blob: 3feae6d31fddf43348296dfbd56e930022d58928 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
20 return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
25 return getI8Imm((uint8_t)N->getZExtValue());
26}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets. These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112 "# dynamic stack allocation",
113 [(X86WinAlloca)]>;
114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122 "# variable sized alloca for segmented stacks",
123 [(set GR32:$dst,
124 (X86SegAlloca GR32:$size))]>,
125 Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129 "# variable sized alloca for segmented stacks",
130 [(set GR64:$dst,
131 (X86SegAlloca GR64:$size))]>,
132 Requires<[In64BitMode]>;
133}
134
135// The MSVC runtime contains an _ftol2 routine for converting floating-point
136// to integer values. It has a strange calling convention: the input is
137// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
138// used as a temporary register. No other registers (aside from flags) are
139// touched.
140// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
141// variant is unnecessary.
142
143let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
144 def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
145 "# win32 fptoui",
146 [(X86WinFTOL RFP32:$src)]>,
147 Requires<[Not64BitMode]>;
148
149 def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
150 "# win32 fptoui",
151 [(X86WinFTOL RFP64:$src)]>,
152 Requires<[Not64BitMode]>;
153}
154
155//===----------------------------------------------------------------------===//
156// EH Pseudo Instructions
157//
158let SchedRW = [WriteSystem] in {
159let isTerminator = 1, isReturn = 1, isBarrier = 1,
160 hasCtrlDep = 1, isCodeGenOnly = 1 in {
161def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
162 "ret\t#eh_return, addr: $addr",
163 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
164
165}
166
167let isTerminator = 1, isReturn = 1, isBarrier = 1,
168 hasCtrlDep = 1, isCodeGenOnly = 1 in {
169def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
170 "ret\t#eh_return, addr: $addr",
171 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
172
173}
174
175let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
176 usesCustomInserter = 1 in {
177 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
178 "#EH_SJLJ_SETJMP32",
179 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
180 Requires<[Not64BitMode]>;
181 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
182 "#EH_SJLJ_SETJMP64",
183 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
184 Requires<[In64BitMode]>;
185 let isTerminator = 1 in {
186 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
187 "#EH_SJLJ_LONGJMP32",
188 [(X86eh_sjlj_longjmp addr:$buf)]>,
189 Requires<[Not64BitMode]>;
190 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
191 "#EH_SJLJ_LONGJMP64",
192 [(X86eh_sjlj_longjmp addr:$buf)]>,
193 Requires<[In64BitMode]>;
194 }
195}
196} // SchedRW
197
198let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
199 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
200 "#EH_SjLj_Setup\t$dst", []>;
201}
202
203//===----------------------------------------------------------------------===//
204// Pseudo instructions used by unwind info.
205//
206let isPseudo = 1 in {
207 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
208 "#SEH_PushReg $reg", []>;
209 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
210 "#SEH_SaveReg $reg, $dst", []>;
211 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
212 "#SEH_SaveXMM $reg, $dst", []>;
213 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
214 "#SEH_StackAlloc $size", []>;
215 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
216 "#SEH_SetFrame $reg, $offset", []>;
217 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
218 "#SEH_PushFrame $mode", []>;
219 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
220 "#SEH_EndPrologue", []>;
221 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
222 "#SEH_Epilogue", []>;
223}
224
225//===----------------------------------------------------------------------===//
226// Pseudo instructions used by segmented stacks.
227//
228
229// This is lowered into a RET instruction by MCInstLower. We need
230// this so that we don't have to have a MachineBasicBlock which ends
231// with a RET and also has successors.
232let isPseudo = 1 in {
233def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
234 "", []>;
235
236// This instruction is lowered to a RET followed by a MOV. The two
237// instructions are not generated on a higher level since then the
238// verifier sees a MachineBasicBlock ending with a non-terminator.
239def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
240 "", []>;
241}
242
243//===----------------------------------------------------------------------===//
244// Alias Instructions
245//===----------------------------------------------------------------------===//
246
247// Alias instruction mapping movr0 to xor.
248// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
249let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
250 isPseudo = 1 in
251def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
252 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
253
254// Other widths can also make use of the 32-bit xor, which may have a smaller
255// encoding and avoid partial register updates.
256def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
257def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
258def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
259 let AddedComplexity = 20;
260}
261
262// Materialize i64 constant where top 32-bits are zero. This could theoretically
263// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
264// that would make it more difficult to rematerialize.
265let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
266 isCodeGenOnly = 1, hasSideEffects = 0 in
267def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
268 "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
269
270// This 64-bit pseudo-move can be used for both a 64-bit constant that is
271// actually the zero-extension of a 32-bit constant, and for labels in the
272// x86-64 small code model.
273def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
274
275let AddedComplexity = 1 in
276def : Pat<(i64 mov64imm32:$src),
277 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
278
279// Use sbb to materialize carry bit.
280let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
281// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
282// However, Pat<> can't replicate the destination reg into the inputs of the
283// result.
284def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
285 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
286def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
287 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
288def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
289 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
290def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
291 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
292} // isCodeGenOnly
293
294
295def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
296 (SETB_C16r)>;
297def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
298 (SETB_C32r)>;
299def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
300 (SETB_C64r)>;
301
302def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
303 (SETB_C16r)>;
304def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
305 (SETB_C32r)>;
306def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
307 (SETB_C64r)>;
308
309// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
310// will be eliminated and that the sbb can be extended up to a wider type. When
311// this happens, it is great. However, if we are left with an 8-bit sbb and an
312// and, we might as well just match it as a setb.
313def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
314 (SETBr)>;
315
316// (add OP, SETB) -> (adc OP, 0)
317def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
318 (ADC8ri GR8:$op, 0)>;
319def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
320 (ADC32ri8 GR32:$op, 0)>;
321def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
322 (ADC64ri8 GR64:$op, 0)>;
323
324// (sub OP, SETB) -> (sbb OP, 0)
325def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
326 (SBB8ri GR8:$op, 0)>;
327def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
328 (SBB32ri8 GR32:$op, 0)>;
329def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
330 (SBB64ri8 GR64:$op, 0)>;
331
332// (sub OP, SETCC_CARRY) -> (adc OP, 0)
333def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
334 (ADC8ri GR8:$op, 0)>;
335def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
336 (ADC32ri8 GR32:$op, 0)>;
337def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
338 (ADC64ri8 GR64:$op, 0)>;
339
340//===----------------------------------------------------------------------===//
341// String Pseudo Instructions
342//
343let SchedRW = [WriteMicrocoded] in {
344let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
345def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
346 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
347 Requires<[Not64BitMode]>;
348def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
349 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
350 Requires<[Not64BitMode]>;
351def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
352 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
353 Requires<[Not64BitMode]>;
354}
355
356let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
357def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
358 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
359 Requires<[In64BitMode]>;
360def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
361 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
362 Requires<[In64BitMode]>;
363def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
364 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
365 Requires<[In64BitMode]>;
366def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
367 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
368 Requires<[In64BitMode]>;
369}
370
371// FIXME: Should use "(X86rep_stos AL)" as the pattern.
