Tobias Grosser | 120db6b | 2011-11-07 12:58:54 +0000 | [diff] [blame^] | 1 | |
| 2 | #include "polly/Support/SCEVValidator.h" |
| 3 | |
| 4 | #include "llvm/Analysis/ScalarEvolution.h" |
| 5 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 6 | #include "llvm/Analysis/RegionInfo.h" |
| 7 | |
| 8 | using namespace llvm; |
| 9 | |
| 10 | namespace SCEVType { |
| 11 | enum TYPE {INT, PARAM, IV, INVALID}; |
| 12 | } |
| 13 | |
| 14 | struct ValidatorResult { |
| 15 | SCEVType::TYPE type; |
| 16 | |
| 17 | ValidatorResult() : type(SCEVType::INVALID) {}; |
| 18 | |
| 19 | ValidatorResult(const ValidatorResult &vres) { |
| 20 | type = vres.type; |
| 21 | }; |
| 22 | |
| 23 | ValidatorResult(SCEVType::TYPE type) : type(type) {}; |
| 24 | |
| 25 | bool isConstant() { |
| 26 | return type == SCEVType::INT || type == SCEVType::PARAM; |
| 27 | } |
| 28 | |
| 29 | bool isValid() { |
| 30 | return type != SCEVType::INVALID; |
| 31 | } |
| 32 | |
| 33 | bool isIV() { |
| 34 | return type == SCEVType::IV; |
| 35 | } |
| 36 | |
| 37 | bool isINT() { |
| 38 | return type == SCEVType::INT; |
| 39 | } |
| 40 | }; |
| 41 | |
| 42 | /// Check if a SCEV is valid in a SCoP. |
| 43 | struct SCEVValidator |
| 44 | : public SCEVVisitor<SCEVValidator, struct ValidatorResult> { |
| 45 | private: |
| 46 | const Region *R; |
| 47 | ScalarEvolution &SE; |
| 48 | Value **BaseAddress; |
| 49 | |
| 50 | public: |
| 51 | SCEVValidator(const Region *R, ScalarEvolution &SE, |
| 52 | Value **BaseAddress) : R(R), SE(SE), |
| 53 | BaseAddress(BaseAddress) {}; |
| 54 | |
| 55 | struct ValidatorResult visitConstant(const SCEVConstant *Constant) { |
| 56 | return ValidatorResult(SCEVType::INT); |
| 57 | } |
| 58 | |
| 59 | struct ValidatorResult visitTruncateExpr(const SCEVTruncateExpr* Expr) { |
| 60 | ValidatorResult Op = visit(Expr->getOperand()); |
| 61 | |
| 62 | // We currently do not represent a truncate expression as an affine |
| 63 | // expression. If it is constant during Scop execution, we treat it as a |
| 64 | // parameter, otherwise we bail out. |
| 65 | if (Op.isConstant()) |
| 66 | return ValidatorResult(SCEVType::PARAM); |
| 67 | |
| 68 | return ValidatorResult (SCEVType::INVALID); |
| 69 | } |
| 70 | |
| 71 | struct ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr) { |
| 72 | ValidatorResult Op = visit(Expr->getOperand()); |
| 73 | |
| 74 | // We currently do not represent a zero extend expression as an affine |
| 75 | // expression. If it is constant during Scop execution, we treat it as a |
| 76 | // parameter, otherwise we bail out. |
| 77 | if (Op.isConstant()) |
| 78 | return ValidatorResult (SCEVType::PARAM); |
| 79 | |
| 80 | return ValidatorResult(SCEVType::INVALID); |
| 81 | } |
| 82 | |
| 83 | struct ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr* Expr) { |
| 84 | // We currently allow only signed SCEV expressions. In the case of a |
| 85 | // signed value, a sign extend is a noop. |
| 86 | // |
| 87 | // TODO: Reconsider this when we add support for unsigned values. |
| 88 | return visit(Expr->getOperand()); |
| 89 | } |
| 90 | |
| 91 | struct ValidatorResult visitAddExpr(const SCEVAddExpr* Expr) { |
| 92 | ValidatorResult Return(SCEVType::INT); |
| 93 | |
| 94 | for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { |
| 95 | ValidatorResult Op = visit(Expr->getOperand(i)); |
| 96 | |
| 97 | if (!Op.isValid()) |
| 98 | return ValidatorResult(SCEVType::INVALID); |
| 99 | |
| 100 | Return.type = std::max(Return.type, Op.type); |
| 101 | } |
| 102 | |
| 103 | // TODO: Check for NSW and NUW. |
| 104 | return Return; |
| 105 | } |
| 106 | |
| 107 | struct ValidatorResult visitMulExpr(const SCEVMulExpr* Expr) { |
| 108 | ValidatorResult Return(SCEVType::INT); |
| 109 | |
| 110 | for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { |
| 111 | ValidatorResult Op = visit(Expr->getOperand(i)); |
| 112 | |
| 113 | if (Op.type == SCEVType::INT) |
| 114 | continue; |
| 115 | |
