blob: 5e6d0e3e53b4c14943779869f1f92f55b63c49f5 [file] [log] [blame]
Eli Bendersky7325e562014-09-03 15:27:03 +00001//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// \brief This file implements semantic analysis for CUDA constructs.
11///
12//===----------------------------------------------------------------------===//
13
Eli Bendersky7325e562014-09-03 15:27:03 +000014#include "clang/AST/ASTContext.h"
15#include "clang/AST/Decl.h"
Artem Belevich97c01c32016-02-02 22:29:48 +000016#include "clang/AST/ExprCXX.h"
Reid Klecknerbbc01782014-12-03 21:53:36 +000017#include "clang/Lex/Preprocessor.h"
Justin Lebarba122ab2016-03-30 23:30:21 +000018#include "clang/Sema/Lookup.h"
19#include "clang/Sema/Sema.h"
Eli Bendersky7325e562014-09-03 15:27:03 +000020#include "clang/Sema/SemaDiagnostic.h"
Justin Lebar179bdce2016-10-13 18:45:08 +000021#include "clang/Sema/SemaInternal.h"
Justin Lebarba122ab2016-03-30 23:30:21 +000022#include "clang/Sema/Template.h"
Eli Bendersky9a220fc2014-09-29 20:38:29 +000023#include "llvm/ADT/Optional.h"
24#include "llvm/ADT/SmallVector.h"
Eli Bendersky7325e562014-09-03 15:27:03 +000025using namespace clang;
26
Justin Lebar67a78a62016-10-08 22:15:58 +000027void Sema::PushForceCUDAHostDevice() {
28 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
29 ForceCUDAHostDeviceDepth++;
30}
31
32bool Sema::PopForceCUDAHostDevice() {
33 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
34 if (ForceCUDAHostDeviceDepth == 0)
35 return false;
36 ForceCUDAHostDeviceDepth--;
37 return true;
38}
39
Eli Bendersky7325e562014-09-03 15:27:03 +000040ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
41 MultiExprArg ExecConfig,
42 SourceLocation GGGLoc) {
43 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
44 if (!ConfigDecl)
45 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
46 << "cudaConfigureCall");
47 QualType ConfigQTy = ConfigDecl->getType();
48
49 DeclRefExpr *ConfigDR = new (Context)
50 DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
51 MarkFunctionReferenced(LLLLoc, ConfigDecl);
52
53 return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
54 /*IsExecConfig=*/true);
55}
56
Artem Belevich13e9b4d2016-12-07 19:27:16 +000057Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const AttributeList *Attr) {
58 bool HasHostAttr = false;
59 bool HasDeviceAttr = false;
60 bool HasGlobalAttr = false;
61 bool HasInvalidTargetAttr = false;
62 while (Attr) {
63 switch(Attr->getKind()){
64 case AttributeList::AT_CUDAGlobal:
65 HasGlobalAttr = true;
66 break;
67 case AttributeList::AT_CUDAHost:
68 HasHostAttr = true;
69 break;
70 case AttributeList::AT_CUDADevice:
71 HasDeviceAttr = true;
72 break;
73 case AttributeList::AT_CUDAInvalidTarget:
74 HasInvalidTargetAttr = true;
75 break;
76 default:
77 break;
78 }
79 Attr = Attr->getNext();
80 }
81 if (HasInvalidTargetAttr)
82 return CFT_InvalidTarget;
83
84 if (HasGlobalAttr)
85 return CFT_Global;
86
87 if (HasHostAttr && HasDeviceAttr)
88 return CFT_HostDevice;
89
90 if (HasDeviceAttr)
91 return CFT_Device;
92
93 return CFT_Host;
94}
95
Eli Bendersky7325e562014-09-03 15:27:03 +000096/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
97Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
Justin Lebar179bdce2016-10-13 18:45:08 +000098 // Code that lives outside a function is run on the host.
99 if (D == nullptr)
100 return CFT_Host;
101
Eli Bendersky9a220fc2014-09-29 20:38:29 +0000102 if (D->hasAttr<CUDAInvalidTargetAttr>())
103 return CFT_InvalidTarget;
Eli Bendersky7325e562014-09-03 15:27:03 +0000104
105 if (D->hasAttr<CUDAGlobalAttr>())
106 return CFT_Global;
107
108 if (D->hasAttr<CUDADeviceAttr>()) {
109 if (D->hasAttr<CUDAHostAttr>())
110 return CFT_HostDevice;
111 return CFT_Device;
Eli Benderskyf2787a02014-09-30 17:38:34 +0000112 } else if (D->hasAttr<CUDAHostAttr>()) {
113 return CFT_Host;
114 } else if (D->isImplicit()) {
115 // Some implicit declarations (like intrinsic functions) are not marked.
116 // Set the most lenient target on them for maximal flexibility.
