Chris Lattner | 101b8cd | 2002-12-16 16:15:28 +0000 | [diff] [blame^] | 1 | //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===// |
| 2 | // |
| 3 | // This register allocator allocates registers to a basic block at a time, |
| 4 | // attempting to keep values in registers and reusing registers as appropriate. |
| 5 | // |
| 6 | //===----------------------------------------------------------------------===// |
| 7 | |
| 8 | #include "llvm/CodeGen/MachineFunction.h" |
| 9 | #include "llvm/CodeGen/MachineInstr.h" |
| 10 | #include "llvm/Target/MachineInstrInfo.h" |
| 11 | #include "llvm/Target/TargetMachine.h" |
| 12 | #include "Support/Statistic.h" |
| 13 | #include <iostream> |
| 14 | |
| 15 | /// PhysRegClassMap - Construct a mapping of physical register numbers to their |
| 16 | /// register classes. |
| 17 | /// |
| 18 | /// NOTE: This class will eventually be pulled out to somewhere shared. |
| 19 | /// |
| 20 | class PhysRegClassMap { |
| 21 | std::map<unsigned, const TargetRegisterClass*> PhysReg2RegClassMap; |
| 22 | public: |
| 23 | PhysRegClassMap(const MRegisterInfo *RI) { |
| 24 | for (MRegisterInfo::const_iterator I = RI->regclass_begin(), |
| 25 | E = RI->regclass_end(); I != E; ++I) |
| 26 | for (unsigned i=0; i < (*I)->getNumRegs(); ++i) |
| 27 | PhysReg2RegClassMap[(*I)->getRegister(i)] = *I; |
| 28 | } |
| 29 | |
| 30 | const TargetRegisterClass *operator[](unsigned Reg) { |
| 31 | assert(PhysReg2RegClassMap[Reg] && "Register is not a known physreg!"); |
| 32 | return PhysReg2RegClassMap[Reg]; |
| 33 | } |
| 34 | |
| 35 | const TargetRegisterClass *get(unsigned Reg) { return operator[](Reg); } |
| 36 | }; |
| 37 | |
| 38 | namespace { |
| 39 | Statistic<> NumSpilled ("ra-local", "Number of registers spilled"); |
| 40 | Statistic<> NumReloaded("ra-local", "Number of registers reloaded"); |
| 41 | |
| 42 | class RA : public FunctionPass { |
| 43 | TargetMachine &TM; |
| 44 | MachineFunction *MF; |
| 45 | const MRegisterInfo *RegInfo; |
| 46 | unsigned NumBytesAllocated; |
| 47 | PhysRegClassMap PhysRegClasses; |
| 48 | |
| 49 | // Maps SSA Regs => offsets on the stack where these values are stored |
| 50 | std::map<unsigned, unsigned> VirtReg2OffsetMap; |
| 51 | |
| 52 | // Virt2PhysRegMap - This map contains entries for each virtual register |
| 53 | // that is currently available in a physical register. |
| 54 | // |
| 55 | std::map<unsigned, unsigned> Virt2PhysRegMap; |
| 56 | |
| 57 | // PhysRegsUsed - This map contains entries for each physical register that |
| 58 | // currently has a value (ie, it is in Virt2PhysRegMap). The value mapped |
| 59 | // to is the virtual register corresponding to the physical register (the |
| 60 | // inverse of the Virt2PhysRegMap), or 0. The value is set to 0 if this |
| 61 | // register is pinned because it is used by a future instruction. |
| 62 | // |
| 63 | std::map<unsigned, unsigned> PhysRegsUsed; |
| 64 | |
| 65 | // PhysRegsUseOrder - This contains a list of the physical registers that |
| 66 | // currently have a virtual register value in them. This list provides an |
| 67 | // ordering of registers, imposing a reallocation order. This list is only |
| 68 | // used if all registers are allocated and we have to spill one, in which |
| 69 | // case we spill the least recently used register. Entries at the front of |
| 70 | // the list are the least recently used registers, entries at the back are |
| 71 | // the most recently used. |
| 72 | // |
| 73 | std::vector<unsigned> PhysRegsUseOrder; |
| 74 | |
| 75 | void MarkPhysRegRecentlyUsed(unsigned Reg) { |
| 76 | assert(std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg) != |
| 77 | PhysRegsUseOrder.end() && "Register isn't used yet!"); |
| 78 | if (PhysRegsUseOrder.back() != Reg) { |
| 79 | for (unsigned i = PhysRegsUseOrder.size(); ; --i) |
| 80 | if (PhysRegsUseOrder[i-1] == Reg) { // remove from middle |
| 81 | PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1); |
| 82 | PhysRegsUseOrder.push_back(Reg); // Add it to the end of the list |
| 83 | return; |
| 84 | } |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | public: |
| 89 | |
| 90 | RA(TargetMachine &tm) |
| 91 | : TM(tm), RegInfo(tm.getRegisterInfo()), PhysRegClasses(RegInfo) { |
| 92 | cleanupAfterFunction(); |
| 93 | } |
| 94 | |
| 95 | bool runOnFunction(Function &Fn) { |
| 96 | return runOnMachineFunction(MachineFunction::get(&Fn)); |
| 97 | } |
| 98 | |
| 99 | virtual const char *getPassName() const { |
| 100 | return "Local Register Allocator"; |
| 101 | } |
| 102 | |
| 103 | private: |
| 104 | /// runOnMachineFunction - Register allocate the whole function |
| 105 | bool runOnMachineFunction(MachineFunction &Fn); |
| 106 | |
| 107 | /// AllocateBasicBlock - Register allocate the specified basic block. |
| 108 | void AllocateBasicBlock(MachineBasicBlock &MBB); |
| 109 | |
| 110 | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions |
| 111 | /// in predecessor basic blocks. |
| 112 | void EliminatePHINodes(MachineBasicBlock &MBB); |
| 113 | |
| 114 | |
| 115 | /// getStackSpaceFor - This returns the offset of the specified virtual |
| 116 | /// register on the stack, allocating space if neccesary. |
| 117 | unsigned getStackSpaceFor(unsigned VirtReg, |
| 118 | const TargetRegisterClass *regClass); |
| 119 | |
| 120 | void cleanupAfterFunction() { |
| 121 | VirtReg2OffsetMap.clear(); |
| 122 | NumBytesAllocated = 4; // FIXME: This is X86 specific |
| 123 | } |
| 124 | |
| 125 | |
| 126 | /// spillVirtReg - This method spills the value specified by PhysReg into |
| 127 | /// the virtual register slot specified by VirtReg. It then updates the RA |
| 128 | /// data structures to indicate the fact that PhysReg is now available. |
| 129 | /// |
| 130 | void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, |
| 131 | unsigned VirtReg, unsigned PhysReg); |
| 132 | |
| 133 | void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); |
| 134 | |
| 135 | |
| 136 | /// getFreeReg - Find a physical register to hold the specified virtual |
| 137 | /// register. If all compatible physical registers are used, this method |
| 138 | /// spills the last used virtual register to the stack, and uses that |
| 139 | /// register. |
| 140 | /// |
| 141 | unsigned getFreeReg(MachineBasicBlock &MBB, |
| 142 | MachineBasicBlock::iterator &I, |
| 143 | unsigned virtualReg); |
| 144 | |
| 145 | /// reloadVirtReg - This method loads the specified virtual register into a |
| 146 | /// physical register, returning the physical register chosen. This updates |
| 147 | /// the regalloc data structures to reflect the fact that the virtual reg is |
| 148 | /// now alive in a physical register, and the previous one isn't. |
| 149 | /// |
| 150 | unsigned reloadVirtReg(MachineBasicBlock &MBB, |
| 151 | MachineBasicBlock::iterator &I, unsigned VirtReg); |
| 152 | }; |
| 153 | |
| 154 | } |
| 155 | |
| 156 | /// getStackSpaceFor - This allocates space for the specified virtual |
| 157 | /// register to be held on the stack. |
| 158 | unsigned RA::getStackSpaceFor(unsigned VirtReg, |
| 159 | const TargetRegisterClass *RegClass) { |
| 160 | // Find the location VirtReg would belong... |
| 161 | std::map<unsigned, unsigned>::iterator I = |
| 162 | VirtReg2OffsetMap.lower_bound(VirtReg); |
