Duncan P. N. Exon Smith | 10be9a8 | 2014-04-21 17:57:07 +0000 | [diff] [blame^] | 1 | //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Loops should be simplified before this analysis. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #define DEBUG_TYPE "block-freq" |
| 15 | #include "llvm/Analysis/BlockFrequencyInfoImpl.h" |
| 16 | #include "llvm/ADT/APFloat.h" |
| 17 | #include "llvm/Support/raw_ostream.h" |
| 18 | #include <deque> |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | //===----------------------------------------------------------------------===// |
| 23 | // |
| 24 | // PositiveFloat implementation. |
| 25 | // |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | #ifndef _MSC_VER |
| 28 | const int32_t PositiveFloatBase::MaxExponent; |
| 29 | const int32_t PositiveFloatBase::MinExponent; |
| 30 | #endif |
| 31 | |
| 32 | static void appendDigit(std::string &Str, unsigned D) { |
| 33 | assert(D < 10); |
| 34 | Str += '0' + D % 10; |
| 35 | } |
| 36 | |
| 37 | static void appendNumber(std::string &Str, uint64_t N) { |
| 38 | while (N) { |
| 39 | appendDigit(Str, N % 10); |
| 40 | N /= 10; |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | static bool doesRoundUp(char Digit) { |
| 45 | switch (Digit) { |
| 46 | case '5': |
| 47 | case '6': |
| 48 | case '7': |
| 49 | case '8': |
| 50 | case '9': |
| 51 | return true; |
| 52 | default: |
| 53 | return false; |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { |
| 58 | assert(E >= PositiveFloatBase::MinExponent); |
| 59 | assert(E <= PositiveFloatBase::MaxExponent); |
| 60 | |
| 61 | // Find a new E, but don't let it increase past MaxExponent. |
| 62 | int LeadingZeros = PositiveFloatBase::countLeadingZeros64(D); |
| 63 | int NewE = std::min(PositiveFloatBase::MaxExponent, E + 63 - LeadingZeros); |
| 64 | int Shift = 63 - (NewE - E); |
| 65 | assert(Shift <= LeadingZeros); |
| 66 | assert(Shift == LeadingZeros || NewE == PositiveFloatBase::MaxExponent); |
| 67 | D <<= Shift; |
| 68 | E = NewE; |
| 69 | |
| 70 | // Check for a denormal. |
| 71 | unsigned AdjustedE = E + 16383; |
| 72 | if (!(D >> 63)) { |
| 73 | assert(E == PositiveFloatBase::MaxExponent); |
| 74 | AdjustedE = 0; |
| 75 | } |
| 76 | |
| 77 | // Build the float and print it. |
| 78 | uint64_t RawBits[2] = {D, AdjustedE}; |
| 79 | APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits)); |
| 80 | SmallVector<char, 24> Chars; |
| 81 | Float.toString(Chars, Precision, 0); |
| 82 | return std::string(Chars.begin(), Chars.end()); |
| 83 | } |
| 84 | |
| 85 | static std::string stripTrailingZeros(const std::string &Float) { |
| 86 | size_t NonZero = Float.find_last_not_of('0'); |
| 87 | assert(NonZero != std::string::npos && "no . in floating point string"); |
| 88 | |
| 89 | if (Float[NonZero] == '.') |
| 90 | ++NonZero; |
| 91 | |
| 92 | return Float.substr(0, NonZero + 1); |
| 93 | } |
| 94 | |
| 95 | std::string PositiveFloatBase::toString(uint64_t D, int16_t E, int Width, |
| 96 | unsigned Precision) { |
| 97 | if (!D) |
| 98 | return "0.0"; |
| 99 | |
| 100 | // Canonicalize exponent and digits. |
| 101 | uint64_t Above0 = 0; |
| 102 | uint64_t Below0 = 0; |
| 103 | uint64_t Extra = 0; |
| 104 | int ExtraShift = 0; |
| 105 | if (E == 0) { |
| 106 | Above0 = D; |
| 107 | } else if (E > 0) { |
| 108 | if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) { |
| 109 | D <<= Shift; |
| 110 | E -= Shift; |
| 111 | |
| 112 | if (!E) |
| 113 | Above0 = D; |
| 114 | } |
| 115 | } else if (E > -64) { |
| 116 | Above0 = D >> -E; |
| 117 | Below0 = D << (64 + E); |
| 118 | } else if (E > -120) { |
| 119 | Below0 = D >> (-E - 64); |
| 120 | Extra = D << (128 + E); |
| 121 | ExtraShift = -64 - E; |
| 122 | } |
| 123 | |
| 124 | // Fall back on APFloat for very small and very large numbers. |
| 125 | if (!Above0 && !Below0) |
| 126 | return toStringAPFloat(D, E, Precision); |
| 127 | |
| 128 | // Append the digits before the decimal. |
| 129 | std::string Str; |
| 130 | size_t DigitsOut = 0; |
| 131 | if (Above0) { |
| 132 | appendNumber(Str, Above0); |
| 133 | DigitsOut = Str.size(); |
| 134 | } else |
| 135 | appendDigit(Str, 0); |
| 136 | std::reverse(Str.begin(), Str.end()); |
| 137 | |
| 138 | // Return early if there's nothing after the decimal. |
| 139 | if (!Below0) |
| 140 | return Str + ".0"; |
| 141 | |
| 142 | // Append the decimal and beyond. |
| 143 | Str += '.'; |
