blob: d2d3f35c3df5aa4ddd528a733f4cc8841f046d18 [file] [log] [blame]
Chris Lattner158e1f52006-02-05 05:50:24 +00001//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions. Note that the machine may be running in 32-bit mode.
26def HasV9 : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions. Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate. In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11 : PatLeaf<(imm), [{
47 // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48 return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13 : PatLeaf<(imm), [{
52 // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53 return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57 return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61 // Transformation function: shift the immediate value down into the low bits.
62 return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66 return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75 let PrintMethod = "printMemOperand";
76 let NumMIOperands = 2;
77 let MIOperandInfo = (ops IntRegs, IntRegs);
78}
79def MEMri : Operand<i32> {
80 let PrintMethod = "printMemOperand";
81 let NumMIOperands = 2;
82 let MIOperandInfo = (ops IntRegs, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printCCOperand" in
91 def CCOp : Operand<i32>;
92
93def SDTSPcmpfcc :
94SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisFP<1>, SDTCisSameAs<1, 2>]>;
95def SDTSPbrcc :
96SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
97 SDTCisVT<2, FlagVT>]>;
98def SDTSPselectcc :
99SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
100 SDTCisVT<3, i32>, SDTCisVT<4, FlagVT>]>;
101def SDTSPFTOI :
102SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
103def SDTSPITOF :
104SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
105
106def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
107def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
108def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain]>;
109def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain]>;
110
111def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
112def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
113
114def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
115def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
116
117def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc>;
118def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc>;
119
120// These are target-independent nodes, but have target-specific formats.
121def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
122def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq, [SDNPHasChain]>;
123def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeq, [SDNPHasChain]>;
124
125def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
126def call : SDNode<"SPISD::CALL", SDT_SPCall,
127 [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
128
129def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
130def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
131 [SDNPHasChain, SDNPOptInFlag]>;
132
133//===----------------------------------------------------------------------===//
134// SPARC Flag Conditions
135//===----------------------------------------------------------------------===//
136
137// Note that these values must be kept in sync with the CCOp::CondCode enum
138// values.
139class ICC_VAL<int N> : PatLeaf<(i32 N)>;
140def ICC_NE : ICC_VAL< 9>; // Not Equal
141def ICC_E : ICC_VAL< 1>; // Equal
142def ICC_G : ICC_VAL<10>; // Greater
143def ICC_LE : ICC_VAL< 2>; // Less or Equal
144def ICC_GE : ICC_VAL<11>; // Greater or Equal
145def ICC_L : ICC_VAL< 3>; // Less
146def ICC_GU : ICC_VAL<12>; // Greater Unsigned
147def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
148def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
149def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
150def ICC_POS : ICC_VAL<14>; // Positive
151def ICC_NEG : ICC_VAL< 6>; // Negative
152def ICC_VC : ICC_VAL<15>; // Overflow Clear
153def ICC_VS : ICC_VAL< 7>; // Overflow Set
154
155class FCC_VAL<int N> : PatLeaf<(i32 N)>;
156def FCC_U : FCC_VAL<23>; // Unordered
157def FCC_G : FCC_VAL<22>; // Greater
158def FCC_UG : FCC_VAL<21>; // Unordered or Greater
159def FCC_L : FCC_VAL<20>; // Less
160def FCC_UL : FCC_VAL<19>; // Unordered or Less
161def FCC_LG : FCC_VAL<18>; // Less or Greater
162def FCC_NE : FCC_VAL<17>; // Not Equal
163def FCC_E : FCC_VAL<25>; // Equal
164def FCC_UE : FCC_VAL<24>; // Unordered or Equal
165def FCC_GE : FCC_VAL<25>; // Greater or Equal
166def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
167def FCC_LE : FCC_VAL<27>; // Less or Equal
168def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
169def FCC_O : FCC_VAL<29>; // Ordered
170
171
172//===----------------------------------------------------------------------===//
173// Instructions
174//===----------------------------------------------------------------------===//
175
176// Pseudo instructions.