117 return CFT_HostDevice;
Eli Bendersky7325e562014-09-03 15:27:03 +0000118 }
119
120 return CFT_Host;
121}
122
Artem Belevich94a55e82015-09-22 17:22:59 +0000123// * CUDA Call preference table
124//
125// F - from,
126// T - to
127// Ph - preference in host mode
128// Pd - preference in device mode
129// H - handled in (x)
Justin Lebar39186472016-03-29 16:24:22 +0000130// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
Artem Belevich94a55e82015-09-22 17:22:59 +0000131//
Artem Belevich18609102016-02-12 18:29:18 +0000132// | F | T | Ph | Pd | H |
133// |----+----+-----+-----+-----+
134// | d | d | N | N | (c) |
135// | d | g | -- | -- | (a) |
136// | d | h | -- | -- | (e) |
137// | d | hd | HD | HD | (b) |
138// | g | d | N | N | (c) |
139// | g | g | -- | -- | (a) |
140// | g | h | -- | -- | (e) |
141// | g | hd | HD | HD | (b) |
142// | h | d | -- | -- | (e) |
143// | h | g | N | N | (c) |
144// | h | h | N | N | (c) |
145// | h | hd | HD | HD | (b) |
146// | hd | d | WS | SS | (d) |
147// | hd | g | SS | -- |(d/a)|
148// | hd | h | SS | WS | (d) |
149// | hd | hd | HD | HD | (b) |
Artem Belevich94a55e82015-09-22 17:22:59 +0000150
151Sema::CUDAFunctionPreference
152Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
153 const FunctionDecl *Callee) {
Artem Belevich94a55e82015-09-22 17:22:59 +0000154 assert(Callee && "Callee must be valid.");
Justin Lebar179bdce2016-10-13 18:45:08 +0000155 CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
Artem Belevich94a55e82015-09-22 17:22:59 +0000156 CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
Artem Belevich94a55e82015-09-22 17:22:59 +0000157
158 // If one of the targets is invalid, the check always fails, no matter what
159 // the other target is.
160 if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
161 return CFP_Never;
162
163 // (a) Can't call global from some contexts until we support CUDA's
164 // dynamic parallelism.
165 if (CalleeTarget == CFT_Global &&
Justin Lebar0254c462016-10-12 01:30:08 +0000166 (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
Artem Belevich94a55e82015-09-22 17:22:59 +0000167 return CFP_Never;
168
Artem Belevich18609102016-02-12 18:29:18 +0000169 // (b) Calling HostDevice is OK for everyone.
170 if (CalleeTarget == CFT_HostDevice)
171 return CFP_HostDevice;
172
173 // (c) Best case scenarios
Artem Belevich94a55e82015-09-22 17:22:59 +0000174 if (CalleeTarget == CallerTarget ||
175 (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
176 (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
Artem Belevich18609102016-02-12 18:29:18 +0000177 return CFP_Native;
Artem Belevich94a55e82015-09-22 17:22:59 +0000178
179 // (d) HostDevice behavior depends on compilation mode.
180 if (CallerTarget == CFT_HostDevice) {
Artem Belevich18609102016-02-12 18:29:18 +0000181 // It's OK to call a compilation-mode matching function from an HD one.
182 if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
183 (!getLangOpts().CUDAIsDevice &&
184 (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
185 return CFP_SameSide;
186
Justin Lebar25c4a812016-03-29 16:24:16 +0000187 // Calls from HD to non-mode-matching functions (i.e., to host functions
188 // when compiling in device mode or to device functions when compiling in
189 // host mode) are allowed at the sema level, but eventually rejected if
190 // they're ever codegened. TODO: Reject said calls earlier.
191 return CFP_WrongSide;
Artem Belevich94a55e82015-09-22 17:22:59 +0000192 }
193
194 // (e) Calling across device/host boundary is not something you should do.
195 if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
196 (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
197 (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
Artem Belevich18609102016-02-12 18:29:18 +0000198 return CFP_Never;
Artem Belevich94a55e82015-09-22 17:22:59 +0000199
200 llvm_unreachable("All cases should've been handled by now.");
201}
202
Richard Smithf75dcbe2016-10-11 00:21:10 +0000203void Sema::EraseUnwantedCUDAMatches(
204 const FunctionDecl *Caller,
205 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
Artem Belevich94a55e82015-09-22 17:22:59 +0000206 if (Matches.size() <= 1)
207 return;
208
Richard Smithf75dcbe2016-10-11 00:21:10 +0000209 using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
210
Justin Lebare6a2cc12016-03-22 00:09:25 +0000211 // Gets the CUDA function preference for a call from Caller to Match.
Richard Smithf75dcbe2016-10-11 00:21:10 +0000212 auto GetCFP = [&](const Pair &Match) {
213 return IdentifyCUDAPreference(Caller, Match.second);
Justin Lebare6a2cc12016-03-22 00:09:25 +0000214 };
215
Artem Belevich94a55e82015-09-22 17:22:59 +0000216 // Find the best call preference among the functions in Matches.
Richard Smithf75dcbe2016-10-11 00:21:10 +0000217 CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
Justin Lebare6a2cc12016-03-22 00:09:25 +0000218 Matches.begin(), Matches.end(),
Richard Smithf75dcbe2016-10-11 00:21:10 +0000219 [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
Artem Belevich94a55e82015-09-22 17:22:59 +0000220
221 // Erase all functions with lower priority.