| 144 | uint64_t Error = UINT64_C(1) << (64 - Width); |
| 145 | |
| 146 | // We need to shift Below0 to the right to make space for calculating |
| 147 | // digits. Save the precision we're losing in Extra. |
| 148 | Extra = (Below0 & 0xf) << 56 | (Extra >> 8); |
| 149 | Below0 >>= 4; |
| 150 | size_t SinceDot = 0; |
| 151 | size_t AfterDot = Str.size(); |
| 152 | do { |
| 153 | if (ExtraShift) { |
| 154 | --ExtraShift; |
| 155 | Error *= 5; |
| 156 | } else |
| 157 | Error *= 10; |
| 158 | |
| 159 | Below0 *= 10; |
| 160 | Extra *= 10; |
| 161 | Below0 += (Extra >> 60); |
| 162 | Extra = Extra & (UINT64_MAX >> 4); |
| 163 | appendDigit(Str, Below0 >> 60); |
| 164 | Below0 = Below0 & (UINT64_MAX >> 4); |
| 165 | if (DigitsOut || Str.back() != '0') |
| 166 | ++DigitsOut; |
| 167 | ++SinceDot; |
| 168 | } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && |
| 169 | (!Precision || DigitsOut <= Precision || SinceDot < 2)); |
| 170 | |
| 171 | // Return early for maximum precision. |
| 172 | if (!Precision || DigitsOut <= Precision) |
| 173 | return stripTrailingZeros(Str); |
| 174 | |
| 175 | // Find where to truncate. |
| 176 | size_t Truncate = |
| 177 | std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1); |
| 178 | |
| 179 | // Check if there's anything to truncate. |
| 180 | if (Truncate >= Str.size()) |
| 181 | return stripTrailingZeros(Str); |
| 182 | |
| 183 | bool Carry = doesRoundUp(Str[Truncate]); |
| 184 | if (!Carry) |
| 185 | return stripTrailingZeros(Str.substr(0, Truncate)); |
| 186 | |
| 187 | // Round with the first truncated digit. |
| 188 | for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); |
| 189 | I != E; ++I) { |
| 190 | if (*I == '.') |
| 191 | continue; |
| 192 | if (*I == '9') { |
| 193 | *I = '0'; |
| 194 | continue; |
| 195 | } |
| 196 | |
| 197 | ++*I; |
| 198 | Carry = false; |
| 199 | break; |
| 200 | } |
| 201 | |
| 202 | // Add "1" in front if we still need to carry. |
| 203 | return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate)); |
| 204 | } |
| 205 | |
| 206 | raw_ostream &PositiveFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E, |
| 207 | int Width, unsigned Precision) { |
| 208 | return OS << toString(D, E, Width, Precision); |
| 209 | } |
| 210 | |
| 211 | void PositiveFloatBase::dump(uint64_t D, int16_t E, int Width) { |
| 212 | print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E |
| 213 | << "]"; |
| 214 | } |
| 215 | |
| 216 | static std::pair<uint64_t, int16_t> |
| 217 | getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) { |
| 218 | if (ShouldRound) |
| 219 | if (!++N) |
| 220 | // Rounding caused an overflow. |
| 221 | return std::make_pair(UINT64_C(1), Shift + 64); |
| 222 | return std::make_pair(N, Shift); |
| 223 | } |
| 224 | |
| 225 | std::pair<uint64_t, int16_t> PositiveFloatBase::divide64(uint64_t Dividend, |
| 226 | uint64_t Divisor) { |
| 227 | // Input should be sanitized. |
| 228 | assert(Divisor); |
| 229 | assert(Dividend); |
| 230 | |
| 231 | // Minimize size of divisor. |
| 232 | int16_t Shift = 0; |
| 233 | if (int Zeros = countTrailingZeros(Divisor)) { |
| 234 | Shift -= Zeros; |
| 235 | Divisor >>= Zeros; |
| 236 | } |
| 237 | |
| 238 | // Check for powers of two. |
| 239 | if (Divisor == 1) |
| 240 | return std::make_pair(Dividend, Shift); |
| 241 | |
| 242 | // Maximize size of dividend. |
| 243 | if (int Zeros = countLeadingZeros64(Dividend)) { |
| 244 | Shift -= Zeros; |
| 245 | Dividend <<= Zeros; |
| 246 | } |
| 247 | |
| 248 | // Start with the result of a divide. |
| 249 | uint64_t Quotient = Dividend / Divisor; |
| 250 | Dividend %= Divisor; |
| 251 | |
| 252 | // Continue building the quotient with long division. |
| 253 | // |
| 254 | // TODO: continue with largers digits. |
| 255 | while (!(Quotient >> 63) && Dividend) { |
| 256 | // Shift Dividend, and check for overflow. |
| 257 | bool IsOverflow = Dividend >> 63; |
| 258 | Dividend <<= 1; |
| 259 | --Shift; |
| 260 | |
| 261 | // Divide. |
| 262 | bool DoesDivide = IsOverflow || Divisor <= Dividend; |
| 263 | Quotient = (Quotient << 1) | uint64_t(DoesDivide); |
| 264 | Dividend -= DoesDivide ? Divisor : 0; |
| 265 | } |
| 266 | |
| 267 | // Round. |
| 268 | if (Dividend >= getHalf(Divisor)) |
| 269 | if (!++Quotient) |
| 270 | // Rounding caused an overflow in Quotient. |
| 271 | return std::make_pair(UINT64_C(1), Shift + 64); |
| 272 | |
