Michael Kuperstein | 13fbd45 | 2015-02-01 16:56:04 +0000 | [diff] [blame^] | 1 | //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines a pass that optimizes call sequences on x86. |
| 11 | // Currently, it converts movs of function parameters onto the stack into |
| 12 | // pushes. This is beneficial for two main reasons: |
| 13 | // 1) The push instruction encoding is much smaller than an esp-relative mov |
| 14 | // 2) It is possible to push memory arguments directly. So, if the |
| 15 | // the transformation is preformed pre-reg-alloc, it can help relieve |
| 16 | // register pressure. |
| 17 | // |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | |
| 20 | #include <algorithm> |
| 21 | |
| 22 | #include "X86.h" |
| 23 | #include "X86InstrInfo.h" |
| 24 | #include "X86Subtarget.h" |
| 25 | #include "X86MachineFunctionInfo.h" |
| 26 | #include "llvm/ADT/Statistic.h" |
| 27 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 28 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 30 | #include "llvm/CodeGen/Passes.h" |
| 31 | #include "llvm/IR/Function.h" |
| 32 | #include "llvm/Support/Debug.h" |
| 33 | #include "llvm/Support/raw_ostream.h" |
| 34 | #include "llvm/Target/TargetInstrInfo.h" |
| 35 | |
| 36 | using namespace llvm; |
| 37 | |
| 38 | #define DEBUG_TYPE "x86-cf-opt" |
| 39 | |
| 40 | cl::opt<bool> NoX86CFOpt("no-x86-call-frame-opt", |
| 41 | cl::desc("Avoid optimizing x86 call frames for size"), |
| 42 | cl::init(false), cl::Hidden); |
| 43 | |
| 44 | namespace { |
| 45 | class X86CallFrameOptimization : public MachineFunctionPass { |
| 46 | public: |
| 47 | X86CallFrameOptimization() : MachineFunctionPass(ID) {} |
| 48 | |
| 49 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 50 | |
| 51 | private: |
| 52 | bool shouldPerformTransformation(MachineFunction &MF); |
| 53 | |
| 54 | bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB, |
| 55 | MachineBasicBlock::iterator I); |
| 56 | |
| 57 | MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, |
| 58 | unsigned Reg); |
| 59 | |
| 60 | const char *getPassName() const override { |
| 61 | return "X86 Optimize Call Frame"; |
| 62 | } |
| 63 | |
| 64 | const TargetInstrInfo *TII; |
| 65 | const TargetFrameLowering *TFL; |
| 66 | const MachineRegisterInfo *MRI; |
| 67 | static char ID; |
| 68 | }; |
| 69 | |
| 70 | char X86CallFrameOptimization::ID = 0; |
| 71 | } |
| 72 | |
| 73 | FunctionPass *llvm::createX86CallFrameOptimization() { |
| 74 | return new X86CallFrameOptimization(); |
| 75 | } |
| 76 | |
| 77 | // This checks whether the transformation is legal and profitable |
| 78 | bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF) { |
| 79 | if (NoX86CFOpt.getValue()) |
| 80 | return false; |
| 81 | |
| 82 | // We currently only support call sequences where *all* parameters. |
| 83 | // are passed on the stack. |
| 84 | // No point in running this in 64-bit mode, since some arguments are |
| 85 | // passed in-register in all common calling conventions, so the pattern |
| 86 | // we're looking for will never match. |
| 87 | const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); |
| 88 | if (STI.is64Bit()) |
| 89 | return false; |
| 90 | |
| 91 | // You would expect straight-line code between call-frame setup and |
| 92 | // call-frame destroy. You would be wrong. There are circumstances (e.g. |
| 93 | // CMOV_GR8 expansion of a select that feeds a function call!) where we can |
| 94 | // end up with the setup and the destroy in different basic blocks. |
| 95 | // This is bad, and breaks SP adjustment. |
| 96 | // So, check that all of the frames in the function are closed inside |
| 97 | // the same block, and, for good measure, that there are no nested frames. |
| 98 | int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
| 99 | int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); |
| 100 | for (MachineBasicBlock &BB : MF) { |
| 101 | bool InsideFrameSequence = false; |
| 102 | for (MachineInstr &MI : BB) { |
| 103 | if (MI.getOpcode() == FrameSetupOpcode) { |
| 104 | if (InsideFrameSequence) |
| 105 | return false; |
