blob: 27e394f8797f81085624a79d8159de3d0c052712 [file] [log] [blame]
Jim Cownie5e8470a2013-09-27 10:38:44 +00001/*
2 * z_Linux_util.c -- platform specific routines.
Jim Cownie181b4bb2013-12-23 17:28:57 +00003 * $Revision: 42847 $
4 * $Date: 2013-11-26 09:10:01 -0600 (Tue, 26 Nov 2013) $
Jim Cownie5e8470a2013-09-27 10:38:44 +00005 */
6
7
8//===----------------------------------------------------------------------===//
9//
10// The LLVM Compiler Infrastructure
11//
12// This file is dual licensed under the MIT and the University of Illinois Open
13// Source Licenses. See LICENSE.txt for details.
14//
15//===----------------------------------------------------------------------===//
16
17
18#include "kmp.h"
19#include "kmp_wrapper_getpid.h"
20#include "kmp_itt.h"
21#include "kmp_str.h"
22#include "kmp_i18n.h"
23#include "kmp_io.h"
24
25#include <alloca.h>
26#include <unistd.h>
27#include <math.h> // HUGE_VAL.
28#include <sys/time.h>
29#include <sys/times.h>
30#include <sys/resource.h>
31#include <sys/syscall.h>
32
33#if KMP_OS_LINUX
34# include <sys/sysinfo.h>
Jim Cownie181b4bb2013-12-23 17:28:57 +000035# if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
Jim Cownie5e8470a2013-09-27 10:38:44 +000036// We should really include <futex.h>, but that causes compatibility problems on different
37// Linux* OS distributions that either require that you include (or break when you try to include)
38// <pci/types.h>.
39// Since all we need is the two macros below (which are part of the kernel ABI, so can't change)
40// we just define the constants here and don't include <futex.h>
41# ifndef FUTEX_WAIT
42# define FUTEX_WAIT 0
43# endif
44# ifndef FUTEX_WAKE
45# define FUTEX_WAKE 1
46# endif
47# endif
48#elif KMP_OS_DARWIN
49# include <sys/sysctl.h>
50# include <mach/mach.h>
51#endif
52
53
54#include <dirent.h>
55#include <ctype.h>
56#include <fcntl.h>
57
Jim Cownie181b4bb2013-12-23 17:28:57 +000058// For non-x86 architecture
59#if KMP_COMPILER_GCC && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
60# include <stdbool.h>
61# include <ffi.h>
62#endif
63
Jim Cownie5e8470a2013-09-27 10:38:44 +000064/* ------------------------------------------------------------------------ */
65/* ------------------------------------------------------------------------ */
66
67struct kmp_sys_timer {
68 struct timespec start;
69};
70
71// Convert timespec to nanoseconds.
72#define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
73
74static struct kmp_sys_timer __kmp_sys_timer_data;
75
76#if KMP_HANDLE_SIGNALS
77 typedef void (* sig_func_t )( int );
78 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[ NSIG ];
79 static sigset_t __kmp_sigset;
80#endif
81
82static int __kmp_init_runtime = FALSE;
83
84static int __kmp_fork_count = 0;
85
86static pthread_condattr_t __kmp_suspend_cond_attr;
87static pthread_mutexattr_t __kmp_suspend_mutex_attr;
88
89static kmp_cond_align_t __kmp_wait_cv;
90static kmp_mutex_align_t __kmp_wait_mx;
91
92/* ------------------------------------------------------------------------ */
93/* ------------------------------------------------------------------------ */
94
95#ifdef DEBUG_SUSPEND
96static void
97__kmp_print_cond( char *buffer, kmp_cond_align_t *cond )
98{
99 sprintf( buffer, "(cond (lock (%ld, %d)), (descr (%p)))",
100 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101 cond->c_cond.__c_waiting );
102}
103#endif
104
105/* ------------------------------------------------------------------------ */
106/* ------------------------------------------------------------------------ */
107
108#if KMP_OS_LINUX
109
110/*
111 * Affinity support
112 */
113
114/*
115 * On some of the older OS's that we build on, these constants aren't present
116 * in <asm/unistd.h> #included from <sys.syscall.h>. They must be the same on
117 * all systems of the same arch where they are defined, and they cannot change.
