_t getPostOrder() const { return PostOrder; }
267
268 void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; }
269 void clearWaitcnt() { Waitcnt = NULL; }
270 MachineInstr *getWaitcnt() const { return Waitcnt; }
271
272 bool mixedExpTypes() const { return MixedExpTypes; }
273 void setMixedExpTypes(bool MixedExpTypesIn) {
274 MixedExpTypes = MixedExpTypesIn;
275 }
276
277 void print(raw_ostream &);
278 void dump() { print(dbgs()); }
279
280private:
281 bool WaitAtBeginning;
282 bool RevisitLoop;
283 bool ValidLoop;
284 bool MixedExpTypes;
285 MachineLoop *LoopRegion;
286 int32_t PostOrder;
287 MachineInstr *Waitcnt;
288 int32_t ScoreLBs[NUM_INST_CNTS] = {0};
289 int32_t ScoreUBs[NUM_INST_CNTS] = {0};
290 int32_t EventUBs[NUM_WAIT_EVENTS] = {0};
291 // Remember the last flat memory operation.
292 int32_t LastFlat[NUM_INST_CNTS] = {0};
293 // wait_cnt scores for every vgpr.
294 // Keep track of the VgprUB and SgprUB to make merge at join efficient.
295 int32_t VgprUB;
296 int32_t SgprUB;
297 int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
298 // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
299 int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
300};
301
302// This is a per-loop-region object that records waitcnt status at the end of
303// loop footer from the previous iteration. We also maintain an iteration
304// count to track the number of times the loop has been visited. When it
305// doesn't converge naturally, we force convergence by inserting s_waitcnt 0
306// at the end of the loop footer.
307class LoopWaitcntData {
308public:
309 void incIterCnt() { IterCnt++; }
310 void resetIterCnt() { IterCnt = 0; }
311 int32_t getIterCnt() { return IterCnt; }
312
313 LoopWaitcntData() : LfWaitcnt(NULL), IterCnt(0) {}
314 ~LoopWaitcntData(){};
315
316 void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; }
317 MachineInstr *getWaitcnt() const { return LfWaitcnt; }
318
319 void print() {
320 DEBUG(dbgs() << " iteration " << IterCnt << '\n';);
321 return;
322 }
323
324private:
325 // s_waitcnt added at the end of loop footer to stablize wait scores
326 // at the end of the loop footer.
327 MachineInstr *LfWaitcnt;
328 // Number of iterations the loop has been visited, not including the initial
329 // walk over.
330 int32_t IterCnt;
331};
332
333class SIInsertWaitcnts : public MachineFunctionPass {
334
335private:
336 const SISubtarget *ST;
337 const SIInstrInfo *TII;
338 const SIRegisterInfo *TRI;
339 const MachineRegisterInfo *MRI;
340 const MachineLoopInfo *MLI;
341 AMDGPU::IsaInfo::IsaVersion IV;
342 AMDGPUAS AMDGPUASI;
343
344 DenseSet<MachineBasicBlock *> BlockVisitedSet;
345 DenseSet<MachineInstr *> CompilerGeneratedWaitcntSet;
346 DenseSet<MachineInstr *> VCCZBugHandledSet;
347
348 DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>>
349 BlockWaitcntBracketsMap;
350
351 DenseSet<MachineBasicBlock *> BlockWaitcntProcessedSet;
352
353 DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap;
354
355 std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets;
356
357public:
358 static char ID;
359
360 SIInsertWaitcnts()
361 : MachineFunctionPass(ID), ST(nullptr), TII(nullptr), TRI(nullptr),
362 MRI(nullptr), MLI(nullptr) {}
363
364 bool runOnMachineFunction(MachineFunction &MF) override;
365
366 StringRef getPassName() const override {
367 return "SI insert wait instructions";
368 }
369
370 void getAnalysisUsage(AnalysisUsage &AU) const override {
371 AU.setPreservesCFG();
372 AU.addRequired<MachineLoopInfo>();
373 MachineFunctionPass::getAnalysisUsage(AU);
374 }
375
376 void addKillWaitBracket(BlockWaitcntBrackets *Bracket) {
377 // The waitcnt information is copied because it changes as the block is
378 // traversed.
379 KillWaitBrackets.push_back(make_unique<BlockWaitcntBrackets>(*Bracket));
380 }
381
Matt Arsenault0ed39d32017-07-21 18:54:54 +0000382 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
Kannan Narayananacb089e2017-04-12 03:25:12 +0000383 MachineInstr *generateSWaitCntInstBefore(MachineInstr &MI,
384 BlockWaitcntBrackets *ScoreBrackets);
385 void updateEventWaitCntAfter(MachineInstr &Inst,
386 BlockWaitcntBrackets *ScoreBrackets);
387 void mergeInputScoreBrackets(MachineBasicBlock &Block);
388 MachineBasicBlock *loopBottom(const MachineLoop *Loop);
389 void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block);
390 void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst);
391};
392
393} // End anonymous namespace.
394
395RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI,
396 const SIInstrInfo *TII,
397 const MachineRegisterInfo *MRI,
398 const SIRegisterInfo *TRI,
399 unsigned OpNo,
400 bool Def) const {
401 const MachineOperand &Op = MI->getOperand(OpNo);
402 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
403 (Def && !Op.isDef()))
404 return {-1, -1};
405
406 // A use via a PW operand does not need a waitcnt.
407 // A partial write is not a WAW.
408 assert(!Op.getSubReg() || !Op.isUndef());
409
410 RegInterval Result;
411 const MachineRegisterInfo &MRIA = *MRI;
412
413 unsigned Reg = TRI->getEncodingValue(Op.getReg());
414
415 if (TRI->isVGPR(MRIA, Op.getReg())) {
416 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
417 Result.first = Reg - RegisterEncoding.VGPR0;
418 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
419 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
420 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
421 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
422 assert(Result.first >= NUM_ALL_VGPRS &&
423 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
424 }
425 // TODO: Handle TTMP
426 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
427 else
428 return {-1, -1};
429
430 const MachineInstr &MIA = *MI;
431 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
Krzysztof Parzyszek44e25f32017-04-24 18:55:33 +0000432 unsigned Size = TRI->getRegSizeInBits(*RC);
433 Result.second = Result.first + (Size / 32);
Kannan Narayananacb089e2017-04-12 03:25:12 +0000434
435 return Result;
436}
437
438void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI,
439 const SIInstrInfo *TII,
440 const SIRegisterInfo *TRI,
441 const MachineRegisterInfo *MRI,
442 unsigned OpNo, int32_t Val) {
443 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
444 DEBUG({
445 const MachineOperand &Opnd = MI->getOperand(OpNo);
446 assert(TRI->isVGPR(*MRI, Opnd.getReg()));
447 });
448 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
449 setRegScore(RegNo, EXP_CNT, Val);
450 }
451}
452
453void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
454 const SIRegisterInfo *TRI,
455 const MachineRegisterInfo *MRI,
456 WaitEventType E, MachineInstr &Inst) {
457 const MachineRegisterInfo &MRIA = *MRI;
458 InstCounterType T = eventCounter(E);
459 int32_t CurrScore = getScoreUB(T) + 1;
460 // EventUB and ScoreUB need to be update regardless if this event changes
461 // the score of a register or not.