| 273 | return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift); |
| 274 | } |
| 275 | |
| 276 | std::pair<uint64_t, int16_t> PositiveFloatBase::multiply64(uint64_t L, |
| 277 | uint64_t R) { |
| 278 | // Separate into two 32-bit digits (U.L). |
| 279 | uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX; |
| 280 | |
| 281 | // Compute cross products. |
| 282 | uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; |
| 283 | |
| 284 | // Sum into two 64-bit digits. |
| 285 | uint64_t Upper = P1, Lower = P4; |
| 286 | auto addWithCarry = [&](uint64_t N) { |
| 287 | uint64_t NewLower = Lower + (N << 32); |
| 288 | Upper += (N >> 32) + (NewLower < Lower); |
| 289 | Lower = NewLower; |
| 290 | }; |
| 291 | addWithCarry(P2); |
| 292 | addWithCarry(P3); |
| 293 | |
| 294 | // Check whether the upper digit is empty. |
| 295 | if (!Upper) |
| 296 | return std::make_pair(Lower, 0); |
| 297 | |
| 298 | // Shift as little as possible to maximize precision. |
| 299 | unsigned LeadingZeros = countLeadingZeros64(Upper); |
| 300 | int16_t Shift = 64 - LeadingZeros; |
| 301 | if (LeadingZeros) |
| 302 | Upper = Upper << LeadingZeros | Lower >> Shift; |
| 303 | bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1)); |
| 304 | return getRoundedFloat(Upper, ShouldRound, Shift); |
| 305 | } |
| 306 | |
| 307 | //===----------------------------------------------------------------------===// |
| 308 | // |
| 309 | // BlockMass implementation. |
| 310 | // |
| 311 | //===----------------------------------------------------------------------===// |
| 312 | BlockMass &BlockMass::operator*=(const BranchProbability &P) { |
| 313 | uint32_t N = P.getNumerator(), D = P.getDenominator(); |
| 314 | assert(D && "divide by 0"); |
| 315 | assert(N <= D && "fraction greater than 1"); |
| 316 | |
| 317 | // Fast path for multiplying by 1.0. |
| 318 | if (!Mass || N == D) |
| 319 | return *this; |
| 320 | |
| 321 | // Get as much precision as we can. |
| 322 | int Shift = countLeadingZeros(Mass); |
| 323 | uint64_t ShiftedQuotient = (Mass << Shift) / D; |
| 324 | uint64_t Product = ShiftedQuotient * N >> Shift; |
| 325 | |
| 326 | // Now check for what's lost. |
| 327 | uint64_t Left = ShiftedQuotient * (D - N) >> Shift; |
| 328 | uint64_t Lost = Mass - Product - Left; |
| 329 | |
| 330 | // TODO: prove this assertion. |
| 331 | assert(Lost <= UINT32_MAX); |
| 332 | |
| 333 | // Take the product plus a portion of the spoils. |
| 334 | Mass = Product + Lost * N / D; |
| 335 | return *this; |
| 336 | } |
| 337 | |
| 338 | PositiveFloat<uint64_t> BlockMass::toFloat() const { |
| 339 | if (isFull()) |
| 340 | return PositiveFloat<uint64_t>(1, 0); |
| 341 | return PositiveFloat<uint64_t>(getMass() + 1, -64); |
| 342 | } |
| 343 | |
| 344 | void BlockMass::dump() const { print(dbgs()); } |
| 345 | |
| 346 | static char getHexDigit(int N) { |
| 347 | assert(N < 16); |
| 348 | if (N < 10) |
| 349 | return '0' + N; |
| 350 | return 'a' + N - 10; |
| 351 | } |
| 352 | raw_ostream &BlockMass::print(raw_ostream &OS) const { |
| 353 | for (int Digits = 0; Digits < 16; ++Digits) |
| 354 | OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf); |
| 355 | return OS; |
| 356 | } |
| 357 | |
| 358 | //===----------------------------------------------------------------------===// |
| 359 | // |
| 360 | // BlockFrequencyInfoImpl implementation. |
| 361 | // |
| 362 | //===----------------------------------------------------------------------===// |
| 363 | namespace { |
| 364 | |
| 365 | typedef BlockFrequencyInfoImplBase::BlockNode BlockNode; |
| 366 | typedef BlockFrequencyInfoImplBase::Distribution Distribution; |
| 367 | typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList; |
| 368 | typedef BlockFrequencyInfoImplBase::Float Float; |
| 369 | typedef BlockFrequencyInfoImplBase::PackagedLoopData PackagedLoopData; |
| 370 | typedef BlockFrequencyInfoImplBase::Weight Weight; |
| 371 | typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData; |
| 372 | |
| 373 | /// \brief Dithering mass distributer. |
| 374 | /// |
| 375 | /// This class splits up a single mass into portions by weight, dithering to |
| 376 | /// spread out error. No mass is lost. The dithering precision depends on the |
| 377 | /// precision of the product of \a BlockMass and \a BranchProbability. |
| 378 | /// |
| 379 | /// The distribution algorithm follows. |
| 380 | /// |
