Diego Caballero | 168d04d | 2018-05-21 18:14:23 +0000 | [diff] [blame^] | 1 | //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// |
| 10 | /// \file |
| 11 | /// This file implements the construction of a VPlan-based Hierarchical CFG |
| 12 | /// (H-CFG) for an incoming IR. This construction comprises the following |
| 13 | /// components and steps: |
| 14 | // |
| 15 | /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that |
| 16 | /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top |
| 17 | /// Region) is created to enclose and serve as parent of all the VPBasicBlocks |
| 18 | /// in the plain CFG. |
| 19 | /// NOTE: At this point, there is a direct correspondence between all the |
| 20 | /// VPBasicBlocks created for the initial plain CFG and the incoming |
| 21 | /// BasicBlocks. However, this might change in the future. |
| 22 | /// |
| 23 | //===----------------------------------------------------------------------===// |
| 24 | |
| 25 | #include "VPlanHCFGBuilder.h" |
| 26 | #include "LoopVectorizationPlanner.h" |
| 27 | #include "llvm/Analysis/LoopIterator.h" |
| 28 | |
| 29 | #define DEBUG_TYPE "loop-vectorize" |
| 30 | |
| 31 | using namespace llvm; |
| 32 | |
| 33 | // Class that is used to build the plain CFG for the incoming IR. |
| 34 | class PlainCFGBuilder { |
| 35 | private: |
| 36 | // The outermost loop of the input loop nest considered for vectorization. |
| 37 | Loop *TheLoop; |
| 38 | |
| 39 | // Loop Info analysis. |
| 40 | LoopInfo *LI; |
| 41 | |
| 42 | // Vectorization plan that we are working on. |
| 43 | VPlan &Plan; |
| 44 | |
| 45 | // Output Top Region. |
| 46 | VPRegionBlock *TopRegion = nullptr; |
| 47 | |
| 48 | // Builder of the VPlan instruction-level representation. |
| 49 | VPBuilder VPIRBuilder; |
| 50 | |
| 51 | // NOTE: The following maps are intentionally destroyed after the plain CFG |
| 52 | // construction because subsequent VPlan-to-VPlan transformation may |
| 53 | // invalidate them. |
| 54 | // Map incoming BasicBlocks to their newly-created VPBasicBlocks. |
| 55 | DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; |
| 56 | // Map incoming Value definitions to their newly-created VPValues. |
| 57 | DenseMap<Value *, VPValue *> IRDef2VPValue; |
| 58 | |
| 59 | // Hold phi node's that need to be fixed once the plain CFG has been built. |
| 60 | SmallVector<PHINode *, 8> PhisToFix; |
| 61 | |
| 62 | // Utility functions. |
| 63 | void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); |
| 64 | void fixPhiNodes(); |
| 65 | VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); |
| 66 | bool isExternalDef(Value *Val); |
| 67 | VPValue *getOrCreateVPOperand(Value *IRVal); |
| 68 | void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); |
| 69 | |
| 70 | public: |
| 71 | PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) |
| 72 | : TheLoop(Lp), LI(LI), Plan(P) {} |
| 73 | |
| 74 | // Build the plain CFG and return its Top Region. |
| 75 | VPRegionBlock *buildPlainCFG(); |
| 76 | }; |
| 77 | |
| 78 | // Return true if \p Inst is an incoming Instruction to be ignored in the VPlan |
| 79 | // representation. |
| 80 | static bool isInstructionToIgnore(Instruction *Inst) { |
| 81 | return isa<BranchInst>(Inst); |
| 82 | } |
| 83 | |
| 84 | // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB |
| 85 | // must have no predecessors. |
| 86 | void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { |
| 87 | SmallVector<VPBlockBase *, 8> VPBBPreds; |
| 88 | // Collect VPBB predecessors. |
| 89 | for (BasicBlock *Pred : predecessors(BB)) |
| 90 | VPBBPreds.push_back(getOrCreateVPBB(Pred)); |
| 91 | |