Justin Lebare71c08f2016-07-12 23:23:13 +0000222 Matches.erase(
Richard Smithf75dcbe2016-10-11 00:21:10 +0000223 llvm::remove_if(
224 Matches, [&](const Pair &Match) { return GetCFP(Match) < BestCFP; }),
Justin Lebare71c08f2016-07-12 23:23:13 +0000225 Matches.end());
Artem Belevich94a55e82015-09-22 17:22:59 +0000226}
227
Eli Bendersky9a220fc2014-09-29 20:38:29 +0000228/// When an implicitly-declared special member has to invoke more than one
229/// base/field special member, conflicts may occur in the targets of these
230/// members. For example, if one base's member __host__ and another's is
231/// __device__, it's a conflict.
232/// This function figures out if the given targets \param Target1 and
233/// \param Target2 conflict, and if they do not it fills in
234/// \param ResolvedTarget with a target that resolves for both calls.
235/// \return true if there's a conflict, false otherwise.
236static bool
237resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
238 Sema::CUDAFunctionTarget Target2,
239 Sema::CUDAFunctionTarget *ResolvedTarget) {
Justin Lebarc66a1062016-01-20 00:26:57 +0000240 // Only free functions and static member functions may be global.
241 assert(Target1 != Sema::CFT_Global);
242 assert(Target2 != Sema::CFT_Global);
Eli Bendersky9a220fc2014-09-29 20:38:29 +0000243
244 if (Target1 == Sema::CFT_HostDevice) {
245 *ResolvedTarget = Target2;
246 } else if (Target2 == Sema::CFT_HostDevice) {
247 *ResolvedTarget = Target1;
248 } else if (Target1 != Target2) {
249 return true;
250 } else {
251 *ResolvedTarget = Target1;
252 }
253
254 return false;
255}
256
257bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
258 CXXSpecialMember CSM,
259 CXXMethodDecl *MemberDecl,
260 bool ConstRHS,
261 bool Diagnose) {
262 llvm::Optional<CUDAFunctionTarget> InferredTarget;
263
264 // We're going to invoke special member lookup; mark that these special
265 // members are called from this one, and not from its caller.
266 ContextRAII MethodContext(*this, MemberDecl);
267
268 // Look for special members in base classes that should be invoked from here.
269 // Infer the target of this member base on the ones it should call.
270 // Skip direct and indirect virtual bases for abstract classes.
271 llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
272 for (const auto &B : ClassDecl->bases()) {
273 if (!B.isVirtual()) {
274 Bases.push_back(&B);
275 }
276 }
277
278 if (!ClassDecl->isAbstract()) {
279 for (const auto &VB : ClassDecl->vbases()) {
280 Bases.push_back(&VB);
281 }
282 }
283
284 for (const auto *B : Bases) {
285 const RecordType *BaseType = B->getType()->getAs<RecordType>();
286 if (!BaseType) {
287 continue;
288 }
289
290 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
291 Sema::SpecialMemberOverloadResult *SMOR =
292 LookupSpecialMember(BaseClassDecl, CSM,
293 /* ConstArg */ ConstRHS,
294 /* VolatileArg */ false,
295 /* RValueThis */ false,
296 /* ConstThis */ false,
297 /* VolatileThis */ false);
298
299 if (!SMOR || !SMOR->getMethod()) {
300 continue;
301 }
302
303 CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR->getMethod());
304 if (!InferredTarget.hasValue()) {
305 InferredTarget = BaseMethodTarget;
306 } else {
307 bool ResolutionError = resolveCalleeCUDATargetConflict(
308 InferredTarget.getValue(), BaseMethodTarget,
309 InferredTarget.getPointer());
310 if (ResolutionError) {
311 if (Diagnose) {
312 Diag(ClassDecl->getLocation(),
313 diag::note_implicit_member_target_infer_collision)
314 << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
315 }
316 MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
317 return true;
318 }
319 }
320 }
321
322 // Same as for bases, but now for special members of fields.
323 for (const auto *F : ClassDecl->fields()) {
324 if (F->isInvalidDecl()) {
325 continue;
326 }
327
328 const RecordType *FieldType =
329 Context.getBaseElementType(F->getType())->getAs<RecordType>();
330 if (!FieldType) {
331 continue;
332 }
333
334 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
335 Sema::SpecialMemberOverloadResult *SMOR =
336 LookupSpecialMember(FieldRecDecl, CSM,
337 /* ConstArg */ ConstRHS && !F->isMutable(),
338 /* VolatileArg */ false,
339 /* RValueThis */ false,
340 /* ConstThis */ false,
341 /* VolatileThis */ false);
342
343 if (!SMOR || !SMOR->getMethod()) {
344 continue;
345 }
346
347 CUDAFunctionTarget FieldMethodTarget =
348 IdentifyCUDATarget(SMOR->getMethod());
349 if (!InferredTarget.hasValue()) {
350 InferredTarget = FieldMethodTarget;
351 } else {
352 bool ResolutionError = resolveCalleeCUDATargetConflict(
353 InferredTarget.getValue(), FieldMethodTarget,
354 InferredTarget.getPointer());
355 if (ResolutionError) {
356 if (Diagnose) {
357 Diag(ClassDecl->getLocation(),
358 diag::note_implicit_member_target_infer_collision)
359 << (unsigned)CSM << InferredTarget.getValue()
360 << FieldMethodTarget;
361 }
362 MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
363 return true;
364 }
365 }
366 }
367
368 if (InferredTarget.hasValue()) {
369 if (InferredTarget.getValue() == CFT_Device) {
370 MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
371 } else if (InferredTarget.getValue() == CFT_Host) {
372 MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
373 } else {
374 MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
375 MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
376 }
377 } else {
378 // If no target was inferred, mark this member as __host__ __device__;
379 // it's the least restrictive option that can be invoked from any target.