| 163 | |
| 164 | if (I != VirtReg2OffsetMap.end() && I->first == VirtReg) |
| 165 | return I->second; // Already has space allocated? |
| 166 | |
| 167 | unsigned RegSize = RegClass->getDataSize(); |
| 168 | |
| 169 | // Align NumBytesAllocated. We should be using TargetData alignment stuff |
| 170 | // to determine this, but we don't know the LLVM type associated with the |
| 171 | // virtual register. Instead, just align to a multiple of the size for now. |
| 172 | NumBytesAllocated += RegSize-1; |
| 173 | NumBytesAllocated = NumBytesAllocated/RegSize*RegSize; |
| 174 | |
| 175 | // Assign the slot... |
| 176 | VirtReg2OffsetMap.insert(I, std::make_pair(VirtReg, NumBytesAllocated)); |
| 177 | |
| 178 | // Reserve the space! |
| 179 | NumBytesAllocated += RegSize; |
| 180 | return NumBytesAllocated-RegSize; |
| 181 | } |
| 182 | |
| 183 | /// spillVirtReg - This method spills the value specified by PhysReg into the |
| 184 | /// virtual register slot specified by VirtReg. It then updates the RA data |
| 185 | /// structures to indicate the fact that PhysReg is now available. |
| 186 | /// |
| 187 | void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, |
| 188 | unsigned VirtReg, unsigned PhysReg) { |
| 189 | // If this is just a marker register, we don't need to spill it. |
| 190 | if (VirtReg != 0) { |
| 191 | const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg); |
| 192 | unsigned stackOffset = getStackSpaceFor(VirtReg, RegClass); |
| 193 | |
| 194 | // Add move instruction(s) |
| 195 | I = RegInfo->storeReg2RegOffset(MBB, I, PhysReg, RegInfo->getFramePointer(), |
| 196 | -stackOffset, RegClass->getDataSize()); |
| 197 | ++NumSpilled; // Update statistics |
| 198 | Virt2PhysRegMap.erase(VirtReg); // VirtReg no longer available |
| 199 | } |
| 200 | PhysRegsUsed.erase(PhysReg); // PhyReg no longer used |
| 201 | |
| 202 | std::vector<unsigned>::iterator It = |
| 203 | std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg); |
| 204 | assert(It != PhysRegsUseOrder.end() && |
| 205 | "Spilled a physical register, but it was not in use list!"); |
| 206 | PhysRegsUseOrder.erase(It); |
| 207 | } |
| 208 | |
| 209 | /// getFreeReg - Find a physical register to hold the specified virtual |
| 210 | /// register. If all compatible physical registers are used, this method spills |
| 211 | /// the last used virtual register to the stack, and uses that register. |
| 212 | /// |
| 213 | unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, |
| 214 | unsigned VirtReg) { |
| 215 | const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg); |
| 216 | unsigned PhysReg = 0; |
| 217 | |
| 218 | for (TargetRegisterClass::iterator It = RegClass->begin(),E = RegClass->end(); |
| 219 | It != E; ++It) { |
| 220 | unsigned R = *It; |
| 221 | if (PhysRegsUsed.find(R) == PhysRegsUsed.end()) // Is reg unused? |
| 222 | /// FIXME: Hack |
| 223 | if (R != RegInfo->getFramePointer() && R != RegInfo->getStackPointer() && |
| 224 | R != 13 && R != 14) { |
| 225 | // Found an unused register! |
| 226 | PhysReg = R; |
| 227 | break; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | // If we didn't find an unused register, scavange one now! |
| 232 | if (PhysReg == 0) { |
| 233 | unsigned i = 0; |
| 234 | while (PhysRegClasses[PhysRegsUseOrder[i]] != RegClass) { |
| 235 | ++i; |
| 236 | assert(i != PhysRegsUseOrder.size() && |
| 237 | "Couldn't find a register of the appropriate class!"); |
| 238 | } |
| 239 | |
| 240 | // At this point PhysRegsUseOrder[i] is the least recently used register of |
| 241 | // compatible register class. Spill it to memory and reap its remains. |
