blob: 8f2b3acabb6ce5b0051d973227c1875d5ad516a7 [file] [log] [blame]
Adam Nemete54a4fa2015-11-03 23:50:08 +00001//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implement a loop-aware load elimination pass.
11//
12// It uses LoopAccessAnalysis to identify loop-carried dependences with a
13// distance of one between stores and loads. These form the candidates for the
14// transformation. The source value of each store then propagated to the user
15// of the corresponding load. This makes the load dead.
16//
17// The pass can also version the loop and add memchecks in order to prove that
18// may-aliasing stores can't change the value in memory before it's read by the
19// load.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/LoopAccessAnalysis.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/ScalarEvolutionExpander.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/Debug.h"
Adam Nemetefb23412016-03-10 23:54:39 +000031#include "llvm/Transforms/Scalar.h"
Adam Nemete54a4fa2015-11-03 23:50:08 +000032#include "llvm/Transforms/Utils/LoopVersioning.h"
33#include <forward_list>
34
35#define LLE_OPTION "loop-load-elim"
36#define DEBUG_TYPE LLE_OPTION
37
38using namespace llvm;
39
40static cl::opt<unsigned> CheckPerElim(
41 "runtime-check-per-loop-load-elim", cl::Hidden,
42 cl::desc("Max number of memchecks allowed per eliminated load on average"),
43 cl::init(1));
44
Silviu Baranga2910a4f2015-11-09 13:26:09 +000045static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
46 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
47 cl::desc("The maximum number of SCEV checks allowed for Loop "
48 "Load Elimination"));
49
50
Adam Nemete54a4fa2015-11-03 23:50:08 +000051STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
52
53namespace {
54
55/// \brief Represent a store-to-forwarding candidate.
56struct StoreToLoadForwardingCandidate {
57 LoadInst *Load;
58 StoreInst *Store;
59
60 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
61 : Load(Load), Store(Store) {}
62
63 /// \brief Return true if the dependence from the store to the load has a
64 /// distance of one. E.g. A[i+1] = A[i]
Adam Nemet660748c2016-03-09 20:47:55 +000065 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
66 Loop *L) const {
Adam Nemete54a4fa2015-11-03 23:50:08 +000067 Value *LoadPtr = Load->getPointerOperand();
68 Value *StorePtr = Store->getPointerOperand();
69 Type *LoadPtrType = LoadPtr->getType();
Adam Nemete54a4fa2015-11-03 23:50:08 +000070 Type *LoadType = LoadPtrType->getPointerElementType();
71
72 assert(LoadPtrType->getPointerAddressSpace() ==
Adam Nemet7c94c9b2015-11-04 00:10:33 +000073 StorePtr->getType()->getPointerAddressSpace() &&
74 LoadType == StorePtr->getType()->getPointerElementType() &&
Adam Nemete54a4fa2015-11-03 23:50:08 +000075 "Should be a known dependence");
76
Adam Nemet660748c2016-03-09 20:47:55 +000077 // Currently we only support accesses with unit stride. FIXME: we should be
78 // able to handle non unit stirde as well as long as the stride is equal to
79 // the dependence distance.
Denis Zobnin15d1e642016-05-10 05:55:16 +000080 if (getPtrStride(PSE, LoadPtr, L) != 1 ||
81 getPtrStride(PSE, StorePtr, L) != 1)
Adam Nemet660748c2016-03-09 20:47:55 +000082 return false;
83
Adam Nemete54a4fa2015-11-03 23:50:08 +000084 auto &DL = Load->getParent()->getModule()->getDataLayout();
85 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
86
Silviu Baranga86de80d2015-12-10 11:07:18 +000087 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
88 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
Adam Nemete54a4fa2015-11-03 23:50:08 +000089
90 // We don't need to check non-wrapping here because forward/backward
91 // dependence wouldn't be valid if these weren't monotonic accesses.
Silviu Baranga86de80d2015-12-10 11:07:18 +000092 auto *Dist = cast<SCEVConstant>(
93 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
Sanjoy Das0de2fec2015-12-17 20:28:46 +000094 const APInt &Val = Dist->getAPInt();
Adam Nemet660748c2016-03-09 20:47:55 +000095 return Val == TypeByteSize;
Adam Nemete54a4fa2015-11-03 23:50:08 +000096 }
97
98 Value *getLoadPtr() const { return Load->getPointerOperand(); }
99
100#ifndef NDEBUG
101 friend raw_ostream &operator<<(raw_ostream &OS,
102 const StoreToLoadForwardingCandidate &Cand) {
103 OS << *Cand.Store << " -->\n";
104 OS.indent(2) << *Cand.Load << "\n";
105 return OS;
106 }
107#endif
108};
109
110/// \brief Check if the store dominates all latches, so as long as there is no
111/// intervening store this value will be loaded in the next iteration.
112bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
113 DominatorTree *DT) {
114 SmallVector<BasicBlock *, 8> Latches;
115 L->getLoopLatches(Latches);
116 return std::all_of(Latches.begin(), Latches.end(),
117 [&](const BasicBlock *Latch) {
118 return DT->dominates(StoreBlock, Latch);
119 });
120}
121
122/// \brief The per-loop class that does most of the work.
123class LoadEliminationForLoop {
124public:
125 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
Silviu Baranga86de80d2015-12-10 11:07:18 +0000126 DominatorTree *DT)
127 : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.PSE) {}
Adam Nemete54a4fa2015-11-03 23:50:08 +0000128
129 /// \brief Look through the loop-carried and loop-independent dependences in
130 /// this loop and find store->load dependences.
131 ///
132 /// Note that no candidate is returned if LAA has failed to analyze the loop
133 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
134 std::forward_list<StoreToLoadForwardingCandidate>
135 findStoreToLoadDependences(const LoopAccessInfo &LAI) {
136 std::forward_list<StoreToLoadForwardingCandidate> Candidates;
137
138 const auto *Deps = LAI.getDepChecker().getDependences();
139 if (!Deps)
140 return Candidates;
141
142 // Find store->load dependences (consequently true dep). Both lexically
143 // forward and backward dependences qualify. Disqualify loads that have
144 // other unknown dependences.
145
146 SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
147
148 for (const auto &Dep : *Deps) {
149 Instruction *Source = Dep.getSource(LAI);
150 Instruction *Destination = Dep.getDestination(LAI);
151
152 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
153 if (isa<LoadInst>(Source))
154 LoadsWithUnknownDepedence.insert(Source);
155 if (isa<LoadInst>(Destination))
156 LoadsWithUnknownDepedence.insert(Destination);
157 continue;
158 }
159
160 if (Dep.isBackward())
161 // Note that the designations source and destination follow the program
162 // order, i.e. source is always first. (The direction is given by the
163 // DepType.)
164 std::swap(Source, Destination);
165 else
166 assert(Dep.isForward() && "Needs to be a forward dependence");
167
168 auto *Store = dyn_cast<StoreInst>(Source);
169 if (!Store)
170 continue;
171 auto *Load = dyn_cast<LoadInst>(Destination);
172 if (!Load)
173 continue;
Adam Nemet7aba60c2016-03-24 17:59:26 +0000174
175 // Only progagate the value if they are of the same type.
176 if (Store->getPointerOperand()->getType() !=
177 Load->getPointerOperand()->getType())
178 continue;
179
Adam Nemete54a4fa2015-11-03 23:50:08 +0000180 Candidates.emplace_front(Load, Store);
181 }
182
183 if (!LoadsWithUnknownDepedence.empty())
184 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
185 return LoadsWithUnknownDepedence.count(C.Load);
186 });
187
188 return Candidates;
189 }
190
191 /// \brief Return the index of the instruction according to program order.
192 unsigned getInstrIndex(Instruction *Inst) {
193 auto I = InstOrder.find(Inst);
194 assert(I != InstOrder.end() && "No index for instruction");
195 return I->second;
196 }
197
198 /// \brief If a load has multiple candidates associated (i.e. different
199 /// stores), it means that it could be forwarding from multiple stores
200 /// depending on control flow. Remove these candidates.
201 ///
202 /// Here, we rely on LAA to include the relevant loop-independent dependences.
203 /// LAA is known to omit these in the very simple case when the read and the
204 /// write within an alias set always takes place using the *same* pointer.
205 ///
206 /// However, we know that this is not the case here, i.e. we can rely on LAA
207 /// to provide us with loop-independent dependences for the cases we're
208 /// interested. Consider the case for example where a loop-independent
209 /// dependece S1->S2 invalidates the forwarding S3->S2.
210 ///
211 /// A[i] = ... (S1)
212 /// ... = A[i] (S2)
213 /// A[i+1] = ... (S3)
214 ///
215 /// LAA will perform dependence analysis here because there are two
216 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
217 void removeDependencesFromMultipleStores(
218 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
219 // If Store is nullptr it means that we have multiple stores forwarding to
220 // this store.