177class Pseudo<dag ops, string asmstr, list<dag> pattern>
178 : InstSP<ops, asmstr, pattern>;
179
180def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
181 "!ADJCALLSTACKDOWN $amt",
182 [(callseq_start imm:$amt)]>;
183def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
184 "!ADJCALLSTACKUP $amt",
185 [(callseq_end imm:$amt)]>;
186def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
187 "!IMPLICIT_DEF $dst",
188 [(set IntRegs:$dst, (undef))]>;
189def IMPLICIT_DEF_FP : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
190 [(set FPRegs:$dst, (undef))]>;
191def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
192 [(set DFPRegs:$dst, (undef))]>;
193
194// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
195// fpmover pass.
196let Predicates = [HasNoV9] in { // Only emit these in SP mode.
197 def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
198 "!FpMOVD $src, $dst", []>;
199 def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
200 "!FpNEGD $src, $dst",
201 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
202 def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
203 "!FpABSD $src, $dst",
204 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
205}
206
207// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded by the
208// scheduler into a branch sequence. This has to handle all permutations of
209// selection between i32/f32/f64 on ICC and FCC.
210let usesCustomDAGSchedInserter = 1, // Expanded by the scheduler.
211 Predicates = [HasNoV9] in { // V9 has conditional moves
212 def SELECT_CC_Int_ICC
213 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
214 "; SELECT_CC_Int_ICC PSEUDO!",
215 [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
216 imm:$Cond, ICC))]>;
217 def SELECT_CC_Int_FCC
218 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
219 "; SELECT_CC_Int_FCC PSEUDO!",
220 [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
221 imm:$Cond, FCC))]>;
222 def SELECT_CC_FP_ICC
223 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
224 "; SELECT_CC_FP_ICC PSEUDO!",
225 [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
226 imm:$Cond, ICC))]>;
227 def SELECT_CC_FP_FCC
228 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
229 "; SELECT_CC_FP_FCC PSEUDO!",
230 [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
231 imm:$Cond, FCC))]>;
232 def SELECT_CC_DFP_ICC
233 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
234 "; SELECT_CC_DFP_ICC PSEUDO!",
235 [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
236 imm:$Cond, ICC))]>;
237 def SELECT_CC_DFP_FCC
238 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
239 "; SELECT_CC_DFP_FCC PSEUDO!",
240 [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
241 imm:$Cond, FCC))]>;
242}
243
244
245// Section A.3 - Synthetic Instructions, p. 85
246// special cases of JMPL:
247let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
248 let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
249 def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
250}
251
252// Section B.1 - Load Integer Instructions, p. 90
253def LDSBrr : F3_1<3, 0b001001,
254 (ops IntRegs:$dst, MEMrr:$addr),
255 "ldsb [$addr], $dst",
256 [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
257def LDSBri : F3_2<3, 0b001001,
258 (ops IntRegs:$dst, MEMri:$addr),
259 "ldsb [$addr], $dst",
260 [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
261def LDSHrr : F3_1<3, 0b001010,
262 (ops IntRegs:$dst, MEMrr:$addr),
263 "ldsh [$addr], $dst",
264 [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
265def LDSHri : F3_2<3, 0b001010,
266 (ops IntRegs:$dst, MEMri:$addr),
267 "ldsh [$addr], $dst",
268 [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
269def LDUBrr : F3_1<3, 0b000001,
270 (ops IntRegs:$dst, MEMrr:$addr),
271 "ldub [$addr], $dst",
272 [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
273def LDUBri : F3_2<3, 0b000001,
274 (ops IntRegs:$dst, MEMri:$addr),
275 "ldub [$addr], $dst",
276 [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
277def LDUHrr : F3_1<3, 0b000010,
278 (ops IntRegs:$dst, MEMrr:$addr),
279 "lduh [$addr], $dst",
280 [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
281def LDUHri : F3_2<3, 0b000010,
282 (ops IntRegs:$dst, MEMri:$addr),