| 381 | /// 1. Initialize by saving the sum of the weights in \a RemWeight and the |
| 382 | /// mass to distribute in \a RemMass. |
| 383 | /// |
| 384 | /// 2. For each portion: |
| 385 | /// |
| 386 | /// 1. Construct a branch probability, P, as the portion's weight divided |
| 387 | /// by the current value of \a RemWeight. |
| 388 | /// 2. Calculate the portion's mass as \a RemMass times P. |
| 389 | /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting |
| 390 | /// the current portion's weight and mass. |
| 391 | /// |
| 392 | /// Mass is distributed in two ways: full distribution and forward |
| 393 | /// distribution. The latter ignores backedges, and uses the parallel fields |
| 394 | /// \a RemForwardWeight and \a RemForwardMass. |
| 395 | struct DitheringDistributer { |
| 396 | uint32_t RemWeight; |
| 397 | uint32_t RemForwardWeight; |
| 398 | |
| 399 | BlockMass RemMass; |
| 400 | BlockMass RemForwardMass; |
| 401 | |
| 402 | DitheringDistributer(Distribution &Dist, const BlockMass &Mass); |
| 403 | |
| 404 | BlockMass takeLocalMass(uint32_t Weight) { |
| 405 | (void)takeMass(Weight); |
| 406 | return takeForwardMass(Weight); |
| 407 | } |
| 408 | BlockMass takeExitMass(uint32_t Weight) { |
| 409 | (void)takeForwardMass(Weight); |
| 410 | return takeMass(Weight); |
| 411 | } |
| 412 | BlockMass takeBackedgeMass(uint32_t Weight) { return takeMass(Weight); } |
| 413 | |
| 414 | private: |
| 415 | BlockMass takeForwardMass(uint32_t Weight); |
| 416 | BlockMass takeMass(uint32_t Weight); |
| 417 | }; |
| 418 | } |
| 419 | |
| 420 | DitheringDistributer::DitheringDistributer(Distribution &Dist, |
| 421 | const BlockMass &Mass) { |
| 422 | Dist.normalize(); |
| 423 | RemWeight = Dist.Total; |
| 424 | RemForwardWeight = Dist.ForwardTotal; |
| 425 | RemMass = Mass; |
| 426 | RemForwardMass = Dist.ForwardTotal ? Mass : BlockMass(); |
| 427 | } |
| 428 | |
| 429 | BlockMass DitheringDistributer::takeForwardMass(uint32_t Weight) { |
| 430 | // Compute the amount of mass to take. |
| 431 | assert(Weight && "invalid weight"); |
| 432 | assert(Weight <= RemForwardWeight); |
| 433 | BlockMass Mass = RemForwardMass * BranchProbability(Weight, RemForwardWeight); |
| 434 | |
| 435 | // Decrement totals (dither). |
| 436 | RemForwardWeight -= Weight; |
| 437 | RemForwardMass -= Mass; |
| 438 | return Mass; |
| 439 | } |
| 440 | BlockMass DitheringDistributer::takeMass(uint32_t Weight) { |
| 441 | assert(Weight && "invalid weight"); |
| 442 | assert(Weight <= RemWeight); |
| 443 | BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); |
| 444 | |
| 445 | // Decrement totals (dither). |
| 446 | RemWeight -= Weight; |
| 447 | RemMass -= Mass; |
| 448 | return Mass; |
| 449 | } |
| 450 | |
| 451 | void Distribution::add(const BlockNode &Node, uint64_t Amount, |
| 452 | Weight::DistType Type) { |
| 453 | assert(Amount && "invalid weight of 0"); |
| 454 | uint64_t NewTotal = Total + Amount; |
| 455 | |
| 456 | // Check for overflow. It should be impossible to overflow twice. |
| 457 | bool IsOverflow = NewTotal < Total; |
| 458 | assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow"); |
| 459 | DidOverflow |= IsOverflow; |
| 460 | |
| 461 | // Update the total. |
| 462 | Total = NewTotal; |
| 463 | |
| 464 | // Save the weight. |
| 465 | Weight W; |
| 466 | W.TargetNode = Node; |
| 467 | W.Amount = Amount; |
| 468 | W.Type = Type; |
| 469 | Weights.push_back(W); |
| 470 | |
| 471 | if (Type == Weight::Backedge) |
| 472 | return; |
| 473 | |
| 474 | // Update forward total. Don't worry about overflow here, since then Total |
| 475 | // will exceed 32-bits and they'll both be recomputed in normalize(). |
| 476 | ForwardTotal += Amount; |
| 477 | } |
| 478 | |
| 479 | static void combineWeight(Weight &W, const Weight &OtherW) { |
| 480 | assert(OtherW.TargetNode.isValid()); |
| 481 | if (!W.Amount) { |
| 482 | W = OtherW; |
| 483 | return; |
| 484 | } |
| 485 | assert(W.Type == OtherW.Type); |
| 486 | assert(W.TargetNode == OtherW.TargetNode); |
| 487 | assert(W.Amount < W.Amount + OtherW.Amount); |
| 488 | W.Amount += OtherW.Amount; |
| 489 | } |
| 490 | static void combineWeightsBySorting(WeightList &Weights) { |
| 491 | // Sort so edges to the same node are adjacent. |
| 492 | std::sort(Weights.begin(), Weights.end(), |
| 493 | [](const Weight &L, |
| 494 | const Weight &R) { return L.TargetNode < R.TargetNode; }); |
| 495 | |