380 MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
381 MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
382 }
383
384 return false;
385}
Artem Belevich97c01c32016-02-02 22:29:48 +0000386
387bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
388 if (!CD->isDefined() && CD->isTemplateInstantiation())
389 InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
390
391 // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
392 // empty at a point in the translation unit, if it is either a
393 // trivial constructor
394 if (CD->isTrivial())
395 return true;
396
397 // ... or it satisfies all of the following conditions:
398 // The constructor function has been defined.
399 // The constructor function has no parameters,
400 // and the function body is an empty compound statement.
401 if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
402 return false;
403
404 // Its class has no virtual functions and no virtual base classes.
405 if (CD->getParent()->isDynamicClass())
406 return false;
407
408 // The only form of initializer allowed is an empty constructor.
Artem Belevich3650bbe2016-05-19 20:13:53 +0000409 // This will recursively check all base classes and member initializers
Artem Belevich97c01c32016-02-02 22:29:48 +0000410 if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
411 if (const CXXConstructExpr *CE =
412 dyn_cast<CXXConstructExpr>(CI->getInit()))
413 return isEmptyCudaConstructor(Loc, CE->getConstructor());
414 return false;
415 }))
416 return false;
417
418 return true;
419}
Justin Lebarba122ab2016-03-30 23:30:21 +0000420
Artem Belevich3650bbe2016-05-19 20:13:53 +0000421bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
422 // No destructor -> no problem.
423 if (!DD)
424 return true;
425
426 if (!DD->isDefined() && DD->isTemplateInstantiation())
427 InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
428
429 // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
430 // empty at a point in the translation unit, if it is either a
431 // trivial constructor
432 if (DD->isTrivial())
433 return true;
434
435 // ... or it satisfies all of the following conditions:
436 // The destructor function has been defined.
437 // and the function body is an empty compound statement.
438 if (!DD->hasTrivialBody())
439 return false;
440
441 const CXXRecordDecl *ClassDecl = DD->getParent();
442
443 // Its class has no virtual functions and no virtual base classes.
444 if (ClassDecl->isDynamicClass())
445 return false;
446
447 // Only empty destructors are allowed. This will recursively check
448 // destructors for all base classes...
449 if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
450 if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
451 return isEmptyCudaDestructor(Loc, RD->getDestructor());
452 return true;
453 }))
454 return false;
455
456 // ... and member fields.
457 if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
458 if (CXXRecordDecl *RD = Field->getType()
459 ->getBaseElementTypeUnsafe()
460 ->getAsCXXRecordDecl())
461 return isEmptyCudaDestructor(Loc, RD->getDestructor());
462 return true;
463 }))
464 return false;
465
466 return true;
467}
468
Justin Lebarba122ab2016-03-30 23:30:21 +0000469// With -fcuda-host-device-constexpr, an unattributed constexpr function is
470// treated as implicitly __host__ __device__, unless:
471// * it is a variadic function (device-side variadic functions are not
472// allowed), or
473// * a __device__ function with this signature was already declared, in which
474// case in which case we output an error, unless the __device__ decl is in a
475// system header, in which case we leave the constexpr function unattributed.
Justin Lebar67a78a62016-10-08 22:15:58 +0000476//
477// In addition, all function decls are treated as __host__ __device__ when
478// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
479// #pragma clang force_cuda_host_device_begin/end
480// pair).
Artem Belevich9fb40e32016-10-21 17:15:46 +0000481void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
Justin Lebarba122ab2016-03-30 23:30:21 +0000482 const LookupResult &Previous) {
Justin Lebar9d4ed262016-09-30 23:57:38 +0000483 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar67a78a62016-10-08 22:15:58 +0000484
485 if (ForceCUDAHostDeviceDepth > 0) {
486 if (!NewD->hasAttr<CUDAHostAttr>())
487 NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
488 if (!NewD->hasAttr<CUDADeviceAttr>())
489 NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
490 return;
491 }
492
Justin Lebarba122ab2016-03-30 23:30:21 +0000493 if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
494 NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
495 NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
496 return;
497
498 // Is D a __device__ function with the same signature as NewD, ignoring CUDA
499 // attributes?