283 "lduh [$addr], $dst",
284 [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
285def LDrr : F3_1<3, 0b000000,
286 (ops IntRegs:$dst, MEMrr:$addr),
287 "ld [$addr], $dst",
288 [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
289def LDri : F3_2<3, 0b000000,
290 (ops IntRegs:$dst, MEMri:$addr),
291 "ld [$addr], $dst",
292 [(set IntRegs:$dst, (load ADDRri:$addr))]>;
293
294// Section B.2 - Load Floating-point Instructions, p. 92
295def LDFrr : F3_1<3, 0b100000,
296 (ops FPRegs:$dst, MEMrr:$addr),
297 "ld [$addr], $dst",
298 [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
299def LDFri : F3_2<3, 0b100000,
300 (ops FPRegs:$dst, MEMri:$addr),
301 "ld [$addr], $dst",
302 [(set FPRegs:$dst, (load ADDRri:$addr))]>;
303def LDDFrr : F3_1<3, 0b100011,
304 (ops DFPRegs:$dst, MEMrr:$addr),
305 "ldd [$addr], $dst",
306 [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
307def LDDFri : F3_2<3, 0b100011,
308 (ops DFPRegs:$dst, MEMri:$addr),
309 "ldd [$addr], $dst",
310 [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
311
312// Section B.4 - Store Integer Instructions, p. 95
313def STBrr : F3_1<3, 0b000101,
314 (ops MEMrr:$addr, IntRegs:$src),
315 "stb $src, [$addr]",
316 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
317def STBri : F3_2<3, 0b000101,
318 (ops MEMri:$addr, IntRegs:$src),
319 "stb $src, [$addr]",
320 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
321def STHrr : F3_1<3, 0b000110,
322 (ops MEMrr:$addr, IntRegs:$src),
323 "sth $src, [$addr]",
324 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
325def STHri : F3_2<3, 0b000110,
326 (ops MEMri:$addr, IntRegs:$src),
327 "sth $src, [$addr]",
328 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
329def STrr : F3_1<3, 0b000100,
330 (ops MEMrr:$addr, IntRegs:$src),
331 "st $src, [$addr]",
332 [(store IntRegs:$src, ADDRrr:$addr)]>;
333def STri : F3_2<3, 0b000100,
334 (ops MEMri:$addr, IntRegs:$src),
335 "st $src, [$addr]",
336 [(store IntRegs:$src, ADDRri:$addr)]>;
337
338// Section B.5 - Store Floating-point Instructions, p. 97
339def STFrr : F3_1<3, 0b100100,
340 (ops MEMrr:$addr, FPRegs:$src),
341 "st $src, [$addr]",
342 [(store FPRegs:$src, ADDRrr:$addr)]>;
343def STFri : F3_2<3, 0b100100,
344 (ops MEMri:$addr, FPRegs:$src),
345 "st $src, [$addr]",
346 [(store FPRegs:$src, ADDRri:$addr)]>;
347def STDFrr : F3_1<3, 0b100111,
348 (ops MEMrr:$addr, DFPRegs:$src),
349 "std $src, [$addr]",
350 [(store DFPRegs:$src, ADDRrr:$addr)]>;
351def STDFri : F3_2<3, 0b100111,
352 (ops MEMri:$addr, DFPRegs:$src),
353 "std $src, [$addr]",
354 [(store DFPRegs:$src, ADDRri:$addr)]>;
355
356// Section B.9 - SETHI Instruction, p. 104
357def SETHIi: F2_1<0b100,
358 (ops IntRegs:$dst, i32imm:$src),
359 "sethi $src, $dst",
360 [(set IntRegs:$dst, SETHIimm:$src)]>;
361
362// Section B.10 - NOP Instruction, p. 105
363// (It's a special case of SETHI)
364let rd = 0, imm22 = 0 in
365 def NOP : F2_1<0b100, (ops), "nop", []>;
366
367// Section B.11 - Logical Instructions, p. 106
368def ANDrr : F3_1<2, 0b000001,
369 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
370 "and $b, $c, $dst",
371 [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
372def ANDri : F3_2<2, 0b000001,
373 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
374 "and $b, $c, $dst",
375 [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
376def ANDNrr : F3_1<2, 0b000101,
377 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
378 "andn $b, $c, $dst",
379 [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
380def ANDNri : F3_2<2, 0b000101,
381 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
382 "andn $b, $c, $dst", []>;
383def ORrr : F3_1<2, 0b000010,
384 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
385 "or $b, $c, $dst",
386 [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
387def ORri : F3_2<2, 0b000010,
388 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
389 "or $b, $c, $dst",
390 [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
391def ORNrr : F3_1<2, 0b000110,
392 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
393 "orn $b, $c, $dst",
394 [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
395def ORNri : F3_2<2, 0b000110,
396 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