372let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
373 let Uses = [AL,ECX,EDI] in
374 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
375 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
376 Requires<[Not64BitMode]>;
377 let Uses = [AX,ECX,EDI] in
378 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
379 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
380 Requires<[Not64BitMode]>;
381 let Uses = [EAX,ECX,EDI] in
382 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
383 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
384 Requires<[Not64BitMode]>;
385}
386
387let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
388 let Uses = [AL,RCX,RDI] in
389 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
390 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
391 Requires<[In64BitMode]>;
392 let Uses = [AX,RCX,RDI] in
393 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
394 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
395 Requires<[In64BitMode]>;
396 let Uses = [RAX,RCX,RDI] in
397 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
398 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
399 Requires<[In64BitMode]>;
400
401 let Uses = [RAX,RCX,RDI] in
402 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
403 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
404 Requires<[In64BitMode]>;
405}
406} // SchedRW
407
408//===----------------------------------------------------------------------===//
409// Thread Local Storage Instructions
410//
411
412// ELF TLS Support
413// All calls clobber the non-callee saved registers. ESP is marked as
414// a use to prevent stack-pointer assignments that appear immediately
415// before calls from potentially appearing dead.
416let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
417 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
418 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
419 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
420 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
421 Uses = [ESP] in {
422def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
423 "# TLS_addr32",
424 [(X86tlsaddr tls32addr:$sym)]>,
425 Requires<[Not64BitMode]>;
426def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
427 "# TLS_base_addr32",
428 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
429 Requires<[Not64BitMode]>;
430}
431
432// All calls clobber the non-callee saved registers. RSP is marked as
433// a use to prevent stack-pointer assignments that appear immediately
434// before calls from potentially appearing dead.
435let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
436 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
437 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
438 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
439 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
440 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
441 Uses = [RSP] in {
442def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
443 "# TLS_addr64",
444 [(X86tlsaddr tls64addr:$sym)]>,
445 Requires<[In64BitMode]>;
446def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
447 "# TLS_base_addr64",
448 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
449 Requires<[In64BitMode]>;
450}
451
452// Darwin TLS Support
453// For i386, the address of the thunk is passed on the stack, on return the
454// address of the variable is in %eax. %ecx is trashed during the function
455// call. All other registers are preserved.
456let Defs = [EAX, ECX, EFLAGS],
457 Uses = [ESP],
458 usesCustomInserter = 1 in
459def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
460 "# TLSCall_32",
461 [(X86TLSCall addr:$sym)]>,
462 Requires<[Not64BitMode]>;
463
464// For x86_64, the address of the thunk is passed in %rdi, on return
465// the address of the variable is in %rax. All other registers are preserved.
466let Defs = [RAX, EFLAGS],
467 Uses = [RSP, RDI],
468 usesCustomInserter = 1 in
469def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
470 "# TLSCall_64",
471 [(X86TLSCall addr:$sym)]>,
472 Requires<[In64BitMode]>;
473
474
475//===----------------------------------------------------------------------===//
476// Conditional Move Pseudo Instructions
477
478// X86 doesn't have 8-bit conditional moves. Use a customInserter to
479// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
480// however that requires promoting the operands, and can induce additional
481// i8 register pressure.
482let usesCustomInserter = 1, Uses = [EFLAGS] in {
483def CMOV_GR8 : I<0, Pseudo,
484 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
485 "#CMOV_GR8 PSEUDO!",
486 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
487 imm:$cond, EFLAGS))]>;
488
489let Predicates = [NoCMov] in {
490def CMOV_GR32 : I<0, Pseudo,
491 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
492 "#CMOV_GR32* PSEUDO!",
493 [(set GR32:$dst,
494 (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
495def CMOV_GR16 : I<0, Pseudo,
496 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
497 "#CMOV_GR16* PSEUDO!",
498 [(set GR16:$dst,
499 (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
500} // Predicates = [NoCMov]
501
502// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
503// SSE1.
504let Predicates = [FPStackf32] in
505def CMOV_RFP32 : I<0, Pseudo,
506 (outs RFP32:$dst),
507 (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
508 "#CMOV_RFP32 PSEUDO!",
509 [(set RFP32:$dst,
510 (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
511 EFLAGS))]>;
512// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
513// SSE2.
514let Predicates = [FPStackf64] in
515def CMOV_RFP64 : I<0, Pseudo,
516 (outs RFP64:$dst),
517 (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
518 "#CMOV_RFP64 PSEUDO!",
519 [(set RFP64:$dst,
520 (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
521 EFLAGS))]>;
522def CMOV_RFP80 : I<0, Pseudo,
523 (outs RFP80:$dst),
524 (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
525 "#CMOV_RFP80 PSEUDO!",
526 [(set RFP80:$dst,
527 (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
528 EFLAGS))]>;
529} // UsesCustomInserter = 1, Uses = [EFLAGS]
530
531
532//===----------------------------------------------------------------------===//
533// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
534//===----------------------------------------------------------------------===//
535
536// FIXME: Use normal instructions and add lock prefix dynamically.
537
538// Memory barriers
539
540// TODO: Get this to fold the constant into the instruction.
