blob: 3edf6d306a2cf9f2a6aa136cb3eb587f3ac6935a [file] [log] [blame]
Diego Caballero168d04d2018-05-21 18:14:23 +00001//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file implements the construction of a VPlan-based Hierarchical CFG
12/// (H-CFG) for an incoming IR. This construction comprises the following
13/// components and steps:
14//
15/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
16/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
17/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
18/// in the plain CFG.
19/// NOTE: At this point, there is a direct correspondence between all the
20/// VPBasicBlocks created for the initial plain CFG and the incoming
21/// BasicBlocks. However, this might change in the future.
22///
23//===----------------------------------------------------------------------===//
24
25#include "VPlanHCFGBuilder.h"
26#include "LoopVectorizationPlanner.h"
27#include "llvm/Analysis/LoopIterator.h"
28
29#define DEBUG_TYPE "loop-vectorize"
30
31using namespace llvm;
32
33// Class that is used to build the plain CFG for the incoming IR.
34class PlainCFGBuilder {
35private:
36 // The outermost loop of the input loop nest considered for vectorization.
37 Loop *TheLoop;
38
39 // Loop Info analysis.
40 LoopInfo *LI;
41
42 // Vectorization plan that we are working on.
43 VPlan &Plan;
44
45 // Output Top Region.
46 VPRegionBlock *TopRegion = nullptr;
47
48 // Builder of the VPlan instruction-level representation.
49 VPBuilder VPIRBuilder;
50
51 // NOTE: The following maps are intentionally destroyed after the plain CFG
52 // construction because subsequent VPlan-to-VPlan transformation may
53 // invalidate them.
54 // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
55 DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
56 // Map incoming Value definitions to their newly-created VPValues.
57 DenseMap<Value *, VPValue *> IRDef2VPValue;
58
59 // Hold phi node's that need to be fixed once the plain CFG has been built.
60 SmallVector<PHINode *, 8> PhisToFix;
61
62 // Utility functions.
63 void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
64 void fixPhiNodes();
65 VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
66 bool isExternalDef(Value *Val);
67 VPValue *getOrCreateVPOperand(Value *IRVal);
68 void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
69
70public:
71 PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
72 : TheLoop(Lp), LI(LI), Plan(P) {}
73
74 // Build the plain CFG and return its Top Region.
75 VPRegionBlock *buildPlainCFG();
76};
77
78// Return true if \p Inst is an incoming Instruction to be ignored in the VPlan
79// representation.
80static bool isInstructionToIgnore(Instruction *Inst) {
81 return isa<BranchInst>(Inst);
82}
83
84// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
85// must have no predecessors.
86void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
87 SmallVector<VPBlockBase *, 8> VPBBPreds;
88 // Collect VPBB predecessors.
89 for (BasicBlock *Pred : predecessors(BB))
90 VPBBPreds.push_back(getOrCreateVPBB(Pred));
91
92 VPBB->setPredecessors(VPBBPreds);
93}
94
95// Add operands to VPInstructions representing phi nodes from the input IR.
96void PlainCFGBuilder::fixPhiNodes() {
97 for (auto *Phi : PhisToFix) {
98 assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
99 VPValue *VPVal = IRDef2VPValue[Phi];
100 assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
101 auto *VPPhi = cast<VPInstruction>(VPVal);
102 assert(VPPhi->getNumOperands() == 0 &&
103 "Expected VPInstruction with no operands.");
104
105 for (Value *Op : Phi->operands())
106 VPPhi->addOperand(getOrCreateVPOperand(Op));
107 }
108}
109
110// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
111// existing one if it was already created.
112VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
113 auto BlockIt = BB2VPBB.find(BB);
114 if (BlockIt != BB2VPBB.end())
115 // Retrieve existing VPBB.
116 return BlockIt->second;
117
118 // Create new VPBB.