397 "orn $b, $c, $dst", []>;
398def XORrr : F3_1<2, 0b000011,
399 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
400 "xor $b, $c, $dst",
401 [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
402def XORri : F3_2<2, 0b000011,
403 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
404 "xor $b, $c, $dst",
405 [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
406def XNORrr : F3_1<2, 0b000111,
407 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
408 "xnor $b, $c, $dst",
409 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
410def XNORri : F3_2<2, 0b000111,
411 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
412 "xnor $b, $c, $dst", []>;
413
414// Section B.12 - Shift Instructions, p. 107
415def SLLrr : F3_1<2, 0b100101,
416 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
417 "sll $b, $c, $dst",
418 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
419def SLLri : F3_2<2, 0b100101,
420 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
421 "sll $b, $c, $dst",
422 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
423def SRLrr : F3_1<2, 0b100110,
424 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
425 "srl $b, $c, $dst",
426 [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
427def SRLri : F3_2<2, 0b100110,
428 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
429 "srl $b, $c, $dst",
430 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
431def SRArr : F3_1<2, 0b100111,
432 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
433 "sra $b, $c, $dst",
434 [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
435def SRAri : F3_2<2, 0b100111,
436 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
437 "sra $b, $c, $dst",
438 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
439
440// Section B.13 - Add Instructions, p. 108
441def ADDrr : F3_1<2, 0b000000,
442 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
443 "add $b, $c, $dst",
444 [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
445def ADDri : F3_2<2, 0b000000,
446 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
447 "add $b, $c, $dst",
448 [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
449def ADDCCrr : F3_1<2, 0b010000,
450 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
451 "addcc $b, $c, $dst", []>;
452def ADDCCri : F3_2<2, 0b010000,
453 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
454 "addcc $b, $c, $dst", []>;
455def ADDXrr : F3_1<2, 0b001000,
456 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
457 "addx $b, $c, $dst", []>;
458def ADDXri : F3_2<2, 0b001000,
459 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
460 "addx $b, $c, $dst", []>;
461
462// Section B.15 - Subtract Instructions, p. 110
463def SUBrr : F3_1<2, 0b000100,
464 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
465 "sub $b, $c, $dst",
466 [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
467def SUBri : F3_2<2, 0b000100,
468 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
469 "sub $b, $c, $dst",
470 [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
471def SUBXrr : F3_1<2, 0b001100,
472 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
473 "subx $b, $c, $dst", []>;
474def SUBXri : F3_2<2, 0b001100,
475 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
476 "subx $b, $c, $dst", []>;
477def SUBCCrr : F3_1<2, 0b010100,
478 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
479 "subcc $b, $c, $dst",
480 [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, IntRegs:$c))]>;
481def SUBCCri : F3_2<2, 0b010100,
482 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
483 "subcc $b, $c, $dst",
484 [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, simm13:$c))]>;
485def SUBXCCrr: F3_1<2, 0b011100,
486 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
487 "subxcc $b, $c, $dst", []>;
488
489// Section B.18 - Multiply Instructions, p. 113
490def UMULrr : F3_1<2, 0b001010,
491 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
492 "umul $b, $c, $dst", []>;
493def UMULri : F3_2<2, 0b001010,
494 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
495 "umul $b, $c, $dst", []>;
496def SMULrr : F3_1<2, 0b001011,
497 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