462 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
463 EventUBs[E] = CurrScore;
464 setScoreUB(T, CurrScore);
465
466 if (T == EXP_CNT) {
467 // Check for mixed export types. If they are mixed, then a waitcnt exp(0)
468 // is required.
469 if (!MixedExpTypes) {
470 MixedExpTypes = counterOutOfOrder(EXP_CNT);
471 }
472
473 // Put score on the source vgprs. If this is a store, just use those
474 // specific register(s).
475 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
476 // All GDS operations must protect their address register (same as
477 // export.)
478 if (Inst.getOpcode() != AMDGPU::DS_APPEND &&
479 Inst.getOpcode() != AMDGPU::DS_CONSUME) {
480 setExpScore(
481 &Inst, TII, TRI, MRI,
482 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr),
483 CurrScore);
484 }
485 if (Inst.mayStore()) {
486 setExpScore(
487 &Inst, TII, TRI, MRI,
488 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
489 CurrScore);
490 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
491 AMDGPU::OpName::data1) != -1) {
492 setExpScore(&Inst, TII, TRI, MRI,
493 AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
494 AMDGPU::OpName::data1),
495 CurrScore);
496 }
497 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
498 Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
499 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
500 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
501 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
502 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
503 Inst.getOpcode() != AMDGPU::DS_APPEND &&
504 Inst.getOpcode() != AMDGPU::DS_CONSUME &&
505 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
506 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
507 const MachineOperand &Op = Inst.getOperand(I);
508 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
509 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
510 }
511 }
512 }
513 } else if (TII->isFLAT(Inst)) {
514 if (Inst.mayStore()) {
515 setExpScore(
516 &Inst, TII, TRI, MRI,
517 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
518 CurrScore);
519 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
520 setExpScore(
521 &Inst, TII, TRI, MRI,
522 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
523 CurrScore);
524 }
525 } else if (TII->isMIMG(Inst)) {
526 if (Inst.mayStore()) {
527 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
528 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
529 setExpScore(
530 &Inst, TII, TRI, MRI,
531 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
532 CurrScore);
533 }
534 } else if (TII->isMTBUF(Inst)) {
535 if (Inst.mayStore()) {
536 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
537 }
538 } else if (TII->isMUBUF(Inst)) {
539 if (Inst.mayStore()) {
540 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
541 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
542 setExpScore(
543 &Inst, TII, TRI, MRI,
544 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
545 CurrScore);
546 }
547 } else {
548 if (TII->isEXP(Inst)) {
549 // For export the destination registers are really temps that
550 // can be used as the actual source after export patching, so
551 // we need to treat them like sources and set the EXP_CNT
552 // score.
553 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
554 MachineOperand &DefMO = Inst.getOperand(I);
555 if (DefMO.isReg() && DefMO.isDef() &&
556 TRI->isVGPR(MRIA, DefMO.getReg())) {
557 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
558 CurrScore);
559 }
560 }
561 }
562 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
563 MachineOperand &MO = Inst.getOperand(I);
564 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
565 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
566 }
567 }
568 }
569#if 0 // TODO: check if this is handled by MUBUF code above.
570 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
571 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
572 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
573 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
574 unsigned OpNo;//TODO: find the OpNo for this operand;
575 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
576 for (signed RegNo = Interval.first; RegNo < Interval.second;
577 ++RegNo) {
578 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
579 }
580#endif
581 } else {
582 // Match the score to the destination registers.
583 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
584 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
585 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
586 continue;
587 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
588 setRegScore(RegNo, T, CurrScore);
589 }
590 }
591 if (TII->isDS(Inst) && Inst.mayStore()) {
592 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
593 }
594 }
595}
596
597void BlockWaitcntBrackets::print(raw_ostream &OS) {
598 OS << '\n';
599 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
600 T = (enum InstCounterType)(T + 1)) {
601 int LB = getScoreLB(T);
602 int UB = getScoreUB(T);
603
604 switch (T) {
605 case VM_CNT:
606 OS << " VM_CNT(" << UB - LB << "): ";
607 break;
608 case LGKM_CNT:
609 OS << " LGKM_CNT(" << UB - LB << "): ";
610 break;
611 case EXP_CNT:
612 OS << " EXP_CNT(" << UB - LB << "): ";
613 break;
614 default:
615 OS << " UNKNOWN(" << UB - LB << "): ";
616 break;
617 }
618
619 if (LB < UB) {
620 // Print vgpr scores.
621 for (int J = 0; J <= getMaxVGPR(); J++) {
622 int RegScore = getRegScore(J, T);
623 if (RegScore <= LB)
624 continue;
625 int RelScore = RegScore - LB - 1;
626 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
627 OS << RelScore << ":v" << J << " ";
628 } else {
629 OS << RelScore << ":ds ";
630 }
631 }
632 // Also need to print sgpr scores for lgkm_cnt.
633 if (T == LGKM_CNT) {
634 for (int J = 0; J <= getMaxSGPR(); J++) {
635 int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
636 if (RegScore <= LB)
637 continue;
638 int RelScore = RegScore - LB - 1;
639 OS << RelScore << ":s" << J << " ";
640 }
641 }
642 }
643 OS << '\n';
644 }
645 OS << '\n';
646 return;
647}
648
649unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T,
650 int ScoreToWait) {
651 unsigned int NeedWait = 0;
652 if (ScoreToWait == -1) {
653 // The score to wait is unknown. This implies that it was not encountered
654 // during the path of the CFG walk done during the current traversal but
655 // may be seen on a different path. Emit an s_wait counter with a
656 // conservative value of 0 for the counter.
657 NeedWait = CNT_MASK(T);
658 setScoreLB(T, getScoreUB(T));
659 return NeedWait;
660 }
661
662 // If the score of src_operand falls within the bracket, we need an
663 // s_waitcnt instruction.
664 const int32_t LB = getScoreLB(T);
665 const int32_t UB = getScoreUB(T);
666 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
667 if (T == VM_CNT && hasPendingFlat()) {
668 // If there is a pending FLAT operation, and this is a VM waitcnt,
669 // then we need to force a waitcnt 0 for VM.
670 NeedWait = CNT_MASK(T);
671 setScoreLB(T, getScoreUB(T));
672 } else if (counterOutOfOrder(T)) {
673 // Counter can get decremented out-of-order when there
674 // are multiple types event in the brack. Also emit an s_wait counter
675 // with a conservative value of 0 for the counter.
676 NeedWait = CNT_MASK(T);
677 setScoreLB(T, getScoreUB(T));
678 } else {
679 NeedWait = CNT_MASK(T);
680 setScoreLB(T, ScoreToWait);
681 }
682 }
683
684 return NeedWait;
685}
686
687// Where there are multiple types of event in the bracket of a counter,
688// the decrement may go out of order.
689bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) {
690 switch (T) {
691 case VM_CNT:
692 return false;
693 case LGKM_CNT: {
694 if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
695 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) {
696 // Scalar memory read always can go out of order.
697 return true;
698 }
699 int NumEventTypes = 0;
700 if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
701 EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
702 NumEventTypes++;
703 }
704 if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
705 EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
706 NumEventTypes++;
707 }
708 if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] &&
709 EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) {
710 NumEventTypes++;
711 }
712 if (NumEventTypes <= 1) {
713 return false;
714 }
715 break;
716 }
717 case EXP_CNT: {
718 // If there has been a mixture of export types, then a waitcnt exp(0) is
719 // required.