541let isCodeGenOnly = 1, Defs = [EFLAGS] in
542def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
543 "or{l}\t{$zero, $dst|$dst, $zero}",
544 [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
545 Sched<[WriteALULd, WriteRMW]>;
546
547let hasSideEffects = 1 in
548def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
549 "#MEMBARRIER",
550 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
551
552// RegOpc corresponds to the mr version of the instruction
553// ImmOpc corresponds to the mi version of the instruction
554// ImmOpc8 corresponds to the mi8 version of the instruction
555// ImmMod corresponds to the instruction format of the mi and mi8 versions
556multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
557 Format ImmMod, string mnemonic> {
558let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
559 SchedRW = [WriteALULd, WriteRMW] in {
560
561def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
562 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
563 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
564 !strconcat(mnemonic, "{b}\t",
565 "{$src2, $dst|$dst, $src2}"),
566 [], IIC_ALU_NONMEM>, LOCK;
567def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
568 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
569 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
570 !strconcat(mnemonic, "{w}\t",
571 "{$src2, $dst|$dst, $src2}"),
572 [], IIC_ALU_NONMEM>, OpSize16, LOCK;
573def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
574 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
575 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
576 !strconcat(mnemonic, "{l}\t",
577 "{$src2, $dst|$dst, $src2}"),
578 [], IIC_ALU_NONMEM>, OpSize32, LOCK;
579def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
580 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
581 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
582 !strconcat(mnemonic, "{q}\t",
583 "{$src2, $dst|$dst, $src2}"),
584 [], IIC_ALU_NONMEM>, LOCK;
585
586def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
587 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
588 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
589 !strconcat(mnemonic, "{b}\t",
590 "{$src2, $dst|$dst, $src2}"),
591 [], IIC_ALU_MEM>, LOCK;
592
593def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
594 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
595 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
596 !strconcat(mnemonic, "{w}\t",
597 "{$src2, $dst|$dst, $src2}"),
598 [], IIC_ALU_MEM>, OpSize16, LOCK;
599
600def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
601 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
602 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
603 !strconcat(mnemonic, "{l}\t",
604 "{$src2, $dst|$dst, $src2}"),
605 [], IIC_ALU_MEM>, OpSize32, LOCK;
606
607def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
608 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
609 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
610 !strconcat(mnemonic, "{q}\t",
611 "{$src2, $dst|$dst, $src2}"),
612 [], IIC_ALU_MEM>, LOCK;
613
614def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
615 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
616 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
617 !strconcat(mnemonic, "{w}\t",
618 "{$src2, $dst|$dst, $src2}"),
619 [], IIC_ALU_MEM>, OpSize16, LOCK;
620def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
621 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
622 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
623 !strconcat(mnemonic, "{l}\t",
624 "{$src2, $dst|$dst, $src2}"),
625 [], IIC_ALU_MEM>, OpSize32, LOCK;
626def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
627 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
628 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
629 !strconcat(mnemonic, "{q}\t",
630 "{$src2, $dst|$dst, $src2}"),
631 [], IIC_ALU_MEM>, LOCK;
632
633}
634
635}
636
637defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
638defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
639defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
640defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
641defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
642
643// Optimized codegen when the non-memory output is not used.
644multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
645 string mnemonic> {
646let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
647 SchedRW = [WriteALULd, WriteRMW] in {
648
649def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
650 !strconcat(mnemonic, "{b}\t$dst"),
651 [], IIC_UNARY_MEM>, LOCK;
652def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
653 !strconcat(mnemonic, "{w}\t$dst"),
654 [], IIC_UNARY_MEM>, OpSize16, LOCK;
655def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
656 !strconcat(mnemonic, "{l}\t$dst"),
657 [], IIC_UNARY_MEM>, OpSize32, LOCK;
658def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
659 !strconcat(mnemonic, "{q}\t$dst"),
660 [], IIC_UNARY_MEM>, LOCK;
661}
662}
663
664defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
665defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
666
667// Atomic compare and swap.
668multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
669 SDPatternOperator frag, X86MemOperand x86memop,
670 InstrItinClass itin> {
671let isCodeGenOnly = 1 in {
672 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
673 !strconcat(mnemonic, "\t$ptr"),
674 [(frag addr:$ptr)], itin>, TB, LOCK;
675}
676}
677
678multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
679 string mnemonic, SDPatternOperator frag,
680 InstrItinClass itin8, InstrItinClass itin> {
681let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
682 let Defs = [AL, EFLAGS], Uses = [AL] in
683 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
684 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
685 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
686 let Defs = [AX, EFLAGS], Uses = [AX] in
687 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
688 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
689 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
690 let Defs = [EAX, EFLAGS], Uses = [EAX] in
691 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
692 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
693 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
694 let Defs = [RAX, EFLAGS], Uses = [RAX] in
695 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
696 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
697 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
698}
699}
700
701let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
702 SchedRW = [WriteALULd, WriteRMW] in {
703defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
704 X86cas8, i64mem,
705 IIC_CMPX_LOCK_8B>;
706}
707
708let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
709 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
710defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
711 X86cas16, i128mem,
712 IIC_CMPX_LOCK_16B>, REX_W;
713}
714
715defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
716 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
717
718// Atomic exchange and add
719multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
720 string frag,
721 InstrItinClass itin8, InstrItinClass itin> {
722 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
723 SchedRW = [WriteALULd, WriteRMW] in {
724 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
725 (ins GR8:$val, i8mem:$ptr),
726 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
727 [(set GR8:$dst,
728 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
729 itin8>;
730 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
731 (ins GR16:$val, i16mem:$ptr),
732 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
733 [(set
734 GR16:$dst,
735 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
736 itin>, OpSize16;
737 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
738 (ins GR32:$val, i32mem:$ptr),
739 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
740 [(set
741 GR32:$dst,
742 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
743 itin>, OpSize32;
744 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
745 (ins GR64:$val, i64mem:$ptr),
746 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
747 [(set
748 GR64:$dst,
749 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
750 itin>;
751 }
752}
753
754defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
755 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
756 TB, LOCK;
757
758/* The following multiclass tries to make sure that in code like
759 * x.store (immediate op x.load(acquire), release)
760 * an operation directly on memory is generated instead of wasting a register.
761 * It is not automatic as atomic_store/load are only lowered to MOV instructions
762 * extremely late to prevent them from being accidentally reordered in the backend
763 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
764 */
765multiclass RELEASE_BINOP_MI<string op> {
766 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
767 "#RELEASE_BINOP PSEUDO!",
768 [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
769 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
770 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
771 // costly and avoided as far as possible by this backend anyway
772 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
773 "#RELEASE_BINOP PSEUDO!",
774 [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
775 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
776 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
777 "#RELEASE_BINOP PSEUDO!",
778 [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
779 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
780}
781defm RELEASE_ADD : RELEASE_BINOP_MI<"add">;
782defm RELEASE_AND : RELEASE_BINOP_MI<"and">;
783defm RELEASE_OR : RELEASE_BINOP_MI<"or">;
784defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">;
785// Note: we don't deal with sub, because substractions of constants are
786// optimized into additions before this code can run
787
788multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
789 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
790 "#RELEASE_UNOP PSEUDO!",
791 [(atomic_store_8 addr:$dst, dag8)]>;
792 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
793 "#RELEASE_UNOP PSEUDO!",
794 [(atomic_store_16 addr:$dst, dag16)]>;
795 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
796 "#RELEASE_UNOP PSEUDO!",
797 [(atomic_store_32 addr:$dst, dag32)]>;
798 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
799 "#RELEASE_UNOP PSEUDO!",
800 [(atomic_store_64 addr:$dst, dag64)]>;
801}
802
803defm RELEASE_INC : RELEASE_UNOP<
804 (add (atomic_load_8 addr:$dst), (i8 1)),
805 (add (atomic_load_16 addr:$dst), (i16 1)),
806 (add (atomic_load_32 addr:$dst), (i32 1)),
807 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
808defm RELEASE_DEC : RELEASE_UNOP<
809 (add (atomic_load_8 addr:$dst), (i8 -1)),
810 (add (atomic_load_16 addr:$dst), (i16 -1)),
811 (add (atomic_load_32 addr:$dst), (i32 -1)),
812 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
813/*
814TODO: These don't work because the type inference of TableGen fails.