| 92 | VPBB->setPredecessors(VPBBPreds); |
| 93 | } |
| 94 | |
| 95 | // Add operands to VPInstructions representing phi nodes from the input IR. |
| 96 | void PlainCFGBuilder::fixPhiNodes() { |
| 97 | for (auto *Phi : PhisToFix) { |
| 98 | assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); |
| 99 | VPValue *VPVal = IRDef2VPValue[Phi]; |
| 100 | assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node."); |
| 101 | auto *VPPhi = cast<VPInstruction>(VPVal); |
| 102 | assert(VPPhi->getNumOperands() == 0 && |
| 103 | "Expected VPInstruction with no operands."); |
| 104 | |
| 105 | for (Value *Op : Phi->operands()) |
| 106 | VPPhi->addOperand(getOrCreateVPOperand(Op)); |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an |
| 111 | // existing one if it was already created. |
| 112 | VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { |
| 113 | auto BlockIt = BB2VPBB.find(BB); |
| 114 | if (BlockIt != BB2VPBB.end()) |
| 115 | // Retrieve existing VPBB. |
| 116 | return BlockIt->second; |
| 117 | |
| 118 | // Create new VPBB. |
| 119 | DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n"); |
| 120 | VPBasicBlock *VPBB = new VPBasicBlock(BB->getName()); |
| 121 | BB2VPBB[BB] = VPBB; |
| 122 | VPBB->setParent(TopRegion); |
| 123 | return VPBB; |
| 124 | } |
| 125 | |
| 126 | // Return true if \p Val is considered an external definition. An external |
| 127 | // definition is either: |
| 128 | // 1. A Value that is not an Instruction. This will be refined in the future. |
| 129 | // 2. An Instruction that is outside of the CFG snippet represented in VPlan, |
| 130 | // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) |
| 131 | // outermost loop exits. |
| 132 | bool PlainCFGBuilder::isExternalDef(Value *Val) { |
| 133 | // All the Values that are not Instructions are considered external |
| 134 | // definitions for now. |
| 135 | Instruction *Inst = dyn_cast<Instruction>(Val); |
| 136 | if (!Inst) |
| 137 | return true; |
| 138 | |
| 139 | BasicBlock *InstParent = Inst->getParent(); |
| 140 | assert(InstParent && "Expected instruction parent."); |
| 141 | |
| 142 | // Check whether Instruction definition is in loop PH. |
| 143 | BasicBlock *PH = TheLoop->getLoopPreheader(); |
| 144 | assert(PH && "Expected loop pre-header."); |
| 145 | |
| 146 | if (InstParent == PH) |
| 147 | // Instruction definition is in outermost loop PH. |
| 148 | return false; |
| 149 | |
| 150 | // Check whether Instruction definition is in the loop exit. |
| 151 | BasicBlock *Exit = TheLoop->getUniqueExitBlock(); |
| 152 | assert(Exit && "Expected loop with single exit."); |
| 153 | if (InstParent == Exit) { |
| 154 | // Instruction definition is in outermost loop exit. |
| 155 | return false; |
| 156 | } |
| 157 | |
| 158 | // Check whether Instruction definition is in loop body. |
| 159 | return !TheLoop->contains(Inst); |
| 160 | } |
| 161 | |
| 162 | // Create a new VPValue or retrieve an existing one for the Instruction's |
| 163 | // operand \p IRVal. This function must only be used to create/retrieve VPValues |
| 164 | // for *Instruction's operands* and not to create regular VPInstruction's. For |
| 165 | // the latter, please, look at 'createVPInstructionsForVPBB'. |
| 166 | VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { |
| 167 | auto VPValIt = IRDef2VPValue.find(IRVal); |
| 168 | if (VPValIt != IRDef2VPValue.end()) |
| 169 | // Operand has an associated VPInstruction or VPValue that was previously |
| 170 | // created. |
| 171 | return VPValIt->second; |
| 172 | |
| 173 | // Operand doesn't have a previously created VPInstruction/VPValue. This |
| 174 | // means that operand is: |