720 if (MixedExpTypes)
721 return true;
722 int NumEventTypes = 0;
723 if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
724 EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
725 NumEventTypes++;
726 }
727 if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
728 EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
729 NumEventTypes++;
730 }
731 if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
732 EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
733 NumEventTypes++;
734 }
735 if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] &&
736 EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) {
737 NumEventTypes++;
738 }
739
740 if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] &&
741 EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) {
742 NumEventTypes++;
743 }
744
745 if (NumEventTypes <= 1) {
746 return false;
747 }
748 break;
749 }
750 default:
751 break;
752 }
753 return true;
754}
755
756INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
757 false)
758INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
759 false)
760
761char SIInsertWaitcnts::ID = 0;
762
763char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
764
765FunctionPass *llvm::createSIInsertWaitcntsPass() {
766 return new SIInsertWaitcnts();
767}
768
769static bool readsVCCZ(const MachineInstr &MI) {
770 unsigned Opc = MI.getOpcode();
771 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
772 !MI.getOperand(1).isUndef();
773}
774
775/// \brief Generate s_waitcnt instruction to be placed before cur_Inst.
776/// Instructions of a given type are returned in order,
777/// but instructions of different types can complete out of order.
778/// We rely on this in-order completion
779/// and simply assign a score to the memory access instructions.
780/// We keep track of the active "score bracket" to determine
781/// if an access of a memory read requires an s_waitcnt
782/// and if so what the value of each counter is.
783/// The "score bracket" is bound by the lower bound and upper bound
784/// scores (*_score_LB and *_score_ub respectively).
785MachineInstr *SIInsertWaitcnts::generateSWaitCntInstBefore(
786 MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) {
787 // To emit, or not to emit - that's the question!
788 // Start with an assumption that there is no need to emit.
789 unsigned int EmitSwaitcnt = 0;
790 // s_waitcnt instruction to return; default is NULL.
791 MachineInstr *SWaitInst = nullptr;
792 // No need to wait before phi. If a phi-move exists, then the wait should
793 // has been inserted before the move. If a phi-move does not exist, then
794 // wait should be inserted before the real use. The same is true for
795 // sc-merge. It is not a coincident that all these cases correspond to the
796 // instructions that are skipped in the assembling loop.
797 bool NeedLineMapping = false; // TODO: Check on this.
798 if (MI.isDebugValue() &&
799 // TODO: any other opcode?
800 !NeedLineMapping) {
801 return SWaitInst;
802 }
803
804 // See if an s_waitcnt is forced at block entry, or is needed at
805 // program end.
806 if (ScoreBrackets->getWaitAtBeginning()) {
807 // Note that we have already cleared the state, so we don't need to update
808 // it.
809 ScoreBrackets->clearWaitAtBeginning();
810 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
811 T = (enum InstCounterType)(T + 1)) {
812 EmitSwaitcnt |= CNT_MASK(T);
813 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
814 }
815 }
816
817 // See if this instruction has a forced S_WAITCNT VM.
818 // TODO: Handle other cases of NeedsWaitcntVmBefore()
819 else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
820 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
821 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) {
822 EmitSwaitcnt |=
823 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
824 }
825
826 // All waits must be resolved at call return.
827 // NOTE: this could be improved with knowledge of all call sites or
828 // with knowledge of the called routines.
829 if (MI.getOpcode() == AMDGPU::RETURN ||
Mark Searles11d0a042017-05-31 16:44:23 +0000830 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
831 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) {
Kannan Narayananacb089e2017-04-12 03:25:12 +0000832 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
833 T = (enum InstCounterType)(T + 1)) {
834 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
835 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
836 EmitSwaitcnt |= CNT_MASK(T);
837 }
838 }
839 }
840 // Resolve vm waits before gs-done.
841 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
842 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
843 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
844 AMDGPU::SendMsg::ID_GS_DONE)) {
845 if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) {
846 ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
847 EmitSwaitcnt |= CNT_MASK(VM_CNT);
848 }
849 }
850#if 0 // TODO: the following blocks of logic when we have fence.
851 else if (MI.getOpcode() == SC_FENCE) {
852 const unsigned int group_size =
853 context->shader_info->GetMaxThreadGroupSize();
854 // group_size == 0 means thread group size is unknown at compile time
855 const bool group_is_multi_wave =
856 (group_size == 0 || group_size > target_info->GetWaveFrontSize());
857 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
858
859 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
860 SCRegType src_type = Inst->GetSrcType(i);
861 switch (src_type) {
862 case SCMEM_LDS:
863 if (group_is_multi_wave ||
864 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
865 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
866 ScoreBrackets->getScoreUB(LGKM_CNT));
867 // LDS may have to wait for VM_CNT after buffer load to LDS
868 if (target_info->HasBufferLoadToLDS()) {
869 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
870 ScoreBrackets->getScoreUB(VM_CNT));
871 }
872 }
873 break;
874
875 case SCMEM_GDS:
876 if (group_is_multi_wave || fence_is_global) {
877 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
878 ScoreBrackets->getScoreUB(EXP_CNT));
879 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
880 ScoreBrackets->getScoreUB(LGKM_CNT));
881 }
882 break;
883
884 case SCMEM_UAV:
885 case SCMEM_TFBUF:
886 case SCMEM_RING:
887 case SCMEM_SCATTER:
888 if (group_is_multi_wave || fence_is_global) {
889 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
890 ScoreBrackets->getScoreUB(EXP_CNT));
891 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
892 ScoreBrackets->getScoreUB(VM_CNT));
893 }
894 break;
895
896 case SCMEM_SCRATCH:
897 default:
898 break;
899 }
900 }
901 }
902#endif
903
904 // Export & GDS instructions do not read the EXEC mask until after the export
905 // is granted (which can occur well after the instruction is issued).
906 // The shader program must flush all EXP operations on the export-count
907 // before overwriting the EXEC mask.
908 else {
909 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
910 // Export and GDS are tracked individually, either may trigger a waitcnt
911 // for EXEC.
912 EmitSwaitcnt |= ScoreBrackets->updateByWait(
913 EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK));
914 EmitSwaitcnt |= ScoreBrackets->updateByWait(
915 EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS));
916 EmitSwaitcnt |= ScoreBrackets->updateByWait(
917 EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS));
918 EmitSwaitcnt |= ScoreBrackets->updateByWait(
919 EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK));
920 }
921
922#if 0 // TODO: the following code to handle CALL.
923 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT.
924 // However, there is a problem with EXP_CNT, because the call cannot
925 // easily tell if a register is used in the function, and if it did, then
926 // the referring instruction would have to have an S_WAITCNT, which is
927 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs
928 // before the call.
929 if (MI.getOpcode() == SC_CALL) {
930 if (ScoreBrackets->getScoreUB(EXP_CNT) >
931 ScoreBrackets->getScoreLB(EXP_CNT)) {
932 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
933 EmitSwaitcnt |= CNT_MASK(EXP_CNT);
934 }
935 }
936#endif
937
Matt Arsenault0ed39d32017-07-21 18:54:54 +0000938 // FIXME: Should not be relying on memoperands.
Kannan Narayananacb089e2017-04-12 03:25:12 +0000939 // Look at the source operands of every instruction to see if
940 // any of them results from a previous memory operation that affects
941 // its current usage. If so, an s_waitcnt instruction needs to be
942 // emitted.
943 // If the source operand was defined by a load, add the s_waitcnt
944 // instruction.
945 for (const MachineMemOperand *Memop : MI.memoperands()) {
946 unsigned AS = Memop->getAddrSpace();
947 if (AS != AMDGPUASI.LOCAL_ADDRESS)
948 continue;
949 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
950 // VM_CNT is only relevant to vgpr or LDS.
951 EmitSwaitcnt |= ScoreBrackets->updateByWait(
952 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
953 }
Matt Arsenault0ed39d32017-07-21 18:54:54 +0000954
Kannan Narayananacb089e2017-04-12 03:25:12 +0000955 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
956 const MachineOperand &Op = MI.getOperand(I);
957 const MachineRegisterInfo &MRIA = *MRI;
958 RegInterval Interval =
959 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false);
960 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
961 if (TRI->isVGPR(MRIA, Op.getReg())) {
962 // VM_CNT is only relevant to vgpr or LDS.
963 EmitSwaitcnt |= ScoreBrackets->updateByWait(
964 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
965 }
966 EmitSwaitcnt |= ScoreBrackets->updateByWait(
967 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
968 }
969 }
970 // End of for loop that looks at all source operands to decide vm_wait_cnt
971 // and lgk_wait_cnt.
972
973 // Two cases are handled for destination operands:
974 // 1) If the destination operand was defined by a load, add the s_waitcnt
975 // instruction to guarantee the right WAW order.
976 // 2) If a destination operand that was used by a recent export/store ins,
977 // add s_waitcnt on exp_cnt to guarantee the WAR order.
978 if (MI.mayStore()) {
Matt Arsenault0ed39d32017-07-21 18:54:54 +0000979 // FIXME: Should not be relying on memoperands.
Kannan Narayananacb089e2017-04-12 03:25:12 +0000980 for (const MachineMemOperand *Memop : MI.memoperands()) {
981 unsigned AS = Memop->getAddrSpace();
982 if (AS != AMDGPUASI.LOCAL_ADDRESS)
983 continue;
984 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
985 EmitSwaitcnt |= ScoreBrackets->updateByWait(
986 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
987 EmitSwaitcnt |= ScoreBrackets->updateByWait(
988 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
989 }
990 }
991 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
992 MachineOperand &Def = MI.getOperand(I);
993 const MachineRegisterInfo &MRIA = *MRI;
994 RegInterval Interval =
995 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true);
996 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
997 if (TRI->isVGPR(MRIA, Def.getReg())) {
998 EmitSwaitcnt |= ScoreBrackets->updateByWait(
999 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
1000 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1001 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
1002 }
1003 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1004 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
1005 }
1006 } // End of for loop that looks at all dest operands.
1007 }
1008
1009 // TODO: Tie force zero to a compiler triage option.
1010 bool ForceZero = false;
1011
1012 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1013 // occurs before the instruction. Doing it here prevents any additional
1014 // S_WAITCNTs from being emitted if the instruction was marked as
1015 // requiring a WAITCNT beforehand.
Konstantin Zhuravlyovbe6c0ca2017-06-02 17:40:26 +00001016 if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1017 !ST->hasAutoWaitcntBeforeBarrier()) {
Kannan Narayananacb089e2017-04-12 03:25:12 +00001018 EmitSwaitcnt |=
1019 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
1020 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1021 EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
1022 EmitSwaitcnt |= ScoreBrackets->updateByWait(
1023 LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT));
1024 }
1025
1026 // TODO: Remove this work-around, enable the assert for Bug 457939
1027 // after fixing the scheduler. Also, the Shader Compiler code is
1028 // independent of target.
1029 if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) {
1030 if (ScoreBrackets->getScoreLB(LGKM_CNT) <
1031 ScoreBrackets->getScoreUB(LGKM_CNT) &&
1032 ScoreBrackets->hasPendingSMEM()) {
1033 // Wait on everything, not just LGKM. vccz reads usually come from
1034 // terminators, and we always wait on everything at the end of the
1035 // block, so if we only wait on LGKM here, we might end up with
1036 // another s_waitcnt inserted right after this if there are non-LGKM
1037 // instructions still outstanding.
1038 ForceZero = true;
1039 EmitSwaitcnt = true;
1040 }
1041 }
1042
1043 // Does this operand processing indicate s_wait counter update?
1044 if (EmitSwaitcnt) {
1045 int CntVal[NUM_INST_CNTS];
1046
1047 bool UseDefaultWaitcntStrategy = true;
1048 if (ForceZero) {
1049 // Force all waitcnts to 0.
1050 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1051 T = (enum InstCounterType)(T + 1)) {
1052 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
1053 }
1054 CntVal[VM_CNT] = 0;
1055 CntVal[EXP_CNT] = 0;
1056 CntVal[LGKM_CNT] = 0;
1057 UseDefaultWaitcntStrategy = false;
1058 }
1059
1060 if (UseDefaultWaitcntStrategy) {
1061 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1062 T = (enum InstCounterType)(T + 1)) {
1063 if (EmitSwaitcnt & CNT_MASK(T)) {
1064 int Delta =
1065 ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T);
1066 int MaxDelta = ScoreBrackets->getWaitCountMax(T);
1067 if (Delta >= MaxDelta) {
1068 Delta = -1;
1069 if (T != EXP_CNT) {
1070 ScoreBrackets->setScoreLB(
1071 T, ScoreBrackets->getScoreUB(T) - MaxDelta);
1072 }
1073 EmitSwaitcnt &= ~CNT_MASK(T);
1074 }
1075 CntVal[T] = Delta;
1076 } else {
1077 // If we are not waiting for a particular counter then encode
1078 // it as -1 which means "don't care."
1079 CntVal[T] = -1;
1080 }
1081 }
1082 }
1083
1084 // If we are not waiting on any counter we can skip the wait altogether.
1085 if (EmitSwaitcnt != 0) {
1086 MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt();
1087 int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm();
1088 if (!OldWaitcnt || (AMDGPU::decodeVmcnt(IV, Imm) !=
1089 (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) ||
1090 (AMDGPU::decodeExpcnt(IV, Imm) !=
1091 (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) ||
1092 (AMDGPU::decodeLgkmcnt(IV, Imm) !=
1093 (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) {
1094 MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent());
1095 if (ContainingLoop) {
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001096 MachineBasicBlock *TBB = ContainingLoop->getHeader();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001097 BlockWaitcntBrackets *ScoreBracket =
1098 BlockWaitcntBracketsMap[TBB].get();
1099 if (!ScoreBracket) {
1100 assert(BlockVisitedSet.find(TBB) == BlockVisitedSet.end());
1101 BlockWaitcntBracketsMap[TBB] = make_unique<BlockWaitcntBrackets>();
1102 ScoreBracket = BlockWaitcntBracketsMap[TBB].get();
1103 }
1104 ScoreBracket->setRevisitLoop(true);
1105 DEBUG(dbgs() << "set-revisit: block"
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001106 << ContainingLoop->getHeader()->getNumber() << '\n';);
Kannan Narayananacb089e2017-04-12 03:25:12 +00001107 }
1108 }
1109
1110 // Update an existing waitcount, or make a new one.