815TODO: find a way to fix it.
816defm RELEASE_NEG : RELEASE_UNOP<
817 (ineg (atomic_load_8 addr:$dst)),
818 (ineg (atomic_load_16 addr:$dst)),
819 (ineg (atomic_load_32 addr:$dst)),
820 (ineg (atomic_load_64 addr:$dst))>;
821defm RELEASE_NOT : RELEASE_UNOP<
822 (not (atomic_load_8 addr:$dst)),
823 (not (atomic_load_16 addr:$dst)),
824 (not (atomic_load_32 addr:$dst)),
825 (not (atomic_load_64 addr:$dst))>;
826*/
827
828def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
829 "#RELEASE_MOV PSEUDO !",
830 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
831def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
832 "#RELEASE_MOV PSEUDO !",
833 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
834def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
835 "#RELEASE_MOV PSEUDO !",
836 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
837def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
838 "#RELEASE_MOV PSEUDO !",
839 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
840
841def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
842 "#RELEASE_MOV PSEUDO!",
843 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
844def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
845 "#RELEASE_MOV PSEUDO!",
846 [(atomic_store_16 addr:$dst, GR16:$src)]>;
847def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
848 "#RELEASE_MOV PSEUDO!",
849 [(atomic_store_32 addr:$dst, GR32:$src)]>;
850def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
851 "#RELEASE_MOV PSEUDO!",
852 [(atomic_store_64 addr:$dst, GR64:$src)]>;
853
854def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
855 "#ACQUIRE_MOV PSEUDO!",
856 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
857def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
858 "#ACQUIRE_MOV PSEUDO!",
859 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
860def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
861 "#ACQUIRE_MOV PSEUDO!",
862 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
863def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
864 "#ACQUIRE_MOV PSEUDO!",
865 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
866//===----------------------------------------------------------------------===//
867// Conditional Move Pseudo Instructions.
868//===----------------------------------------------------------------------===//
869
870// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
871// instruction selection into a branch sequence.
872let Uses = [EFLAGS], usesCustomInserter = 1 in {
873 def CMOV_FR32 : I<0, Pseudo,
874 (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
875 "#CMOV_FR32 PSEUDO!",
876 [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
877 EFLAGS))]>;
878 def CMOV_FR64 : I<0, Pseudo,
879 (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
880 "#CMOV_FR64 PSEUDO!",
881 [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
882 EFLAGS))]>;
883 def CMOV_V4F32 : I<0, Pseudo,
884 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
885 "#CMOV_V4F32 PSEUDO!",
886 [(set VR128:$dst,
887 (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
888 EFLAGS)))]>;
889 def CMOV_V2F64 : I<0, Pseudo,
890 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
891 "#CMOV_V2F64 PSEUDO!",
892 [(set VR128:$dst,
893 (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
894 EFLAGS)))]>;
895 def CMOV_V2I64 : I<0, Pseudo,
896 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
897 "#CMOV_V2I64 PSEUDO!",
898 [(set VR128:$dst,
899 (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
900 EFLAGS)))]>;
901 def CMOV_V8F32 : I<0, Pseudo,
902 (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
903 "#CMOV_V8F32 PSEUDO!",
904 [(set VR256:$dst,
905 (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
906 EFLAGS)))]>;
907 def CMOV_V4F64 : I<0, Pseudo,
908 (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
909 "#CMOV_V4F64 PSEUDO!",
910 [(set VR256:$dst,
911 (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
912 EFLAGS)))]>;
913 def CMOV_V4I64 : I<0, Pseudo,
914 (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
915 "#CMOV_V4I64 PSEUDO!",
916 [(set VR256:$dst,
917 (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
918 EFLAGS)))]>;
919 def CMOV_V8I64 : I<0, Pseudo,
920 (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
921 "#CMOV_V8I64 PSEUDO!",
922 [(set VR512:$dst,
923 (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
924 EFLAGS)))]>;
925 def CMOV_V8F64 : I<0, Pseudo,
926 (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
927 "#CMOV_V8F64 PSEUDO!",
928 [(set VR512:$dst,
929 (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
930 EFLAGS)))]>;
931 def CMOV_V16F32 : I<0, Pseudo,
932 (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
933 "#CMOV_V16F32 PSEUDO!",
934 [(set VR512:$dst,
935 (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond,
936 EFLAGS)))]>;
937}
938
939
940//===----------------------------------------------------------------------===//
941// DAG Pattern Matching Rules
942//===----------------------------------------------------------------------===//
943
944// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
945def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
946def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
947def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
948def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
949def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
950def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
951
952def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
953 (ADD32ri GR32:$src1, tconstpool:$src2)>;
954def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
955 (ADD32ri GR32:$src1, tjumptable:$src2)>;
956def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
957 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
958def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
959 (ADD32ri GR32:$src1, texternalsym:$src2)>;
960def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
961 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
962
963def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
964 (MOV32mi addr:$dst, tglobaladdr:$src)>;
965def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
966 (MOV32mi addr:$dst, texternalsym:$src)>;
967def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
968 (MOV32mi addr:$dst, tblockaddress:$src)>;
969
970// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
971// code model mode, should use 'movabs'. FIXME: This is really a hack, the
972// 'movabs' predicate should handle this sort of thing.
973def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
974 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
975def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
976 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
977def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
978 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
979def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
980 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
981def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
982 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
983
984// In kernel code model, we can get the address of a label
985// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
986// the MOV64ri32 should accept these.