| 175 | // A) a definition external to VPlan, |
| 176 | // B) any other Value without specific representation in VPlan. |
| 177 | // For now, we use VPValue to represent A and B and classify both as external |
| 178 | // definitions. We may introduce specific VPValue subclasses for them in the |
| 179 | // future. |
| 180 | assert(isExternalDef(IRVal) && "Expected external definition as operand."); |
| 181 | |
| 182 | // A and B: Create VPValue and add it to the pool of external definitions and |
| 183 | // to the Value->VPValue map. |
| 184 | VPValue *NewVPVal = new VPValue(IRVal); |
| 185 | Plan.addExternalDef(NewVPVal); |
| 186 | IRDef2VPValue[IRVal] = NewVPVal; |
| 187 | return NewVPVal; |
| 188 | } |
| 189 | |
| 190 | // Create new VPInstructions in a VPBasicBlock, given its BasicBlock |
| 191 | // counterpart. This function must be invoked in RPO so that the operands of a |
| 192 | // VPInstruction in \p BB have been visited before (except for Phi nodes). |
| 193 | void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, |
| 194 | BasicBlock *BB) { |
| 195 | VPIRBuilder.setInsertPoint(VPBB); |
| 196 | for (Instruction &InstRef : *BB) { |
| 197 | Instruction *Inst = &InstRef; |
| 198 | if (isInstructionToIgnore(Inst)) |
| 199 | continue; |
| 200 | |
| 201 | // There should't be any VPValue for Inst at this point. Otherwise, we |
| 202 | // visited Inst when we shouldn't, breaking the RPO traversal order. |
| 203 | assert(!IRDef2VPValue.count(Inst) && |
| 204 | "Instruction shouldn't have been visited."); |
| 205 | |
| 206 | VPInstruction *NewVPInst; |
| 207 | if (PHINode *Phi = dyn_cast<PHINode>(Inst)) { |
| 208 | // Phi node's operands may have not been visited at this point. We create |
| 209 | // an empty VPInstruction that we will fix once the whole plain CFG has |
| 210 | // been built. |
| 211 | NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp( |
| 212 | Inst->getOpcode(), {} /*No operands*/, Inst)); |
| 213 | PhisToFix.push_back(Phi); |
| 214 | } else { |
| 215 | // Translate LLVM-IR operands into VPValue operands and set them in the |
| 216 | // new VPInstruction. |
| 217 | SmallVector<VPValue *, 4> VPOperands; |
| 218 | for (Value *Op : Inst->operands()) |
| 219 | VPOperands.push_back(getOrCreateVPOperand(Op)); |
| 220 | |
| 221 | // Build VPInstruction for any arbitraty Instruction without specific |
| 222 | // representation in VPlan. |
| 223 | NewVPInst = cast<VPInstruction>( |
| 224 | VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); |
| 225 | } |
| 226 | |
| 227 | IRDef2VPValue[Inst] = NewVPInst; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | // Main interface to build the plain CFG. |
| 232 | VPRegionBlock *PlainCFGBuilder::buildPlainCFG() { |
| 233 | // 1. Create the Top Region. It will be the parent of all VPBBs. |
| 234 | TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/); |
| 235 | |
| 236 | // 2. Scan the body of the loop in a topological order to visit each basic |
| 237 | // block after having visited its predecessor basic blocks. Create a VPBB for |
| 238 | // each BB and link it to its successor and predecessor VPBBs. Note that |
| 239 | // predecessors must be set in the same order as they are in the incomming IR. |
| 240 | // Otherwise, there might be problems with existing phi nodes and algorithm |
| 241 | // based on predecessors traversal. |
| 242 | |
| 243 | // Loop PH needs to be explicitly visited since it's not taken into account by |
| 244 | // LoopBlocksDFS. |
| 245 | BasicBlock *PreheaderBB = TheLoop->getLoopPreheader(); |
| 246 | assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) && |
| 247 | "Unexpected loop preheader"); |
| 248 | VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB); |
| 249 | createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB); |
| 250 | // Create empty VPBB for Loop H so that we can link PH->H. |
| 251 | VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader()); |
| 252 | // Preheader's predecessors will be set during the loop RPO traversal below. |
| 253 | PreheaderVPBB->setOneSuccessor(HeaderVPBB); |
| 254 | |
| 255 | LoopBlocksRPO RPO(TheLoop); |
| 256 | RPO.perform(LI); |
| 257 | |
| 258 | for (BasicBlock *BB : RPO) { |
| 259 | // Create or retrieve the VPBasicBlock for this BB and create its |
| 260 | // VPInstructions. |
| 261 | VPBasicBlock *VPBB = getOrCreateVPBB(BB); |
| 262 | createVPInstructionsForVPBB(VPBB, BB); |
| 263 | |
| 264 | // Set VPBB successors. We create empty VPBBs for successors if they don't |
| 265 | // exist already. Recipes will be created when the successor is visited |
| 266 | // during the RPO traversal. |
| 267 | TerminatorInst *TI = BB->getTerminator(); |
| 268 | assert(TI && "Terminator expected."); |
| 269 | unsigned NumSuccs = TI->getNumSuccessors(); |
| 270 | |
| 271 | if (NumSuccs == 1) { |
| 272 | VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0)); |
| 273 | assert(SuccVPBB && "VPBB Successor not found."); |
| 274 | VPBB->setOneSuccessor(SuccVPBB); |
| 275 | } else if (NumSuccs == 2) { |
| 276 | VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0)); |
| 277 | assert(SuccVPBB0 && "Successor 0 not found."); |
| 278 | VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1)); |
| 279 | assert(SuccVPBB1 && "Successor 1 not found."); |
| 280 | VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1); |
| 281 | } else |
| 282 | llvm_unreachable("Number of successors not supported."); |
| 283 | |
| 284 | // Set VPBB predecessors in the same order as they are in the incoming BB. |
| 285 | setVPBBPredsFromBB(VPBB, BB); |
| 286 | } |
| 287 | |
| 288 | // 3. Process outermost loop exit. We created an empty VPBB for the loop |
| 289 | // single exit BB during the RPO traversal of the loop body but Instructions |
| 290 | // weren't visited because it's not part of the the loop. |
| 291 | BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); |
| 292 | assert(LoopExitBB && "Loops with multiple exits are not supported."); |
| 293 | VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB]; |
| 294 | createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB); |
| 295 | // Loop exit was already set as successor of the loop exiting BB. |
| 296 | // We only set its predecessor VPBB now. |
| 297 | setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB); |
| 298 | |
| 299 | // 4. The whole CFG has been built at this point so all the input Values must |
| 300 | // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding |
| 301 | // VPlan operands. |
| 302 | fixPhiNodes(); |
| 303 | |
| 304 | // 5. Final Top Region setup. Set outermost loop pre-header and single exit as |
| 305 | // Top Region entry and exit. |
| 306 | TopRegion->setEntry(PreheaderVPBB); |
| 307 | TopRegion->setExit(LoopExitVPBB); |
| 308 | return TopRegion; |
| 309 | } |
| 310 | |
| 311 | // Public interface to build a H-CFG. |
| 312 | void VPlanHCFGBuilder::buildHierarchicalCFG(VPlan &Plan) { |
| 313 | // Build Top Region enclosing the plain CFG and set it as VPlan entry. |
| 314 | PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); |
| 315 | VPRegionBlock *TopRegion = PCFGBuilder.buildPlainCFG(); |
| 316 | Plan.setEntry(TopRegion); |
| 317 | DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); |
| 318 | |
| 319 | Verifier.verifyHierarchicalCFG(TopRegion); |
| 320 | } |