1111 MachineFunction &MF = *MI.getParent()->getParent();
1112 if (OldWaitcnt && OldWaitcnt->getOpcode() != AMDGPU::S_WAITCNT) {
1113 SWaitInst = OldWaitcnt;
1114 } else {
1115 SWaitInst = MF.CreateMachineInstr(TII->get(AMDGPU::S_WAITCNT),
1116 MI.getDebugLoc());
1117 CompilerGeneratedWaitcntSet.insert(SWaitInst);
1118 }
1119
1120 const MachineOperand &Op =
1121 MachineOperand::CreateImm(AMDGPU::encodeWaitcnt(
1122 IV, CntVal[VM_CNT], CntVal[EXP_CNT], CntVal[LGKM_CNT]));
1123 SWaitInst->addOperand(MF, Op);
1124
1125 if (CntVal[EXP_CNT] == 0) {
1126 ScoreBrackets->setMixedExpTypes(false);
1127 }
1128 }
1129 }
1130
1131 return SWaitInst;
1132}
1133
1134void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB,
1135 MachineInstr *Waitcnt) {
1136 if (MBB.empty()) {
1137 MBB.push_back(Waitcnt);
1138 return;
1139 }
1140
1141 MachineBasicBlock::iterator It = MBB.end();
1142 MachineInstr *MI = &*(--It);
1143 if (MI->isBranch()) {
1144 MBB.insert(It, Waitcnt);
1145 } else {
1146 MBB.push_back(Waitcnt);
1147 }
1148
1149 return;
1150}
1151
Matt Arsenault0ed39d32017-07-21 18:54:54 +00001152// This is a flat memory operation. Check to see if it has memory
1153// tokens for both LDS and Memory, and if so mark it as a flat.
1154bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1155 if (MI.memoperands_empty())
1156 return true;
1157
1158 for (const MachineMemOperand *Memop : MI.memoperands()) {
1159 unsigned AS = Memop->getAddrSpace();
1160 if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS)
1161 return true;
1162 }
1163
1164 return false;
1165}
1166
Kannan Narayananacb089e2017-04-12 03:25:12 +00001167void SIInsertWaitcnts::updateEventWaitCntAfter(
1168 MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) {
1169 // Now look at the instruction opcode. If it is a memory access
1170 // instruction, update the upper-bound of the appropriate counter's
1171 // bracket and the destination operand scores.
1172 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
Matt Arsenault6ab9ea92017-07-21 18:34:51 +00001173 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
Matt Arsenault0ed39d32017-07-21 18:54:54 +00001174 if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
Kannan Narayananacb089e2017-04-12 03:25:12 +00001175 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1176 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1177 } else {
1178 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1179 }
1180 } else if (TII->isFLAT(Inst)) {
1181 assert(Inst.mayLoad() || Inst.mayStore());
Matt Arsenault6ab9ea92017-07-21 18:34:51 +00001182
1183 if (TII->usesVM_CNT(Inst))
1184 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1185
Matt Arsenault0ed39d32017-07-21 18:54:54 +00001186 if (TII->usesLGKM_CNT(Inst)) {
Matt Arsenault6ab9ea92017-07-21 18:34:51 +00001187 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
Kannan Narayananacb089e2017-04-12 03:25:12 +00001188
Matt Arsenault0ed39d32017-07-21 18:54:54 +00001189 // This is a flat memory operation, so note it - it will require
1190 // that both the VM and LGKM be flushed to zero if it is pending when
1191 // a VM or LGKM dependency occurs.
1192 if (mayAccessLDSThroughFlat(Inst))
1193 ScoreBrackets->setPendingFlat();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001194 }
1195 } else if (SIInstrInfo::isVMEM(Inst) &&
1196 // TODO: get a better carve out.
1197 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1198 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1199 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) {
1200 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1201 if ( // TODO: assumed yes -- target_info->MemWriteNeedsExpWait() &&
Mark Searles11d0a042017-05-31 16:44:23 +00001202 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
Kannan Narayananacb089e2017-04-12 03:25:12 +00001203 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1204 }
1205 } else if (TII->isSMRD(Inst)) {
1206 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1207 } else {
1208 switch (Inst.getOpcode()) {
1209 case AMDGPU::S_SENDMSG:
1210 case AMDGPU::S_SENDMSGHALT:
1211 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1212 break;
1213 case AMDGPU::EXP:
1214 case AMDGPU::EXP_DONE: {
1215 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1216 if (Imm >= 32 && Imm <= 63)
1217 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1218 else if (Imm >= 12 && Imm <= 15)
1219 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1220 else
1221 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1222 break;
1223 }
1224 case AMDGPU::S_MEMTIME:
1225 case AMDGPU::S_MEMREALTIME:
1226 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1227 break;
1228 default:
1229 break;
1230 }
1231 }
1232}
1233
1234void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) {
1235 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
1236 int32_t MaxPending[NUM_INST_CNTS] = {0};
1237 int32_t MaxFlat[NUM_INST_CNTS] = {0};
1238 bool MixedExpTypes = false;
1239
1240 // Clear the score bracket state.
1241 ScoreBrackets->clear();
1242
1243 // Compute the number of pending elements on block entry.
1244
1245 // IMPORTANT NOTE: If iterative handling of loops is added, the code will
1246 // need to handle single BBs with backedges to themselves. This means that
1247 // they will need to retain and not clear their initial state.
1248
1249 // See if there are any uninitialized predecessors. If so, emit an
1250 // s_waitcnt 0 at the beginning of the block.
1251 for (MachineBasicBlock *pred : Block.predecessors()) {
1252 BlockWaitcntBrackets *PredScoreBrackets =
1253 BlockWaitcntBracketsMap[pred].get();
1254 bool Visited = BlockVisitedSet.find(pred) != BlockVisitedSet.end();
1255 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
1256 break;
1257 }
1258 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1259 T = (enum InstCounterType)(T + 1)) {
1260 int span =
1261 PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T);
1262 MaxPending[T] = std::max(MaxPending[T], span);
1263 span =
1264 PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T);
1265 MaxFlat[T] = std::max(MaxFlat[T], span);
1266 }
1267
1268 MixedExpTypes |= PredScoreBrackets->mixedExpTypes();
1269 }
1270
1271 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
1272 // Also handle kills for exit block.
1273 if (Block.succ_empty() && !KillWaitBrackets.empty()) {
1274 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
1275 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1276 T = (enum InstCounterType)(T + 1)) {
1277 int Span = KillWaitBrackets[I]->getScoreUB(T) -
1278 KillWaitBrackets[I]->getScoreLB(T);
1279 MaxPending[T] = std::max(MaxPending[T], Span);
1280 Span = KillWaitBrackets[I]->pendingFlat(T) -
1281 KillWaitBrackets[I]->getScoreLB(T);
1282 MaxFlat[T] = std::max(MaxFlat[T], Span);
1283 }
1284
1285 MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes();
1286 }
1287 }
1288
1289 // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK.
1290 for (MachineBasicBlock *Pred : Block.predecessors()) {
1291 BlockWaitcntBrackets *PredScoreBrackets =
1292 BlockWaitcntBracketsMap[Pred].get();
1293 bool Visited = BlockVisitedSet.find(Pred) != BlockVisitedSet.end();
1294 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
1295 break;
1296 }
1297
1298 int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) -
1299 PredScoreBrackets->getScoreLB(EXP_CNT);
1300 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
1301 int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) -
1302 PredScoreBrackets->getScoreLB(EXP_CNT);
1303 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
1304 }
1305
1306 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
1307 if (Block.succ_empty() && !KillWaitBrackets.empty()) {
1308 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
1309 int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) -
1310 KillWaitBrackets[I]->getScoreLB(EXP_CNT);
1311 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
1312 int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) -
1313 KillWaitBrackets[I]->getScoreLB(EXP_CNT);
1314 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
1315 }
1316 }
1317
1318#if 0
1319 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker.
1320 // TODO: how does LC distinguish between function entry and main entry?
1321 // If this is the entry to a function, force a wait.
1322 MachineBasicBlock &Entry = Block.getParent()->front();
1323 if (Entry.getNumber() == Block.getNumber()) {
1324 ScoreBrackets->setWaitAtBeginning();
1325 return;
1326 }
1327#endif
1328
1329 // Now set the current Block's brackets to the largest ending bracket.
1330 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1331 T = (enum InstCounterType)(T + 1)) {
1332 ScoreBrackets->setScoreUB(T, MaxPending[T]);
1333 ScoreBrackets->setScoreLB(T, 0);
1334 ScoreBrackets->setLastFlat(T, MaxFlat[T]);
1335 }
1336
1337 ScoreBrackets->setMixedExpTypes(MixedExpTypes);
1338
1339 // Set the register scoreboard.
1340 for (MachineBasicBlock *Pred : Block.predecessors()) {
1341 if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) {
1342 break;
1343 }
1344
1345 BlockWaitcntBrackets *PredScoreBrackets =
1346 BlockWaitcntBracketsMap[Pred].get();
1347
1348 // Now merge the gpr_reg_score information
1349 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1350 T = (enum InstCounterType)(T + 1)) {
1351 int PredLB = PredScoreBrackets->getScoreLB(T);
1352 int PredUB = PredScoreBrackets->getScoreUB(T);
1353 if (PredLB < PredUB) {
1354 int PredScale = MaxPending[T] - PredUB;
1355 // Merge vgpr scores.
1356 for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) {
1357 int PredRegScore = PredScoreBrackets->getRegScore(J, T);
1358 if (PredRegScore <= PredLB)
1359 continue;
1360 int NewRegScore = PredScale + PredRegScore;
1361 ScoreBrackets->setRegScore(
1362 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
1363 }
1364 // Also need to merge sgpr scores for lgkm_cnt.
1365 if (T == LGKM_CNT) {
1366 for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) {
1367 int PredRegScore =
1368 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
1369 if (PredRegScore <= PredLB)
1370 continue;
1371 int NewRegScore = PredScale + PredRegScore;
1372 ScoreBrackets->setRegScore(
1373 J + NUM_ALL_VGPRS, LGKM_CNT,
1374 std::max(
1375 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
1376 NewRegScore));
1377 }
1378 }
1379 }
1380 }
1381
1382 // Also merge the WaitEvent information.
1383 ForAllWaitEventType(W) {
1384 enum InstCounterType T = PredScoreBrackets->eventCounter(W);
1385 int PredEventUB = PredScoreBrackets->getEventUB(W);
1386 if (PredEventUB > PredScoreBrackets->getScoreLB(T)) {
1387 int NewEventUB =
1388 MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T);
1389 if (NewEventUB > 0) {
1390 ScoreBrackets->setEventUB(
1391 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
1392 }
1393 }
1394 }
1395 }
1396
1397 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
1398 // Set the register scoreboard.
1399 if (Block.succ_empty() && !KillWaitBrackets.empty()) {
1400 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
1401 // Now merge the gpr_reg_score information.
1402 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1403 T = (enum InstCounterType)(T + 1)) {
1404 int PredLB = KillWaitBrackets[I]->getScoreLB(T);
1405 int PredUB = KillWaitBrackets[I]->getScoreUB(T);
1406 if (PredLB < PredUB) {
1407 int PredScale = MaxPending[T] - PredUB;
1408 // Merge vgpr scores.
1409 for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) {
1410 int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T);
1411 if (PredRegScore <= PredLB)
1412 continue;
1413 int NewRegScore = PredScale + PredRegScore;
1414 ScoreBrackets->setRegScore(
1415 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
1416 }
1417 // Also need to merge sgpr scores for lgkm_cnt.
1418 if (T == LGKM_CNT) {
1419 for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) {
1420 int PredRegScore =
1421 KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
1422 if (PredRegScore <= PredLB)
1423 continue;
1424 int NewRegScore = PredScale + PredRegScore;
1425 ScoreBrackets->setRegScore(
1426 J + NUM_ALL_VGPRS, LGKM_CNT,
1427 std::max(
1428 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
1429 NewRegScore));
1430 }
1431 }
1432 }
1433 }
1434
1435 // Also merge the WaitEvent information.
1436 ForAllWaitEventType(W) {
1437 enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W);
1438 int PredEventUB = KillWaitBrackets[I]->getEventUB(W);
1439 if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) {
1440 int NewEventUB =
1441 MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T);
1442 if (NewEventUB > 0) {
1443 ScoreBrackets->setEventUB(
1444 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
1445 }
1446 }
1447 }
1448 }
1449 }
1450
1451 // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the
1452 // sequencing predecessors, because changes to EXEC require waitcnts due to
1453 // the delayed nature of these operations.
1454 for (MachineBasicBlock *Pred : Block.predecessors()) {
1455 if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) {
1456 break;
1457 }
1458
1459 BlockWaitcntBrackets *PredScoreBrackets =
1460 BlockWaitcntBracketsMap[Pred].get();
1461
1462 int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK);
1463 if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
1464 int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub -
1465 PredScoreBrackets->getScoreUB(EXP_CNT);
1466 if (new_gds_ub > 0) {
1467 ScoreBrackets->setEventUB(
1468 GDS_GPR_LOCK,
1469 std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub));
1470 }
1471 }
1472 int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK);
1473 if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
1474 int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub -
1475 PredScoreBrackets->getScoreUB(EXP_CNT);
1476 if (new_exp_ub > 0) {
1477 ScoreBrackets->setEventUB(
1478 EXP_GPR_LOCK,
1479 std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub));
1480 }
1481 }
1482 }
1483}
1484
1485/// Return the "bottom" block of a loop. This differs from
1486/// MachineLoop::getBottomBlock in that it works even if the loop is
1487/// discontiguous.
1488MachineBasicBlock *SIInsertWaitcnts::loopBottom(const MachineLoop *Loop) {
1489 MachineBasicBlock *Bottom = Loop->getHeader();
1490 for (MachineBasicBlock *MBB : Loop->blocks())
1491 if (MBB->getNumber() > Bottom->getNumber())
1492 Bottom = MBB;
1493 return Bottom;
1494}
1495
1496// Generate s_waitcnt instructions where needed.
1497void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1498 MachineBasicBlock &Block) {
1499 // Initialize the state information.
1500 mergeInputScoreBrackets(Block);
1501
1502 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
1503
1504 DEBUG({
1505 dbgs() << "Block" << Block.getNumber();
1506 ScoreBrackets->dump();
1507 });
1508
1509 bool InsertNOP = false;
1510
1511 // Walk over the instructions.