| 106 | InsideFrameSequence = true; |
| 107 | } |
| 108 | else if (MI.getOpcode() == FrameDestroyOpcode) { |
| 109 | if (!InsideFrameSequence) |
| 110 | return false; |
| 111 | InsideFrameSequence = false; |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | if (InsideFrameSequence) |
| 116 | return false; |
| 117 | } |
| 118 | |
| 119 | // Now that we know the transformation is legal, check if it is |
| 120 | // profitable. |
| 121 | // TODO: Add a heuristic that actually looks at the function, |
| 122 | // and enable this for more cases. |
| 123 | |
| 124 | // This transformation is always a win when we expected to have |
| 125 | // a reserved call frame. Under other circumstances, it may be either |
| 126 | // a win or a loss, and requires a heuristic. |
| 127 | // For now, enable it only for the relatively clear win cases. |
| 128 | bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects(); |
| 129 | if (CannotReserveFrame) |
| 130 | return true; |
| 131 | |
| 132 | // For now, don't even try to evaluate the profitability when |
| 133 | // not optimizing for size. |
| 134 | AttributeSet FnAttrs = MF.getFunction()->getAttributes(); |
| 135 | bool OptForSize = |
| 136 | FnAttrs.hasAttribute(AttributeSet::FunctionIndex, |
| 137 | Attribute::OptimizeForSize) || |
| 138 | FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize); |
| 139 | |
| 140 | if (!OptForSize) |
| 141 | return false; |
| 142 | |
| 143 | // Stack re-alignment can make this unprofitable even in terms of size. |
| 144 | // As mentioned above, a better heuristic is needed. For now, don't do this |
| 145 | // when the required alignment is above 8. (4 would be the safe choice, but |
| 146 | // some experimentation showed 8 is generally good). |
| 147 | if (TFL->getStackAlignment() > 8) |
| 148 | return false; |
| 149 | |
| 150 | return true; |
| 151 | } |
| 152 | |
| 153 | bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { |
| 154 | TII = MF.getSubtarget().getInstrInfo(); |
| 155 | TFL = MF.getSubtarget().getFrameLowering(); |
| 156 | MRI = &MF.getRegInfo(); |
| 157 | |
| 158 | if (!shouldPerformTransformation(MF)) |
| 159 | return false; |
| 160 | |
| 161 | int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
| 162 | |
| 163 | bool Changed = false; |
| 164 | |
| 165 | for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) |
| 166 | for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) |
| 167 | if (I->getOpcode() == FrameSetupOpcode) |
| 168 | Changed |= adjustCallSequence(MF, *BB, I); |
| 169 | |
| 170 | return Changed; |
| 171 | } |
| 172 | |
| 173 | bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, |
| 174 | MachineBasicBlock &MBB, |
| 175 | MachineBasicBlock::iterator I) { |
| 176 | |
| 177 | // Check that this particular call sequence is amenable to the |
| 178 | // transformation. |
| 179 | const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>( |
| 180 | MF.getSubtarget().getRegisterInfo()); |
| 181 | unsigned StackPtr = RegInfo.getStackRegister(); |
| 182 | int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); |
| 183 | |
| 184 | // We expect to enter this at the beginning of a call sequence |
| 185 | assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); |
| 186 | MachineBasicBlock::iterator FrameSetup = I++; |
| 187 | |
| 188 | |
| 189 | // For globals in PIC mode, we can have some LEAs here. |
| 190 | // Ignore them, they don't bother us. |
| 191 | // TODO: Extend this to something that covers more cases. |
| 192 | while (I->getOpcode() == X86::LEA32r) |
| 193 | ++I; |
| 194 | |
| 195 | // We expect a copy instruction here. |
| 196 | // TODO: The copy instruction is a lowering artifact. |
| 197 | // We should also support a copy-less version, where the stack |
| 198 | // pointer is used directly. |
| 199 | if (!I->isCopy() || !I->getOperand(0).isReg()) |
| 200 | return false; |
| 201 | MachineBasicBlock::iterator SPCopy = I++; |
| 202 | StackPtr = SPCopy->getOperand(0).getReg(); |
| 203 | |
| 204 | // Scan the call setup sequence for the pattern we're looking for. |