| 242 | PhysReg = PhysRegsUseOrder[i]; |
| 243 | spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); |
| 244 | } |
| 245 | |
| 246 | // Now that we know which register we need to assign this to, do it now! |
| 247 | AssignVirtToPhysReg(VirtReg, PhysReg); |
| 248 | return PhysReg; |
| 249 | } |
| 250 | |
| 251 | void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { |
| 252 | assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() && |
| 253 | "Phys reg already assigned!"); |
| 254 | // Update information to note the fact that this register was just used, and |
| 255 | // it holds VirtReg. |
| 256 | PhysRegsUsed[PhysReg] = VirtReg; |
| 257 | Virt2PhysRegMap[VirtReg] = PhysReg; |
| 258 | PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg |
| 259 | } |
| 260 | |
| 261 | |
| 262 | /// reloadVirtReg - This method loads the specified virtual register into a |
| 263 | /// physical register, returning the physical register chosen. This updates the |
| 264 | /// regalloc data structures to reflect the fact that the virtual reg is now |
| 265 | /// alive in a physical register, and the previous one isn't. |
| 266 | /// |
| 267 | unsigned RA::reloadVirtReg(MachineBasicBlock &MBB, |
| 268 | MachineBasicBlock::iterator &I, |
| 269 | unsigned VirtReg) { |
| 270 | std::map<unsigned, unsigned>::iterator It = Virt2PhysRegMap.find(VirtReg); |
| 271 | if (It != Virt2PhysRegMap.end()) { |
| 272 | MarkPhysRegRecentlyUsed(It->second); |
| 273 | return It->second; // Already have this value available! |
| 274 | } |
| 275 | |
| 276 | unsigned PhysReg = getFreeReg(MBB, I, VirtReg); |
| 277 | |
| 278 | const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg); |
| 279 | unsigned StackOffset = getStackSpaceFor(VirtReg, RegClass); |
| 280 | |
| 281 | // Add move instruction(s) |
| 282 | I = RegInfo->loadRegOffset2Reg(MBB, I, PhysReg, RegInfo->getFramePointer(), |
| 283 | -StackOffset, RegClass->getDataSize()); |
| 284 | ++NumReloaded; // Update statistics |
| 285 | return PhysReg; |
| 286 | } |
| 287 | |
| 288 | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in |
| 289 | /// predecessor basic blocks. |
| 290 | /// |
| 291 | void RA::EliminatePHINodes(MachineBasicBlock &MBB) { |
| 292 | const MachineInstrInfo &MII = TM.getInstrInfo(); |
| 293 | |
| 294 | while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) { |
| 295 | MachineInstr *MI = MBB.front(); |
| 296 | // Unlink the PHI node from the basic block... but don't delete the PHI yet |
| 297 | MBB.erase(MBB.begin()); |
| 298 | |
| 299 | DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n"); |
| 300 | assert(MI->getOperand(0).isVirtualRegister() && |
| 301 | "PHI node doesn't write virt reg?"); |
| 302 | |
| 303 | unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum(); |
| 304 | |
| 305 | for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) { |
| 306 | MachineOperand &opVal = MI->getOperand(i-1); |
| 307 | |
| 308 | // Get the MachineBasicBlock equivalent of the BasicBlock that is the |
| 309 | // source path the phi |
| 310 | MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock(); |
| 311 | |
| 312 | // Check to make sure we haven't already emitted the copy for this block. |
| 313 | // This can happen because PHI nodes may have multiple entries for the |
| 314 | // same basic block. It doesn't matter which entry we use though, because |
| 315 | // all incoming values are guaranteed to be the same for a particular bb. |
| 316 | // |
| 317 | // Note that this is N^2 in the number of phi node entries, but since the |
| 318 | // # of entries is tiny, this is not a problem. |
| 319 | // |
| 320 | bool HaveNotEmitted = true; |