221 typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
222 LoadToSingleCandT;
223 LoadToSingleCandT LoadToSingleCand;
224
225 for (const auto &Cand : Candidates) {
226 bool NewElt;
227 LoadToSingleCandT::iterator Iter;
228
229 std::tie(Iter, NewElt) =
230 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
231 if (!NewElt) {
232 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
233 // Already multiple stores forward to this load.
234 if (OtherCand == nullptr)
235 continue;
236
Adam Nemetefc091f2016-02-29 23:21:12 +0000237 // Handle the very basic case when the two stores are in the same block
238 // so deciding which one forwards is easy. The later one forwards as
239 // long as they both have a dependence distance of one to the load.
Adam Nemete54a4fa2015-11-03 23:50:08 +0000240 if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
Adam Nemet660748c2016-03-09 20:47:55 +0000241 Cand.isDependenceDistanceOfOne(PSE, L) &&
242 OtherCand->isDependenceDistanceOfOne(PSE, L)) {
Adam Nemete54a4fa2015-11-03 23:50:08 +0000243 // They are in the same block, the later one will forward to the load.
244 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
245 OtherCand = &Cand;
246 } else
247 OtherCand = nullptr;
248 }
249 }
250
251 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
252 if (LoadToSingleCand[Cand.Load] != &Cand) {
253 DEBUG(dbgs() << "Removing from candidates: \n" << Cand
254 << " The load may have multiple stores forwarding to "
255 << "it\n");
256 return true;
257 }
258 return false;
259 });
260 }
261
262 /// \brief Given two pointers operations by their RuntimePointerChecking
263 /// indices, return true if they require an alias check.
264 ///
265 /// We need a check if one is a pointer for a candidate load and the other is
266 /// a pointer for a possibly intervening store.
267 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
268 const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
269 const std::set<Value *> &CandLoadPtrs) {
270 Value *Ptr1 =
271 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
272 Value *Ptr2 =
273 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
274 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
275 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
276 }
277
278 /// \brief Return pointers that are possibly written to on the path from a
279 /// forwarding store to a load.
280 ///
281 /// These pointers need to be alias-checked against the forwarding candidates.
282 SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
283 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
284 // From FirstStore to LastLoad neither of the elimination candidate loads
285 // should overlap with any of the stores.
286 //
287 // E.g.:
288 //
289 // st1 C[i]
290 // ld1 B[i] <-------,
291 // ld0 A[i] <----, | * LastLoad
292 // ... | |
293 // st2 E[i] | |
294 // st3 B[i+1] -- | -' * FirstStore
295 // st0 A[i+1] ---'
296 // st4 D[i]
297 //
298 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
299 // ld0.
300
301 LoadInst *LastLoad =
302 std::max_element(Candidates.begin(), Candidates.end(),
303 [&](const StoreToLoadForwardingCandidate &A,
304 const StoreToLoadForwardingCandidate &B) {
305 return getInstrIndex(A.Load) < getInstrIndex(B.Load);
306 })
307 ->Load;
308 StoreInst *FirstStore =
309 std::min_element(Candidates.begin(), Candidates.end(),
310 [&](const StoreToLoadForwardingCandidate &A,
311 const StoreToLoadForwardingCandidate &B) {
312 return getInstrIndex(A.Store) <
313 getInstrIndex(B.Store);
314 })
315 ->Store;
316
317 // We're looking for stores after the first forwarding store until the end
318 // of the loop, then from the beginning of the loop until the last
319 // forwarded-to load. Collect the pointer for the stores.
320 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
321
322 auto InsertStorePtr = [&](Instruction *I) {
323 if (auto *S = dyn_cast<StoreInst>(I))
324 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
325 };
326 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
327 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
328 MemInstrs.end(), InsertStorePtr);
329 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
330 InsertStorePtr);
331
332 return PtrsWrittenOnFwdingPath;
333 }
334
335 /// \brief Determine the pointer alias checks to prove that there are no
336 /// intervening stores.
337 SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
338 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
339
340 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
341 findPointersWrittenOnForwardingPath(Candidates);
342
343 // Collect the pointers of the candidate loads.
344 // FIXME: SmallSet does not work with std::inserter.