| 496 | // Combine adjacent edges. |
| 497 | WeightList::iterator O = Weights.begin(); |
| 498 | for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; |
| 499 | ++O, (I = L)) { |
| 500 | *O = *I; |
| 501 | |
| 502 | // Find the adjacent weights to the same node. |
| 503 | for (++L; L != E && I->TargetNode == L->TargetNode; ++L) |
| 504 | combineWeight(*O, *L); |
| 505 | } |
| 506 | |
| 507 | // Erase extra entries. |
| 508 | Weights.erase(O, Weights.end()); |
| 509 | return; |
| 510 | } |
| 511 | static void combineWeightsByHashing(WeightList &Weights) { |
| 512 | // Collect weights into a DenseMap. |
| 513 | typedef DenseMap<BlockNode::IndexType, Weight> HashTable; |
| 514 | HashTable Combined(NextPowerOf2(2 * Weights.size())); |
| 515 | for (const Weight &W : Weights) |
| 516 | combineWeight(Combined[W.TargetNode.Index], W); |
| 517 | |
| 518 | // Check whether anything changed. |
| 519 | if (Weights.size() == Combined.size()) |
| 520 | return; |
| 521 | |
| 522 | // Fill in the new weights. |
| 523 | Weights.clear(); |
| 524 | Weights.reserve(Combined.size()); |
| 525 | for (const auto &I : Combined) |
| 526 | Weights.push_back(I.second); |
| 527 | } |
| 528 | static void combineWeights(WeightList &Weights) { |
| 529 | // Use a hash table for many successors to keep this linear. |
| 530 | if (Weights.size() > 128) { |
| 531 | combineWeightsByHashing(Weights); |
| 532 | return; |
| 533 | } |
| 534 | |
| 535 | combineWeightsBySorting(Weights); |
| 536 | } |
| 537 | static uint64_t shiftRightAndRound(uint64_t N, int Shift) { |
| 538 | assert(Shift >= 0); |
| 539 | assert(Shift < 64); |
| 540 | if (!Shift) |
| 541 | return N; |
| 542 | return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); |
| 543 | } |
| 544 | void Distribution::normalize() { |
| 545 | // Early exit for termination nodes. |
| 546 | if (Weights.empty()) |
| 547 | return; |
| 548 | |
| 549 | // Only bother if there are multiple successors. |
| 550 | if (Weights.size() > 1) |
| 551 | combineWeights(Weights); |
| 552 | |
| 553 | // Early exit when combined into a single successor. |
| 554 | if (Weights.size() == 1) { |
| 555 | Total = 1; |
| 556 | ForwardTotal = Weights.front().Type != Weight::Backedge; |
| 557 | Weights.front().Amount = 1; |
| 558 | return; |
| 559 | } |
| 560 | |
| 561 | // Determine how much to shift right so that the total fits into 32-bits. |
| 562 | // |
| 563 | // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1 |
| 564 | // for each weight can cause a 32-bit overflow. |
| 565 | int Shift = 0; |
| 566 | if (DidOverflow) |
| 567 | Shift = 33; |
| 568 | else if (Total > UINT32_MAX) |
| 569 | Shift = 33 - countLeadingZeros(Total); |
| 570 | |
| 571 | // Early exit if nothing needs to be scaled. |
| 572 | if (!Shift) |
| 573 | return; |
| 574 | |
| 575 | // Recompute the total through accumulation (rather than shifting it) so that |
| 576 | // it's accurate after shifting. ForwardTotal is dirty here anyway. |
| 577 | Total = 0; |
| 578 | ForwardTotal = 0; |
| 579 | |
| 580 | // Sum the weights to each node and shift right if necessary. |
| 581 | for (Weight &W : Weights) { |
| 582 | // Scale down below UINT32_MAX. Since Shift is larger than necessary, we |
| 583 | // can round here without concern about overflow. |
| 584 | assert(W.TargetNode.isValid()); |
| 585 | W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift)); |
| 586 | assert(W.Amount <= UINT32_MAX); |
| 587 | |
| 588 | // Update the total. |
| 589 | Total += W.Amount; |
| 590 | if (W.Type == Weight::Backedge) |
| 591 | continue; |
| 592 | |
| 593 | // Update the forward total. |
| 594 | ForwardTotal += W.Amount; |
| 595 | } |
| 596 | assert(Total <= UINT32_MAX); |
| 597 | } |
| 598 | |
| 599 | void BlockFrequencyInfoImplBase::clear() { |
| 600 | *this = BlockFrequencyInfoImplBase(); |
| 601 | } |
| 602 | |
| 603 | /// \brief Clear all memory not needed downstream. |
| 604 | /// |
| 605 | /// Releases all memory not used downstream. In particular, saves Freqs. |
| 606 | static void cleanup(BlockFrequencyInfoImplBase &BFI) { |
| 607 | std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs)); |
| 608 | BFI.clear(); |
| 609 | BFI.Freqs = std::move(SavedFreqs); |
| 610 | } |
| 611 | |
| 612 | /// \brief Get a possibly packaged node. |
| 613 | /// |
| 614 | /// Get the node currently representing Node, which could be a containing |
| 615 | /// loop. |