987def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
988 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
989def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
990 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
991def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
992 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
993def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
994 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
995def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
996 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
997
998// If we have small model and -static mode, it is safe to store global addresses
999// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
1000// for MOV64mi32 should handle this sort of thing.
1001def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1002 (MOV64mi32 addr:$dst, tconstpool:$src)>,
1003 Requires<[NearData, IsStatic]>;
1004def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1005 (MOV64mi32 addr:$dst, tjumptable:$src)>,
1006 Requires<[NearData, IsStatic]>;
1007def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1008 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1009 Requires<[NearData, IsStatic]>;
1010def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1011 (MOV64mi32 addr:$dst, texternalsym:$src)>,
1012 Requires<[NearData, IsStatic]>;
1013def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1014 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1015 Requires<[NearData, IsStatic]>;
1016
1017def : Pat<(i32 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
1018def : Pat<(i64 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV64ri texternalsym:$dst)>;
1019
1020// Calls
1021
1022// tls has some funny stuff here...
1023// This corresponds to movabs $foo@tpoff, %rax
1024def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1025 (MOV64ri32 tglobaltlsaddr :$dst)>;
1026// This corresponds to add $foo@tpoff, %rax
1027def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1028 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1029
1030
1031// Direct PC relative function call for small code model. 32-bit displacement
1032// sign extended to 64-bit.
1033def : Pat<(X86call (i64 tglobaladdr:$dst)),
1034 (CALL64pcrel32 tglobaladdr:$dst)>;
1035def : Pat<(X86call (i64 texternalsym:$dst)),
1036 (CALL64pcrel32 texternalsym:$dst)>;
1037
1038// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1039// can never use callee-saved registers. That is the purpose of the GR64_TC
1040// register classes.
1041//
1042// The only volatile register that is never used by the calling convention is
1043// %r11. This happens when calling a vararg function with 6 arguments.
1044//
1045// Match an X86tcret that uses less than 7 volatile registers.
1046def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1047 (X86tcret node:$ptr, node:$off), [{
1048 // X86tcret args: (*chain, ptr, imm, regs..., glue)
1049 unsigned NumRegs = 0;
1050 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1051 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1052 return false;
1053 return true;
1054}]>;
1055
1056def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1057 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1058 Requires<[Not64BitMode]>;
1059
1060// FIXME: This is disabled for 32-bit PIC mode because the global base
1061// register which is part of the address mode may be assigned a
1062// callee-saved register.
1063def : Pat<(X86tcret (load addr:$dst), imm:$off),
1064 (TCRETURNmi addr:$dst, imm:$off)>,
1065 Requires<[Not64BitMode, IsNotPIC]>;
1066
1067def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1068 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1069 Requires<[NotLP64]>;
1070
1071def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1072 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1073 Requires<[NotLP64]>;
1074
1075def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1076 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1077 Requires<[In64BitMode]>;
1078
1079// Don't fold loads into X86tcret requiring more than 6 regs.
1080// There wouldn't be enough scratch registers for base+index.
1081def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1082 (TCRETURNmi64 addr:$dst, imm:$off)>,
1083 Requires<[In64BitMode]>;
1084
1085def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1086 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1087 Requires<[IsLP64]>;
1088
1089def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1090 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1091 Requires<[IsLP64]>;
1092
1093// Normal calls, with various flavors of addresses.
1094def : Pat<(X86call (i32 tglobaladdr:$dst)),
1095 (CALLpcrel32 tglobaladdr:$dst)>;
1096def : Pat<(X86call (i32 texternalsym:$dst)),
1097 (CALLpcrel32 texternalsym:$dst)>;
1098def : Pat<(X86call (i32 imm:$dst)),
1099 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1100
1101// Comparisons.
1102
1103// TEST R,R is smaller than CMP R,0
1104def : Pat<(X86cmp GR8:$src1, 0),
1105 (TEST8rr GR8:$src1, GR8:$src1)>;
1106def : Pat<(X86cmp GR16:$src1, 0),
1107 (TEST16rr GR16:$src1, GR16:$src1)>;
1108def : Pat<(X86cmp GR32:$src1, 0),
1109 (TEST32rr GR32:$src1, GR32:$src1)>;
1110def : Pat<(X86cmp GR64:$src1, 0),
1111 (TEST64rr GR64:$src1, GR64:$src1)>;
1112
1113// Conditional moves with folded loads with operands swapped and conditions
1114// inverted.
1115multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1116 Instruction Inst64> {
1117 let Predicates = [HasCMov] in {
1118 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1119 (Inst16 GR16:$src2, addr:$src1)>;
1120 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1121 (Inst32 GR32:$src2, addr:$src1)>;
1122 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1123 (Inst64 GR64:$src2, addr:$src1)>;
1124 }
1125}
1126
1127defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1128defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1129defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1130defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1131defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1132defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1133defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1134defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1135defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1136defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1137defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1138defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1139defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1140defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1141defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1142defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1143
1144// zextload bool -> zextload byte
1145def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1146def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1147def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1148def : Pat<(zextloadi64i1 addr:$src),
1149 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1150
1151// extload bool -> extload byte
1152// When extloading from 16-bit and smaller memory locations into 64-bit
1153// registers, use zero-extending loads so that the entire 64-bit register is
1154// defined, avoiding partial-register updates.
1155
1156def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1157def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1158def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1159def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1160def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1161def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1162
1163// For other extloads, use subregs, since the high contents of the register are
1164// defined after an extload.
1165def : Pat<(extloadi64i1 addr:$src),
1166 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1167def : Pat<(extloadi64i8 addr:$src),
1168 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1169def : Pat<(extloadi64i16 addr:$src),
1170 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1171def : Pat<(extloadi64i32 addr:$src),
1172 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1173
1174// anyext. Define these to do an explicit zero-extend to
1175// avoid partial-register updates.
1176def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1177 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1178def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1179
1180// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1181def : Pat<(i32 (anyext GR16:$src)),
1182 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1183
1184def : Pat<(i64 (anyext GR8 :$src)),
1185 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1186def : Pat<(i64 (anyext GR16:$src)),
1187 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1188def : Pat<(i64 (anyext GR32:$src)),
1189 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1190
1191
1192// Any instruction that defines a 32-bit result leaves the high half of the
1193// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1194// be copying from a truncate. And x86's cmov doesn't do anything if the
1195// condition is false. But any other 32-bit operation will zero-extend
1196// up to 64 bits.