500 auto IsMatchingDeviceFn = [&](NamedDecl *D) {
501 if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
502 D = Using->getTargetDecl();
503 FunctionDecl *OldD = D->getAsFunction();
504 return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
505 !OldD->hasAttr<CUDAHostAttr>() &&
506 !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
507 /* ConsiderCudaAttrs = */ false);
508 };
509 auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
510 if (It != Previous.end()) {
511 // We found a __device__ function with the same name and signature as NewD
512 // (ignoring CUDA attrs). This is an error unless that function is defined
513 // in a system header, in which case we simply return without making NewD
514 // host+device.
515 NamedDecl *Match = *It;
516 if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
517 Diag(NewD->getLocation(),
518 diag::err_cuda_unattributed_constexpr_cannot_overload_device)
519 << NewD->getName();
520 Diag(Match->getLocation(),
521 diag::note_cuda_conflicting_device_function_declared_here);
522 }
523 return;
524 }
525
526 NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
527 NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
528}
Justin Lebar18e2d822016-08-15 23:00:49 +0000529
Justin Lebar23d95422016-10-13 20:52:12 +0000530// In CUDA, there are some constructs which may appear in semantically-valid
531// code, but trigger errors if we ever generate code for the function in which
532// they appear. Essentially every construct you're not allowed to use on the
533// device falls into this category, because you are allowed to use these
534// constructs in a __host__ __device__ function, but only if that function is
535// never codegen'ed on the device.
536//
537// To handle semantic checking for these constructs, we keep track of the set of
538// functions we know will be emitted, either because we could tell a priori that
539// they would be emitted, or because they were transitively called by a
540// known-emitted function.
541//
542// We also keep a partial call graph of which not-known-emitted functions call
543// which other not-known-emitted functions.
544//
545// When we see something which is illegal if the current function is emitted
546// (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or
547// CheckCUDACall), we first check if the current function is known-emitted. If
548// so, we immediately output the diagnostic.
549//
550// Otherwise, we "defer" the diagnostic. It sits in Sema::CUDADeferredDiags
551// until we discover that the function is known-emitted, at which point we take
552// it out of this map and emit the diagnostic.
553
Justin Lebar6c86e912016-10-19 21:15:01 +0000554Sema::CUDADiagBuilder::CUDADiagBuilder(Kind K, SourceLocation Loc,
555 unsigned DiagID, FunctionDecl *Fn,
556 Sema &S)
557 : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn),
558 ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) {
559 switch (K) {
560 case K_Nop:
561 break;
562 case K_Immediate:
563 case K_ImmediateWithCallStack:
564 ImmediateDiag.emplace(S.Diag(Loc, DiagID));
565 break;
566 case K_Deferred:
567 assert(Fn && "Must have a function to attach the deferred diag to.");
568 PartialDiag.emplace(S.PDiag(DiagID));
569 break;
570 }
571}
572
573// Print notes showing how we can reach FD starting from an a priori
574// known-callable function.
575static void EmitCallStackNotes(Sema &S, FunctionDecl *FD) {
576 auto FnIt = S.CUDAKnownEmittedFns.find(FD);
577 while (FnIt != S.CUDAKnownEmittedFns.end()) {
578 DiagnosticBuilder Builder(
579 S.Diags.Report(FnIt->second.Loc, diag::note_called_by));
580 Builder << FnIt->second.FD;
581 Builder.setForceEmit();
582
583 FnIt = S.CUDAKnownEmittedFns.find(FnIt->second.FD);
584 }
585}
586
587Sema::CUDADiagBuilder::~CUDADiagBuilder() {
588 if (ImmediateDiag) {
589 // Emit our diagnostic and, if it was a warning or error, output a callstack
590 // if Fn isn't a priori known-emitted.
591 bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel(
592 DiagID, Loc) >= DiagnosticsEngine::Warning;
593 ImmediateDiag.reset(); // Emit the immediate diag.
594 if (IsWarningOrError && ShowCallStack)
595 EmitCallStackNotes(S, Fn);
596 } else if (PartialDiag) {
597 assert(ShowCallStack && "Must always show call stack for deferred diags.");
598 S.CUDADeferredDiags[Fn].push_back({Loc, std::move(*PartialDiag)});
599 }
600}
601
Justin Lebar23d95422016-10-13 20:52:12 +0000602// Do we know that we will eventually codegen the given function?
603static bool IsKnownEmitted(Sema &S, FunctionDecl *FD) {
604 // Templates are emitted when they're instantiated.
605 if (FD->isDependentContext())
606 return false;
607
608 // When compiling for device, host functions are never emitted. Similarly,
609 // when compiling for host, device and global functions are never emitted.
610 // (Technically, we do emit a host-side stub for global functions, but this
611 // doesn't count for our purposes here.)
612 Sema::CUDAFunctionTarget T = S.IdentifyCUDATarget(FD);
613 if (S.getLangOpts().CUDAIsDevice && T == Sema::CFT_Host)
614 return false;
615 if (!S.getLangOpts().CUDAIsDevice &&
616 (T == Sema::CFT_Device || T == Sema::CFT_Global))
617 return false;
618
Justin Lebar2d56c262016-11-08 23:45:51 +0000619 // Check whether this function is externally visible -- if so, it's
620 // known-emitted.
