Michael Kuperstein | e86aa9a | 2015-02-01 16:15:07 +0000 | [diff] [blame] | 1 | //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file describes the various pseudo instructions used by the compiler, |
| 11 | // as well as Pat patterns used during instruction selection. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | // Pattern Matching Support |
| 17 | |
| 18 | def GetLo32XForm : SDNodeXForm<imm, [{ |
| 19 | // Transformation function: get the low 32 bits. |
| 20 | return getI32Imm((unsigned)N->getZExtValue()); |
| 21 | }]>; |
| 22 | |
| 23 | def GetLo8XForm : SDNodeXForm<imm, [{ |
| 24 | // Transformation function: get the low 8 bits. |
| 25 | return getI8Imm((uint8_t)N->getZExtValue()); |
| 26 | }]>; |
| 27 | |
| 28 | |
| 29 | //===----------------------------------------------------------------------===// |
| 30 | // Random Pseudo Instructions. |
| 31 | |
| 32 | // PIC base construction. This expands to code that looks like this: |
| 33 | // call $next_inst |
| 34 | // popl %destreg" |
| 35 | let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in |
| 36 | def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), |
| 37 | "", []>; |
| 38 | |
| 39 | |
| 40 | // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into |
| 41 | // a stack adjustment and the codegen must know that they may modify the stack |
| 42 | // pointer before prolog-epilog rewriting occurs. |
| 43 | // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become |
| 44 | // sub / add which can clobber EFLAGS. |
| 45 | let Defs = [ESP, EFLAGS], Uses = [ESP] in { |
Michael Kuperstein | 13fbd45 | 2015-02-01 16:56:04 +0000 | [diff] [blame^] | 46 | def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), |
Michael Kuperstein | e86aa9a | 2015-02-01 16:15:07 +0000 | [diff] [blame] | 47 | "#ADJCALLSTACKDOWN", |
Michael Kuperstein | 13fbd45 | 2015-02-01 16:56:04 +0000 | [diff] [blame^] | 48 | []>, |
Michael Kuperstein | e86aa9a | 2015-02-01 16:15:07 +0000 | [diff] [blame] | 49 | Requires<[NotLP64]>; |
| 50 | def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), |
| 51 | "#ADJCALLSTACKUP", |
| 52 | [(X86callseq_end timm:$amt1, timm:$amt2)]>, |
| 53 | Requires<[NotLP64]>; |
| 54 | } |
Michael Kuperstein | 13fbd45 | 2015-02-01 16:56:04 +0000 | [diff] [blame^] | 55 | def : Pat<(X86callseq_start timm:$amt1), |
| 56 | (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>; |
| 57 | |
Michael Kuperstein | e86aa9a | 2015-02-01 16:15:07 +0000 | [diff] [blame] | 58 | |
| 59 | // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into |
| 60 | // a stack adjustment and the codegen must know that they may modify the stack |
| 61 | // pointer before prolog-epilog rewriting occurs. |
| 62 | // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become |
| 63 | // sub / add which can clobber EFLAGS. |
| 64 | let Defs = [RSP, EFLAGS], Uses = [RSP] in { |
Michael Kuperstein | 13fbd45 | 2015-02-01 16:56:04 +0000 | [diff] [blame^] | 65 | def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), |
Michael Kuperstein | e86aa9a | 2015-02-01 16:15:07 +0000 | [diff] [blame] | 66 | "#ADJCALLSTACKDOWN", |
Michael Kuperstein | 13fbd45 | 2015-02-01 16:56:04 +0000 | [diff] [blame^] | 67 | []>, |
Michael Kuperstein | e86aa9a | 2015-02-01 16:15:07 +0000 | [diff] [blame] | 68 | Requires<[IsLP64]>; |
| 69 | def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), |
| 70 | "#ADJCALLSTACKUP", |
| 71 | [(X86callseq_end timm:$amt1, timm:$amt2)]>, |
| 72 | Requires<[IsLP64]>; |
| 73 | } |
Michael Kuperstein | 13fbd45 | 2015-02-01 16:56:04 +0000 | [diff] [blame^] | 74 | def : Pat<(X86callseq_start timm:$amt1), |
| 75 | (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>; |
Michael Kuperstein | e86aa9a | 2015-02-01 16:15:07 +0000 | [diff] [blame] | 76 | |
| 77 | |
| 78 | // x86-64 va_start lowering magic. |
| 79 | let usesCustomInserter = 1, Defs = [EFLAGS] in { |
| 80 | def VASTART_SAVE_XMM_REGS : I<0, Pseudo, |
| 81 | (outs), |
| 82 | (ins GR8:$al, |
| 83 | i64imm:$regsavefi, i64imm:$offset, |
| 84 | variable_ops), |
| 85 | "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", |
| 86 | [(X86vastart_save_xmm_regs GR8:$al, |
| 87 | imm:$regsavefi, |
| 88 | imm:$offset), |
| 89 | (implicit EFLAGS)]>; |
| 90 | |
| 91 | // The VAARG_64 pseudo-instruction takes the address of the va_list, |
| 92 | // and places the address of the next argument into a register. |
| 93 | let Defs = [EFLAGS] in |
| 94 | def VAARG_64 : I<0, Pseudo, |
| 95 | (outs GR64:$dst), |
| 96 | (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), |
| 97 | "#VAARG_64 $dst, $ap, $size, $mode, $align", |
| 98 | [(set GR64:$dst, |
| 99 | (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), |
| 100 | (implicit EFLAGS)]>; |
| 101 | |
| 102 | // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows |
| 103 | // targets. These calls are needed to probe the stack when allocating more than |
| 104 | // 4k bytes in one go. Touching the stack at 4K increments is necessary to |
| 105 | // ensure that the guard pages used by the OS virtual memory manager are |
| 106 | // allocated in correct sequence. |
| 107 | // The main point of having separate instruction are extra unmodelled effects |
| 108 | // (compared to ordinary calls) like stack pointer change. |
| 109 | |
| 110 | let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in |
| 111 | def WIN_ALLOCA : I<0, Pseudo, (outs), (ins), |
| 112 | "# dynamic stack allocation", |
| 113 | [(X86WinAlloca)]>; |
| 114 | |
| 115 | // When using segmented stacks these are lowered into instructions which first |
| 116 | // check if the current stacklet has enough free memory. If it does, memory is |
| 117 | // allocated by bumping the stack pointer. Otherwise memory is allocated from |
| 118 | // the heap. |
| 119 | |
| 120 | let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in |
| 121 | def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), |
| 122 | "# variable sized alloca for segmented stacks", |
| 123 | [(set GR32:$dst, |
| 124 | (X86SegAlloca GR32:$size))]>, |
| 125 | Requires<[NotLP64]>; |
| 126 | |
| 127 | let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in |
| 128 | def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), |
| 129 | "# variable sized alloca for segmented stacks", |
| 130 | [(set GR64:$dst, |
| 131 | (X86SegAlloca GR64:$size))]>, |
| 132 | Requires<[In64BitMode]>; |
| 133 | } |
| 134 | |
| 135 | // The MSVC runtime contains an _ftol2 routine for converting floating-point |
| 136 | // to integer values. It has a strange calling convention: the input is |
| 137 | // popped from the x87 stack, and the return value is given in EDX:EAX. ECX is |
| 138 | // used as a temporary register. No other registers (aside from flags) are |
| 139 | // touched. |
| 140 | // Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80 |
| 141 | // variant is unnecessary. |
| 142 | |
| 143 | let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in { |
| 144 | def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src), |
| 145 | "# win32 fptoui", |
| 146 | [(X86WinFTOL RFP32:$src)]>, |
| 147 | Requires<[Not64BitMode]>; |
| 148 | |
| 149 | def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src), |
| 150 | "# win32 fptoui", |
| 151 | [(X86WinFTOL RFP64:$src)]>, |
| 152 | Requires<[Not64BitMode]>; |
| 153 | } |
| 154 | |
| 155 | //===----------------------------------------------------------------------===// |
| 156 | // EH Pseudo Instructions |
| 157 | // |
| 158 | let SchedRW = [WriteSystem] in { |
| 159 | let isTerminator = 1, isReturn = 1, isBarrier = 1, |
| 160 | hasCtrlDep = 1, isCodeGenOnly = 1 in { |
| 161 | def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), |
| 162 | "ret\t#eh_return, addr: $addr", |
| 163 | [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; |
| 164 | |
| 165 | } |
| 166 | |
| 167 | let isTerminator = 1, isReturn = 1, isBarrier = 1, |
| 168 | hasCtrlDep = 1, isCodeGenOnly = 1 in { |
| 169 | def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), |
| 170 | "ret\t#eh_return, addr: $addr", |
| 171 | [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; |
| 172 | |
| 173 | } |
| 174 | |
| 175 | let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, |
| 176 | usesCustomInserter = 1 in { |
| 177 | def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), |
| 178 | "#EH_SJLJ_SETJMP32", |
| 179 | [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, |
| 180 | Requires<[Not64BitMode]>; |
| 181 | def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), |
| 182 | "#EH_SJLJ_SETJMP64", |
| 183 | [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, |
| 184 | Requires<[In64BitMode]>; |
| 185 | let isTerminator = 1 in { |
| 186 | def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), |
| 187 | "#EH_SJLJ_LONGJMP32", |
| 188 | [(X86eh_sjlj_longjmp addr:$buf)]>, |
| 189 | Requires<[Not64BitMode]>; |
| 190 | def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), |
| 191 | "#EH_SJLJ_LONGJMP64", |
| 192 | [(X86eh_sjlj_longjmp addr:$buf)]>, |
| 193 | Requires<[In64BitMode]>; |
| 194 | } |
| 195 | } |
| 196 | } // SchedRW |
| 197 | |
| 198 | let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { |
| 199 | def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), |
| 200 | "#EH_SjLj_Setup\t$dst", []>; |
| 201 | } |
| 202 | |
| 203 | //===----------------------------------------------------------------------===// |
| 204 | // Pseudo instructions used by unwind info. |
| 205 | // |
| 206 | let isPseudo = 1 in { |
| 207 | def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg), |
| 208 | "#SEH_PushReg $reg", []>; |
| 209 | def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), |
| 210 | "#SEH_SaveReg $reg, $dst", []>; |
| 211 | def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), |
| 212 | "#SEH_SaveXMM $reg, $dst", []>; |
| 213 | def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size), |
| 214 | "#SEH_StackAlloc $size", []>; |
| 215 | def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset), |
| 216 | "#SEH_SetFrame $reg, $offset", []>; |
| 217 | def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode), |
| 218 | "#SEH_PushFrame $mode", []>; |
| 219 | def SEH_EndPrologue : I<0, Pseudo, (outs), (ins), |
| 220 | "#SEH_EndPrologue", []>; |
| 221 | def SEH_Epilogue : I<0, Pseudo, (outs), (ins), |
| 222 | "#SEH_Epilogue", []>; |
| 223 | } |
| 224 | |
| 225 | //===----------------------------------------------------------------------===// |
| 226 | // Pseudo instructions used by segmented stacks. |
| 227 | // |
| 228 | |
| 229 | // This is lowered into a RET instruction by MCInstLower. We need |
| 230 | // this so that we don't have to have a MachineBasicBlock which ends |
| 231 | // with a RET and also has successors. |
| 232 | let isPseudo = 1 in { |
| 233 | def MORESTACK_RET: I<0, Pseudo, (outs), (ins), |
| 234 | "", []>; |
| 235 | |
| 236 | // This instruction is lowered to a RET followed by a MOV. The two |
| 237 | // instructions are not generated on a higher level since then the |
| 238 | // verifier sees a MachineBasicBlock ending with a non-terminator. |