1512 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end();
1513 Iter != E;) {
1514 MachineInstr &Inst = *Iter;
1515 // Remove any previously existing waitcnts.
1516 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) {
1517 // TODO: Register the old waitcnt and optimize the following waitcnts.
1518 // Leaving the previously existing waitcnts is conservatively correct.
1519 if (CompilerGeneratedWaitcntSet.find(&Inst) ==
1520 CompilerGeneratedWaitcntSet.end())
1521 ++Iter;
1522 else {
1523 ScoreBrackets->setWaitcnt(&Inst);
1524 ++Iter;
1525 Inst.removeFromParent();
1526 }
1527 continue;
1528 }
1529
1530 // Kill instructions generate a conditional branch to the endmain block.
1531 // Merge the current waitcnt state into the endmain block information.
1532 // TODO: Are there other flavors of KILL instruction?
1533 if (Inst.getOpcode() == AMDGPU::KILL) {
1534 addKillWaitBracket(ScoreBrackets);
1535 }
1536
1537 bool VCCZBugWorkAround = false;
1538 if (readsVCCZ(Inst) &&
1539 (VCCZBugHandledSet.find(&Inst) == VCCZBugHandledSet.end())) {
1540 if (ScoreBrackets->getScoreLB(LGKM_CNT) <
1541 ScoreBrackets->getScoreUB(LGKM_CNT) &&
1542 ScoreBrackets->hasPendingSMEM()) {
1543 if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS)
1544 VCCZBugWorkAround = true;
1545 }
1546 }
1547
1548 // Generate an s_waitcnt instruction to be placed before
1549 // cur_Inst, if needed.
1550 MachineInstr *SWaitInst = generateSWaitCntInstBefore(Inst, ScoreBrackets);
1551
1552 if (SWaitInst) {
1553 Block.insert(Inst, SWaitInst);
1554 if (ScoreBrackets->getWaitcnt() != SWaitInst) {
1555 DEBUG(dbgs() << "insertWaitcntInBlock\n"
1556 << "Old Instr: " << Inst << '\n'
1557 << "New Instr: " << *SWaitInst << '\n';);
1558 }
1559 }
1560
1561 updateEventWaitCntAfter(Inst, ScoreBrackets);
1562
1563#if 0 // TODO: implement resource type check controlled by options with ub = LB.
1564 // If this instruction generates a S_SETVSKIP because it is an
1565 // indexed resource, and we are on Tahiti, then it will also force
1566 // an S_WAITCNT vmcnt(0)
1567 if (RequireCheckResourceType(Inst, context)) {
1568 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1569 ScoreBrackets->setScoreLB(VM_CNT,
1570 ScoreBrackets->getScoreUB(VM_CNT));
1571 }
1572#endif
1573
1574 ScoreBrackets->clearWaitcnt();
1575
1576 if (SWaitInst) {
1577 DEBUG({ SWaitInst->print(dbgs() << '\n'); });
1578 }
1579 DEBUG({
1580 Inst.print(dbgs());
1581 ScoreBrackets->dump();
1582 });
1583
1584 // Check to see if this is a GWS instruction. If so, and if this is CI or
1585 // VI, then the generated code sequence will include an S_WAITCNT 0.
1586 // TODO: Are these the only GWS instructions?
1587 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT ||
1588 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V ||
1589 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
1590 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P ||
1591 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) {
1592 // TODO: && context->target_info->GwsRequiresMemViolTest() ) {
1593 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
1594 ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
1595 ScoreBrackets->updateByWait(LGKM_CNT,
1596 ScoreBrackets->getScoreUB(LGKM_CNT));
1597 }
1598
1599 // TODO: Remove this work-around after fixing the scheduler and enable the
1600 // assert above.
1601 if (VCCZBugWorkAround) {
1602 // Restore the vccz bit. Any time a value is written to vcc, the vcc
1603 // bit is updated, so we can restore the bit by reading the value of
1604 // vcc and then writing it back to the register.
1605 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
1606 AMDGPU::VCC)
1607 .addReg(AMDGPU::VCC);
1608 VCCZBugHandledSet.insert(&Inst);
1609 }
1610
1611 if (ST->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
1612
1613 // This avoids a s_nop after a waitcnt has just been inserted.
1614 if (!SWaitInst && InsertNOP) {
1615 BuildMI(Block, Inst, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0);
1616 }
1617 InsertNOP = false;
1618
1619 // Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM
1620 // or SMEM clause, respectively.
1621 //
1622 // The temporary workaround is to break the clauses with S_NOP.
1623 //
1624 // The proper solution would be to allocate registers such that all source
1625 // and destination registers don't overlap, e.g. this is illegal:
1626 // r0 = load r2
1627 // r2 = load r0
1628 bool IsSMEM = false;
1629 bool IsVMEM = false;
1630 if (TII->isSMRD(Inst))
1631 IsSMEM = true;
1632 else if (TII->usesVM_CNT(Inst))
1633 IsVMEM = true;
1634
1635 ++Iter;
1636 if (Iter == E)
1637 break;
1638
1639 MachineInstr &Next = *Iter;
1640
1641 // TODO: How about consecutive SMEM instructions?
1642 // The comments above says break the clause but the code does not.
1643 // if ((TII->isSMRD(next) && isSMEM) ||
1644 if (!IsSMEM && TII->usesVM_CNT(Next) && IsVMEM &&
1645 // TODO: Enable this check when hasSoftClause is upstreamed.
1646 // ST->hasSoftClauses() &&
1647 ST->isXNACKEnabled()) {
1648 // Insert a NOP to break the clause.
1649 InsertNOP = true;
1650 continue;
1651 }
1652
1653 // There must be "S_NOP 0" between an instruction writing M0 and
1654 // S_SENDMSG.
1655 if ((Next.getOpcode() == AMDGPU::S_SENDMSG ||
1656 Next.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
1657 Inst.definesRegister(AMDGPU::M0))
1658 InsertNOP = true;
1659
1660 continue;
1661 }
1662
1663 ++Iter;
1664 }
1665
1666 // Check if we need to force convergence at loop footer.
1667 MachineLoop *ContainingLoop = MLI->getLoopFor(&Block);
1668 if (ContainingLoop && loopBottom(ContainingLoop) == &Block) {
1669 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
1670 WaitcntData->print();
1671 DEBUG(dbgs() << '\n';);
1672
1673 // The iterative waitcnt insertion algorithm aims for optimal waitcnt
1674 // placement and doesn't always guarantee convergence for a loop. Each
1675 // loop should take at most 2 iterations for it to converge naturally.
1676 // When this max is reached and result doesn't converge, we force
1677 // convergence by inserting a s_waitcnt at the end of loop footer.
1678 if (WaitcntData->getIterCnt() > 2) {
1679 // To ensure convergence, need to make wait events at loop footer be no
1680 // more than those from the previous iteration.
1681 // As a simplification, Instead of tracking individual scores and
1682 // generate the precise wait count, just wait on 0.