1197def def32 : PatLeaf<(i32 GR32:$src), [{
1198 return N->getOpcode() != ISD::TRUNCATE &&
1199 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1200 N->getOpcode() != ISD::CopyFromReg &&
1201 N->getOpcode() != ISD::AssertSext &&
1202 N->getOpcode() != X86ISD::CMOV;
1203}]>;
1204
1205// In the case of a 32-bit def that is known to implicitly zero-extend,
1206// we can use a SUBREG_TO_REG.
1207def : Pat<(i64 (zext def32:$src)),
1208 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1209
1210//===----------------------------------------------------------------------===//
1211// Pattern match OR as ADD
1212//===----------------------------------------------------------------------===//
1213
1214// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1215// 3-addressified into an LEA instruction to avoid copies. However, we also
1216// want to finally emit these instructions as an or at the end of the code
1217// generator to make the generated code easier to read. To do this, we select
1218// into "disjoint bits" pseudo ops.
1219
1220// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1221def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1222 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1223 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1224
1225 APInt KnownZero0, KnownOne0;
1226 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1227 APInt KnownZero1, KnownOne1;
1228 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1229 return (~KnownZero0 & ~KnownZero1) == 0;
1230}]>;
1231
1232
1233// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1234// Try this before the selecting to OR.
1235let AddedComplexity = 5, SchedRW = [WriteALU] in {
1236
1237let isConvertibleToThreeAddress = 1,
1238 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1239let isCommutable = 1 in {
1240def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1241 "", // orw/addw REG, REG
1242 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1243def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1244 "", // orl/addl REG, REG
1245 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1246def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1247 "", // orq/addq REG, REG
1248 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1249} // isCommutable
1250
1251// NOTE: These are order specific, we want the ri8 forms to be listed
1252// first so that they are slightly preferred to the ri forms.
1253
1254def ADD16ri8_DB : I<0, Pseudo,
1255 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1256 "", // orw/addw REG, imm8
1257 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1258def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1259 "", // orw/addw REG, imm
1260 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1261
1262def ADD32ri8_DB : I<0, Pseudo,
1263 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1264 "", // orl/addl REG, imm8
1265 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1266def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1267 "", // orl/addl REG, imm
1268 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1269
1270
1271def ADD64ri8_DB : I<0, Pseudo,
1272 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1273 "", // orq/addq REG, imm8
1274 [(set GR64:$dst, (or_is_add GR64:$src1,
1275 i64immSExt8:$src2))]>;
1276def ADD64ri32_DB : I<0, Pseudo,
1277 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1278 "", // orq/addq REG, imm
1279 [(set GR64:$dst, (or_is_add GR64:$src1,
1280 i64immSExt32:$src2))]>;
1281}
1282} // AddedComplexity, SchedRW
1283
1284
1285//===----------------------------------------------------------------------===//
1286// Some peepholes
1287//===----------------------------------------------------------------------===//
1288
1289// Odd encoding trick: -128 fits into an 8-bit immediate field while
1290// +128 doesn't, so in this special case use a sub instead of an add.
1291def : Pat<(add GR16:$src1, 128),
1292 (SUB16ri8 GR16:$src1, -128)>;
1293def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1294 (SUB16mi8 addr:$dst, -128)>;
1295
1296def : Pat<(add GR32:$src1, 128),
1297 (SUB32ri8 GR32:$src1, -128)>;
1298def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1299 (SUB32mi8 addr:$dst, -128)>;
1300
1301def : Pat<(add GR64:$src1, 128),
1302 (SUB64ri8 GR64:$src1, -128)>;
1303def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1304 (SUB64mi8 addr:$dst, -128)>;
1305
1306// The same trick applies for 32-bit immediate fields in 64-bit
1307// instructions.
1308def : Pat<(add GR64:$src1, 0x0000000080000000),
1309 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1310def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1311 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1312
1313// To avoid needing to materialize an immediate in a register, use a 32-bit and
1314// with implicit zero-extension instead of a 64-bit and if the immediate has at
1315// least 32 bits of leading zeros. If in addition the last 32 bits can be
1316// represented with a sign extension of a 8 bit constant, use that.
1317
1318def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1319 (SUBREG_TO_REG
1320 (i64 0),
1321 (AND32ri8
1322 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1323 (i32 (GetLo8XForm imm:$imm))),
1324 sub_32bit)>;
1325
1326def : Pat<(and GR64:$src, i64immZExt32:$imm),
1327 (SUBREG_TO_REG
1328 (i64 0),
1329 (AND32ri
1330 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1331 (i32 (GetLo32XForm imm:$imm))),
1332 sub_32bit)>;
1333
1334
1335// r & (2^16-1) ==> movz
1336def : Pat<(and GR32:$src1, 0xffff),
1337 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1338// r & (2^8-1) ==> movz
1339def : Pat<(and GR32:$src1, 0xff),
1340 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1341 GR32_ABCD)),
1342 sub_8bit))>,
1343 Requires<[Not64BitMode]>;
1344// r & (2^8-1) ==> movz
1345def : Pat<(and GR16:$src1, 0xff),
1346 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1347 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1348 sub_16bit)>,
1349 Requires<[Not64BitMode]>;
1350
1351// r & (2^32-1) ==> movz
1352def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1353 (SUBREG_TO_REG (i64 0),
1354 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1355 sub_32bit)>;
1356// r & (2^16-1) ==> movz
1357def : Pat<(and GR64:$src, 0xffff),
1358 (SUBREG_TO_REG (i64 0),
1359 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1360 sub_32bit)>;
1361// r & (2^8-1) ==> movz
1362def : Pat<(and GR64:$src, 0xff),
1363 (SUBREG_TO_REG (i64 0),
1364 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1365 sub_32bit)>;
1366// r & (2^8-1) ==> movz
1367def : Pat<(and GR32:$src1, 0xff),
1368 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1369 Requires<[In64BitMode]>;
1370// r & (2^8-1) ==> movz
1371def : Pat<(and GR16:$src1, 0xff),
1372 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1373 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1374 Requires<[In64BitMode]>;
1375
1376
1377// sext_inreg patterns
1378def : Pat<(sext_inreg GR32:$src, i16),
1379 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1380def : Pat<(sext_inreg GR32:$src, i8),
1381 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1382 GR32_ABCD)),
1383 sub_8bit))>,
1384 Requires<[Not64BitMode]>;
1385
1386def : Pat<(sext_inreg GR16:$src, i8),
1387 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1388 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1389 sub_16bit)>,
1390 Requires<[Not64BitMode]>;
1391
1392def : Pat<(sext_inreg GR64:$src, i32),
1393 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1394def : Pat<(sext_inreg GR64:$src, i16),
1395 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1396def : Pat<(sext_inreg GR64:$src, i8),
1397 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1398def : Pat<(sext_inreg GR32:$src, i8),
1399 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1400 Requires<[In64BitMode]>;
1401def : Pat<(sext_inreg GR16:$src, i8),
1402 (EXTRACT_SUBREG (MOVSX32rr8
1403 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1404 Requires<[In64BitMode]>;
1405
1406// sext, sext_load, zext, zext_load
1407def: Pat<(i16 (sext GR8:$src)),
1408 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1409def: Pat<(sextloadi16i8 addr:$src),
1410 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1411def: Pat<(i16 (zext GR8:$src)),
1412 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1413def: Pat<(zextloadi16i8 addr:$src),
1414 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1415
1416// trunc patterns
1417def : Pat<(i16 (trunc GR32:$src)),
1418 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1419def : Pat<(i8 (trunc GR32:$src)),
1420 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1421 sub_8bit)>,
1422 Requires<[Not64BitMode]>;
1423def : Pat<(i8 (trunc GR16:$src)),
1424 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1425 sub_8bit)>,
1426 Requires<[Not64BitMode]>;
1427def : Pat<(i32 (trunc GR64:$src)),
1428 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1429def : Pat<(i16 (trunc GR64:$src)),
1430 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1431def : Pat<(i8 (trunc GR64:$src)),
1432 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1433def : Pat<(i8 (trunc GR32:$src)),
1434 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1435 Requires<[In64BitMode]>;
1436def : Pat<(i8 (trunc GR16:$src)),
1437 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1438 Requires<[In64BitMode]>;
1439
1440// h-register tricks
1441def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1442 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1443 sub_8bit_hi)>,
1444 Requires<[Not64BitMode]>;
1445def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1446 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1447 sub_8bit_hi)>,
1448 Requires<[Not64BitMode]>;
1449def : Pat<(srl GR16:$src, (i8 8)),
1450 (EXTRACT_SUBREG
1451 (MOVZX32rr8
1452 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1453 sub_8bit_hi)),
1454 sub_16bit)>,
1455 Requires<[Not64BitMode]>;
1456def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1457 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1458 GR16_ABCD)),
1459 sub_8bit_hi))>,
1460 Requires<[Not64BitMode]>;
1461def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1462 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1463 GR16_ABCD)),
1464 sub_8bit_hi))>,
1465 Requires<[Not64BitMode]>;
1466def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1467 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1468 GR32_ABCD)),
1469 sub_8bit_hi))>,
1470 Requires<[Not64BitMode]>;
1471def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1472 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1473 GR32_ABCD)),
1474 sub_8bit_hi))>,
1475 Requires<[Not64BitMode]>;
1476
1477// h-register tricks.
1478// For now, be conservative on x86-64 and use an h-register extract only if the
1479// value is immediately zero-extended or stored, which are somewhat common
1480// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1481// from being allocated in the same instruction as the h register, as there's
1482// currently no way to describe this requirement to the register allocator.
1483
1484// h-register extract and zero-extend.
1485def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1486 (SUBREG_TO_REG
1487 (i64 0),
1488 (MOVZX32_NOREXrr8
1489 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1490 sub_8bit_hi)),
1491 sub_32bit)>;
1492def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1493 (MOVZX32_NOREXrr8
1494 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1495 sub_8bit_hi))>,
1496 Requires<[In64BitMode]>;
1497def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1498 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1499 GR32_ABCD)),
1500 sub_8bit_hi))>,
1501 Requires<[In64BitMode]>;
1502def : Pat<(srl GR16:$src, (i8 8)),
1503 (EXTRACT_SUBREG
1504 (MOVZX32_NOREXrr8
1505 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1506 sub_8bit_hi)),
1507 sub_16bit)>,
1508 Requires<[In64BitMode]>;
1509def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1510 (MOVZX32_NOREXrr8
1511 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1512 sub_8bit_hi))>,
1513 Requires<[In64BitMode]>;
1514def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1515 (MOVZX32_NOREXrr8
1516 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1517 sub_8bit_hi))>,
1518 Requires<[In64BitMode]>;
1519def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1520 (SUBREG_TO_REG
1521 (i64 0),
1522 (MOVZX32_NOREXrr8
1523 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1524 sub_8bit_hi)),
1525 sub_32bit)>;
1526def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1527 (SUBREG_TO_REG
1528 (i64 0),
1529 (MOVZX32_NOREXrr8
1530 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1531 sub_8bit_hi)),
1532 sub_32bit)>;
1533
1534// h-register extract and store.
1535def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1536 (MOV8mr_NOREX
1537 addr:$dst,
1538 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1539 sub_8bit_hi))>;
1540def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1541 (MOV8mr_NOREX
1542 addr:$dst,
1543 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1544 sub_8bit_hi))>,
1545 Requires<[In64BitMode]>;
1546def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1547 (MOV8mr_NOREX
1548 addr:$dst,
1549 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1550 sub_8bit_hi))>,
1551 Requires<[In64BitMode]>;
1552
1553
1554// (shl x, 1) ==> (add x, x)
1555// Note that if x is undef (immediate or otherwise), we could theoretically
1556// end up with the two uses of x getting different values, producing a result
1557// where the least significant bit is not 0. However, the probability of this
1558// happening is considered low enough that this is officially not a
1559// "real problem".
1560def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1561def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1562def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1563def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1564
1565// Helper imms that check if a mask doesn't change significant shift bits.
1566def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1567def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1568
1569// Shift amount is implicitly masked.