345 std::set<Value *> CandLoadPtrs;
346 std::transform(Candidates.begin(), Candidates.end(),
347 std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
348 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
349
350 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
351 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
352
353 std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
354 [&](const RuntimePointerChecking::PointerCheck &Check) {
355 for (auto PtrIdx1 : Check.first->Members)
356 for (auto PtrIdx2 : Check.second->Members)
357 if (needsChecking(PtrIdx1, PtrIdx2,
358 PtrsWrittenOnFwdingPath, CandLoadPtrs))
359 return true;
360 return false;
361 });
362
363 DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
364 DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
365
366 return Checks;
367 }
368
369 /// \brief Perform the transformation for a candidate.
370 void
371 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
372 SCEVExpander &SEE) {
373 //
374 // loop:
375 // %x = load %gep_i
376 // = ... %x
377 // store %y, %gep_i_plus_1
378 //
379 // =>
380 //
381 // ph:
382 // %x.initial = load %gep_0
383 // loop:
384 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
385 // %x = load %gep_i <---- now dead
386 // = ... %x.storeforward
387 // store %y, %gep_i_plus_1
388
389 Value *Ptr = Cand.Load->getPointerOperand();
Silviu Baranga86de80d2015-12-10 11:07:18 +0000390 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
Adam Nemete54a4fa2015-11-03 23:50:08 +0000391 auto *PH = L->getLoopPreheader();
392 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
393 PH->getTerminator());
394 Value *Initial =
395 new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
396 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
Duncan P. N. Exon Smith83c4b682015-11-07 00:01:16 +0000397 &L->getHeader()->front());
Adam Nemete54a4fa2015-11-03 23:50:08 +0000398 PHI->addIncoming(Initial, PH);
399 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
400
401 Cand.Load->replaceAllUsesWith(PHI);
402 }
403
404 /// \brief Top-level driver for each loop: find store->load forwarding
405 /// candidates, add run-time checks and perform transformation.
406 bool processLoop() {
407 DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
408 << "\" checking " << *L << "\n");
409 // Look for store-to-load forwarding cases across the
410 // backedge. E.g.:
411 //
412 // loop:
413 // %x = load %gep_i
414 // = ... %x
415 // store %y, %gep_i_plus_1
416 //
417 // =>
418 //
419 // ph:
420 // %x.initial = load %gep_0
421 // loop:
422 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
423 // %x = load %gep_i <---- now dead
424 // = ... %x.storeforward
425 // store %y, %gep_i_plus_1
426
427 // First start with store->load dependences.
428 auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
429 if (StoreToLoadDependences.empty())
430 return false;
431
432 // Generate an index for each load and store according to the original
433 // program order. This will be used later.
434 InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
435
436 // To keep things simple for now, remove those where the load is potentially
437 // fed by multiple stores.
438 removeDependencesFromMultipleStores(StoreToLoadDependences);
439 if (StoreToLoadDependences.empty())
440 return false;
441
442 // Filter the candidates further.
443 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
444 unsigned NumForwarding = 0;
445 for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
446 DEBUG(dbgs() << "Candidate " << Cand);
Adam Nemet83be06e2016-02-29 22:53:59 +0000447
Adam Nemete54a4fa2015-11-03 23:50:08 +0000448 // Make sure that the stored values is available everywhere in the loop in
449 // the next iteration.
450 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
451 continue;
452
453 // Check whether the SCEV difference is the same as the induction step,
454 // thus we load the value in the next iteration.
Adam Nemet660748c2016-03-09 20:47:55 +0000455 if (!Cand.isDependenceDistanceOfOne(PSE, L))
Adam Nemete54a4fa2015-11-03 23:50:08 +0000456 continue;
457
458 ++NumForwarding;
459 DEBUG(dbgs()
460 << NumForwarding
461 << ". Valid store-to-load forwarding across the loop backedge\n");
462 Candidates.push_back(Cand);
463 }
464 if (Candidates.empty())
465 return false;
466
467 // Check intervening may-alias stores. These need runtime checks for alias
468 // disambiguation.
469 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
470 collectMemchecks(Candidates);
471
472 // Too many checks are likely to outweigh the benefits of forwarding.
473 if (Checks.size() > Candidates.size() * CheckPerElim) {
474 DEBUG(dbgs() << "Too many run-time checks needed.\n");
475 return false;
476 }
477
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000478 if (LAI.PSE.getUnionPredicate().getComplexity() >
479 LoadElimSCEVCheckThreshold) {
Silviu Baranga2910a4f2015-11-09 13:26:09 +0000480 DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
481 return false;
482 }
483
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000484 if (!Checks.empty() || !LAI.PSE.getUnionPredicate().isAlwaysTrue()) {
Adam Nemet9455c1d2016-02-05 01:14:05 +0000485 if (L->getHeader()->getParent()->optForSize()) {
486 DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing "
487 "for size.\n");
488 return false;
489 }
490
491 // Point of no-return, start the transformation. First, version the loop
492 // if necessary.