| 616 | /// |
| 617 | /// This function should only be called when distributing mass. As long as |
| 618 | /// there are no irreducilbe edges to Node, then it will have complexity O(1) |
| 619 | /// in this context. |
| 620 | /// |
| 621 | /// In general, the complexity is O(L), where L is the number of loop headers |
| 622 | /// Node has been packaged into. Since this method is called in the context |
| 623 | /// of distributing mass, L will be the number of loop headers an early exit |
| 624 | /// edge jumps out of. |
| 625 | static BlockNode getPackagedNode(const BlockFrequencyInfoImplBase &BFI, |
| 626 | const BlockNode &Node) { |
| 627 | assert(Node.isValid()); |
| 628 | if (!BFI.Working[Node.Index].IsPackaged) |
| 629 | return Node; |
| 630 | if (!BFI.Working[Node.Index].ContainingLoop.isValid()) |
| 631 | return Node; |
| 632 | return getPackagedNode(BFI, BFI.Working[Node.Index].ContainingLoop); |
| 633 | } |
| 634 | |
| 635 | /// \brief Get the appropriate mass for a possible pseudo-node loop package. |
| 636 | /// |
| 637 | /// Get appropriate mass for Node. If Node is a loop-header (whose loop has |
| 638 | /// been packaged), returns the mass of its pseudo-node. If it's a node inside |
| 639 | /// a packaged loop, it returns the loop's pseudo-node. |
| 640 | static BlockMass &getPackageMass(BlockFrequencyInfoImplBase &BFI, |
| 641 | const BlockNode &Node) { |
| 642 | assert(Node.isValid()); |
| 643 | assert(!BFI.Working[Node.Index].IsPackaged); |
| 644 | if (!BFI.Working[Node.Index].IsAPackage) |
| 645 | return BFI.Working[Node.Index].Mass; |
| 646 | |
| 647 | return BFI.getLoopPackage(Node).Mass; |
| 648 | } |
| 649 | |
| 650 | void BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, |
| 651 | const BlockNode &LoopHead, |
| 652 | const BlockNode &Pred, |
| 653 | const BlockNode &Succ, |
| 654 | uint64_t Weight) { |
| 655 | if (!Weight) |
| 656 | Weight = 1; |
| 657 | |
| 658 | #ifndef NDEBUG |
| 659 | auto debugSuccessor = [&](const char *Type, const BlockNode &Resolved) { |
| 660 | dbgs() << " =>" |
| 661 | << " [" << Type << "] weight = " << Weight; |
| 662 | if (Succ != LoopHead) |
| 663 | dbgs() << ", succ = " << getBlockName(Succ); |
| 664 | if (Resolved != Succ) |
| 665 | dbgs() << ", resolved = " << getBlockName(Resolved); |
| 666 | dbgs() << "\n"; |
| 667 | }; |
| 668 | (void)debugSuccessor; |
| 669 | #endif |
| 670 | |
| 671 | if (Succ == LoopHead) { |
| 672 | DEBUG(debugSuccessor("backedge", Succ)); |
| 673 | Dist.addBackedge(LoopHead, Weight); |
| 674 | return; |
| 675 | } |
| 676 | BlockNode Resolved = getPackagedNode(*this, Succ); |
| 677 | assert(Resolved != LoopHead); |
| 678 | |
| 679 | if (Working[Resolved.Index].ContainingLoop != LoopHead) { |
| 680 | DEBUG(debugSuccessor(" exit ", Resolved)); |
| 681 | Dist.addExit(Resolved, Weight); |
| 682 | return; |
| 683 | } |
| 684 | |
| 685 | if (!LoopHead.isValid() && Resolved < Pred) { |
| 686 | // Irreducible backedge. Skip this edge in the distribution. |
| 687 | DEBUG(debugSuccessor("skipped ", Resolved)); |
| 688 | return; |
| 689 | } |
| 690 | |
| 691 | DEBUG(debugSuccessor(" local ", Resolved)); |
| 692 | Dist.addLocal(Resolved, Weight); |
| 693 | } |
| 694 | |
| 695 | void BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( |
| 696 | const BlockNode &LoopHead, const BlockNode &LocalLoopHead, |
| 697 | Distribution &Dist) { |
| 698 | PackagedLoopData &LoopPackage = getLoopPackage(LocalLoopHead); |
| 699 | const PackagedLoopData::ExitMap &Exits = LoopPackage.Exits; |
| 700 | |
| 701 | // Copy the exit map into Dist. |
| 702 | for (const auto &I : Exits) |
| 703 | addToDist(Dist, LoopHead, LocalLoopHead, I.first, I.second.getMass()); |
| 704 | |
| 705 | // We don't need this map any more. Clear it to prevent quadratic memory |
| 706 | // usage in deeply nested loops with irreducible control flow. |
| 707 | LoopPackage.Exits.clear(); |
| 708 | } |
| 709 | |
| 710 | /// \brief Get the maximum allowed loop scale. |
| 711 | /// |
| 712 | /// Gives the maximum number of estimated iterations allowed for a loop. |
| 713 | /// Downstream users have trouble with very large numbers (even within |
| 714 | /// 64-bits). Perhaps they can be changed to use PositiveFloat. |
| 715 | /// |
| 716 | /// TODO: change downstream users so that this can be increased or removed. |
| 717 | static Float getMaxLoopScale() { return Float(1, 12); } |
| 718 | |
| 719 | /// \brief Compute the loop scale for a loop. |
| 720 | void BlockFrequencyInfoImplBase::computeLoopScale(const BlockNode &LoopHead) { |
| 721 | // Compute loop scale. |
| 722 | DEBUG(dbgs() << "compute-loop-scale: " << getBlockName(LoopHead) << "\n"); |
| 723 | |
| 724 | // LoopScale == 1 / ExitMass |
| 725 | // ExitMass == HeadMass - BackedgeMass |
| 726 | PackagedLoopData &LoopPackage = getLoopPackage(LoopHead); |
| 727 | BlockMass ExitMass = BlockMass::getFull() - LoopPackage.BackedgeMass; |
| 728 | |
| 729 | // Block scale stores the inverse of the scale. |
| 730 | LoopPackage.Scale = ExitMass.toFloat().inverse(); |
| 731 | |
| 732 | DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull() |
| 733 | << " - " << LoopPackage.BackedgeMass << ")\n" |
| 734 | << " - scale = " << LoopPackage.Scale << "\n"); |
| 735 | |
| 736 | if (LoopPackage.Scale > getMaxLoopScale()) { |
| 737 | LoopPackage.Scale = getMaxLoopScale(); |
| 738 | DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n"); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | /// \brief Package up a loop. |
| 743 | void BlockFrequencyInfoImplBase::packageLoop(const BlockNode &LoopHead) { |
| 744 | DEBUG(dbgs() << "packaging-loop: " << getBlockName(LoopHead) << "\n"); |
| 745 | Working[LoopHead.Index].IsAPackage = true; |
| 746 | for (const BlockNode &M : getLoopPackage(LoopHead).Members) { |
| 747 | DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n"); |
| 748 | Working[M.Index].IsPackaged = true; |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, |
| 753 | const BlockNode &LoopHead, |
| 754 | Distribution &Dist) { |
| 755 | BlockMass Mass = getPackageMass(*this, Source); |
| 756 | DEBUG(dbgs() << " => mass: " << Mass |
| 757 | << " ( general | forward )\n"); |
| 758 | |
| 759 | // Distribute mass to successors as laid out in Dist. |
| 760 | DitheringDistributer D(Dist, Mass); |
| 761 | |
| 762 | #ifndef NDEBUG |
| 763 | auto debugAssign = [&](const BlockNode &T, const BlockMass &M, |
| 764 | const char *Desc) { |
| 765 | dbgs() << " => assign " << M << " (" << D.RemMass << "|" |
| 766 | << D.RemForwardMass << ")"; |
| 767 | if (Desc) |
| 768 | dbgs() << " [" << Desc << "]"; |
| 769 | if (T.isValid()) |
| 770 | dbgs() << " to " << getBlockName(T); |
| 771 | dbgs() << "\n"; |
| 772 | }; |
| 773 | (void)debugAssign; |
| 774 | #endif |
| 775 | |
| 776 | PackagedLoopData *LoopPackage = 0; |
| 777 | if (LoopHead.isValid()) |
| 778 | LoopPackage = &getLoopPackage(LoopHead); |
| 779 | for (const Weight &W : Dist.Weights) { |
| 780 | // Check for a local edge (forward and non-exit). |
| 781 | if (W.Type == Weight::Local) { |
| 782 | BlockMass Local = D.takeLocalMass(W.Amount); |
| 783 | getPackageMass(*this, W.TargetNode) += Local; |
| 784 | DEBUG(debugAssign(W.TargetNode, Local, nullptr)); |
| 785 | continue; |
| 786 | } |
| 787 | |
| 788 | // Backedges and exits only make sense if we're processing a loop. |
| 789 | assert(LoopPackage && "backedge or exit outside of loop"); |
| 790 | |
| 791 | // Check for a backedge. |
| 792 | if (W.Type == Weight::Backedge) { |
| 793 | BlockMass Back = D.takeBackedgeMass(W.Amount); |
| 794 | LoopPackage->BackedgeMass += Back; |
| 795 | DEBUG(debugAssign(BlockNode(), Back, "back")); |
| 796 | continue; |
| 797 | } |
| 798 | |
| 799 | // This must be an exit. |
| 800 | assert(W.Type == Weight::Exit); |
| 801 | BlockMass Exit = D.takeExitMass(W.Amount); |
| 802 | LoopPackage->Exits.push_back(std::make_pair(W.TargetNode, Exit)); |
| 803 | DEBUG(debugAssign(W.TargetNode, Exit, "exit")); |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, |
| 808 | const Float &Min, const Float &Max) { |
| 809 | // Scale the Factor to a size that creates integers. Ideally, integers would |
| 810 | // be scaled so that Max == UINT64_MAX so that they can be best |
| 811 | // differentiated. However, the register allocator currently deals poorly |
| 812 | // with large numbers. Instead, push Min up a little from 1 to give some |
| 813 | // room to differentiate small, unequal numbers. |
| 814 | // |
| 815 | // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max. |
| 816 | Float ScalingFactor = Min.inverse(); |
| 817 | if ((Max / Min).lg() < 60) |
| 818 | ScalingFactor <<= 3; |
| 819 | |
| 820 | // Translate the floats to integers. |
| 821 | DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max |
| 822 | << ", factor = " << ScalingFactor << "\n"); |