498 "smul $b, $c, $dst",
499 [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
500def SMULri : F3_2<2, 0b001011,
501 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
502 "smul $b, $c, $dst",
503 [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
504
505// Section B.19 - Divide Instructions, p. 115
506def UDIVrr : F3_1<2, 0b001110,
507 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
508 "udiv $b, $c, $dst", []>;
509def UDIVri : F3_2<2, 0b001110,
510 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
511 "udiv $b, $c, $dst", []>;
512def SDIVrr : F3_1<2, 0b001111,
513 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
514 "sdiv $b, $c, $dst", []>;
515def SDIVri : F3_2<2, 0b001111,
516 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
517 "sdiv $b, $c, $dst", []>;
518
519// Section B.20 - SAVE and RESTORE, p. 117
520def SAVErr : F3_1<2, 0b111100,
521 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
522 "save $b, $c, $dst", []>;
523def SAVEri : F3_2<2, 0b111100,
524 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
525 "save $b, $c, $dst", []>;
526def RESTORErr : F3_1<2, 0b111101,
527 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
528 "restore $b, $c, $dst", []>;
529def RESTOREri : F3_2<2, 0b111101,
530 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
531 "restore $b, $c, $dst", []>;
532
533// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
534
535// conditional branch class:
536class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
537 : F2_2<cc, 0b010, ops, asmstr, pattern> {
538 let isBranch = 1;
539 let isTerminator = 1;
540 let hasDelaySlot = 1;
541 let noResults = 1;
542}
543
544let isBarrier = 1 in
545 def BA : BranchSP<0b1000, (ops brtarget:$dst),
546 "ba $dst",
547 [(br bb:$dst)]>;
548
549// FIXME: the encoding for the JIT should look at the condition field.
550def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
551 "b$cc $dst",
552 [(SPbricc bb:$dst, imm:$cc, ICC)]>;
553
554
555// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
556
557// floating-point conditional branch class:
558class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
559 : F2_2<cc, 0b110, ops, asmstr, pattern> {
560 let isBranch = 1;
561 let isTerminator = 1;
562 let hasDelaySlot = 1;
563 let noResults = 1;
564}
565
566// FIXME: the encoding for the JIT should look at the condition field.
567def FBCOND : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
568 "fb$cc $dst",
569 [(SPbrfcc bb:$dst, imm:$cc, FCC)]>;
570
571
572// Section B.24 - Call and Link Instruction, p. 125
573// This is the only Format 1 instruction
574let Uses = [O0, O1, O2, O3, O4, O5],
575 hasDelaySlot = 1, isCall = 1, noResults = 1,
576 Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
577 D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in {
578 def CALL : InstSP<(ops calltarget:$dst),
579 "call $dst", []> {
580 bits<30> disp;
581 let op = 1;
582 let Inst{29-0} = disp;
583 }
584
585 // indirect calls
586 def JMPLrr : F3_1<2, 0b111000,
587 (ops MEMrr:$ptr),
588 "call $ptr",
589 [(call ADDRrr:$ptr)]>;
590 def JMPLri : F3_2<2, 0b111000,
591 (ops MEMri:$ptr),
592 "call $ptr",
593 [(call ADDRri:$ptr)]>;
594}
595
596// Section B.28 - Read State Register Instructions
597def RDY : F3_1<2, 0b101000,
598 (ops IntRegs:$dst),
599 "rd %y, $dst", []>;
600
601// Section B.29 - Write State Register Instructions
602def WRYrr : F3_1<2, 0b110000,
603 (ops IntRegs:$b, IntRegs:$c),
604 "wr $b, $c, %y", []>;
605def WRYri : F3_2<2, 0b110000,
606 (ops IntRegs:$b, i32imm:$c),
607 "wr $b, $c, %y", []>;
608
609// Convert Integer to Floating-point Instructions, p. 141
610def FITOS : F3_3<2, 0b110100, 0b011000100,
611 (ops FPRegs:$dst, FPRegs:$src),
612 "fitos $src, $dst",
613 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
614def FITOD : F3_3<2, 0b110100, 0b011001000,
615 (ops DFPRegs:$dst, FPRegs:$src),
616 "fitod $src, $dst",
617 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
618
619// Convert Floating-point to Integer Instructions, p. 142
620def FSTOI : F3_3<2, 0b110100, 0b011010001,
621 (ops FPRegs:$dst, FPRegs:$src),
622 "fstoi $src, $dst",
623 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
624def FDTOI : F3_3<2, 0b110100, 0b011010010,