| 239 | def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), |
| 240 | "", []>; |
| 241 | } |
| 242 | |
| 243 | //===----------------------------------------------------------------------===// |
| 244 | // Alias Instructions |
| 245 | //===----------------------------------------------------------------------===// |
| 246 | |
| 247 | // Alias instruction mapping movr0 to xor. |
| 248 | // FIXME: remove when we can teach regalloc that xor reg, reg is ok. |
| 249 | let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, |
| 250 | isPseudo = 1 in |
| 251 | def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "", |
| 252 | [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>; |
| 253 | |
| 254 | // Other widths can also make use of the 32-bit xor, which may have a smaller |
| 255 | // encoding and avoid partial register updates. |
| 256 | def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>; |
| 257 | def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>; |
| 258 | def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> { |
| 259 | let AddedComplexity = 20; |
| 260 | } |
| 261 | |
| 262 | // Materialize i64 constant where top 32-bits are zero. This could theoretically |
| 263 | // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however |
| 264 | // that would make it more difficult to rematerialize. |
| 265 | let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1, |
| 266 | isCodeGenOnly = 1, hasSideEffects = 0 in |
| 267 | def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src), |
| 268 | "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>; |
| 269 | |
| 270 | // This 64-bit pseudo-move can be used for both a 64-bit constant that is |
| 271 | // actually the zero-extension of a 32-bit constant, and for labels in the |
| 272 | // x86-64 small code model. |
| 273 | def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>; |
| 274 | |
| 275 | let AddedComplexity = 1 in |
| 276 | def : Pat<(i64 mov64imm32:$src), |
| 277 | (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>; |
| 278 | |
| 279 | // Use sbb to materialize carry bit. |
| 280 | let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in { |
| 281 | // FIXME: These are pseudo ops that should be replaced with Pat<> patterns. |
| 282 | // However, Pat<> can't replicate the destination reg into the inputs of the |
| 283 | // result. |
| 284 | def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", |
| 285 | [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; |
| 286 | def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", |
| 287 | [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; |
| 288 | def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", |
| 289 | [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; |
| 290 | def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", |
| 291 | [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; |
| 292 | } // isCodeGenOnly |
| 293 | |
| 294 | |
| 295 | def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), |
| 296 | (SETB_C16r)>; |
| 297 | def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), |
| 298 | (SETB_C32r)>; |
| 299 | def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), |
| 300 | (SETB_C64r)>; |
| 301 | |
| 302 | def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), |
| 303 | (SETB_C16r)>; |
| 304 | def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), |
| 305 | (SETB_C32r)>; |
| 306 | def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), |
| 307 | (SETB_C64r)>; |
| 308 | |
| 309 | // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and |
| 310 | // will be eliminated and that the sbb can be extended up to a wider type. When |
| 311 | // this happens, it is great. However, if we are left with an 8-bit sbb and an |
| 312 | // and, we might as well just match it as a setb. |
| 313 | def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), |
| 314 | (SETBr)>; |
| 315 | |
| 316 | // (add OP, SETB) -> (adc OP, 0) |
| 317 | def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), |
| 318 | (ADC8ri GR8:$op, 0)>; |
| 319 | def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), |
| 320 | (ADC32ri8 GR32:$op, 0)>; |
| 321 | def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), |
| 322 | (ADC64ri8 GR64:$op, 0)>; |
| 323 | |
| 324 | // (sub OP, SETB) -> (sbb OP, 0) |
| 325 | def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), |
| 326 | (SBB8ri GR8:$op, 0)>; |
| 327 | def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), |
| 328 | (SBB32ri8 GR32:$op, 0)>; |
| 329 | def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), |
| 330 | (SBB64ri8 GR64:$op, 0)>; |
| 331 | |
| 332 | // (sub OP, SETCC_CARRY) -> (adc OP, 0) |
| 333 | def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), |
| 334 | (ADC8ri GR8:$op, 0)>; |
| 335 | def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), |
| 336 | (ADC32ri8 GR32:$op, 0)>; |
| 337 | def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), |
| 338 | (ADC64ri8 GR64:$op, 0)>; |
| 339 | |
| 340 | //===----------------------------------------------------------------------===// |
| 341 | // String Pseudo Instructions |
| 342 | // |
| 343 | let SchedRW = [WriteMicrocoded] in { |
| 344 | let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { |
| 345 | def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", |
| 346 | [(X86rep_movs i8)], IIC_REP_MOVS>, REP, |
| 347 | Requires<[Not64BitMode]>; |
| 348 | def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", |
| 349 | [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, |
| 350 | Requires<[Not64BitMode]>; |
| 351 | def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", |
| 352 | [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, |
| 353 | Requires<[Not64BitMode]>; |
| 354 | } |
| 355 | |
| 356 | let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { |
| 357 | def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", |
| 358 | [(X86rep_movs i8)], IIC_REP_MOVS>, REP, |
| 359 | Requires<[In64BitMode]>; |
| 360 | def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", |
| 361 | [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, |
| 362 | Requires<[In64BitMode]>; |
| 363 | def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", |
| 364 | [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, |
| 365 | Requires<[In64BitMode]>; |
| 366 | def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", |
| 367 | [(X86rep_movs i64)], IIC_REP_MOVS>, REP, |
| 368 | Requires<[In64BitMode]>; |
| 369 | } |
| 370 | |
| 371 | // FIXME: Should use "(X86rep_stos AL)" as the pattern. |
| 372 | let Defs = [ECX,EDI], isCodeGenOnly = 1 in { |
| 373 | let Uses = [AL,ECX,EDI] in |
| 374 | def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", |
| 375 | [(X86rep_stos i8)], IIC_REP_STOS>, REP, |
| 376 | Requires<[Not64BitMode]>; |
| 377 | let Uses = [AX,ECX,EDI] in |
| 378 | def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", |
| 379 | [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, |
| 380 | Requires<[Not64BitMode]>; |
| 381 | let Uses = [EAX,ECX,EDI] in |
| 382 | def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", |
| 383 | [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, |
| 384 | Requires<[Not64BitMode]>; |
| 385 | } |
| 386 | |
| 387 | let Defs = [RCX,RDI], isCodeGenOnly = 1 in { |
| 388 | let Uses = [AL,RCX,RDI] in |
| 389 | def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", |
| 390 | [(X86rep_stos i8)], IIC_REP_STOS>, REP, |
| 391 | Requires<[In64BitMode]>; |
| 392 | let Uses = [AX,RCX,RDI] in |
| 393 | def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", |
| 394 | [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, |
| 395 | Requires<[In64BitMode]>; |
| 396 | let Uses = [RAX,RCX,RDI] in |
| 397 | def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", |
| 398 | [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, |
| 399 | Requires<[In64BitMode]>; |
| 400 | |
| 401 | let Uses = [RAX,RCX,RDI] in |
| 402 | def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", |
| 403 | [(X86rep_stos i64)], IIC_REP_STOS>, REP, |
| 404 | Requires<[In64BitMode]>; |
| 405 | } |
| 406 | } // SchedRW |
| 407 | |
| 408 | //===----------------------------------------------------------------------===// |
| 409 | // Thread Local Storage Instructions |
| 410 | // |
| 411 | |
| 412 | // ELF TLS Support |
| 413 | // All calls clobber the non-callee saved registers. ESP is marked as |
| 414 | // a use to prevent stack-pointer assignments that appear immediately |
| 415 | // before calls from potentially appearing dead. |
| 416 | let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, |
| 417 | ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, |
| 418 | MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, |
| 419 | XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, |
| 420 | XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], |
| 421 | Uses = [ESP] in { |
| 422 | def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), |
| 423 | "# TLS_addr32", |
| 424 | [(X86tlsaddr tls32addr:$sym)]>, |
| 425 | Requires<[Not64BitMode]>; |
| 426 | def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), |
| 427 | "# TLS_base_addr32", |
| 428 | [(X86tlsbaseaddr tls32baseaddr:$sym)]>, |
| 429 | Requires<[Not64BitMode]>; |
| 430 | } |
| 431 | |
| 432 | // All calls clobber the non-callee saved registers. RSP is marked as |
| 433 | // a use to prevent stack-pointer assignments that appear immediately |
| 434 | // before calls from potentially appearing dead. |
| 435 | let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, |
| 436 | FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, |
| 437 | ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, |
| 438 | MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, |
| 439 | XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, |
| 440 | XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], |
| 441 | Uses = [RSP] in { |
| 442 | def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), |
| 443 | "# TLS_addr64", |
| 444 | [(X86tlsaddr tls64addr:$sym)]>, |
| 445 | Requires<[In64BitMode]>; |
| 446 | def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), |
| 447 | "# TLS_base_addr64", |
| 448 | [(X86tlsbaseaddr tls64baseaddr:$sym)]>, |
| 449 | Requires<[In64BitMode]>; |
| 450 | } |
| 451 | |
| 452 | // Darwin TLS Support |
| 453 | // For i386, the address of the thunk is passed on the stack, on return the |
| 454 | // address of the variable is in %eax. %ecx is trashed during the function |
| 455 | // call. All other registers are preserved. |
| 456 | let Defs = [EAX, ECX, EFLAGS], |
| 457 | Uses = [ESP], |
| 458 | usesCustomInserter = 1 in |
| 459 | def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), |
| 460 | "# TLSCall_32", |
| 461 | [(X86TLSCall addr:$sym)]>, |
| 462 | Requires<[Not64BitMode]>; |
| 463 | |
| 464 | // For x86_64, the address of the thunk is passed in %rdi, on return |
| 465 | // the address of the variable is in %rax. All other registers are preserved. |
| 466 | let Defs = [RAX, EFLAGS], |
| 467 | Uses = [RSP, RDI], |
| 468 | usesCustomInserter = 1 in |
| 469 | def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), |
| 470 | "# TLSCall_64", |
| 471 | [(X86TLSCall addr:$sym)]>, |
| 472 | Requires<[In64BitMode]>; |
| 473 | |
| 474 | |
| 475 | //===----------------------------------------------------------------------===// |
| 476 | // Conditional Move Pseudo Instructions |
| 477 | |
| 478 | // X86 doesn't have 8-bit conditional moves. Use a customInserter to |
| 479 | // emit control flow. An alternative to this is to mark i8 SELECT as Promote, |
| 480 | // however that requires promoting the operands, and can induce additional |
| 481 | // i8 register pressure. |
| 482 | let usesCustomInserter = 1, Uses = [EFLAGS] in { |
| 483 | def CMOV_GR8 : I<0, Pseudo, |
| 484 | (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond), |
| 485 | "#CMOV_GR8 PSEUDO!", |
| 486 | [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2, |
| 487 | imm:$cond, EFLAGS))]>; |
| 488 | |
| 489 | let Predicates = [NoCMov] in { |
| 490 | def CMOV_GR32 : I<0, Pseudo, |
| 491 | (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond), |
| 492 | "#CMOV_GR32* PSEUDO!", |
| 493 | [(set GR32:$dst, |
| 494 | (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>; |
| 495 | def CMOV_GR16 : I<0, Pseudo, |
| 496 | (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond), |
| 497 | "#CMOV_GR16* PSEUDO!", |
| 498 | [(set GR16:$dst, |
| 499 | (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>; |
| 500 | } // Predicates = [NoCMov] |
| 501 | |
| 502 | // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no |
| 503 | // SSE1. |
| 504 | let Predicates = [FPStackf32] in |
| 505 | def CMOV_RFP32 : I<0, Pseudo, |
| 506 | (outs RFP32:$dst), |
| 507 | (ins RFP32:$src1, RFP32:$src2, i8imm:$cond), |
| 508 | "#CMOV_RFP32 PSEUDO!", |
| 509 | [(set RFP32:$dst, |
| 510 | (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond, |
| 511 | EFLAGS))]>; |
| 512 | // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no |
| 513 | // SSE2. |
| 514 | let Predicates = [FPStackf64] in |
| 515 | def CMOV_RFP64 : I<0, Pseudo, |
| 516 | (outs RFP64:$dst), |
| 517 | (ins RFP64:$src1, RFP64:$src2, i8imm:$cond), |
| 518 | "#CMOV_RFP64 PSEUDO!", |
| 519 | [(set RFP64:$dst, |
| 520 | (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond, |
| 521 | EFLAGS))]>; |
| 522 | def CMOV_RFP80 : I<0, Pseudo, |
| 523 | (outs RFP80:$dst), |
| 524 | (ins RFP80:$src1, RFP80:$src2, i8imm:$cond), |
| 525 | "#CMOV_RFP80 PSEUDO!", |
| 526 | [(set RFP80:$dst, |
| 527 | (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond, |
| 528 | EFLAGS))]>; |
| 529 | } // UsesCustomInserter = 1, Uses = [EFLAGS] |
| 530 | |
| 531 | |
| 532 | //===----------------------------------------------------------------------===// |
| 533 | // Normal-Instructions-With-Lock-Prefix Pseudo Instructions |
| 534 | //===----------------------------------------------------------------------===// |
| 535 | |
| 536 | // FIXME: Use normal instructions and add lock prefix dynamically. |
| 537 | |
| 538 | // Memory barriers |
| 539 | |
| 540 | // TODO: Get this to fold the constant into the instruction. |
| 541 | let isCodeGenOnly = 1, Defs = [EFLAGS] in |
| 542 | def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), |
| 543 | "or{l}\t{$zero, $dst|$dst, $zero}", |
| 544 | [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK, |
| 545 | Sched<[WriteALULd, WriteRMW]>; |
| 546 | |
| 547 | let hasSideEffects = 1 in |
| 548 | def Int_MemBarrier : I<0, Pseudo, (outs), (ins), |
| 549 | "#MEMBARRIER", |
| 550 | [(X86MemBarrier)]>, Sched<[WriteLoad]>; |
| 551 | |
| 552 | // RegOpc corresponds to the mr version of the instruction |
| 553 | // ImmOpc corresponds to the mi version of the instruction |
| 554 | // ImmOpc8 corresponds to the mi8 version of the instruction |
| 555 | // ImmMod corresponds to the instruction format of the mi and mi8 versions |
| 556 | multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, |
| 557 | Format ImmMod, string mnemonic> { |
| 558 | let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, |
| 559 | SchedRW = [WriteALULd, WriteRMW] in { |
| 560 | |
| 561 | def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, |
| 562 | RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, |
| 563 | MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), |
| 564 | !strconcat(mnemonic, "{b}\t", |
| 565 | "{$src2, $dst|$dst, $src2}"), |
| 566 | [], IIC_ALU_NONMEM>, LOCK; |
| 567 | def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, |
| 568 | RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, |
| 569 | MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), |
| 570 | !strconcat(mnemonic, "{w}\t", |
| 571 | "{$src2, $dst|$dst, $src2}"), |
| 572 | [], IIC_ALU_NONMEM>, OpSize16, LOCK; |
| 573 | def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, |
| 574 | RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, |
| 575 | MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), |
| 576 | !strconcat(mnemonic, "{l}\t", |
| 577 | "{$src2, $dst|$dst, $src2}"), |
| 578 | [], IIC_ALU_NONMEM>, OpSize32, LOCK; |
| 579 | def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, |
| 580 | RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, |
| 581 | MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), |
| 582 | !strconcat(mnemonic, "{q}\t", |
| 583 | "{$src2, $dst|$dst, $src2}"), |
| 584 | [], IIC_ALU_NONMEM>, LOCK; |
| 585 | |
| 586 | def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, |
| 587 | ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, |
| 588 | ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), |
| 589 | !strconcat(mnemonic, "{b}\t", |
| 590 | "{$src2, $dst|$dst, $src2}"), |
| 591 | [], IIC_ALU_MEM>, LOCK; |
| 592 | |
| 593 | def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, |
| 594 | ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, |
| 595 | ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), |
| 596 | !strconcat(mnemonic, "{w}\t", |
| 597 | "{$src2, $dst|$dst, $src2}"), |
| 598 | [], IIC_ALU_MEM>, OpSize16, LOCK; |
| 599 | |
| 600 | def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, |
| 601 | ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, |
| 602 | ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), |
| 603 | !strconcat(mnemonic, "{l}\t", |
| 604 | "{$src2, $dst|$dst, $src2}"), |
| 605 | [], IIC_ALU_MEM>, OpSize32, LOCK; |
| 606 | |
| 607 | def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, |
| 608 | ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, |
| 609 | ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), |
| 610 | !strconcat(mnemonic, "{q}\t", |
| 611 | "{$src2, $dst|$dst, $src2}"), |
| 612 | [], IIC_ALU_MEM>, LOCK; |
| 613 | |
| 614 | def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, |
| 615 | ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, |
| 616 | ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), |
| 617 | !strconcat(mnemonic, "{w}\t", |
| 618 | "{$src2, $dst|$dst, $src2}"), |
| 619 | [], IIC_ALU_MEM>, OpSize16, LOCK; |
| 620 | def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, |
| 621 | ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, |
| 622 | ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), |
| 623 | !strconcat(mnemonic, "{l}\t", |
| 624 | "{$src2, $dst|$dst, $src2}"), |
| 625 | [], IIC_ALU_MEM>, OpSize32, LOCK; |
| 626 | def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, |
| 627 | ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, |
| 628 | ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), |
| 629 | !strconcat(mnemonic, "{q}\t", |
| 630 | "{$src2, $dst|$dst, $src2}"), |
| 631 | [], IIC_ALU_MEM>, LOCK; |
| 632 | |
| 633 | } |
| 634 | |
| 635 | } |
| 636 | |
| 637 | defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">; |
| 638 | defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">; |
| 639 | defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">; |
| 640 | defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">; |
| 641 | defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">; |
| 642 | |
| 643 | // Optimized codegen when the non-memory output is not used. |
| 644 | multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, |
| 645 | string mnemonic> { |
| 646 | let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, |
| 647 | SchedRW = [WriteALULd, WriteRMW] in { |
| 648 | |
| 649 | def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), |
| 650 | !strconcat(mnemonic, "{b}\t$dst"), |
| 651 | [], IIC_UNARY_MEM>, LOCK; |
| 652 | def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), |
| 653 | !strconcat(mnemonic, "{w}\t$dst"), |
| 654 | [], IIC_UNARY_MEM>, OpSize16, LOCK; |
| 655 | def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), |
| 656 | !strconcat(mnemonic, "{l}\t$dst"), |
| 657 | [], IIC_UNARY_MEM>, OpSize32, LOCK; |
| 658 | def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), |
| 659 | !strconcat(mnemonic, "{q}\t$dst"), |
| 660 | [], IIC_UNARY_MEM>, LOCK; |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">; |
| 665 | defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">; |
| 666 | |
| 667 | // Atomic compare and swap. |
| 668 | multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, |
| 669 | SDPatternOperator frag, X86MemOperand x86memop, |
| 670 | InstrItinClass itin> { |
| 671 | let isCodeGenOnly = 1 in { |
| 672 | def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), |
| 673 | !strconcat(mnemonic, "\t$ptr"), |
| 674 | [(frag addr:$ptr)], itin>, TB, LOCK; |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, |
| 679 | string mnemonic, SDPatternOperator frag, |
| 680 | InstrItinClass itin8, InstrItinClass itin> { |
| 681 | let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { |
| 682 | let Defs = [AL, EFLAGS], Uses = [AL] in |
| 683 | def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), |
| 684 | !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), |
| 685 | [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK; |
| 686 | let Defs = [AX, EFLAGS], Uses = [AX] in |
| 687 | def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), |
| 688 | !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), |
| 689 | [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK; |
| 690 | let Defs = [EAX, EFLAGS], Uses = [EAX] in |
| 691 | def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), |
| 692 | !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), |
| 693 | [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK; |
| 694 | let Defs = [RAX, EFLAGS], Uses = [RAX] in |
| 695 | def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), |
| 696 | !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), |
| 697 | [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK; |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], |
| 702 | SchedRW = [WriteALULd, WriteRMW] in { |
| 703 | defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", |
| 704 | X86cas8, i64mem, |
| 705 | IIC_CMPX_LOCK_8B>; |
| 706 | } |
| 707 | |
| 708 | let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], |
| 709 | Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in { |
| 710 | defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", |
| 711 | X86cas16, i128mem, |
| 712 | IIC_CMPX_LOCK_16B>, REX_W; |
| 713 | } |
| 714 | |
| 715 | defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", |
| 716 | X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>; |
| 717 | |
| 718 | // Atomic exchange and add |
| 719 | multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, |
| 720 | string frag, |
| 721 | InstrItinClass itin8, InstrItinClass itin> { |
| 722 | let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1, |
| 723 | SchedRW = [WriteALULd, WriteRMW] in { |
| 724 | def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), |
| 725 | (ins GR8:$val, i8mem:$ptr), |
| 726 | !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), |
| 727 | [(set GR8:$dst, |
| 728 | (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], |
| 729 | itin8>; |
| 730 | def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), |
| 731 | (ins GR16:$val, i16mem:$ptr), |
| 732 | !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), |
| 733 | [(set |
| 734 | GR16:$dst, |
| 735 | (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], |
| 736 | itin>, OpSize16; |
| 737 | def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), |
| 738 | (ins GR32:$val, i32mem:$ptr), |
| 739 | !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), |
| 740 | [(set |
| 741 | GR32:$dst, |
| 742 | (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], |
| 743 | itin>, OpSize32; |
| 744 | def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), |
| 745 | (ins GR64:$val, i64mem:$ptr), |
| 746 | !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), |
| 747 | [(set |
| 748 | GR64:$dst, |
| 749 | (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], |
| 750 | itin>; |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add", |
| 755 | IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>, |
| 756 | TB, LOCK; |
| 757 | |
| 758 | /* The following multiclass tries to make sure that in code like |
| 759 | * x.store (immediate op x.load(acquire), release) |
| 760 | * an operation directly on memory is generated instead of wasting a register. |
| 761 | * It is not automatic as atomic_store/load are only lowered to MOV instructions |
| 762 | * extremely late to prevent them from being accidentally reordered in the backend |
| 763 | * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions) |
| 764 | */ |
| 765 | multiclass RELEASE_BINOP_MI<string op> { |
| 766 | def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), |
| 767 | "#RELEASE_BINOP PSEUDO!", |
| 768 | [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op) |
| 769 | (atomic_load_8 addr:$dst), (i8 imm:$src)))]>; |
| 770 | // NAME#16 is not generated as 16-bit arithmetic instructions are considered |
| 771 | // costly and avoided as far as possible by this backend anyway |
| 772 | def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), |
| 773 | "#RELEASE_BINOP PSEUDO!", |
| 774 | [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op) |
| 775 | (atomic_load_32 addr:$dst), (i32 imm:$src)))]>; |
| 776 | def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), |
| 777 | "#RELEASE_BINOP PSEUDO!", |
| 778 | [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op) |
| 779 | (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>; |
| 780 | } |
| 781 | defm RELEASE_ADD : RELEASE_BINOP_MI<"add">; |
| 782 | defm RELEASE_AND : RELEASE_BINOP_MI<"and">; |
| 783 | defm RELEASE_OR : RELEASE_BINOP_MI<"or">; |
| 784 | defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">; |
| 785 | // Note: we don't deal with sub, because substractions of constants are |
| 786 | // optimized into additions before this code can run |
| 787 | |
| 788 | multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> { |
| 789 | def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst), |
| 790 | "#RELEASE_UNOP PSEUDO!", |
| 791 | [(atomic_store_8 addr:$dst, dag8)]>; |
| 792 | def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst), |
| 793 | "#RELEASE_UNOP PSEUDO!", |
| 794 | [(atomic_store_16 addr:$dst, dag16)]>; |
| 795 | def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst), |
| 796 | "#RELEASE_UNOP PSEUDO!", |
| 797 | [(atomic_store_32 addr:$dst, dag32)]>; |
| 798 | def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst), |
| 799 | "#RELEASE_UNOP PSEUDO!", |
| 800 | [(atomic_store_64 addr:$dst, dag64)]>; |
| 801 | } |
| 802 | |
| 803 | defm RELEASE_INC : RELEASE_UNOP< |
| 804 | (add (atomic_load_8 addr:$dst), (i8 1)), |
| 805 | (add (atomic_load_16 addr:$dst), (i16 1)), |
| 806 | (add (atomic_load_32 addr:$dst), (i32 1)), |
| 807 | (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>; |
| 808 | defm RELEASE_DEC : RELEASE_UNOP< |
| 809 | (add (atomic_load_8 addr:$dst), (i8 -1)), |
| 810 | (add (atomic_load_16 addr:$dst), (i16 -1)), |
| 811 | (add (atomic_load_32 addr:$dst), (i32 -1)), |
| 812 | (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>; |
| 813 | /* |
| 814 | TODO: These don't work because the type inference of TableGen fails. |
| 815 | TODO: find a way to fix it. |
| 816 | defm RELEASE_NEG : RELEASE_UNOP< |
| 817 | (ineg (atomic_load_8 addr:$dst)), |
| 818 | (ineg (atomic_load_16 addr:$dst)), |
| 819 | (ineg (atomic_load_32 addr:$dst)), |
| 820 | (ineg (atomic_load_64 addr:$dst))>; |
| 821 | defm RELEASE_NOT : RELEASE_UNOP< |
| 822 | (not (atomic_load_8 addr:$dst)), |
| 823 | (not (atomic_load_16 addr:$dst)), |
| 824 | (not (atomic_load_32 addr:$dst)), |
| 825 | (not (atomic_load_64 addr:$dst))>; |
| 826 | */ |
| 827 | |
| 828 | def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), |
| 829 | "#RELEASE_MOV PSEUDO !", |
| 830 | [(atomic_store_8 addr:$dst, (i8 imm:$src))]>; |
| 831 | def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src), |
| 832 | "#RELEASE_MOV PSEUDO !", |
| 833 | [(atomic_store_16 addr:$dst, (i16 imm:$src))]>; |
| 834 | def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), |
| 835 | "#RELEASE_MOV PSEUDO !", |
| 836 | [(atomic_store_32 addr:$dst, (i32 imm:$src))]>; |
| 837 | def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), |
| 838 | "#RELEASE_MOV PSEUDO !", |
| 839 | [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>; |
| 840 | |
| 841 | def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), |
| 842 | "#RELEASE_MOV PSEUDO!", |
| 843 | [(atomic_store_8 addr:$dst, GR8 :$src)]>; |
| 844 | def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), |
| 845 | "#RELEASE_MOV PSEUDO!", |
| 846 | [(atomic_store_16 addr:$dst, GR16:$src)]>; |
| 847 | def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), |
| 848 | "#RELEASE_MOV PSEUDO!", |
| 849 | [(atomic_store_32 addr:$dst, GR32:$src)]>; |
| 850 | def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), |
| 851 | "#RELEASE_MOV PSEUDO!", |
| 852 | [(atomic_store_64 addr:$dst, GR64:$src)]>; |
| 853 | |
| 854 | def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), |
| 855 | "#ACQUIRE_MOV PSEUDO!", |
| 856 | [(set GR8:$dst, (atomic_load_8 addr:$src))]>; |
| 857 | def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), |
| 858 | "#ACQUIRE_MOV PSEUDO!", |
| 859 | [(set GR16:$dst, (atomic_load_16 addr:$src))]>; |
| 860 | def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), |
| 861 | "#ACQUIRE_MOV PSEUDO!", |
| 862 | [(set GR32:$dst, (atomic_load_32 addr:$src))]>; |
| 863 | def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), |
| 864 | "#ACQUIRE_MOV PSEUDO!", |
| 865 | [(set GR64:$dst, (atomic_load_64 addr:$src))]>; |
| 866 | //===----------------------------------------------------------------------===// |
| 867 | // Conditional Move Pseudo Instructions. |
| 868 | //===----------------------------------------------------------------------===// |
| 869 | |
| 870 | // CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after |
| 871 | // instruction selection into a branch sequence. |
| 872 | let Uses = [EFLAGS], usesCustomInserter = 1 in { |
| 873 | def CMOV_FR32 : I<0, Pseudo, |
| 874 | (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond), |
| 875 | "#CMOV_FR32 PSEUDO!", |
| 876 | [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond, |
| 877 | EFLAGS))]>; |
| 878 | def CMOV_FR64 : I<0, Pseudo, |
| 879 | (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond), |
| 880 | "#CMOV_FR64 PSEUDO!", |
| 881 | [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond, |
| 882 | EFLAGS))]>; |
| 883 | def CMOV_V4F32 : I<0, Pseudo, |
| 884 | (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), |
| 885 | "#CMOV_V4F32 PSEUDO!", |
| 886 | [(set VR128:$dst, |
| 887 | (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, |
| 888 | EFLAGS)))]>; |
| 889 | def CMOV_V2F64 : I<0, Pseudo, |
| 890 | (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), |
| 891 | "#CMOV_V2F64 PSEUDO!", |
| 892 | [(set VR128:$dst, |
| 893 | (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, |
| 894 | EFLAGS)))]>; |
| 895 | def CMOV_V2I64 : I<0, Pseudo, |
| 896 | (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), |
| 897 | "#CMOV_V2I64 PSEUDO!", |
| 898 | [(set VR128:$dst, |
| 899 | (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond, |
| 900 | EFLAGS)))]>; |
| 901 | def CMOV_V8F32 : I<0, Pseudo, |
| 902 | (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), |
| 903 | "#CMOV_V8F32 PSEUDO!", |
| 904 | [(set VR256:$dst, |
| 905 | (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond, |
| 906 | EFLAGS)))]>; |
| 907 | def CMOV_V4F64 : I<0, Pseudo, |
| 908 | (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), |
| 909 | "#CMOV_V4F64 PSEUDO!", |
| 910 | [(set VR256:$dst, |
| 911 | (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond, |
| 912 | EFLAGS)))]>; |
| 913 | def CMOV_V4I64 : I<0, Pseudo, |
| 914 | (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), |
| 915 | "#CMOV_V4I64 PSEUDO!", |
| 916 | [(set VR256:$dst, |
| 917 | (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond, |
| 918 | EFLAGS)))]>; |
| 919 | def CMOV_V8I64 : I<0, Pseudo, |
| 920 | (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), |
| 921 | "#CMOV_V8I64 PSEUDO!", |
| 922 | [(set VR512:$dst, |
| 923 | (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond, |
| 924 | EFLAGS)))]>; |
| 925 | def CMOV_V8F64 : I<0, Pseudo, |
| 926 | (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), |
| 927 | "#CMOV_V8F64 PSEUDO!", |
| 928 | [(set VR512:$dst, |
| 929 | (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond, |
| 930 | EFLAGS)))]>; |
| 931 | def CMOV_V16F32 : I<0, Pseudo, |
| 932 | (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), |
| 933 | "#CMOV_V16F32 PSEUDO!", |
| 934 | [(set VR512:$dst, |
| 935 | (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond, |
| 936 | EFLAGS)))]>; |
| 937 | } |
| 938 | |
| 939 | |
| 940 | //===----------------------------------------------------------------------===// |
| 941 | // DAG Pattern Matching Rules |
| 942 | //===----------------------------------------------------------------------===// |
| 943 | |
| 944 | // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable |
| 945 | def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; |
| 946 | def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; |
| 947 | def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; |
| 948 | def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; |
| 949 | def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; |
| 950 | def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>; |
| 951 | |
| 952 | def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), |
| 953 | (ADD32ri GR32:$src1, tconstpool:$src2)>; |
| 954 | def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), |
| 955 | (ADD32ri GR32:$src1, tjumptable:$src2)>; |
| 956 | def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), |
| 957 | (ADD32ri GR32:$src1, tglobaladdr:$src2)>; |
| 958 | def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), |
| 959 | (ADD32ri GR32:$src1, texternalsym:$src2)>; |
| 960 | def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)), |
| 961 | (ADD32ri GR32:$src1, tblockaddress:$src2)>; |
| 962 | |
| 963 | def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), |
| 964 | (MOV32mi addr:$dst, tglobaladdr:$src)>; |
| 965 | def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), |
| 966 | (MOV32mi addr:$dst, texternalsym:$src)>; |
| 967 | def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst), |
| 968 | (MOV32mi addr:$dst, tblockaddress:$src)>; |
| 969 | |
| 970 | // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small |
| 971 | // code model mode, should use 'movabs'. FIXME: This is really a hack, the |
| 972 | // 'movabs' predicate should handle this sort of thing. |
| 973 | def : Pat<(i64 (X86Wrapper tconstpool :$dst)), |
| 974 | (MOV64ri tconstpool :$dst)>, Requires<[FarData]>; |
| 975 | def : Pat<(i64 (X86Wrapper tjumptable :$dst)), |
| 976 | (MOV64ri tjumptable :$dst)>, Requires<[FarData]>; |
| 977 | def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), |
| 978 | (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>; |
| 979 | def : Pat<(i64 (X86Wrapper texternalsym:$dst)), |
| 980 | (MOV64ri texternalsym:$dst)>, Requires<[FarData]>; |
| 981 | def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), |
| 982 | (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>; |
| 983 | |
| 984 | // In kernel code model, we can get the address of a label |
| 985 | // into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of |
| 986 | // the MOV64ri32 should accept these. |
| 987 | def : Pat<(i64 (X86Wrapper tconstpool :$dst)), |
| 988 | (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; |
| 989 | def : Pat<(i64 (X86Wrapper tjumptable :$dst)), |
| 990 | (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; |
| 991 | def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), |
| 992 | (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; |
| 993 | def : Pat<(i64 (X86Wrapper texternalsym:$dst)), |
| 994 | (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; |
| 995 | def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), |
| 996 | (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; |
| 997 | |
| 998 | // If we have small model and -static mode, it is safe to store global addresses |
| 999 | // directly as immediates. FIXME: This is really a hack, the 'imm' predicate |
| 1000 | // for MOV64mi32 should handle this sort of thing. |
| 1001 | def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), |
| 1002 | (MOV64mi32 addr:$dst, tconstpool:$src)>, |
| 1003 | Requires<[NearData, IsStatic]>; |
| 1004 | def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), |
| 1005 | (MOV64mi32 addr:$dst, tjumptable:$src)>, |
| 1006 | Requires<[NearData, IsStatic]>; |
| 1007 | def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), |
| 1008 | (MOV64mi32 addr:$dst, tglobaladdr:$src)>, |
| 1009 | Requires<[NearData, IsStatic]>; |
| 1010 | def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), |
| 1011 | (MOV64mi32 addr:$dst, texternalsym:$src)>, |
| 1012 | Requires<[NearData, IsStatic]>; |
| 1013 | def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), |
| 1014 | (MOV64mi32 addr:$dst, tblockaddress:$src)>, |
| 1015 | Requires<[NearData, IsStatic]>; |
| 1016 | |
| 1017 | def : Pat<(i32 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; |
| 1018 | def : Pat<(i64 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV64ri texternalsym:$dst)>; |
| 1019 | |
| 1020 | // Calls |
| 1021 | |
| 1022 | // tls has some funny stuff here... |
| 1023 | // This corresponds to movabs $foo@tpoff, %rax |
| 1024 | def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), |
| 1025 | (MOV64ri32 tglobaltlsaddr :$dst)>; |
| 1026 | // This corresponds to add $foo@tpoff, %rax |
| 1027 | def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), |
| 1028 | (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; |
| 1029 | |
| 1030 | |
| 1031 | // Direct PC relative function call for small code model. 32-bit displacement |
| 1032 | // sign extended to 64-bit. |
| 1033 | def : Pat<(X86call (i64 tglobaladdr:$dst)), |
| 1034 | (CALL64pcrel32 tglobaladdr:$dst)>; |
| 1035 | def : Pat<(X86call (i64 texternalsym:$dst)), |
| 1036 | (CALL64pcrel32 texternalsym:$dst)>; |
| 1037 | |
| 1038 | // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they |
| 1039 | // can never use callee-saved registers. That is the purpose of the GR64_TC |
| 1040 | // register classes. |
| 1041 | // |
| 1042 | // The only volatile register that is never used by the calling convention is |
| 1043 | // %r11. This happens when calling a vararg function with 6 arguments. |
| 1044 | // |
| 1045 | // Match an X86tcret that uses less than 7 volatile registers. |
| 1046 | def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), |
| 1047 | (X86tcret node:$ptr, node:$off), [{ |
| 1048 | // X86tcret args: (*chain, ptr, imm, regs..., glue) |
| 1049 | unsigned NumRegs = 0; |
| 1050 | for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) |
| 1051 | if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) |
| 1052 | return false; |
| 1053 | return true; |
| 1054 | }]>; |
| 1055 | |
| 1056 | def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), |
| 1057 | (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, |
| 1058 | Requires<[Not64BitMode]>; |
| 1059 | |
| 1060 | // FIXME: This is disabled for 32-bit PIC mode because the global base |
| 1061 | // register which is part of the address mode may be assigned a |
| 1062 | // callee-saved register. |
| 1063 | def : Pat<(X86tcret (load addr:$dst), imm:$off), |
| 1064 | (TCRETURNmi addr:$dst, imm:$off)>, |
| 1065 | Requires<[Not64BitMode, IsNotPIC]>; |
| 1066 | |
| 1067 | def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), |
| 1068 | (TCRETURNdi tglobaladdr:$dst, imm:$off)>, |
| 1069 | Requires<[NotLP64]>; |
| 1070 | |
| 1071 | def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), |
| 1072 | (TCRETURNdi texternalsym:$dst, imm:$off)>, |
| 1073 | Requires<[NotLP64]>; |
| 1074 | |
| 1075 | def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), |
| 1076 | (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, |
| 1077 | Requires<[In64BitMode]>; |
| 1078 | |
| 1079 | // Don't fold loads into X86tcret requiring more than 6 regs. |
| 1080 | // There wouldn't be enough scratch registers for base+index. |
| 1081 | def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), |
| 1082 | (TCRETURNmi64 addr:$dst, imm:$off)>, |
| 1083 | Requires<[In64BitMode]>; |
| 1084 | |
| 1085 | def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), |
| 1086 | (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, |
| 1087 | Requires<[IsLP64]>; |
| 1088 | |
| 1089 | def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), |
| 1090 | (TCRETURNdi64 texternalsym:$dst, imm:$off)>, |
| 1091 | Requires<[IsLP64]>; |
| 1092 | |
| 1093 | // Normal calls, with various flavors of addresses. |
| 1094 | def : Pat<(X86call (i32 tglobaladdr:$dst)), |
| 1095 | (CALLpcrel32 tglobaladdr:$dst)>; |
| 1096 | def : Pat<(X86call (i32 texternalsym:$dst)), |
| 1097 | (CALLpcrel32 texternalsym:$dst)>; |
| 1098 | def : Pat<(X86call (i32 imm:$dst)), |
| 1099 | (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; |
| 1100 | |
| 1101 | // Comparisons. |
| 1102 | |
| 1103 | // TEST R,R is smaller than CMP R,0 |
| 1104 | def : Pat<(X86cmp GR8:$src1, 0), |
| 1105 | (TEST8rr GR8:$src1, GR8:$src1)>; |
| 1106 | def : Pat<(X86cmp GR16:$src1, 0), |
| 1107 | (TEST16rr GR16:$src1, GR16:$src1)>; |
| 1108 | def : Pat<(X86cmp GR32:$src1, 0), |
| 1109 | (TEST32rr GR32:$src1, GR32:$src1)>; |
| 1110 | def : Pat<(X86cmp GR64:$src1, 0), |
| 1111 | (TEST64rr GR64:$src1, GR64:$src1)>; |
| 1112 | |
| 1113 | // Conditional moves with folded loads with operands swapped and conditions |
| 1114 | // inverted. |
| 1115 | multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32, |
| 1116 | Instruction Inst64> { |
| 1117 | let Predicates = [HasCMov] in { |
| 1118 | def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), |
| 1119 | (Inst16 GR16:$src2, addr:$src1)>; |
| 1120 | def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), |
| 1121 | (Inst32 GR32:$src2, addr:$src1)>; |
| 1122 | def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), |
| 1123 | (Inst64 GR64:$src2, addr:$src1)>; |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>; |
| 1128 | defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>; |
| 1129 | defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>; |
| 1130 | defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>; |
| 1131 | defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>; |
| 1132 | defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>; |
| 1133 | defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>; |
| 1134 | defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>; |
| 1135 | defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>; |
| 1136 | defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>; |
| 1137 | defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>; |
| 1138 | defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>; |
| 1139 | defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>; |
| 1140 | defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>; |
| 1141 | defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>; |
| 1142 | defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>; |
| 1143 | |
| 1144 | // zextload bool -> zextload byte |
| 1145 | def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; |
| 1146 | def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; |
| 1147 | def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; |
| 1148 | def : Pat<(zextloadi64i1 addr:$src), |
| 1149 | (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; |
| 1150 | |
| 1151 | // extload bool -> extload byte |
| 1152 | // When extloading from 16-bit and smaller memory locations into 64-bit |
| 1153 | // registers, use zero-extending loads so that the entire 64-bit register is |
| 1154 | // defined, avoiding partial-register updates. |
| 1155 | |
| 1156 | def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; |
| 1157 | def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; |
| 1158 | def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; |
| 1159 | def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; |
| 1160 | def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; |
| 1161 | def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; |
| 1162 | |
| 1163 | // For other extloads, use subregs, since the high contents of the register are |
| 1164 | // defined after an extload. |
| 1165 | def : Pat<(extloadi64i1 addr:$src), |
| 1166 | (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; |
| 1167 | def : Pat<(extloadi64i8 addr:$src), |
| 1168 | (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; |
| 1169 | def : Pat<(extloadi64i16 addr:$src), |
| 1170 | (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; |
| 1171 | def : Pat<(extloadi64i32 addr:$src), |
| 1172 | (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; |
| 1173 | |
| 1174 | // anyext. Define these to do an explicit zero-extend to |
| 1175 | // avoid partial-register updates. |
| 1176 | def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG |
| 1177 | (MOVZX32rr8 GR8 :$src), sub_16bit)>; |
| 1178 | def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; |
| 1179 | |
| 1180 | // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. |
| 1181 | def : Pat<(i32 (anyext GR16:$src)), |
| 1182 | (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; |
| 1183 | |
| 1184 | def : Pat<(i64 (anyext GR8 :$src)), |
| 1185 | (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>; |
| 1186 | def : Pat<(i64 (anyext GR16:$src)), |
| 1187 | (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>; |
| 1188 | def : Pat<(i64 (anyext GR32:$src)), |
| 1189 | (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; |
| 1190 | |
| 1191 | |
| 1192 | // Any instruction that defines a 32-bit result leaves the high half of the |
| 1193 | // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may |
| 1194 | // be copying from a truncate. And x86's cmov doesn't do anything if the |
| 1195 | // condition is false. But any other 32-bit operation will zero-extend |
| 1196 | // up to 64 bits. |
| 1197 | def def32 : PatLeaf<(i32 GR32:$src), [{ |
| 1198 | return N->getOpcode() != ISD::TRUNCATE && |
| 1199 | N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && |
| 1200 | N->getOpcode() != ISD::CopyFromReg && |
| 1201 | N->getOpcode() != ISD::AssertSext && |
| 1202 | N->getOpcode() != X86ISD::CMOV; |
| 1203 | }]>; |
| 1204 | |
| 1205 | // In the case of a 32-bit def that is known to implicitly zero-extend, |
| 1206 | // we can use a SUBREG_TO_REG. |
| 1207 | def : Pat<(i64 (zext def32:$src)), |
| 1208 | (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; |
| 1209 | |
| 1210 | //===----------------------------------------------------------------------===// |
| 1211 | // Pattern match OR as ADD |
| 1212 | //===----------------------------------------------------------------------===// |
| 1213 | |
| 1214 | // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be |
| 1215 | // 3-addressified into an LEA instruction to avoid copies. However, we also |
| 1216 | // want to finally emit these instructions as an or at the end of the code |
| 1217 | // generator to make the generated code easier to read. To do this, we select |
| 1218 | // into "disjoint bits" pseudo ops. |
| 1219 | |
| 1220 | // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. |
| 1221 | def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ |
| 1222 | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) |
| 1223 | return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); |
| 1224 | |
| 1225 | APInt KnownZero0, KnownOne0; |
| 1226 | CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0); |
| 1227 | APInt KnownZero1, KnownOne1; |
| 1228 | CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0); |
| 1229 | return (~KnownZero0 & ~KnownZero1) == 0; |
| 1230 | }]>; |
| 1231 | |
| 1232 | |
| 1233 | // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. |
| 1234 | // Try this before the selecting to OR. |
| 1235 | let AddedComplexity = 5, SchedRW = [WriteALU] in { |
| 1236 | |
| 1237 | let isConvertibleToThreeAddress = 1, |
| 1238 | Constraints = "$src1 = $dst", Defs = [EFLAGS] in { |
| 1239 | let isCommutable = 1 in { |
| 1240 | def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), |
| 1241 | "", // orw/addw REG, REG |
| 1242 | [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; |
| 1243 | def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), |
| 1244 | "", // orl/addl REG, REG |
| 1245 | [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; |
| 1246 | def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), |
| 1247 | "", // orq/addq REG, REG |
| 1248 | [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; |
| 1249 | } // isCommutable |
| 1250 | |
| 1251 | // NOTE: These are order specific, we want the ri8 forms to be listed |
| 1252 | // first so that they are slightly preferred to the ri forms. |
| 1253 | |
| 1254 | def ADD16ri8_DB : I<0, Pseudo, |
| 1255 | (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), |
| 1256 | "", // orw/addw REG, imm8 |
| 1257 | [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; |
| 1258 | def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), |
| 1259 | "", // orw/addw REG, imm |
| 1260 | [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; |
| 1261 | |
| 1262 | def ADD32ri8_DB : I<0, Pseudo, |
| 1263 | (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), |
| 1264 | "", // orl/addl REG, imm8 |
| 1265 | [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; |
| 1266 | def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), |
| 1267 | "", // orl/addl REG, imm |
| 1268 | [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; |
| 1269 | |
| 1270 | |
| 1271 | def ADD64ri8_DB : I<0, Pseudo, |
| 1272 | (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), |
| 1273 | "", // orq/addq REG, imm8 |
| 1274 | [(set GR64:$dst, (or_is_add GR64:$src1, |
| 1275 | i64immSExt8:$src2))]>; |
| 1276 | def ADD64ri32_DB : I<0, Pseudo, |
| 1277 | (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), |
| 1278 | "", // orq/addq REG, imm |
| 1279 | [(set GR64:$dst, (or_is_add GR64:$src1, |
| 1280 | i64immSExt32:$src2))]>; |
| 1281 | } |
| 1282 | } // AddedComplexity, SchedRW |
| 1283 | |
| 1284 | |
| 1285 | //===----------------------------------------------------------------------===// |
| 1286 | // Some peepholes |
| 1287 | //===----------------------------------------------------------------------===// |
| 1288 | |
| 1289 | // Odd encoding trick: -128 fits into an 8-bit immediate field while |
| 1290 | // +128 doesn't, so in this special case use a sub instead of an add. |
| 1291 | def : Pat<(add GR16:$src1, 128), |
| 1292 | (SUB16ri8 GR16:$src1, -128)>; |
| 1293 | def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), |
| 1294 | (SUB16mi8 addr:$dst, -128)>; |
| 1295 | |
| 1296 | def : Pat<(add GR32:$src1, 128), |
| 1297 | (SUB32ri8 GR32:$src1, -128)>; |
| 1298 | def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), |
| 1299 | (SUB32mi8 addr:$dst, -128)>; |
| 1300 | |
| 1301 | def : Pat<(add GR64:$src1, 128), |
| 1302 | (SUB64ri8 GR64:$src1, -128)>; |
| 1303 | def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), |
| 1304 | (SUB64mi8 addr:$dst, -128)>; |
| 1305 | |
| 1306 | // The same trick applies for 32-bit immediate fields in 64-bit |
| 1307 | // instructions. |
| 1308 | def : Pat<(add GR64:$src1, 0x0000000080000000), |
| 1309 | (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; |
| 1310 | def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst), |
| 1311 | (SUB64mi32 addr:$dst, 0xffffffff80000000)>; |
| 1312 | |
| 1313 | // To avoid needing to materialize an immediate in a register, use a 32-bit and |
| 1314 | // with implicit zero-extension instead of a 64-bit and if the immediate has at |
| 1315 | // least 32 bits of leading zeros. If in addition the last 32 bits can be |
| 1316 | // represented with a sign extension of a 8 bit constant, use that. |
| 1317 | |
| 1318 | def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), |
| 1319 | (SUBREG_TO_REG |
| 1320 | (i64 0), |
| 1321 | (AND32ri8 |
| 1322 | (EXTRACT_SUBREG GR64:$src, sub_32bit), |
| 1323 | (i32 (GetLo8XForm imm:$imm))), |
| 1324 | sub_32bit)>; |
| 1325 | |
| 1326 | def : Pat<(and GR64:$src, i64immZExt32:$imm), |
| 1327 | (SUBREG_TO_REG |
| 1328 | (i64 0), |
| 1329 | (AND32ri |
| 1330 | (EXTRACT_SUBREG GR64:$src, sub_32bit), |
| 1331 | (i32 (GetLo32XForm imm:$imm))), |
| 1332 | sub_32bit)>; |
| 1333 | |
| 1334 | |
| 1335 | // r & (2^16-1) ==> movz |
| 1336 | def : Pat<(and GR32:$src1, 0xffff), |
| 1337 | (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; |
| 1338 | // r & (2^8-1) ==> movz |
| 1339 | def : Pat<(and GR32:$src1, 0xff), |
| 1340 | (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, |
| 1341 | GR32_ABCD)), |
| 1342 | sub_8bit))>, |
| 1343 | Requires<[Not64BitMode]>; |
| 1344 | // r & (2^8-1) ==> movz |
| 1345 | def : Pat<(and GR16:$src1, 0xff), |
| 1346 | (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG |
| 1347 | (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)), |
| 1348 | sub_16bit)>, |
| 1349 | Requires<[Not64BitMode]>; |
| 1350 | |
| 1351 | // r & (2^32-1) ==> movz |
| 1352 | def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), |
| 1353 | (SUBREG_TO_REG (i64 0), |
| 1354 | (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)), |
| 1355 | sub_32bit)>; |
| 1356 | // r & (2^16-1) ==> movz |
| 1357 | def : Pat<(and GR64:$src, 0xffff), |
| 1358 | (SUBREG_TO_REG (i64 0), |
| 1359 | (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))), |
| 1360 | sub_32bit)>; |
| 1361 | // r & (2^8-1) ==> movz |
| 1362 | def : Pat<(and GR64:$src, 0xff), |
| 1363 | (SUBREG_TO_REG (i64 0), |
| 1364 | (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))), |
| 1365 | sub_32bit)>; |
| 1366 | // r & (2^8-1) ==> movz |
| 1367 | def : Pat<(and GR32:$src1, 0xff), |
| 1368 | (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>, |
| 1369 | Requires<[In64BitMode]>; |
| 1370 | // r & (2^8-1) ==> movz |
| 1371 | def : Pat<(and GR16:$src1, 0xff), |
| 1372 | (EXTRACT_SUBREG (MOVZX32rr8 (i8 |
| 1373 | (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>, |
| 1374 | Requires<[In64BitMode]>; |
| 1375 | |
| 1376 | |
| 1377 | // sext_inreg patterns |
| 1378 | def : Pat<(sext_inreg GR32:$src, i16), |
| 1379 | (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; |
| 1380 | def : Pat<(sext_inreg GR32:$src, i8), |
| 1381 | (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, |
| 1382 | GR32_ABCD)), |
| 1383 | sub_8bit))>, |
| 1384 | Requires<[Not64BitMode]>; |
| 1385 | |
| 1386 | def : Pat<(sext_inreg GR16:$src, i8), |
| 1387 | (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG |
| 1388 | (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))), |
| 1389 | sub_16bit)>, |
| 1390 | Requires<[Not64BitMode]>; |
| 1391 | |
| 1392 | def : Pat<(sext_inreg GR64:$src, i32), |
| 1393 | (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; |
| 1394 | def : Pat<(sext_inreg GR64:$src, i16), |
| 1395 | (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; |
| 1396 | def : Pat<(sext_inreg GR64:$src, i8), |
| 1397 | (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; |
| 1398 | def : Pat<(sext_inreg GR32:$src, i8), |
| 1399 | (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>, |
| 1400 | Requires<[In64BitMode]>; |
| 1401 | def : Pat<(sext_inreg GR16:$src, i8), |
| 1402 | (EXTRACT_SUBREG (MOVSX32rr8 |
| 1403 | (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>, |
| 1404 | Requires<[In64BitMode]>; |
| 1405 | |
| 1406 | // sext, sext_load, zext, zext_load |
| 1407 | def: Pat<(i16 (sext GR8:$src)), |
| 1408 | (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; |
| 1409 | def: Pat<(sextloadi16i8 addr:$src), |
| 1410 | (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; |
| 1411 | def: Pat<(i16 (zext GR8:$src)), |
| 1412 | (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; |
| 1413 | def: Pat<(zextloadi16i8 addr:$src), |
| 1414 | (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; |
| 1415 | |
| 1416 | // trunc patterns |
| 1417 | def : Pat<(i16 (trunc GR32:$src)), |
| 1418 | (EXTRACT_SUBREG GR32:$src, sub_16bit)>; |
| 1419 | def : Pat<(i8 (trunc GR32:$src)), |
| 1420 | (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), |
| 1421 | sub_8bit)>, |
| 1422 | Requires<[Not64BitMode]>; |
| 1423 | def : Pat<(i8 (trunc GR16:$src)), |
| 1424 | (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| 1425 | sub_8bit)>, |
| 1426 | Requires<[Not64BitMode]>; |
| 1427 | def : Pat<(i32 (trunc GR64:$src)), |
| 1428 | (EXTRACT_SUBREG GR64:$src, sub_32bit)>; |
| 1429 | def : Pat<(i16 (trunc GR64:$src)), |
| 1430 | (EXTRACT_SUBREG GR64:$src, sub_16bit)>; |
| 1431 | def : Pat<(i8 (trunc GR64:$src)), |
| 1432 | (EXTRACT_SUBREG GR64:$src, sub_8bit)>; |
| 1433 | def : Pat<(i8 (trunc GR32:$src)), |
| 1434 | (EXTRACT_SUBREG GR32:$src, sub_8bit)>, |
| 1435 | Requires<[In64BitMode]>; |
| 1436 | def : Pat<(i8 (trunc GR16:$src)), |
| 1437 | (EXTRACT_SUBREG GR16:$src, sub_8bit)>, |
| 1438 | Requires<[In64BitMode]>; |
| 1439 | |
| 1440 | // h-register tricks |
| 1441 | def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), |
| 1442 | (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| 1443 | sub_8bit_hi)>, |
| 1444 | Requires<[Not64BitMode]>; |
| 1445 | def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), |
| 1446 | (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), |
| 1447 | sub_8bit_hi)>, |
| 1448 | Requires<[Not64BitMode]>; |
| 1449 | def : Pat<(srl GR16:$src, (i8 8)), |
| 1450 | (EXTRACT_SUBREG |
| 1451 | (MOVZX32rr8 |
| 1452 | (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| 1453 | sub_8bit_hi)), |
| 1454 | sub_16bit)>, |
| 1455 | Requires<[Not64BitMode]>; |
| 1456 | def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), |
| 1457 | (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, |
| 1458 | GR16_ABCD)), |
| 1459 | sub_8bit_hi))>, |
| 1460 | Requires<[Not64BitMode]>; |
| 1461 | def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), |
| 1462 | (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, |
| 1463 | GR16_ABCD)), |
| 1464 | sub_8bit_hi))>, |
| 1465 | Requires<[Not64BitMode]>; |
| 1466 | def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), |
| 1467 | (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, |
| 1468 | GR32_ABCD)), |
| 1469 | sub_8bit_hi))>, |
| 1470 | Requires<[Not64BitMode]>; |
| 1471 | def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), |
| 1472 | (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, |
| 1473 | GR32_ABCD)), |
| 1474 | sub_8bit_hi))>, |
| 1475 | Requires<[Not64BitMode]>; |
| 1476 | |
| 1477 | // h-register tricks. |
| 1478 | // For now, be conservative on x86-64 and use an h-register extract only if the |
| 1479 | // value is immediately zero-extended or stored, which are somewhat common |
| 1480 | // cases. This uses a bunch of code to prevent a register requiring a REX prefix |
| 1481 | // from being allocated in the same instruction as the h register, as there's |
| 1482 | // currently no way to describe this requirement to the register allocator. |
| 1483 | |
| 1484 | // h-register extract and zero-extend. |
| 1485 | def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), |
| 1486 | (SUBREG_TO_REG |
| 1487 | (i64 0), |
| 1488 | (MOVZX32_NOREXrr8 |
| 1489 | (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), |
| 1490 | sub_8bit_hi)), |
| 1491 | sub_32bit)>; |
| 1492 | def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), |
| 1493 | (MOVZX32_NOREXrr8 |
| 1494 | (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), |
| 1495 | sub_8bit_hi))>, |
| 1496 | Requires<[In64BitMode]>; |
| 1497 | def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), |
| 1498 | (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, |
| 1499 | GR32_ABCD)), |
| 1500 | sub_8bit_hi))>, |
| 1501 | Requires<[In64BitMode]>; |
| 1502 | def : Pat<(srl GR16:$src, (i8 8)), |
| 1503 | (EXTRACT_SUBREG |
| 1504 | (MOVZX32_NOREXrr8 |
| 1505 | (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| 1506 | sub_8bit_hi)), |
| 1507 | sub_16bit)>, |
| 1508 | Requires<[In64BitMode]>; |
| 1509 | def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), |
| 1510 | (MOVZX32_NOREXrr8 |
| 1511 | (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| 1512 | sub_8bit_hi))>, |
| 1513 | Requires<[In64BitMode]>; |
| 1514 | def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), |
| 1515 | (MOVZX32_NOREXrr8 |
| 1516 | (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| 1517 | sub_8bit_hi))>, |
| 1518 | Requires<[In64BitMode]>; |
| 1519 | def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), |
| 1520 | (SUBREG_TO_REG |
| 1521 | (i64 0), |
| 1522 | (MOVZX32_NOREXrr8 |
| 1523 | (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| 1524 | sub_8bit_hi)), |
| 1525 | sub_32bit)>; |
| 1526 | def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), |
| 1527 | (SUBREG_TO_REG |
| 1528 | (i64 0), |
| 1529 | (MOVZX32_NOREXrr8 |
| 1530 | (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| 1531 | sub_8bit_hi)), |
| 1532 | sub_32bit)>; |
| 1533 | |
| 1534 | // h-register extract and store. |
| 1535 | def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), |
| 1536 | (MOV8mr_NOREX |
| 1537 | addr:$dst, |
| 1538 | (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), |
| 1539 | sub_8bit_hi))>; |
| 1540 | def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), |
| 1541 | (MOV8mr_NOREX |
| 1542 | addr:$dst, |
| 1543 | (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), |
| 1544 | sub_8bit_hi))>, |
| 1545 | Requires<[In64BitMode]>; |
| 1546 | def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), |
| 1547 | (MOV8mr_NOREX |
| 1548 | addr:$dst, |
| 1549 | (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| 1550 | sub_8bit_hi))>, |
| 1551 | Requires<[In64BitMode]>; |
| 1552 | |
| 1553 | |
| 1554 | // (shl x, 1) ==> (add x, x) |
| 1555 | // Note that if x is undef (immediate or otherwise), we could theoretically |
| 1556 | // end up with the two uses of x getting different values, producing a result |
| 1557 | // where the least significant bit is not 0. However, the probability of this |
| 1558 | // happening is considered low enough that this is officially not a |
| 1559 | // "real problem". |
| 1560 | def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; |
| 1561 | def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; |
| 1562 | def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; |
| 1563 | def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; |
| 1564 | |
| 1565 | // Helper imms that check if a mask doesn't change significant shift bits. |
| 1566 | def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>; |
| 1567 | def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>; |
| 1568 | |
| 1569 | // Shift amount is implicitly masked. |
| 1570 | multiclass MaskedShiftAmountPats<SDNode frag, string name> { |
| 1571 | // (shift x (and y, 31)) ==> (shift x, y) |
| 1572 | def : Pat<(frag GR8:$src1, (and CL, immShift32)), |
| 1573 | (!cast<Instruction>(name # "8rCL") GR8:$src1)>; |
| 1574 | def : Pat<(frag GR16:$src1, (and CL, immShift32)), |
| 1575 | (!cast<Instruction>(name # "16rCL") GR16:$src1)>; |
| 1576 | def : Pat<(frag GR32:$src1, (and CL, immShift32)), |
| 1577 | (!cast<Instruction>(name # "32rCL") GR32:$src1)>; |
| 1578 | def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), |
| 1579 | (!cast<Instruction>(name # "8mCL") addr:$dst)>; |
| 1580 | def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), |
| 1581 | (!cast<Instruction>(name # "16mCL") addr:$dst)>; |
| 1582 | def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), |
| 1583 | (!cast<Instruction>(name # "32mCL") addr:$dst)>; |
| 1584 | |
| 1585 | // (shift x (and y, 63)) ==> (shift x, y) |
| 1586 | def : Pat<(frag GR64:$src1, (and CL, immShift64)), |
| 1587 | (!cast<Instruction>(name # "64rCL") GR64:$src1)>; |
| 1588 | def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst), |
| 1589 | (!cast<Instruction>(name # "64mCL") addr:$dst)>; |
| 1590 | } |
| 1591 | |
| 1592 | defm : MaskedShiftAmountPats<shl, "SHL">; |
| 1593 | defm : MaskedShiftAmountPats<srl, "SHR">; |
| 1594 | defm : MaskedShiftAmountPats<sra, "SAR">; |
| 1595 | defm : MaskedShiftAmountPats<rotl, "ROL">; |
| 1596 | defm : MaskedShiftAmountPats<rotr, "ROR">; |
| 1597 | |
| 1598 | // (anyext (setcc_carry)) -> (setcc_carry) |
| 1599 | def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), |
| 1600 | (SETB_C16r)>; |
| 1601 | def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), |
| 1602 | (SETB_C32r)>; |
| 1603 | def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), |
| 1604 | (SETB_C32r)>; |
| 1605 | |
| 1606 | |
| 1607 | |
| 1608 | |
| 1609 | //===----------------------------------------------------------------------===// |
| 1610 | // EFLAGS-defining Patterns |
| 1611 | //===----------------------------------------------------------------------===// |
| 1612 | |
| 1613 | // add reg, reg |
| 1614 | def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; |
| 1615 | def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; |
| 1616 | def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; |
| 1617 | |
| 1618 | // add reg, mem |
| 1619 | def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), |
| 1620 | (ADD8rm GR8:$src1, addr:$src2)>; |
| 1621 | def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), |
| 1622 | (ADD16rm GR16:$src1, addr:$src2)>; |
| 1623 | def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), |
| 1624 | (ADD32rm GR32:$src1, addr:$src2)>; |
| 1625 | |
| 1626 | // add reg, imm |
| 1627 | def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; |
| 1628 | def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; |
| 1629 | def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; |
| 1630 | def : Pat<(add GR16:$src1, i16immSExt8:$src2), |
| 1631 | (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| 1632 | def : Pat<(add GR32:$src1, i32immSExt8:$src2), |
| 1633 | (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| 1634 | |
| 1635 | // sub reg, reg |
| 1636 | def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; |
| 1637 | def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; |
| 1638 | def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; |
| 1639 | |
| 1640 | // sub reg, mem |
| 1641 | def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), |
| 1642 | (SUB8rm GR8:$src1, addr:$src2)>; |
| 1643 | def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), |
| 1644 | (SUB16rm GR16:$src1, addr:$src2)>; |
| 1645 | def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), |
| 1646 | (SUB32rm GR32:$src1, addr:$src2)>; |
| 1647 | |
| 1648 | // sub reg, imm |
| 1649 | def : Pat<(sub GR8:$src1, imm:$src2), |
| 1650 | (SUB8ri GR8:$src1, imm:$src2)>; |
| 1651 | def : Pat<(sub GR16:$src1, imm:$src2), |
| 1652 | (SUB16ri GR16:$src1, imm:$src2)>; |
| 1653 | def : Pat<(sub GR32:$src1, imm:$src2), |
| 1654 | (SUB32ri GR32:$src1, imm:$src2)>; |
| 1655 | def : Pat<(sub GR16:$src1, i16immSExt8:$src2), |
| 1656 | (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| 1657 | def : Pat<(sub GR32:$src1, i32immSExt8:$src2), |
| 1658 | (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| 1659 | |
| 1660 | // sub 0, reg |
| 1661 | def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; |
| 1662 | def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; |
| 1663 | def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; |
| 1664 | def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; |
| 1665 | |
| 1666 | // mul reg, reg |
| 1667 | def : Pat<(mul GR16:$src1, GR16:$src2), |
| 1668 | (IMUL16rr GR16:$src1, GR16:$src2)>; |
| 1669 | def : Pat<(mul GR32:$src1, GR32:$src2), |
| 1670 | (IMUL32rr GR32:$src1, GR32:$src2)>; |
| 1671 | |
| 1672 | // mul reg, mem |
| 1673 | def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), |
| 1674 | (IMUL16rm GR16:$src1, addr:$src2)>; |
| 1675 | def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), |
| 1676 | (IMUL32rm GR32:$src1, addr:$src2)>; |
| 1677 | |
| 1678 | // mul reg, imm |
| 1679 | def : Pat<(mul GR16:$src1, imm:$src2), |
| 1680 | (IMUL16rri GR16:$src1, imm:$src2)>; |
| 1681 | def : Pat<(mul GR32:$src1, imm:$src2), |
| 1682 | (IMUL32rri GR32:$src1, imm:$src2)>; |
| 1683 | def : Pat<(mul GR16:$src1, i16immSExt8:$src2), |
| 1684 | (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; |
| 1685 | def : Pat<(mul GR32:$src1, i32immSExt8:$src2), |
| 1686 | (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; |
| 1687 | |
| 1688 | // reg = mul mem, imm |
| 1689 | def : Pat<(mul (loadi16 addr:$src1), imm:$src2), |
| 1690 | (IMUL16rmi addr:$src1, imm:$src2)>; |
| 1691 | def : Pat<(mul (loadi32 addr:$src1), imm:$src2), |
| 1692 | (IMUL32rmi addr:$src1, imm:$src2)>; |
| 1693 | def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), |
| 1694 | (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; |
| 1695 | def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), |
| 1696 | (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; |
| 1697 | |
| 1698 | // Patterns for nodes that do not produce flags, for instructions that do. |
| 1699 | |
| 1700 | // addition |
| 1701 | def : Pat<(add GR64:$src1, GR64:$src2), |
| 1702 | (ADD64rr GR64:$src1, GR64:$src2)>; |
| 1703 | def : Pat<(add GR64:$src1, i64immSExt8:$src2), |
| 1704 | (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| 1705 | def : Pat<(add GR64:$src1, i64immSExt32:$src2), |
| 1706 | (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| 1707 | def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), |
| 1708 | (ADD64rm GR64:$src1, addr:$src2)>; |
| 1709 | |
| 1710 | // subtraction |
| 1711 | def : Pat<(sub GR64:$src1, GR64:$src2), |
| 1712 | (SUB64rr GR64:$src1, GR64:$src2)>; |
| 1713 | def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), |
| 1714 | (SUB64rm GR64:$src1, addr:$src2)>; |
| 1715 | def : Pat<(sub GR64:$src1, i64immSExt8:$src2), |
| 1716 | (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| 1717 | def : Pat<(sub GR64:$src1, i64immSExt32:$src2), |
| 1718 | (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| 1719 | |
| 1720 | // Multiply |
| 1721 | def : Pat<(mul GR64:$src1, GR64:$src2), |
| 1722 | (IMUL64rr GR64:$src1, GR64:$src2)>; |
| 1723 | def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), |
| 1724 | (IMUL64rm GR64:$src1, addr:$src2)>; |
| 1725 | def : Pat<(mul GR64:$src1, i64immSExt8:$src2), |
| 1726 | (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; |
| 1727 | def : Pat<(mul GR64:$src1, i64immSExt32:$src2), |
| 1728 | (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; |
| 1729 | def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), |
| 1730 | (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; |
| 1731 | def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), |
| 1732 | (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; |
| 1733 | |
| 1734 | // Increment/Decrement reg. |
| 1735 | // Do not make INC/DEC if it is slow |
| 1736 | let Predicates = [NotSlowIncDec] in { |
| 1737 | def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>; |
| 1738 | def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>; |
| 1739 | def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>; |
| 1740 | def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; |
| 1741 | def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>; |
| 1742 | def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>; |
| 1743 | def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>; |
| 1744 | def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; |
| 1745 | } |
| 1746 | |
| 1747 | // or reg/reg. |
| 1748 | def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; |
| 1749 | def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; |
| 1750 | def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; |
| 1751 | def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; |
| 1752 | |
| 1753 | // or reg/mem |
| 1754 | def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), |
| 1755 | (OR8rm GR8:$src1, addr:$src2)>; |
| 1756 | def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), |
| 1757 | (OR16rm GR16:$src1, addr:$src2)>; |
| 1758 | def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), |
| 1759 | (OR32rm GR32:$src1, addr:$src2)>; |
| 1760 | def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), |
| 1761 | (OR64rm GR64:$src1, addr:$src2)>; |
| 1762 | |
| 1763 | // or reg/imm |
| 1764 | def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; |
| 1765 | def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; |
| 1766 | def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; |
| 1767 | def : Pat<(or GR16:$src1, i16immSExt8:$src2), |
| 1768 | (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| 1769 | def : Pat<(or GR32:$src1, i32immSExt8:$src2), |
| 1770 | (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| 1771 | def : Pat<(or GR64:$src1, i64immSExt8:$src2), |
| 1772 | (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| 1773 | def : Pat<(or GR64:$src1, i64immSExt32:$src2), |
| 1774 | (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| 1775 | |
| 1776 | // xor reg/reg |
| 1777 | def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; |
| 1778 | def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; |
| 1779 | def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; |
| 1780 | def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; |
| 1781 | |
| 1782 | // xor reg/mem |
| 1783 | def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), |
| 1784 | (XOR8rm GR8:$src1, addr:$src2)>; |
| 1785 | def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), |
| 1786 | (XOR16rm GR16:$src1, addr:$src2)>; |
| 1787 | def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), |
| 1788 | (XOR32rm GR32:$src1, addr:$src2)>; |
| 1789 | def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), |
| 1790 | (XOR64rm GR64:$src1, addr:$src2)>; |
| 1791 | |
| 1792 | // xor reg/imm |
| 1793 | def : Pat<(xor GR8:$src1, imm:$src2), |
| 1794 | (XOR8ri GR8:$src1, imm:$src2)>; |
| 1795 | def : Pat<(xor GR16:$src1, imm:$src2), |
| 1796 | (XOR16ri GR16:$src1, imm:$src2)>; |
| 1797 | def : Pat<(xor GR32:$src1, imm:$src2), |
| 1798 | (XOR32ri GR32:$src1, imm:$src2)>; |
| 1799 | def : Pat<(xor GR16:$src1, i16immSExt8:$src2), |
| 1800 | (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| 1801 | def : Pat<(xor GR32:$src1, i32immSExt8:$src2), |
| 1802 | (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| 1803 | def : Pat<(xor GR64:$src1, i64immSExt8:$src2), |
| 1804 | (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| 1805 | def : Pat<(xor GR64:$src1, i64immSExt32:$src2), |
| 1806 | (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| 1807 | |
| 1808 | // and reg/reg |
| 1809 | def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; |
| 1810 | def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; |
| 1811 | def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; |
| 1812 | def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; |
| 1813 | |
| 1814 | // and reg/mem |
| 1815 | def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), |
| 1816 | (AND8rm GR8:$src1, addr:$src2)>; |
| 1817 | def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), |
| 1818 | (AND16rm GR16:$src1, addr:$src2)>; |
| 1819 | def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), |
| 1820 | (AND32rm GR32:$src1, addr:$src2)>; |
| 1821 | def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), |
| 1822 | (AND64rm GR64:$src1, addr:$src2)>; |
| 1823 | |
| 1824 | // and reg/imm |
| 1825 | def : Pat<(and GR8:$src1, imm:$src2), |
| 1826 | (AND8ri GR8:$src1, imm:$src2)>; |
| 1827 | def : Pat<(and GR16:$src1, imm:$src2), |
| 1828 | (AND16ri GR16:$src1, imm:$src2)>; |
| 1829 | def : Pat<(and GR32:$src1, imm:$src2), |
| 1830 | (AND32ri GR32:$src1, imm:$src2)>; |
| 1831 | def : Pat<(and GR16:$src1, i16immSExt8:$src2), |
| 1832 | (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| 1833 | def : Pat<(and GR32:$src1, i32immSExt8:$src2), |
| 1834 | (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| 1835 | def : Pat<(and GR64:$src1, i64immSExt8:$src2), |
| 1836 | (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| 1837 | def : Pat<(and GR64:$src1, i64immSExt32:$src2), |
| 1838 | (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| 1839 | |
| 1840 | // Bit scan instruction patterns to match explicit zero-undef behavior. |
| 1841 | def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; |
| 1842 | def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; |
| 1843 | def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; |
| 1844 | def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; |
| 1845 | def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; |
| 1846 | def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; |
| 1847 | |
| 1848 | // When HasMOVBE is enabled it is possible to get a non-legalized |
| 1849 | // register-register 16 bit bswap. This maps it to a ROL instruction. |
| 1850 | let Predicates = [HasMOVBE] in { |
| 1851 | def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>; |
| 1852 | } |