1683 bool HasPending = false;
1684 MachineInstr *SWaitInst = WaitcntData->getWaitcnt();
1685 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1686 T = (enum InstCounterType)(T + 1)) {
1687 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
1688 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
1689 HasPending = true;
1690 }
1691 }
1692
1693 if (HasPending) {
1694 if (!SWaitInst) {
1695 SWaitInst = Block.getParent()->CreateMachineInstr(
1696 TII->get(AMDGPU::S_WAITCNT), DebugLoc());
1697 CompilerGeneratedWaitcntSet.insert(SWaitInst);
1698 const MachineOperand &Op = MachineOperand::CreateImm(0);
1699 SWaitInst->addOperand(MF, Op);
1700#if 0 // TODO: Format the debug output
1701 OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context);
1702 OutputTransformAdd(SWaitInst, context);
1703#endif
1704 }
1705#if 0 // TODO: ??
1706 _DEV( REPORTED_STATS->force_waitcnt_converge = 1; )
1707#endif
1708 }
1709
1710 if (SWaitInst) {
1711 DEBUG({
1712 SWaitInst->print(dbgs());
1713 dbgs() << "\nAdjusted score board:";
1714 ScoreBrackets->dump();
1715 });
1716
1717 // Add this waitcnt to the block. It is either newly created or
1718 // created in previous iterations and added back since block traversal
1719 // always remove waitcnt.
1720 insertWaitcntBeforeCF(Block, SWaitInst);
1721 WaitcntData->setWaitcnt(SWaitInst);
1722 }
1723 }
1724 }
1725}
1726
1727bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1728 ST = &MF.getSubtarget<SISubtarget>();
1729 TII = ST->getInstrInfo();
1730 TRI = &TII->getRegisterInfo();
1731 MRI = &MF.getRegInfo();
1732 MLI = &getAnalysis<MachineLoopInfo>();
1733 IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits());
Mark Searles11d0a042017-05-31 16:44:23 +00001734 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001735 AMDGPUASI = ST->getAMDGPUAS();
1736
1737 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1738 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1739 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1740
1741 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
1742 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
1743 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1744 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1745
1746 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1747 RegisterEncoding.VGPRL =
1748 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
1749 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1750 RegisterEncoding.SGPRL =
1751 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
1752
1753 // Walk over the blocks in reverse post-dominator order, inserting
1754 // s_waitcnt where needed.
1755 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
1756 bool Modified = false;
1757 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
1758 I = RPOT.begin(),
1759 E = RPOT.end(), J = RPOT.begin();
1760 I != E;) {
1761 MachineBasicBlock &MBB = **I;
1762
1763 BlockVisitedSet.insert(&MBB);
1764
1765 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
1766 if (!ScoreBrackets) {
1767 BlockWaitcntBracketsMap[&MBB] = make_unique<BlockWaitcntBrackets>();
1768 ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
1769 }
1770 ScoreBrackets->setPostOrder(MBB.getNumber());
1771 MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB);
1772 if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr)
1773 LoopWaitcntDataMap[ContainingLoop] = make_unique<LoopWaitcntData>();
1774
1775 // If we are walking into the block from before the loop, then guarantee
1776 // at least 1 re-walk over the loop to propagate the information, even if
1777 // no S_WAITCNT instructions were generated.
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001778 if (ContainingLoop && ContainingLoop->getHeader() == &MBB && J < I &&
Kannan Narayananacb089e2017-04-12 03:25:12 +00001779 (BlockWaitcntProcessedSet.find(&MBB) ==
1780 BlockWaitcntProcessedSet.end())) {
1781 BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true);
1782 DEBUG(dbgs() << "set-revisit: block"
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001783 << ContainingLoop->getHeader()->getNumber() << '\n';);
Kannan Narayananacb089e2017-04-12 03:25:12 +00001784 }
1785
1786 // Walk over the instructions.
1787 insertWaitcntInBlock(MF, MBB);
1788
1789 // Flag that waitcnts have been processed at least once.
1790 BlockWaitcntProcessedSet.insert(&MBB);
1791
1792 // See if we want to revisit the loop.
1793 if (ContainingLoop && loopBottom(ContainingLoop) == &MBB) {
Kannan Narayanan5e73b042017-05-05 21:10:17 +00001794 MachineBasicBlock *EntryBB = ContainingLoop->getHeader();
Kannan Narayananacb089e2017-04-12 03:25:12 +00001795 BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get();
1796 if (EntrySB && EntrySB->getRevisitLoop()) {
1797 EntrySB->setRevisitLoop(false);
1798 J = I;
1799 int32_t PostOrder = EntrySB->getPostOrder();
1800 // TODO: Avoid this loop. Find another way to set I.
1801 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
1802 X = RPOT.begin(),
1803 Y = RPOT.end();
1804 X != Y; ++X) {
1805 MachineBasicBlock &MBBX = **X;
1806 if (MBBX.getNumber() == PostOrder) {
1807 I = X;
1808 break;
1809 }
1810 }
1811 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
1812 WaitcntData->incIterCnt();
1813 DEBUG(dbgs() << "revisit: block" << EntryBB->getNumber() << '\n';);
1814 continue;
1815 } else {
1816 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
1817 // Loop converged, reset iteration count. If this loop gets revisited,
1818 // it must be from an outer loop, the counter will restart, this will
1819 // ensure we don't force convergence on such revisits.
1820 WaitcntData->resetIterCnt();
1821 }
1822 }
1823
1824 J = I;
1825 ++I;
1826 }
1827
1828 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1829
1830 bool HaveScalarStores = false;
1831
1832 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1833 ++BI) {
1834
1835 MachineBasicBlock &MBB = *BI;
1836
1837 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1838 ++I) {
1839
1840 if (!HaveScalarStores && TII->isScalarStore(*I))
1841 HaveScalarStores = true;
1842
1843 if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1844 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1845 EndPgmBlocks.push_back(&MBB);
1846 }
1847 }
1848
1849 if (HaveScalarStores) {
1850 // If scalar writes are used, the cache must be flushed or else the next
1851 // wave to reuse the same scratch memory can be clobbered.
1852 //
1853 // Insert s_dcache_wb at wave termination points if there were any scalar
1854 // stores, and only if the cache hasn't already been flushed. This could be
1855 // improved by looking across blocks for flushes in postdominating blocks
1856 // from the stores but an explicitly requested flush is probably very rare.
1857 for (MachineBasicBlock *MBB : EndPgmBlocks) {
1858 bool SeenDCacheWB = false;
1859
1860 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1861 ++I) {
1862
1863 if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1864 SeenDCacheWB = true;
1865 else if (TII->isScalarStore(*I))
1866 SeenDCacheWB = false;
1867
1868 // FIXME: It would be better to insert this before a waitcnt if any.
1869 if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1870 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1871 !SeenDCacheWB) {
1872 Modified = true;
1873 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1874 }
1875 }
1876 }
1877 }
1878
Mark Searles11d0a042017-05-31 16:44:23 +00001879 if (!MFI->isEntryFunction()) {
1880 // Wait for any outstanding memory operations that the input registers may
1881 // depend on. We can't track them and it's better to to the wait after the
1882 // costly call sequence.
1883
1884 // TODO: Could insert earlier and schedule more liberally with operations
1885 // that only use caller preserved registers.
1886 MachineBasicBlock &EntryBB = MF.front();
1887 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1888 .addImm(0);
1889
1890 Modified = true;
1891 }
1892
Kannan Narayananacb089e2017-04-12 03:25:12 +00001893 return Modified;
1894}