1570multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1571 // (shift x (and y, 31)) ==> (shift x, y)
1572 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1573 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1574 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1575 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1576 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1577 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1578 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1579 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1580 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1581 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1582 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1583 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1584
1585 // (shift x (and y, 63)) ==> (shift x, y)
1586 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1587 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1588 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1589 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1590}
1591
1592defm : MaskedShiftAmountPats<shl, "SHL">;
1593defm : MaskedShiftAmountPats<srl, "SHR">;
1594defm : MaskedShiftAmountPats<sra, "SAR">;
1595defm : MaskedShiftAmountPats<rotl, "ROL">;
1596defm : MaskedShiftAmountPats<rotr, "ROR">;
1597
1598// (anyext (setcc_carry)) -> (setcc_carry)
1599def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1600 (SETB_C16r)>;
1601def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1602 (SETB_C32r)>;
1603def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1604 (SETB_C32r)>;
1605
1606
1607
1608
1609//===----------------------------------------------------------------------===//
1610// EFLAGS-defining Patterns
1611//===----------------------------------------------------------------------===//
1612
1613// add reg, reg
1614def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1615def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1616def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1617
1618// add reg, mem
1619def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1620 (ADD8rm GR8:$src1, addr:$src2)>;
1621def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1622 (ADD16rm GR16:$src1, addr:$src2)>;
1623def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1624 (ADD32rm GR32:$src1, addr:$src2)>;
1625
1626// add reg, imm
1627def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1628def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1629def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1630def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1631 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1632def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1633 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1634
1635// sub reg, reg
1636def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1637def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1638def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1639
1640// sub reg, mem
1641def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1642 (SUB8rm GR8:$src1, addr:$src2)>;
1643def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1644 (SUB16rm GR16:$src1, addr:$src2)>;
1645def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1646 (SUB32rm GR32:$src1, addr:$src2)>;
1647
1648// sub reg, imm
1649def : Pat<(sub GR8:$src1, imm:$src2),
1650 (SUB8ri GR8:$src1, imm:$src2)>;
1651def : Pat<(sub GR16:$src1, imm:$src2),
1652 (SUB16ri GR16:$src1, imm:$src2)>;
1653def : Pat<(sub GR32:$src1, imm:$src2),
1654 (SUB32ri GR32:$src1, imm:$src2)>;
1655def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1656 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1657def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1658 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1659
1660// sub 0, reg
1661def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1662def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1663def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1664def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1665
1666// mul reg, reg
1667def : Pat<(mul GR16:$src1, GR16:$src2),
1668 (IMUL16rr GR16:$src1, GR16:$src2)>;
1669def : Pat<(mul GR32:$src1, GR32:$src2),
1670 (IMUL32rr GR32:$src1, GR32:$src2)>;
1671
1672// mul reg, mem
1673def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1674 (IMUL16rm GR16:$src1, addr:$src2)>;
1675def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1676 (IMUL32rm GR32:$src1, addr:$src2)>;
1677
1678// mul reg, imm
1679def : Pat<(mul GR16:$src1, imm:$src2),
1680 (IMUL16rri GR16:$src1, imm:$src2)>;
1681def : Pat<(mul GR32:$src1, imm:$src2),
1682 (IMUL32rri GR32:$src1, imm:$src2)>;
1683def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1684 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1685def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1686 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1687
1688// reg = mul mem, imm
1689def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1690 (IMUL16rmi addr:$src1, imm:$src2)>;
1691def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1692 (IMUL32rmi addr:$src1, imm:$src2)>;
1693def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1694 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1695def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1696 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1697
1698// Patterns for nodes that do not produce flags, for instructions that do.
1699
1700// addition
1701def : Pat<(add GR64:$src1, GR64:$src2),
1702 (ADD64rr GR64:$src1, GR64:$src2)>;
1703def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1704 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1705def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1706 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1707def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1708 (ADD64rm GR64:$src1, addr:$src2)>;
1709
1710// subtraction
1711def : Pat<(sub GR64:$src1, GR64:$src2),
1712 (SUB64rr GR64:$src1, GR64:$src2)>;
1713def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1714 (SUB64rm GR64:$src1, addr:$src2)>;
1715def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1716 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1717def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1718 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1719
1720// Multiply
1721def : Pat<(mul GR64:$src1, GR64:$src2),
1722 (IMUL64rr GR64:$src1, GR64:$src2)>;
1723def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1724 (IMUL64rm GR64:$src1, addr:$src2)>;
1725def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1726 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1727def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1728 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1729def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1730 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1731def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1732 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1733
1734// Increment/Decrement reg.
1735// Do not make INC/DEC if it is slow
1736let Predicates = [NotSlowIncDec] in {
1737 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1738 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1739 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1740 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1741 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1742 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1743 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1744 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1745}
1746
1747// or reg/reg.
1748def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1749def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1750def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1751def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1752
1753// or reg/mem
1754def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1755 (OR8rm GR8:$src1, addr:$src2)>;
1756def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1757 (OR16rm GR16:$src1, addr:$src2)>;
1758def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1759 (OR32rm GR32:$src1, addr:$src2)>;
1760def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1761 (OR64rm GR64:$src1, addr:$src2)>;
1762
1763// or reg/imm
1764def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1765def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1766def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1767def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1768 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1769def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1770 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1771def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1772 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1773def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1774 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1775
1776// xor reg/reg
1777def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1778def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1779def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1780def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1781
1782// xor reg/mem
1783def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1784 (XOR8rm GR8:$src1, addr:$src2)>;
1785def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1786 (XOR16rm GR16:$src1, addr:$src2)>;
1787def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1788 (XOR32rm GR32:$src1, addr:$src2)>;
1789def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1790 (XOR64rm GR64:$src1, addr:$src2)>;
1791
1792// xor reg/imm
1793def : Pat<(xor GR8:$src1, imm:$src2),
1794 (XOR8ri GR8:$src1, imm:$src2)>;
1795def : Pat<(xor GR16:$src1, imm:$src2),
1796 (XOR16ri GR16:$src1, imm:$src2)>;
1797def : Pat<(xor GR32:$src1, imm:$src2),
1798 (XOR32ri GR32:$src1, imm:$src2)>;
1799def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1800 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1801def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1802 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1803def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1804 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1805def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1806 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1807
1808// and reg/reg
1809def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1810def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1811def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1812def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1813
1814// and reg/mem
1815def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1816 (AND8rm GR8:$src1, addr:$src2)>;
1817def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1818 (AND16rm GR16:$src1, addr:$src2)>;
1819def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1820 (AND32rm GR32:$src1, addr:$src2)>;
1821def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1822 (AND64rm GR64:$src1, addr:$src2)>;
1823
1824// and reg/imm
1825def : Pat<(and GR8:$src1, imm:$src2),
1826 (AND8ri GR8:$src1, imm:$src2)>;
1827def : Pat<(and GR16:$src1, imm:$src2),
1828 (AND16ri GR16:$src1, imm:$src2)>;
1829def : Pat<(and GR32:$src1, imm:$src2),
1830 (AND32ri GR32:$src1, imm:$src2)>;
1831def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1832 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1833def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1834 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1835def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1836 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1837def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1838 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1839
1840// Bit scan instruction patterns to match explicit zero-undef behavior.
1841def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1842def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1843def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1844def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1845def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1846def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1847
1848// When HasMOVBE is enabled it is possible to get a non-legalized
1849// register-register 16 bit bswap. This maps it to a ROL instruction.
1850let Predicates = [HasMOVBE] in {
1851 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1852}