621 //
622 // We have to check the GVA linkage of the function's *definition* -- if we
623 // only have a declaration, we don't know whether or not the function will be
624 // emitted, because (say) the definition could include "inline".
625 FunctionDecl *Def = FD->getDefinition();
626
627 // We may currently be parsing the body of FD, in which case
628 // FD->getDefinition() will be null, but we still want to treat FD as though
629 // it's a definition.
630 if (!Def && FD->willHaveBody())
631 Def = FD;
632
633 if (Def &&
634 !isDiscardableGVALinkage(S.getASTContext().GetGVALinkageForFunction(Def)))
Justin Lebar23d95422016-10-13 20:52:12 +0000635 return true;
636
637 // Otherwise, the function is known-emitted if it's in our set of
638 // known-emitted functions.
639 return S.CUDAKnownEmittedFns.count(FD) > 0;
640}
641
Justin Lebar179bdce2016-10-13 18:45:08 +0000642Sema::CUDADiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
643 unsigned DiagID) {
644 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar23d95422016-10-13 20:52:12 +0000645 CUDADiagBuilder::Kind DiagKind = [&] {
646 switch (CurrentCUDATarget()) {
647 case CFT_Global:
648 case CFT_Device:
649 return CUDADiagBuilder::K_Immediate;
650 case CFT_HostDevice:
651 // An HD function counts as host code if we're compiling for host, and
652 // device code if we're compiling for device. Defer any errors in device
653 // mode until the function is known-emitted.
654 if (getLangOpts().CUDAIsDevice) {
655 return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
Justin Lebar6c86e912016-10-19 21:15:01 +0000656 ? CUDADiagBuilder::K_ImmediateWithCallStack
Justin Lebar23d95422016-10-13 20:52:12 +0000657 : CUDADiagBuilder::K_Deferred;
658 }
659 return CUDADiagBuilder::K_Nop;
660
661 default:
662 return CUDADiagBuilder::K_Nop;
663 }
664 }();
Justin Lebar179bdce2016-10-13 18:45:08 +0000665 return CUDADiagBuilder(DiagKind, Loc, DiagID,
666 dyn_cast<FunctionDecl>(CurContext), *this);
667}
668
669Sema::CUDADiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
670 unsigned DiagID) {
671 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar23d95422016-10-13 20:52:12 +0000672 CUDADiagBuilder::Kind DiagKind = [&] {
673 switch (CurrentCUDATarget()) {
674 case CFT_Host:
675 return CUDADiagBuilder::K_Immediate;
676 case CFT_HostDevice:
677 // An HD function counts as host code if we're compiling for host, and
678 // device code if we're compiling for device. Defer any errors in device
679 // mode until the function is known-emitted.
680 if (getLangOpts().CUDAIsDevice)
681 return CUDADiagBuilder::K_Nop;
682
683 return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
Justin Lebar6c86e912016-10-19 21:15:01 +0000684 ? CUDADiagBuilder::K_ImmediateWithCallStack
Justin Lebar23d95422016-10-13 20:52:12 +0000685 : CUDADiagBuilder::K_Deferred;
686 default:
687 return CUDADiagBuilder::K_Nop;
688 }
689 }();
Justin Lebar179bdce2016-10-13 18:45:08 +0000690 return CUDADiagBuilder(DiagKind, Loc, DiagID,
691 dyn_cast<FunctionDecl>(CurContext), *this);
692}
693
Justin Lebar23d95422016-10-13 20:52:12 +0000694// Emit any deferred diagnostics for FD and erase them from the map in which
695// they're stored.
696static void EmitDeferredDiags(Sema &S, FunctionDecl *FD) {
697 auto It = S.CUDADeferredDiags.find(FD);
698 if (It == S.CUDADeferredDiags.end())
699 return;
Justin Lebar6c86e912016-10-19 21:15:01 +0000700 bool HasWarningOrError = false;
Justin Lebar23d95422016-10-13 20:52:12 +0000701 for (PartialDiagnosticAt &PDAt : It->second) {
702 const SourceLocation &Loc = PDAt.first;
703 const PartialDiagnostic &PD = PDAt.second;
Justin Lebar6c86e912016-10-19 21:15:01 +0000704 HasWarningOrError |= S.getDiagnostics().getDiagnosticLevel(
705 PD.getDiagID(), Loc) >= DiagnosticsEngine::Warning;
Justin Lebar23d95422016-10-13 20:52:12 +0000706 DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID()));
707 Builder.setForceEmit();
708 PD.Emit(Builder);
709 }
710 S.CUDADeferredDiags.erase(It);
Justin Lebar6c86e912016-10-19 21:15:01 +0000711
712 // FIXME: Should this be called after every warning/error emitted in the loop
713 // above, instead of just once per function? That would be consistent with
714 // how we handle immediate errors, but it also seems like a bit much.