119 DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
120 VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
121 BB2VPBB[BB] = VPBB;
122 VPBB->setParent(TopRegion);
123 return VPBB;
124}
125
126// Return true if \p Val is considered an external definition. An external
127// definition is either:
128// 1. A Value that is not an Instruction. This will be refined in the future.
129// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
130// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
131// outermost loop exits.
132bool PlainCFGBuilder::isExternalDef(Value *Val) {
133 // All the Values that are not Instructions are considered external
134 // definitions for now.
135 Instruction *Inst = dyn_cast<Instruction>(Val);
136 if (!Inst)
137 return true;
138
139 BasicBlock *InstParent = Inst->getParent();
140 assert(InstParent && "Expected instruction parent.");
141
142 // Check whether Instruction definition is in loop PH.
143 BasicBlock *PH = TheLoop->getLoopPreheader();
144 assert(PH && "Expected loop pre-header.");
145
146 if (InstParent == PH)
147 // Instruction definition is in outermost loop PH.
148 return false;
149
150 // Check whether Instruction definition is in the loop exit.
151 BasicBlock *Exit = TheLoop->getUniqueExitBlock();
152 assert(Exit && "Expected loop with single exit.");
153 if (InstParent == Exit) {
154 // Instruction definition is in outermost loop exit.
155 return false;
156 }
157
158 // Check whether Instruction definition is in loop body.
159 return !TheLoop->contains(Inst);
160}
161
162// Create a new VPValue or retrieve an existing one for the Instruction's
163// operand \p IRVal. This function must only be used to create/retrieve VPValues
164// for *Instruction's operands* and not to create regular VPInstruction's. For
165// the latter, please, look at 'createVPInstructionsForVPBB'.
166VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
167 auto VPValIt = IRDef2VPValue.find(IRVal);
168 if (VPValIt != IRDef2VPValue.end())
169 // Operand has an associated VPInstruction or VPValue that was previously
170 // created.
171 return VPValIt->second;
172
173 // Operand doesn't have a previously created VPInstruction/VPValue. This
174 // means that operand is:
175 // A) a definition external to VPlan,
176 // B) any other Value without specific representation in VPlan.
177 // For now, we use VPValue to represent A and B and classify both as external
178 // definitions. We may introduce specific VPValue subclasses for them in the
179 // future.
180 assert(isExternalDef(IRVal) && "Expected external definition as operand.");
181
182 // A and B: Create VPValue and add it to the pool of external definitions and
183 // to the Value->VPValue map.
184 VPValue *NewVPVal = new VPValue(IRVal);
185 Plan.addExternalDef(NewVPVal);
186 IRDef2VPValue[IRVal] = NewVPVal;
187 return NewVPVal;
188}
189
190// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
191// counterpart. This function must be invoked in RPO so that the operands of a
192// VPInstruction in \p BB have been visited before (except for Phi nodes).
193void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
194 BasicBlock *BB) {
195 VPIRBuilder.setInsertPoint(VPBB);
196 for (Instruction &InstRef : *BB) {
197 Instruction *Inst = &InstRef;
198 if (isInstructionToIgnore(Inst))
199 continue;
200
201 // There should't be any VPValue for Inst at this point. Otherwise, we
202 // visited Inst when we shouldn't, breaking the RPO traversal order.
203 assert(!IRDef2VPValue.count(Inst) &&
204 "Instruction shouldn't have been visited.");
205
206 VPInstruction *NewVPInst;
207 if (PHINode *Phi = dyn_cast<PHINode>(Inst)) {
208 // Phi node's operands may have not been visited at this point. We create
209 // an empty VPInstruction that we will fix once the whole plain CFG has
210 // been built.
211 NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
212 Inst->getOpcode(), {} /*No operands*/, Inst));
213 PhisToFix.push_back(Phi);
214 } else {
215 // Translate LLVM-IR operands into VPValue operands and set them in the
216 // new VPInstruction.