| 321 | for (int op = MI->getNumOperands() - 1; op != i; op -= 2) |
| 322 | if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) { |
| 323 | HaveNotEmitted = false; |
| 324 | break; |
| 325 | } |
| 326 | |
| 327 | if (HaveNotEmitted) { |
| 328 | MachineBasicBlock::iterator opI = opBlock.end(); |
| 329 | MachineInstr *opMI = *--opI; |
| 330 | |
| 331 | // must backtrack over ALL the branches in the previous block |
| 332 | while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin()) |
| 333 | opMI = *--opI; |
| 334 | |
| 335 | // move back to the first branch instruction so new instructions |
| 336 | // are inserted right in front of it and not in front of a non-branch |
| 337 | if (!MII.isBranch(opMI->getOpcode())) |
| 338 | ++opI; |
| 339 | |
| 340 | unsigned dataSize = MF->getRegClass(virtualReg)->getDataSize(); |
| 341 | |
| 342 | // Retrieve the constant value from this op, move it to target |
| 343 | // register of the phi |
| 344 | if (opVal.isImmediate()) { |
| 345 | opI = RegInfo->moveImm2Reg(opBlock, opI, virtualReg, |
| 346 | (unsigned) opVal.getImmedValue(), |
| 347 | dataSize); |
| 348 | } else { |
| 349 | opI = RegInfo->moveReg2Reg(opBlock, opI, virtualReg, |
| 350 | opVal.getAllocatedRegNum(), dataSize); |
| 351 | } |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | // really delete the PHI instruction now! |
| 356 | delete MI; |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | void RA::AllocateBasicBlock(MachineBasicBlock &MBB) { |
| 361 | // loop over each instruction |
| 362 | MachineBasicBlock::iterator I = MBB.begin(); |
| 363 | for (; I != MBB.end(); ++I) { |
| 364 | MachineInstr *MI = *I; |
| 365 | |
| 366 | // Loop over all of the operands of the instruction, spilling registers that |
| 367 | // are defined, and marking explicit destinations in the PhysRegsUsed map. |
| 368 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) |
| 369 | if (MI->getOperand(i).opIsDef() && |
| 370 | MI->getOperand(i).isPhysicalRegister()) { |
| 371 | unsigned Reg = MI->getOperand(i).getAllocatedRegNum(); |
| 372 | unsigned VMap = PhysRegsUsed[Reg]; |
| 373 | if (VMap) { // Spill the value in this register... |
| 374 | spillVirtReg(MBB, I, VMap, Reg); |
| 375 | PhysRegsUsed[Reg] = 0; // It's free now, and it's reserved |
| 376 | } |
| 377 | PhysRegsUseOrder.push_back(Reg); |
| 378 | } |
| 379 | |
| 380 | // FIXME: Loop over the implicit defs, spilling them, as above. |
| 381 | |
| 382 | |
| 383 | // FIXME: Loop over the implicit uses, making sure that they are at the head |
| 384 | // of the use order list, so they don't get reallocated. |
| 385 | |
| 386 | // Loop over all of the operands again, getting the used operands into |
| 387 | // registers. This has the potiential to spill incoming values because we |
| 388 | // are out of registers. |
| 389 | // |
| 390 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) |
| 391 | if (MI->getOperand(i).opIsUse() && |
| 392 | MI->getOperand(i).isVirtualRegister()) { |
| 393 | unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum(); |
| 394 | unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg); |
| 395 | MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register |
| 396 | } |
| 397 | |
| 398 | // Okay, we have allocated all of the source operands and spilled any values |
| 399 | // that would be destroyed by defs of this instruction. Loop over the |
| 400 | // implicit defs and assign them to a register, spilling the incoming value |
| 401 | // if we need to scavange a register. |
| 402 | |
| 403 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) |
| 404 | if (MI->getOperand(i).opIsDef() && |