| 205 | // We only handle a simple case - a sequence of MOV32mi or MOV32mr |
| 206 | // instructions, that push a sequence of 32-bit values onto the stack, with |
| 207 | // no gaps between them. |
| 208 | SmallVector<MachineInstr*, 4> MovVector(4, nullptr); |
| 209 | unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4; |
| 210 | if (MaxAdjust > 4) |
| 211 | MovVector.resize(MaxAdjust, nullptr); |
| 212 | |
| 213 | do { |
| 214 | int Opcode = I->getOpcode(); |
| 215 | if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr) |
| 216 | break; |
| 217 | |
| 218 | // We only want movs of the form: |
| 219 | // movl imm/r32, k(%esp) |
| 220 | // If we run into something else, bail. |
| 221 | // Note that AddrBaseReg may, counter to its name, not be a register, |
| 222 | // but rather a frame index. |
| 223 | // TODO: Support the fi case. This should probably work now that we |
| 224 | // have the infrastructure to track the stack pointer within a call |
| 225 | // sequence. |
| 226 | if (!I->getOperand(X86::AddrBaseReg).isReg() || |
| 227 | (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || |
| 228 | !I->getOperand(X86::AddrScaleAmt).isImm() || |
| 229 | (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || |
| 230 | (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || |
| 231 | (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || |
| 232 | !I->getOperand(X86::AddrDisp).isImm()) |
| 233 | return false; |
| 234 | |
| 235 | int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); |
| 236 | assert(StackDisp >= 0 && "Negative stack displacement when passing parameters"); |
| 237 | |
| 238 | // We really don't want to consider the unaligned case. |
| 239 | if (StackDisp % 4) |
| 240 | return false; |
| 241 | StackDisp /= 4; |
| 242 | |
| 243 | assert((size_t)StackDisp < MovVector.size() && |
| 244 | "Function call has more parameters than the stack is adjusted for."); |
| 245 | |
| 246 | // If the same stack slot is being filled twice, something's fishy. |
| 247 | if (MovVector[StackDisp] != nullptr) |
| 248 | return false; |
| 249 | MovVector[StackDisp] = I; |
| 250 | |
| 251 | ++I; |
| 252 | } while (I != MBB.end()); |
| 253 | |
| 254 | // We now expect the end of the sequence - a call and a stack adjust. |
| 255 | if (I == MBB.end()) |
| 256 | return false; |
| 257 | |
| 258 | // For PCrel calls, we expect an additional COPY of the basereg. |
| 259 | // If we find one, skip it. |
| 260 | if (I->isCopy()) { |
| 261 | if (I->getOperand(1).getReg() == |
| 262 | MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg()) |
| 263 | ++I; |
| 264 | else |
| 265 | return false; |
| 266 | } |
| 267 | |
| 268 | if (!I->isCall()) |
| 269 | return false; |
| 270 | MachineBasicBlock::iterator Call = I; |
| 271 | if ((++I)->getOpcode() != FrameDestroyOpcode) |
| 272 | return false; |
| 273 | |
| 274 | // Now, go through the vector, and see that we don't have any gaps, |
| 275 | // but only a series of 32-bit MOVs. |
| 276 | |
| 277 | int64_t ExpectedDist = 0; |
| 278 | auto MMI = MovVector.begin(), MME = MovVector.end(); |
| 279 | for (; MMI != MME; ++MMI, ExpectedDist += 4) |
| 280 | if (*MMI == nullptr) |
| 281 | break; |
| 282 | |
| 283 | // If the call had no parameters, do nothing |
| 284 | if (!ExpectedDist) |
| 285 | return false; |
| 286 | |
| 287 | // We are either at the last parameter, or a gap. |
| 288 | // Make sure it's not a gap |
| 289 | for (; MMI != MME; ++MMI) |
| 290 | if (*MMI != nullptr) |
| 291 | return false; |
| 292 | |
| 293 | // Ok, we can in fact do the transformation for this call. |
| 294 | // Do not remove the FrameSetup instruction, but adjust the parameters. |
| 295 | // PEI will end up finalizing the handling of this. |
| 296 | FrameSetup->getOperand(1).setImm(ExpectedDist); |
| 297 | |
| 298 | DebugLoc DL = I->getDebugLoc(); |
| 299 | // Now, iterate through the vector in reverse order, and replace the movs |
| 300 | // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to |
| 301 | // replace uses. |
| 302 | for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) { |
| 303 | MachineBasicBlock::iterator MOV = *MovVector[Idx]; |