715 if (HasWarningOrError)
716 EmitCallStackNotes(S, FD);
Justin Lebar23d95422016-10-13 20:52:12 +0000717}
718
719// Indicate that this function (and thus everything it transtively calls) will
720// be codegen'ed, and emit any deferred diagnostics on this function and its
721// (transitive) callees.
Justin Lebar6c86e912016-10-19 21:15:01 +0000722static void MarkKnownEmitted(Sema &S, FunctionDecl *OrigCaller,
723 FunctionDecl *OrigCallee, SourceLocation OrigLoc) {
Justin Lebar23d95422016-10-13 20:52:12 +0000724 // Nothing to do if we already know that FD is emitted.
Justin Lebar6c86e912016-10-19 21:15:01 +0000725 if (IsKnownEmitted(S, OrigCallee)) {
726 assert(!S.CUDACallGraph.count(OrigCallee));
Justin Lebar23d95422016-10-13 20:52:12 +0000727 return;
728 }
729
Justin Lebar6c86e912016-10-19 21:15:01 +0000730 // We've just discovered that OrigCallee is known-emitted. Walk our call
731 // graph to see what else we can now discover also must be emitted.
732
733 struct CallInfo {
734 FunctionDecl *Caller;
735 FunctionDecl *Callee;
736 SourceLocation Loc;
737 };
738 llvm::SmallVector<CallInfo, 4> Worklist = {{OrigCaller, OrigCallee, OrigLoc}};
739 llvm::SmallSet<CanonicalDeclPtr<FunctionDecl>, 4> Seen;
740 Seen.insert(OrigCallee);
Justin Lebar23d95422016-10-13 20:52:12 +0000741 while (!Worklist.empty()) {
Justin Lebar6c86e912016-10-19 21:15:01 +0000742 CallInfo C = Worklist.pop_back_val();
743 assert(!IsKnownEmitted(S, C.Callee) &&
Justin Lebar23d95422016-10-13 20:52:12 +0000744 "Worklist should not contain known-emitted functions.");
Justin Lebar6c86e912016-10-19 21:15:01 +0000745 S.CUDAKnownEmittedFns[C.Callee] = {C.Caller, C.Loc};
746 EmitDeferredDiags(S, C.Callee);
Justin Lebar23d95422016-10-13 20:52:12 +0000747
Justin Lebard692dfb2016-10-17 02:25:55 +0000748 // If this is a template instantiation, explore its callgraph as well:
749 // Non-dependent calls are part of the template's callgraph, while dependent
750 // calls are part of to the instantiation's call graph.
Justin Lebar6c86e912016-10-19 21:15:01 +0000751 if (auto *Templ = C.Callee->getPrimaryTemplate()) {
Justin Lebard692dfb2016-10-17 02:25:55 +0000752 FunctionDecl *TemplFD = Templ->getAsFunction();
753 if (!Seen.count(TemplFD) && !S.CUDAKnownEmittedFns.count(TemplFD)) {
754 Seen.insert(TemplFD);
Justin Lebar6c86e912016-10-19 21:15:01 +0000755 Worklist.push_back(
756 {/* Caller = */ C.Caller, /* Callee = */ TemplFD, C.Loc});
Justin Lebard692dfb2016-10-17 02:25:55 +0000757 }
758 }
Justin Lebar23d95422016-10-13 20:52:12 +0000759
Justin Lebar6c86e912016-10-19 21:15:01 +0000760 // Add all functions called by Callee to our worklist.
761 auto CGIt = S.CUDACallGraph.find(C.Callee);
Justin Lebar23d95422016-10-13 20:52:12 +0000762 if (CGIt == S.CUDACallGraph.end())
763 continue;
764
Justin Lebar6c86e912016-10-19 21:15:01 +0000765 for (std::pair<CanonicalDeclPtr<FunctionDecl>, SourceLocation> FDLoc :
766 CGIt->second) {
767 FunctionDecl *NewCallee = FDLoc.first;
768 SourceLocation CallLoc = FDLoc.second;
769 if (Seen.count(NewCallee) || IsKnownEmitted(S, NewCallee))
Justin Lebar23d95422016-10-13 20:52:12 +0000770 continue;
Justin Lebar6c86e912016-10-19 21:15:01 +0000771 Seen.insert(NewCallee);
772 Worklist.push_back(
773 {/* Caller = */ C.Callee, /* Callee = */ NewCallee, CallLoc});
Justin Lebar23d95422016-10-13 20:52:12 +0000774 }
775
Justin Lebar6c86e912016-10-19 21:15:01 +0000776 // C.Callee is now known-emitted, so we no longer need to maintain its list
777 // of callees in CUDACallGraph.
Justin Lebar23d95422016-10-13 20:52:12 +0000778 S.CUDACallGraph.erase(CGIt);
779 }
780}
781
Justin Lebar18e2d822016-08-15 23:00:49 +0000782bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
Justin Lebar9d4ed262016-09-30 23:57:38 +0000783 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar18e2d822016-08-15 23:00:49 +0000784 assert(Callee && "Callee may not be null.");
Justin Lebar23d95422016-10-13 20:52:12 +0000785 // FIXME: Is bailing out early correct here? Should we instead assume that
786 // the caller is a global initializer?
Justin Lebar18e2d822016-08-15 23:00:49 +0000787 FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
788 if (!Caller)
789 return true;
790
Justin Lebard692dfb2016-10-17 02:25:55 +0000791 // If the caller is known-emitted, mark the callee as known-emitted.
792 // Otherwise, mark the call in our call graph so we can traverse it later.
Justin Lebar23d95422016-10-13 20:52:12 +0000793 bool CallerKnownEmitted = IsKnownEmitted(*this, Caller);
794 if (CallerKnownEmitted)
Justin Lebar6c86e912016-10-19 21:15:01 +0000795 MarkKnownEmitted(*this, Caller, Callee, Loc);
Justin Lebard692dfb2016-10-17 02:25:55 +0000796 else {
797 // If we have
798 // host fn calls kernel fn calls host+device,
799 // the HD function does not get instantiated on the host. We model this by
800 // omitting at the call to the kernel from the callgraph. This ensures
801 // that, when compiling for host, only HD functions actually called from the
802 // host get marked as known-emitted.
803 if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global)
Justin Lebar6c86e912016-10-19 21:15:01 +0000804 CUDACallGraph[Caller].insert({Callee, Loc});
Justin Lebard692dfb2016-10-17 02:25:55 +0000805 }
Justin Lebar23d95422016-10-13 20:52:12 +0000806
807 CUDADiagBuilder::Kind DiagKind = [&] {
808 switch (IdentifyCUDAPreference(Caller, Callee)) {
809 case CFP_Never:
810 return CUDADiagBuilder::K_Immediate;
811 case CFP_WrongSide:
812 assert(Caller && "WrongSide calls require a non-null caller");
813 // If we know the caller will be emitted, we know this wrong-side call
814 // will be emitted, so it's an immediate error. Otherwise, defer the
815 // error until we know the caller is emitted.
Justin Lebar6c86e912016-10-19 21:15:01 +0000816 return CallerKnownEmitted ? CUDADiagBuilder::K_ImmediateWithCallStack
Justin Lebar23d95422016-10-13 20:52:12 +0000817 : CUDADiagBuilder::K_Deferred;
818 default:
819 return CUDADiagBuilder::K_Nop;
820 }
821 }();
Justin Lebar9fdb46e2016-10-08 01:07:11 +0000822
Justin Lebar9730ae92016-10-19 21:03:38 +0000823 if (DiagKind == CUDADiagBuilder::K_Nop)
824 return true;
825
Justin Lebar179bdce2016-10-13 18:45:08 +0000826 // Avoid emitting this error twice for the same location. Using a hashtable
827 // like this is unfortunate, but because we must continue parsing as normal
828 // after encountering a deferred error, it's otherwise very tricky for us to
829 // ensure that we only emit this deferred error once.
Justin Lebar6f727372016-10-21 20:08:52 +0000830 if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
Justin Lebar18e2d822016-08-15 23:00:49 +0000831 return true;
Justin Lebar2a8db342016-09-28 22:45:54 +0000832
Justin Lebar9730ae92016-10-19 21:03:38 +0000833 CUDADiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
Justin Lebar179bdce2016-10-13 18:45:08 +0000834 << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller);
835 CUDADiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl,
836 Caller, *this)
837 << Callee;
Justin Lebar6c86e912016-10-19 21:15:01 +0000838 return DiagKind != CUDADiagBuilder::K_Immediate &&
839 DiagKind != CUDADiagBuilder::K_ImmediateWithCallStack;
Justin Lebarb17840d2016-09-28 22:45:58 +0000840}
Justin Lebar7ca116c2016-09-30 17:14:53 +0000841
842void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
Justin Lebar9d4ed262016-09-30 23:57:38 +0000843 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar7ca116c2016-09-30 17:14:53 +0000844 if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
845 return;
846 FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
847 if (!CurFn)
848 return;
849 CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
850 if (Target == CFT_Global || Target == CFT_Device) {
851 Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
852 } else if (Target == CFT_HostDevice) {
853 Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
854 Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
855 }
Justin Lebar7ca116c2016-09-30 17:14:53 +0000856}
Artem Belevich13e9b4d2016-12-07 19:27:16 +0000857
858void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
859 LookupResult &Previous) {
860 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
861 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
862 for (NamedDecl *OldND : Previous) {
863 FunctionDecl *OldFD = OldND->getAsFunction();
864 if (!OldFD)
865 continue;
866
867 CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
868 // Don't allow HD and global functions to overload other functions with the
869 // same signature. We allow overloading based on CUDA attributes so that
870 // functions can have different implementations on the host and device, but
871 // HD/global functions "exist" in some sense on both the host and device, so
872 // should have the same implementation on both sides.
873 if (NewTarget != OldTarget &&
874 ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
875 (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
876 !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
877 /* ConsiderCudaAttrs = */ false)) {
878 Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
879 << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
880 Diag(OldFD->getLocation(), diag::note_previous_declaration);
881 NewFD->setInvalidDecl();
882 break;
883 }
884 }
885}