| 823 | for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { |
| 824 | Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor; |
| 825 | BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>()); |
| 826 | DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " |
| 827 | << BFI.Freqs[Index].Floating << ", scaled = " << Scaled |
| 828 | << ", int = " << BFI.Freqs[Index].Integer << "\n"); |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | static void scaleBlockData(BlockFrequencyInfoImplBase &BFI, |
| 833 | const BlockNode &Node, |
| 834 | const PackagedLoopData &Loop) { |
| 835 | Float F = Loop.Mass.toFloat() * Loop.Scale; |
| 836 | |
| 837 | Float &Current = BFI.Freqs[Node.Index].Floating; |
| 838 | Float Updated = Current * F; |
| 839 | |
| 840 | DEBUG(dbgs() << " - " << BFI.getBlockName(Node) << ": " << Current << " => " |
| 841 | << Updated << "\n"); |
| 842 | |
| 843 | Current = Updated; |
| 844 | } |
| 845 | |
| 846 | /// \brief Unwrap a loop package. |
| 847 | /// |
| 848 | /// Visits all the members of a loop, adjusting their BlockData according to |
| 849 | /// the loop's pseudo-node. |
| 850 | static void unwrapLoopPackage(BlockFrequencyInfoImplBase &BFI, |
| 851 | const BlockNode &Head) { |
| 852 | assert(Head.isValid()); |
| 853 | |
| 854 | PackagedLoopData &LoopPackage = BFI.getLoopPackage(Head); |
| 855 | DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getBlockName(Head) |
| 856 | << ": mass = " << LoopPackage.Mass |
| 857 | << ", scale = " << LoopPackage.Scale << "\n"); |
| 858 | scaleBlockData(BFI, Head, LoopPackage); |
| 859 | |
| 860 | // Propagate the head scale through the loop. Since members are visited in |
| 861 | // RPO, the head scale will be updated by the loop scale first, and then the |
| 862 | // final head scale will be used for updated the rest of the members. |
| 863 | for (const BlockNode &M : LoopPackage.Members) { |
| 864 | const FrequencyData &HeadData = BFI.Freqs[Head.Index]; |
| 865 | FrequencyData &Freqs = BFI.Freqs[M.Index]; |
| 866 | Float NewFreq = Freqs.Floating * HeadData.Floating; |
| 867 | DEBUG(dbgs() << " - " << BFI.getBlockName(M) << ": " << Freqs.Floating |
| 868 | << " => " << NewFreq << "\n"); |
| 869 | Freqs.Floating = NewFreq; |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | void BlockFrequencyInfoImplBase::finalizeMetrics() { |
| 874 | // Set initial frequencies from loop-local masses. |
| 875 | for (size_t Index = 0; Index < Working.size(); ++Index) |
| 876 | Freqs[Index].Floating = Working[Index].Mass.toFloat(); |
| 877 | |
| 878 | // Unwrap loop packages in reverse post-order, tracking min and max |
| 879 | // frequencies. |
| 880 | auto Min = Float::getLargest(); |
| 881 | auto Max = Float::getZero(); |
| 882 | for (size_t Index = 0; Index < Working.size(); ++Index) { |
| 883 | if (Working[Index].isLoopHeader()) |
| 884 | unwrapLoopPackage(*this, BlockNode(Index)); |
| 885 | |
| 886 | // Update max scale. |
| 887 | Min = std::min(Min, Freqs[Index].Floating); |
| 888 | Max = std::max(Max, Freqs[Index].Floating); |
| 889 | } |
| 890 | |
| 891 | // Convert to integers. |
| 892 | convertFloatingToInteger(*this, Min, Max); |
| 893 | |
| 894 | // Clean up data structures. |
| 895 | cleanup(*this); |
| 896 | |
| 897 | // Print out the final stats. |
| 898 | DEBUG(dump()); |
| 899 | } |
| 900 | |
| 901 | BlockFrequency |
| 902 | BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { |
| 903 | if (!Node.isValid()) |
| 904 | return 0; |
| 905 | return Freqs[Node.Index].Integer; |
| 906 | } |
| 907 | Float |
| 908 | BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { |
| 909 | if (!Node.isValid()) |
| 910 | return Float::getZero(); |
| 911 | return Freqs[Node.Index].Floating; |
| 912 | } |
| 913 | |
| 914 | std::string |
| 915 | BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { |
| 916 | return std::string(); |
| 917 | } |
| 918 | |
| 919 | raw_ostream & |
| 920 | BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, |
| 921 | const BlockNode &Node) const { |
| 922 | return OS << getFloatingBlockFreq(Node); |
| 923 | } |
| 924 | |
| 925 | raw_ostream & |
| 926 | BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, |
| 927 | const BlockFrequency &Freq) const { |
| 928 | Float Block(Freq.getFrequency(), 0); |
| 929 | Float Entry(getEntryFreq(), 0); |
| 930 | |
| 931 | return OS << Block / Entry; |
| 932 | } |