| 304 | MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); |
| 305 | if (MOV->getOpcode() == X86::MOV32mi) { |
| 306 | unsigned PushOpcode = X86::PUSHi32; |
| 307 | // If the operand is a small (8-bit) immediate, we can use a |
| 308 | // PUSH instruction with a shorter encoding. |
| 309 | // Note that isImm() may fail even though this is a MOVmi, because |
| 310 | // the operand can also be a symbol. |
| 311 | if (PushOp.isImm()) { |
| 312 | int64_t Val = PushOp.getImm(); |
| 313 | if (isInt<8>(Val)) |
| 314 | PushOpcode = X86::PUSH32i8; |
| 315 | } |
| 316 | BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp); |
| 317 | } else { |
| 318 | unsigned int Reg = PushOp.getReg(); |
| 319 | |
| 320 | // If PUSHrmm is not slow on this target, try to fold the source of the |
| 321 | // push into the instruction. |
| 322 | const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>(); |
| 323 | bool SlowPUSHrmm = ST.isAtom() || ST.isSLM(); |
| 324 | |
| 325 | // Check that this is legal to fold. Right now, we're extremely |
| 326 | // conservative about that. |
| 327 | MachineInstr *DefMov = nullptr; |
| 328 | if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { |
| 329 | MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm)); |
| 330 | |
| 331 | unsigned NumOps = DefMov->getDesc().getNumOperands(); |
| 332 | for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) |
| 333 | Push->addOperand(DefMov->getOperand(i)); |
| 334 | |
| 335 | DefMov->eraseFromParent(); |
| 336 | } else { |
| 337 | BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr(); |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | MBB.erase(MOV); |
| 342 | } |
| 343 | |
| 344 | // The stack-pointer copy is no longer used in the call sequences. |
| 345 | // There should not be any other users, but we can't commit to that, so: |
| 346 | if (MRI->use_empty(SPCopy->getOperand(0).getReg())) |
| 347 | SPCopy->eraseFromParent(); |
| 348 | |
| 349 | // Once we've done this, we need to make sure PEI doesn't assume a reserved |
| 350 | // frame. |
| 351 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| 352 | FuncInfo->setHasPushSequences(true); |
| 353 | |
| 354 | return true; |
| 355 | } |
| 356 | |
| 357 | MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( |
| 358 | MachineBasicBlock::iterator FrameSetup, unsigned Reg) { |
| 359 | // Do an extremely restricted form of load folding. |
| 360 | // ISel will often create patterns like: |
| 361 | // movl 4(%edi), %eax |
| 362 | // movl 8(%edi), %ecx |
| 363 | // movl 12(%edi), %edx |
| 364 | // movl %edx, 8(%esp) |
| 365 | // movl %ecx, 4(%esp) |
| 366 | // movl %eax, (%esp) |
| 367 | // call |
| 368 | // Get rid of those with prejudice. |
| 369 | if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| 370 | return nullptr; |
| 371 | |
| 372 | // Make sure this is the only use of Reg. |
| 373 | if (!MRI->hasOneNonDBGUse(Reg)) |
| 374 | return nullptr; |
| 375 | |
| 376 | MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg); |
| 377 | |
| 378 | // Make sure the def is a MOV from memory. |
| 379 | // If the def is an another block, give up. |
| 380 | if (DefMI->getOpcode() != X86::MOV32rm || |
| 381 | DefMI->getParent() != FrameSetup->getParent()) |
| 382 | return nullptr; |
| 383 | |
| 384 | // Be careful with movs that load from a stack slot, since it may get |
| 385 | // resolved incorrectly. |
| 386 | // TODO: Again, we already have the infrastructure, so this should work. |
| 387 | if (!DefMI->getOperand(1).isReg()) |
| 388 | return nullptr; |
| 389 | |
| 390 | // Now, make sure everything else up until the ADJCALLSTACK is a sequence |
| 391 | // of MOVs. To be less conservative would require duplicating a lot of the |
| 392 | // logic from PeepholeOptimizer. |
| 393 | // FIXME: A possibly better approach would be to teach the PeepholeOptimizer |
| 394 | // to be smarter about folding into pushes. |
| 395 | for (auto I = DefMI; I != FrameSetup; ++I) |
| 396 | if (I->getOpcode() != X86::MOV32rm) |
| 397 | return nullptr; |
| 398 | |
| 399 | return DefMI; |
| 400 | } |