625 (ops FPRegs:$dst, DFPRegs:$src),
626 "fdtoi $src, $dst",
627 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
628
629// Convert between Floating-point Formats Instructions, p. 143
630def FSTOD : F3_3<2, 0b110100, 0b011001001,
631 (ops DFPRegs:$dst, FPRegs:$src),
632 "fstod $src, $dst",
633 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
634def FDTOS : F3_3<2, 0b110100, 0b011000110,
635 (ops FPRegs:$dst, DFPRegs:$src),
636 "fdtos $src, $dst",
637 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
638
639// Floating-point Move Instructions, p. 144
640def FMOVS : F3_3<2, 0b110100, 0b000000001,
641 (ops FPRegs:$dst, FPRegs:$src),
642 "fmovs $src, $dst", []>;
643def FNEGS : F3_3<2, 0b110100, 0b000000101,
644 (ops FPRegs:$dst, FPRegs:$src),
645 "fnegs $src, $dst",
646 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
647def FABSS : F3_3<2, 0b110100, 0b000001001,
648 (ops FPRegs:$dst, FPRegs:$src),
649 "fabss $src, $dst",
650 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
651
652
653// Floating-point Square Root Instructions, p.145
654def FSQRTS : F3_3<2, 0b110100, 0b000101001,
655 (ops FPRegs:$dst, FPRegs:$src),
656 "fsqrts $src, $dst",
657 [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
658def FSQRTD : F3_3<2, 0b110100, 0b000101010,
659 (ops DFPRegs:$dst, DFPRegs:$src),
660 "fsqrtd $src, $dst",
661 [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
662
663
664
665// Floating-point Add and Subtract Instructions, p. 146
666def FADDS : F3_3<2, 0b110100, 0b001000001,
667 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
668 "fadds $src1, $src2, $dst",
669 [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
670def FADDD : F3_3<2, 0b110100, 0b001000010,
671 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
672 "faddd $src1, $src2, $dst",
673 [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
674def FSUBS : F3_3<2, 0b110100, 0b001000101,
675 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
676 "fsubs $src1, $src2, $dst",
677 [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
678def FSUBD : F3_3<2, 0b110100, 0b001000110,
679 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
680 "fsubd $src1, $src2, $dst",
681 [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
682
683// Floating-point Multiply and Divide Instructions, p. 147
684def FMULS : F3_3<2, 0b110100, 0b001001001,
685 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
686 "fmuls $src1, $src2, $dst",
687 [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
688def FMULD : F3_3<2, 0b110100, 0b001001010,
689 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
690 "fmuld $src1, $src2, $dst",
691 [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
692def FSMULD : F3_3<2, 0b110100, 0b001101001,
693 (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
694 "fsmuld $src1, $src2, $dst",
695 [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
696 (fextend FPRegs:$src2)))]>;
697def FDIVS : F3_3<2, 0b110100, 0b001001101,
698 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
699 "fdivs $src1, $src2, $dst",
700 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
701def FDIVD : F3_3<2, 0b110100, 0b001001110,
702 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
703 "fdivd $src1, $src2, $dst",
704 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
705
706// Floating-point Compare Instructions, p. 148
707// Note: the 2nd template arg is different for these guys.
708// Note 2: the result of a FCMP is not available until the 2nd cycle
709// after the instr is retired, but there is no interlock. This behavior
710// is modelled with a forced noop after the instruction.
711def FCMPS : F3_3<2, 0b110101, 0b001010001,
712 (ops FPRegs:$src1, FPRegs:$src2),
713 "fcmps $src1, $src2\n\tnop",
714 [(set FCC, (SPcmpfcc FPRegs:$src1, FPRegs:$src2))]>;
715def FCMPD : F3_3<2, 0b110101, 0b001010010,
716 (ops DFPRegs:$src1, DFPRegs:$src2),
717 "fcmpd $src1, $src2\n\tnop",
718 [(set FCC, (SPcmpfcc DFPRegs:$src1, DFPRegs:$src2))]>;
719
720
721//===----------------------------------------------------------------------===//
722// V9 Instructions
723//===----------------------------------------------------------------------===//
724
725// V9 Conditional Moves.