217 SmallVector<VPValue *, 4> VPOperands;
218 for (Value *Op : Inst->operands())
219 VPOperands.push_back(getOrCreateVPOperand(Op));
220
221 // Build VPInstruction for any arbitraty Instruction without specific
222 // representation in VPlan.
223 NewVPInst = cast<VPInstruction>(
224 VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
225 }
226
227 IRDef2VPValue[Inst] = NewVPInst;
228 }
229}
230
231// Main interface to build the plain CFG.
232VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
233 // 1. Create the Top Region. It will be the parent of all VPBBs.
234 TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
235
236 // 2. Scan the body of the loop in a topological order to visit each basic
237 // block after having visited its predecessor basic blocks. Create a VPBB for
238 // each BB and link it to its successor and predecessor VPBBs. Note that
239 // predecessors must be set in the same order as they are in the incomming IR.
240 // Otherwise, there might be problems with existing phi nodes and algorithm
241 // based on predecessors traversal.
242
243 // Loop PH needs to be explicitly visited since it's not taken into account by
244 // LoopBlocksDFS.
245 BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
246 assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
247 "Unexpected loop preheader");
248 VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
249 createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
250 // Create empty VPBB for Loop H so that we can link PH->H.
251 VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
252 // Preheader's predecessors will be set during the loop RPO traversal below.
253 PreheaderVPBB->setOneSuccessor(HeaderVPBB);
254
255 LoopBlocksRPO RPO(TheLoop);
256 RPO.perform(LI);
257
258 for (BasicBlock *BB : RPO) {
259 // Create or retrieve the VPBasicBlock for this BB and create its
260 // VPInstructions.
261 VPBasicBlock *VPBB = getOrCreateVPBB(BB);
262 createVPInstructionsForVPBB(VPBB, BB);
263
264 // Set VPBB successors. We create empty VPBBs for successors if they don't
265 // exist already. Recipes will be created when the successor is visited
266 // during the RPO traversal.
267 TerminatorInst *TI = BB->getTerminator();
268 assert(TI && "Terminator expected.");
269 unsigned NumSuccs = TI->getNumSuccessors();
270
271 if (NumSuccs == 1) {
272 VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
273 assert(SuccVPBB && "VPBB Successor not found.");
274 VPBB->setOneSuccessor(SuccVPBB);
275 } else if (NumSuccs == 2) {
276 VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
277 assert(SuccVPBB0 && "Successor 0 not found.");
278 VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
279 assert(SuccVPBB1 && "Successor 1 not found.");
280 VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1);
281 } else
282 llvm_unreachable("Number of successors not supported.");
283
284 // Set VPBB predecessors in the same order as they are in the incoming BB.
285 setVPBBPredsFromBB(VPBB, BB);
286 }
287
288 // 3. Process outermost loop exit. We created an empty VPBB for the loop
289 // single exit BB during the RPO traversal of the loop body but Instructions
290 // weren't visited because it's not part of the the loop.
291 BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
292 assert(LoopExitBB && "Loops with multiple exits are not supported.");
293 VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
294 createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
295 // Loop exit was already set as successor of the loop exiting BB.
296 // We only set its predecessor VPBB now.
297 setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
298
299 // 4. The whole CFG has been built at this point so all the input Values must
300 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
301 // VPlan operands.
302 fixPhiNodes();
303
304 // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
305 // Top Region entry and exit.
306 TopRegion->setEntry(PreheaderVPBB);
307 TopRegion->setExit(LoopExitVPBB);
308 return TopRegion;
309}
310
311// Public interface to build a H-CFG.
312void VPlanHCFGBuilder::buildHierarchicalCFG(VPlan &Plan) {
313 // Build Top Region enclosing the plain CFG and set it as VPlan entry.
314 PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
315 VPRegionBlock *TopRegion = PCFGBuilder.buildPlainCFG();
316 Plan.setEntry(TopRegion);
317 DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
318
319 Verifier.verifyHierarchicalCFG(TopRegion);
320}