| 405 | !MI->getOperand(i).isPhysicalRegister()) { |
| 406 | unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum(); |
| 407 | unsigned DestPhysReg; |
| 408 | |
| 409 | if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) { |
| 410 | // must be same register number as the first operand |
| 411 | // This maps a = b + c into b += c, and saves b into a's spot |
| 412 | assert(MI->getOperand(1).isRegister() && |
| 413 | MI->getOperand(1).getAllocatedRegNum() && |
| 414 | MI->getOperand(1).opIsUse() && |
| 415 | "Two address instruction invalid!"); |
| 416 | DestPhysReg = MI->getOperand(1).getAllocatedRegNum(); |
| 417 | |
| 418 | // Spill the incoming value, because we are about to change the |
| 419 | // register contents. |
| 420 | spillVirtReg(MBB, I, PhysRegsUsed[DestPhysReg], DestPhysReg); |
| 421 | AssignVirtToPhysReg(DestVirtReg, DestPhysReg); |
| 422 | } else { |
| 423 | DestPhysReg = getFreeReg(MBB, I, DestVirtReg); |
| 424 | } |
| 425 | MI->SetMachineOperandReg(i, DestPhysReg); // Assign the output register |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | // Rewind the iterator to point to the first flow control instruction... |
| 430 | const MachineInstrInfo &MII = TM.getInstrInfo(); |
| 431 | I = MBB.end(); |
| 432 | do { |
| 433 | --I; |
| 434 | } while ((MII.isReturn((*I)->getOpcode()) || |
| 435 | MII.isBranch((*I)->getOpcode())) && I != MBB.begin()); |
| 436 | |
| 437 | if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode())) |
| 438 | ++I; |
| 439 | |
| 440 | // Spill all physical registers holding virtual registers now. |
| 441 | while (!PhysRegsUsed.empty()) |
| 442 | spillVirtReg(MBB, I, PhysRegsUsed.begin()->second, |
| 443 | PhysRegsUsed.begin()->first); |
| 444 | |
| 445 | assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?"); |
| 446 | assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?"); |
| 447 | } |
| 448 | |
| 449 | /// runOnMachineFunction - Register allocate the whole function |
| 450 | /// |
| 451 | bool RA::runOnMachineFunction(MachineFunction &Fn) { |
| 452 | DEBUG(std::cerr << "Machine Function " << "\n"); |
| 453 | MF = &Fn; |
| 454 | |
| 455 | // First pass: eliminate PHI instructions by inserting copies into predecessor |
| 456 | // blocks. |
| 457 | // FIXME: In this pass, count how many uses of each VReg exist! |
| 458 | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
| 459 | MBB != MBBe; ++MBB) |
| 460 | EliminatePHINodes(*MBB); |
| 461 | |
| 462 | // Loop over all of the basic blocks, eliminating virtual register references |
| 463 | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
| 464 | MBB != MBBe; ++MBB) |
| 465 | AllocateBasicBlock(*MBB); |
| 466 | |
| 467 | // Round stack allocation up to a nice alignment to keep the stack aligned |
| 468 | // FIXME: This is X86 specific! Move to frame manager |
| 469 | NumBytesAllocated = (NumBytesAllocated + 3) & ~3; |
| 470 | |
| 471 | // Add prologue to the function... |
| 472 | RegInfo->emitPrologue(Fn, NumBytesAllocated); |
| 473 | |
| 474 | const MachineInstrInfo &MII = TM.getInstrInfo(); |
| 475 | |
| 476 | // Add epilogue to restore the callee-save registers in each exiting block |
| 477 | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
| 478 | MBB != MBBe; ++MBB) { |
| 479 | // If last instruction is a return instruction, add an epilogue |
| 480 | if (MII.isReturn(MBB->back()->getOpcode())) |
| 481 | RegInfo->emitEpilogue(*MBB, NumBytesAllocated); |
| 482 | } |
| 483 | |
| 484 | cleanupAfterFunction(); |
| 485 | return true; |
| 486 | } |
| 487 | |
| 488 | Pass *createLocalRegisterAllocator(TargetMachine &TM) { |
| 489 | return new RA(TM); |
| 490 | } |