726let Predicates = [HasV9], isTwoAddress = 1 in {
727 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
728 // FIXME: Add instruction encodings for the JIT some day.
729 def MOVICCrr
730 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
731 "mov$cc %icc, $F, $dst",
732 [(set IntRegs:$dst,
733 (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc, ICC))]>;
734 def MOVICCri
735 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
736 "mov$cc %icc, $F, $dst",
737 [(set IntRegs:$dst,
738 (SPselecticc simm11:$F, IntRegs:$T, imm:$cc, ICC))]>;
739
740 def MOVFCCrr
741 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
742 "mov$cc %fcc0, $F, $dst",
743 [(set IntRegs:$dst,
744 (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc, FCC))]>;
745 def MOVFCCri
746 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
747 "mov$cc %fcc0, $F, $dst",
748 [(set IntRegs:$dst,
749 (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc, FCC))]>;
750
751 def FMOVS_ICC
752 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
753 "fmovs$cc %icc, $F, $dst",
754 [(set FPRegs:$dst,
755 (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc, ICC))]>;
756 def FMOVD_ICC
757 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
758 "fmovd$cc %icc, $F, $dst",
759 [(set DFPRegs:$dst,
760 (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc, ICC))]>;
761 def FMOVS_FCC
762 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
763 "fmovs$cc %fcc0, $F, $dst",
764 [(set FPRegs:$dst,
765 (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc, FCC))]>;
766 def FMOVD_FCC
767 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
768 "fmovd$cc %fcc0, $F, $dst",
769 [(set DFPRegs:$dst,
770 (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc, FCC))]>;
771
772}
773
774// Floating-Point Move Instructions, p. 164 of the V9 manual.
775let Predicates = [HasV9] in {
776 def FMOVD : F3_3<2, 0b110100, 0b000000010,
777 (ops DFPRegs:$dst, DFPRegs:$src),
778 "fmovd $src, $dst", []>;
779 def FNEGD : F3_3<2, 0b110100, 0b000000110,
780 (ops DFPRegs:$dst, DFPRegs:$src),
781 "fnegd $src, $dst",
782 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
783 def FABSD : F3_3<2, 0b110100, 0b000001010,
784 (ops DFPRegs:$dst, DFPRegs:$src),
785 "fabsd $src, $dst",
786 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
787}
788
789// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
790// the top 32-bits before using it. To do this clearing, we use a SLLri X,0.
791def POPCrr : F3_1<2, 0b101110,
792 (ops IntRegs:$dst, IntRegs:$src),
793 "popc $src, $dst", []>, Requires<[HasV9]>;
794def : Pat<(ctpop IntRegs:$src),
795 (POPCrr (SLLri IntRegs:$src, 0))>;
796
797//===----------------------------------------------------------------------===//
798// Non-Instruction Patterns
799//===----------------------------------------------------------------------===//
800
801// Small immediates.
802def : Pat<(i32 simm13:$val),
803 (ORri G0, imm:$val)>;
804// Arbitrary immediates.
805def : Pat<(i32 imm:$val),
806 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
807
808// Global addresses, constant pool entries
809def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
810def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
811def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
812def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
813
814// Add reg, lo. This is used when taking the addr of a global/constpool entry.
815def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
816 (ADDri IntRegs:$r, tglobaladdr:$in)>;
817def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
818 (ADDri IntRegs:$r, tconstpool:$in)>;
819
820
821// Calls:
822def : Pat<(call tglobaladdr:$dst),
823 (CALL tglobaladdr:$dst)>;
824def : Pat<(call externalsym:$dst),
825 (CALL externalsym:$dst)>;
826
827def : Pat<(ret), (RETL)>;
828
829// Map integer extload's to zextloads.
830def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
831def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
832def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
833def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
834def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
835def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;
836
837// zextload bool -> zextload byte
838def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
839def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
840
841// truncstore bool -> truncstore byte.
842def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1),
843 (STBrr ADDRrr:$addr, IntRegs:$src)>;
844def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1),
845 (STBri ADDRri:$addr, IntRegs:$src)>;