493
Silviu Baranga86de80d2015-12-10 11:07:18 +0000494 LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
Silviu Baranga2910a4f2015-11-09 13:26:09 +0000495 LV.setAliasChecks(std::move(Checks));
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000496 LV.setSCEVChecks(LAI.PSE.getUnionPredicate());
Adam Nemete54a4fa2015-11-03 23:50:08 +0000497 LV.versionLoop();
498 }
499
500 // Next, propagate the value stored by the store to the users of the load.
501 // Also for the first iteration, generate the initial value of the load.
Silviu Baranga86de80d2015-12-10 11:07:18 +0000502 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
Adam Nemete54a4fa2015-11-03 23:50:08 +0000503 "storeforward");
504 for (const auto &Cand : Candidates)
505 propagateStoredValueToLoadUsers(Cand, SEE);
506 NumLoopLoadEliminted += NumForwarding;
507
508 return true;
509 }
510
511private:
512 Loop *L;
513
514 /// \brief Maps the load/store instructions to their index according to
515 /// program order.
516 DenseMap<Instruction *, unsigned> InstOrder;
517
518 // Analyses used.
519 LoopInfo *LI;
520 const LoopAccessInfo &LAI;
521 DominatorTree *DT;
Silviu Baranga86de80d2015-12-10 11:07:18 +0000522 PredicatedScalarEvolution PSE;
Adam Nemete54a4fa2015-11-03 23:50:08 +0000523};
524
525/// \brief The pass. Most of the work is delegated to the per-loop
526/// LoadEliminationForLoop class.
527class LoopLoadElimination : public FunctionPass {
528public:
529 LoopLoadElimination() : FunctionPass(ID) {
530 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
531 }
532
533 bool runOnFunction(Function &F) override {
Andrew Kayloraa641a52016-04-22 22:06:11 +0000534 if (skipFunction(F))
535 return false;
536
Adam Nemete54a4fa2015-11-03 23:50:08 +0000537 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
538 auto *LAA = &getAnalysis<LoopAccessAnalysis>();
539 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Adam Nemete54a4fa2015-11-03 23:50:08 +0000540
541 // Build up a worklist of inner-loops to vectorize. This is necessary as the
542 // act of distributing a loop creates new loops and can invalidate iterators
543 // across the loops.
544 SmallVector<Loop *, 8> Worklist;
545
546 for (Loop *TopLevelLoop : *LI)
547 for (Loop *L : depth_first(TopLevelLoop))
548 // We only handle inner-most loops.
549 if (L->empty())
550 Worklist.push_back(L);
551
552 // Now walk the identified inner loops.
553 bool Changed = false;
554 for (Loop *L : Worklist) {
555 const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
556 // The actual work is performed by LoadEliminationForLoop.
Silviu Baranga86de80d2015-12-10 11:07:18 +0000557 LoadEliminationForLoop LEL(L, LI, LAI, DT);
Adam Nemete54a4fa2015-11-03 23:50:08 +0000558 Changed |= LEL.processLoop();
559 }
560
561 // Process each loop nest in the function.
562 return Changed;
563 }
564
565 void getAnalysisUsage(AnalysisUsage &AU) const override {
Adam Nemetefb23412016-03-10 23:54:39 +0000566 AU.addRequiredID(LoopSimplifyID);
Adam Nemete54a4fa2015-11-03 23:50:08 +0000567 AU.addRequired<LoopInfoWrapperPass>();
568 AU.addPreserved<LoopInfoWrapperPass>();
569 AU.addRequired<LoopAccessAnalysis>();
570 AU.addRequired<ScalarEvolutionWrapperPass>();
571 AU.addRequired<DominatorTreeWrapperPass>();
572 AU.addPreserved<DominatorTreeWrapperPass>();
573 }
574
575 static char ID;
576};
577}
578
579char LoopLoadElimination::ID;
580static const char LLE_name[] = "Loop Load Elimination";
581
582INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
583INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
584INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
585INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
586INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemetefb23412016-03-10 23:54:39 +0000587INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
Adam Nemete54a4fa2015-11-03 23:50:08 +0000588INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
589
590namespace llvm {
591FunctionPass *createLoopLoadEliminationPass() {
592 return new LoopLoadElimination();
593}
594}