| 116 | if (Op.type == SCEVType::INVALID || Return.type != SCEVType::INT) |
| 117 | return ValidatorResult(SCEVType::INVALID); |
| 118 | |
| 119 | Return.type = Op.type; |
| 120 | } |
| 121 | |
| 122 | // TODO: Check for NSW and NUW. |
| 123 | return Return; |
| 124 | } |
| 125 | |
| 126 | struct ValidatorResult visitUDivExpr(const SCEVUDivExpr* Expr) { |
| 127 | ValidatorResult LHS = visit(Expr->getLHS()); |
| 128 | ValidatorResult RHS = visit(Expr->getRHS()); |
| 129 | |
| 130 | // We currently do not represent a unsigned devision as an affine |
| 131 | // expression. If the division is constant during Scop execution we treat it |
| 132 | // as a parameter, otherwise we bail out. |
| 133 | if (LHS.isConstant() && RHS.isConstant()) |
| 134 | return ValidatorResult(SCEVType::PARAM); |
| 135 | |
| 136 | return ValidatorResult(SCEVType::INVALID); |
| 137 | } |
| 138 | |
| 139 | struct ValidatorResult visitAddRecExpr(const SCEVAddRecExpr* Expr) { |
| 140 | if (!Expr->isAffine()) |
| 141 | return ValidatorResult(SCEVType::INVALID); |
| 142 | |
| 143 | ValidatorResult Start = visit(Expr->getStart()); |
| 144 | ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE)); |
| 145 | |
| 146 | if (!Start.isValid() || !Recurrence.isValid() || Recurrence.isIV()) |
| 147 | return ValidatorResult(SCEVType::INVALID); |
| 148 | |
| 149 | |
| 150 | if (!R->contains(Expr->getLoop())) { |
| 151 | if (Start.isIV()) |
| 152 | return ValidatorResult(SCEVType::INVALID); |
| 153 | else |
| 154 | return ValidatorResult(SCEVType::PARAM); |
| 155 | } |
| 156 | |
| 157 | if (!Recurrence.isINT()) |
| 158 | return ValidatorResult(SCEVType::INVALID); |
| 159 | |
| 160 | return ValidatorResult(SCEVType::IV); |
| 161 | } |
| 162 | |
| 163 | struct ValidatorResult visitSMaxExpr(const SCEVSMaxExpr* Expr) { |
| 164 | ValidatorResult Return(SCEVType::INT); |
| 165 | |
| 166 | for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { |
| 167 | ValidatorResult Op = visit(Expr->getOperand(i)); |
| 168 | |
| 169 | if (!Op.isValid()) |
| 170 | return ValidatorResult(SCEVType::INVALID); |
| 171 | |
| 172 | Return.type = std::max(Return.type, Op.type); |
| 173 | } |
| 174 | |
| 175 | return Return; |
| 176 | } |
| 177 | |
| 178 | struct ValidatorResult visitUMaxExpr(const SCEVUMaxExpr* Expr) { |
| 179 | // We do not support unsigned operations. If 'Expr' is constant during Scop |
| 180 | // execution we treat this as a parameter, otherwise we bail out. |
| 181 | for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { |
| 182 | ValidatorResult Op = visit(Expr->getOperand(i)); |
| 183 | |
| 184 | if (!Op.isConstant()) |
| 185 | return ValidatorResult(SCEVType::INVALID); |
| 186 | } |
| 187 | |
| 188 | return ValidatorResult(SCEVType::PARAM); |
| 189 | } |
| 190 | |
| 191 | ValidatorResult visitUnknown(const SCEVUnknown* Expr) { |
| 192 | Value *V = Expr->getValue(); |
| 193 | |
| 194 | if (isa<UndefValue>(V)) |
| 195 | return ValidatorResult(SCEVType::INVALID); |
| 196 | |
| 197 | if (BaseAddress) { |
| 198 | if (*BaseAddress) |
| 199 | return ValidatorResult(SCEVType::INVALID); |
| 200 | else |
| 201 | *BaseAddress = V; |
| 202 | } |
| 203 | |
| 204 | if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) |
| 205 | if (R->contains(I)) |
| 206 | return ValidatorResult(SCEVType::INVALID); |
| 207 | |
| 208 | if (BaseAddress) |
| 209 | return ValidatorResult(SCEVType::PARAM); |
| 210 | else |
| 211 | return ValidatorResult(SCEVType::PARAM); |
| 212 | } |
| 213 | }; |
| 214 | |
| 215 | namespace polly { |
| 216 | bool isAffineExpr(const Region *R, const SCEV *Expr, ScalarEvolution &SE, |
| 217 | Value **BaseAddress) { |
| 218 | if (isa<SCEVCouldNotCompute>(Expr)) |
| 219 | return false; |
| 220 | |
| 221 | if (BaseAddress) |
| 222 | *BaseAddress = NULL; |
| 223 | |
| 224 | SCEVValidator Validator(R, SE, BaseAddress); |
| 225 | ValidatorResult Result = Validator.visit(Expr); |
| 226 | |
| 227 | return Result.isValid(); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | |