blob: fae489e77cc06a51b63279ccac31354f67b2bf55 [file] [log] [blame]
Michael Kuperstein13fbd452015-02-01 16:56:04 +00001//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pass that optimizes call sequences on x86.
11// Currently, it converts movs of function parameters onto the stack into
12// pushes. This is beneficial for two main reasons:
13// 1) The push instruction encoding is much smaller than an esp-relative mov
14// 2) It is possible to push memory arguments directly. So, if the
15// the transformation is preformed pre-reg-alloc, it can help relieve
16// register pressure.
17//
18//===----------------------------------------------------------------------===//
19
20#include <algorithm>
21
22#include "X86.h"
23#include "X86InstrInfo.h"
24#include "X86Subtarget.h"
25#include "X86MachineFunctionInfo.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/Passes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetInstrInfo.h"
35
36using namespace llvm;
37
38#define DEBUG_TYPE "x86-cf-opt"
39
40cl::opt<bool> NoX86CFOpt("no-x86-call-frame-opt",
41 cl::desc("Avoid optimizing x86 call frames for size"),
42 cl::init(false), cl::Hidden);
43
44namespace {
45class X86CallFrameOptimization : public MachineFunctionPass {
46public:
47 X86CallFrameOptimization() : MachineFunctionPass(ID) {}
48
49 bool runOnMachineFunction(MachineFunction &MF) override;
50
51private:
52 bool shouldPerformTransformation(MachineFunction &MF);
53
54 bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB,
55 MachineBasicBlock::iterator I);
56
57 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
58 unsigned Reg);
59
60 const char *getPassName() const override {
61 return "X86 Optimize Call Frame";
62 }
63
64 const TargetInstrInfo *TII;
65 const TargetFrameLowering *TFL;
66 const MachineRegisterInfo *MRI;
67 static char ID;
68};
69
70char X86CallFrameOptimization::ID = 0;
71}
72
73FunctionPass *llvm::createX86CallFrameOptimization() {
74 return new X86CallFrameOptimization();
75}
76
77// This checks whether the transformation is legal and profitable
78bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF) {
79 if (NoX86CFOpt.getValue())
80 return false;
81
82 // We currently only support call sequences where *all* parameters.
83 // are passed on the stack.
84 // No point in running this in 64-bit mode, since some arguments are
85 // passed in-register in all common calling conventions, so the pattern
86 // we're looking for will never match.
87 const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
88 if (STI.is64Bit())
89 return false;
90
91 // You would expect straight-line code between call-frame setup and
92 // call-frame destroy. You would be wrong. There are circumstances (e.g.
93 // CMOV_GR8 expansion of a select that feeds a function call!) where we can
94 // end up with the setup and the destroy in different basic blocks.
95 // This is bad, and breaks SP adjustment.
96 // So, check that all of the frames in the function are closed inside
97 // the same block, and, for good measure, that there are no nested frames.
98 int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
99 int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
100 for (MachineBasicBlock &BB : MF) {
101 bool InsideFrameSequence = false;
102 for (MachineInstr &MI : BB) {
103 if (MI.getOpcode() == FrameSetupOpcode) {
104 if (InsideFrameSequence)
105 return false;
106 InsideFrameSequence = true;
107 }
108 else if (MI.getOpcode() == FrameDestroyOpcode) {
109 if (!InsideFrameSequence)
110 return false;
111 InsideFrameSequence = false;
112 }
113 }
114
115 if (InsideFrameSequence)
116 return false;
117 }
118
119 // Now that we know the transformation is legal, check if it is
120 // profitable.
121 // TODO: Add a heuristic that actually looks at the function,
122 // and enable this for more cases.
123
124 // This transformation is always a win when we expected to have
125 // a reserved call frame. Under other circumstances, it may be either
126 // a win or a loss, and requires a heuristic.
127 // For now, enable it only for the relatively clear win cases.
128 bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
129 if (CannotReserveFrame)
130 return true;
131
132 // For now, don't even try to evaluate the profitability when
133 // not optimizing for size.
134 AttributeSet FnAttrs = MF.getFunction()->getAttributes();
135 bool OptForSize =
136 FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
137 Attribute::OptimizeForSize) ||
138 FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
139
140 if (!OptForSize)
141 return false;
142
143 // Stack re-alignment can make this unprofitable even in terms of size.
144 // As mentioned above, a better heuristic is needed. For now, don't do this
145 // when the required alignment is above 8. (4 would be the safe choice, but
146 // some experimentation showed 8 is generally good).
147 if (TFL->getStackAlignment() > 8)
148 return false;
149
150 return true;
151}
152
153bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
154 TII = MF.getSubtarget().getInstrInfo();
155 TFL = MF.getSubtarget().getFrameLowering();
156 MRI = &MF.getRegInfo();
157
158 if (!shouldPerformTransformation(MF))
159 return false;
160
161 int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
162
163 bool Changed = false;
164
165 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
166 for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
167 if (I->getOpcode() == FrameSetupOpcode)
168 Changed |= adjustCallSequence(MF, *BB, I);
169
170 return Changed;
171}
172
173bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
174 MachineBasicBlock &MBB,
175 MachineBasicBlock::iterator I) {
176
177 // Check that this particular call sequence is amenable to the
178 // transformation.
179 const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
180 MF.getSubtarget().getRegisterInfo());
181 unsigned StackPtr = RegInfo.getStackRegister();
182 int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
183
184 // We expect to enter this at the beginning of a call sequence
185 assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
186 MachineBasicBlock::iterator FrameSetup = I++;
187
188
189 // For globals in PIC mode, we can have some LEAs here.
190 // Ignore them, they don't bother us.
191 // TODO: Extend this to something that covers more cases.
192 while (I->getOpcode() == X86::LEA32r)
193 ++I;
194
195 // We expect a copy instruction here.
196 // TODO: The copy instruction is a lowering artifact.
197 // We should also support a copy-less version, where the stack
198 // pointer is used directly.
199 if (!I->isCopy() || !I->getOperand(0).isReg())
200 return false;
201 MachineBasicBlock::iterator SPCopy = I++;
202 StackPtr = SPCopy->getOperand(0).getReg();
203
204 // Scan the call setup sequence for the pattern we're looking for.
205 // We only handle a simple case - a sequence of MOV32mi or MOV32mr
206 // instructions, that push a sequence of 32-bit values onto the stack, with
207 // no gaps between them.
208 SmallVector<MachineInstr*, 4> MovVector(4, nullptr);
209 unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
210 if (MaxAdjust > 4)
211 MovVector.resize(MaxAdjust, nullptr);
212
213 do {
214 int Opcode = I->getOpcode();
215 if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
216 break;
217
218 // We only want movs of the form:
219 // movl imm/r32, k(%esp)
220 // If we run into something else, bail.
221 // Note that AddrBaseReg may, counter to its name, not be a register,
222 // but rather a frame index.
223 // TODO: Support the fi case. This should probably work now that we
224 // have the infrastructure to track the stack pointer within a call
225 // sequence.
226 if (!I->getOperand(X86::AddrBaseReg).isReg() ||
227 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
228 !I->getOperand(X86::AddrScaleAmt).isImm() ||
229 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
230 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
231 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
232 !I->getOperand(X86::AddrDisp).isImm())
233 return false;
234
235 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
236 assert(StackDisp >= 0 && "Negative stack displacement when passing parameters");
237
238 // We really don't want to consider the unaligned case.
239 if (StackDisp % 4)
240 return false;
241 StackDisp /= 4;
242
243 assert((size_t)StackDisp < MovVector.size() &&
244 "Function call has more parameters than the stack is adjusted for.");
245
246 // If the same stack slot is being filled twice, something's fishy.
247 if (MovVector[StackDisp] != nullptr)
248 return false;
249 MovVector[StackDisp] = I;
250
251 ++I;
252 } while (I != MBB.end());
253
254 // We now expect the end of the sequence - a call and a stack adjust.
255 if (I == MBB.end())
256 return false;
257
258 // For PCrel calls, we expect an additional COPY of the basereg.
259 // If we find one, skip it.
260 if (I->isCopy()) {
261 if (I->getOperand(1).getReg() ==
262 MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
263 ++I;
264 else
265 return false;
266 }
267
268 if (!I->isCall())
269 return false;
270 MachineBasicBlock::iterator Call = I;
271 if ((++I)->getOpcode() != FrameDestroyOpcode)
272 return false;
273
274 // Now, go through the vector, and see that we don't have any gaps,
275 // but only a series of 32-bit MOVs.
276
277 int64_t ExpectedDist = 0;
278 auto MMI = MovVector.begin(), MME = MovVector.end();
279 for (; MMI != MME; ++MMI, ExpectedDist += 4)
280 if (*MMI == nullptr)
281 break;
282
283 // If the call had no parameters, do nothing
284 if (!ExpectedDist)
285 return false;
286
287 // We are either at the last parameter, or a gap.
288 // Make sure it's not a gap
289 for (; MMI != MME; ++MMI)
290 if (*MMI != nullptr)
291 return false;
292
293 // Ok, we can in fact do the transformation for this call.
294 // Do not remove the FrameSetup instruction, but adjust the parameters.
295 // PEI will end up finalizing the handling of this.
296 FrameSetup->getOperand(1).setImm(ExpectedDist);
297
298 DebugLoc DL = I->getDebugLoc();
299 // Now, iterate through the vector in reverse order, and replace the movs
300 // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
301 // replace uses.
302 for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
303 MachineBasicBlock::iterator MOV = *MovVector[Idx];
304 MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
305 if (MOV->getOpcode() == X86::MOV32mi) {
306 unsigned PushOpcode = X86::PUSHi32;
307 // If the operand is a small (8-bit) immediate, we can use a
308 // PUSH instruction with a shorter encoding.
309 // Note that isImm() may fail even though this is a MOVmi, because
310 // the operand can also be a symbol.
311 if (PushOp.isImm()) {
312 int64_t Val = PushOp.getImm();
313 if (isInt<8>(Val))
314 PushOpcode = X86::PUSH32i8;
315 }
316 BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
317 } else {
318 unsigned int Reg = PushOp.getReg();
319
320 // If PUSHrmm is not slow on this target, try to fold the source of the
321 // push into the instruction.
322 const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>();
323 bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
324
325 // Check that this is legal to fold. Right now, we're extremely
326 // conservative about that.
327 MachineInstr *DefMov = nullptr;
328 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
329 MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm));
330
331 unsigned NumOps = DefMov->getDesc().getNumOperands();
332 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
333 Push->addOperand(DefMov->getOperand(i));
334
335 DefMov->eraseFromParent();
336 } else {
337 BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr();
338 }
339 }
340
341 MBB.erase(MOV);
342 }
343
344 // The stack-pointer copy is no longer used in the call sequences.
345 // There should not be any other users, but we can't commit to that, so:
346 if (MRI->use_empty(SPCopy->getOperand(0).getReg()))
347 SPCopy->eraseFromParent();
348
349 // Once we've done this, we need to make sure PEI doesn't assume a reserved
350 // frame.
351 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
352 FuncInfo->setHasPushSequences(true);
353
354 return true;
355}
356
357MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
358 MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
359 // Do an extremely restricted form of load folding.
360 // ISel will often create patterns like:
361 // movl 4(%edi), %eax
362 // movl 8(%edi), %ecx
363 // movl 12(%edi), %edx
364 // movl %edx, 8(%esp)
365 // movl %ecx, 4(%esp)
366 // movl %eax, (%esp)
367 // call
368 // Get rid of those with prejudice.
369 if (!TargetRegisterInfo::isVirtualRegister(Reg))
370 return nullptr;
371
372 // Make sure this is the only use of Reg.
373 if (!MRI->hasOneNonDBGUse(Reg))
374 return nullptr;
375
376 MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
377
378 // Make sure the def is a MOV from memory.
379 // If the def is an another block, give up.
380 if (DefMI->getOpcode() != X86::MOV32rm ||
381 DefMI->getParent() != FrameSetup->getParent())
382 return nullptr;
383
384 // Be careful with movs that load from a stack slot, since it may get
385 // resolved incorrectly.
386 // TODO: Again, we already have the infrastructure, so this should work.
387 if (!DefMI->getOperand(1).isReg())
388 return nullptr;
389
390 // Now, make sure everything else up until the ADJCALLSTACK is a sequence
391 // of MOVs. To be less conservative would require duplicating a lot of the
392 // logic from PeepholeOptimizer.
393 // FIXME: A possibly better approach would be to teach the PeepholeOptimizer
394 // to be smarter about folding into pushes.
395 for (auto I = DefMI; I != FrameSetup; ++I)
396 if (I->getOpcode() != X86::MOV32rm)
397 return nullptr;
398
399 return DefMI;
400}