118 * stone forever.
119 */
120
Jim Cownie181b4bb2013-12-23 17:28:57 +0000121# if KMP_ARCH_X86 || KMP_ARCH_ARM
Jim Cownie5e8470a2013-09-27 10:38:44 +0000122# ifndef __NR_sched_setaffinity
123# define __NR_sched_setaffinity 241
124# elif __NR_sched_setaffinity != 241
125# error Wrong code for setaffinity system call.
126# endif /* __NR_sched_setaffinity */
127# ifndef __NR_sched_getaffinity
128# define __NR_sched_getaffinity 242
129# elif __NR_sched_getaffinity != 242
130# error Wrong code for getaffinity system call.
131# endif /* __NR_sched_getaffinity */
132
133# elif KMP_ARCH_X86_64
134# ifndef __NR_sched_setaffinity
135# define __NR_sched_setaffinity 203
136# elif __NR_sched_setaffinity != 203
137# error Wrong code for setaffinity system call.
138# endif /* __NR_sched_setaffinity */
139# ifndef __NR_sched_getaffinity
140# define __NR_sched_getaffinity 204
141# elif __NR_sched_getaffinity != 204
142# error Wrong code for getaffinity system call.
143# endif /* __NR_sched_getaffinity */
144
145# else
146# error Unknown or unsupported architecture
147
148# endif /* KMP_ARCH_* */
149
150int
151__kmp_set_system_affinity( kmp_affin_mask_t const *mask, int abort_on_error )
152{
153 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
154 "Illegal set affinity operation when not capable");
155
156 int retval = syscall( __NR_sched_setaffinity, 0, __kmp_affin_mask_size, mask );
157 if (retval >= 0) {
158 return 0;
159 }
160 int error = errno;
161 if (abort_on_error) {
162 __kmp_msg(
163 kmp_ms_fatal,
164 KMP_MSG( FatalSysError ),
165 KMP_ERR( error ),
166 __kmp_msg_null
167 );
168 }
169 return error;
170}
171
172int
173__kmp_get_system_affinity( kmp_affin_mask_t *mask, int abort_on_error )
174{
175 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
176 "Illegal get affinity operation when not capable");
177
178 int retval = syscall( __NR_sched_getaffinity, 0, __kmp_affin_mask_size, mask );
179 if (retval >= 0) {
180 return 0;
181 }
182 int error = errno;
183 if (abort_on_error) {
184 __kmp_msg(
185 kmp_ms_fatal,
186 KMP_MSG( FatalSysError ),
187 KMP_ERR( error ),
188 __kmp_msg_null
189 );
190 }
191 return error;
192}
193
194void
195__kmp_affinity_bind_thread( int which )
196{
197 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
198 "Illegal set affinity operation when not capable");
199
200 kmp_affin_mask_t *mask = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size);
201 KMP_CPU_ZERO(mask);
202 KMP_CPU_SET(which, mask);
203 __kmp_set_system_affinity(mask, TRUE);
204}
205
206/*
207 * Determine if we can access affinity functionality on this version of
208 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
209 * __kmp_affin_mask_size to the appropriate value (0 means not capable).
210 */
211void
212__kmp_affinity_determine_capable(const char *env_var)
213{
214 //
215 // Check and see if the OS supports thread affinity.
216 //
217
218# define KMP_CPU_SET_SIZE_LIMIT (1024*1024)
219
220 int gCode;
221 int sCode;
222 kmp_affin_mask_t *buf;
223 buf = ( kmp_affin_mask_t * ) KMP_INTERNAL_MALLOC( KMP_CPU_SET_SIZE_LIMIT );
224
225 // If Linux* OS:
226 // If the syscall fails or returns a suggestion for the size,
227 // then we don't have to search for an appropriate size.
228 gCode = syscall( __NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf );
229 KA_TRACE(30, ( "__kmp_affinity_determine_capable: "
230 "intial getaffinity call returned %d errno = %d\n",
231 gCode, errno));
232
233 //if ((gCode < 0) && (errno == ENOSYS))
234 if (gCode < 0) {
235 //
236 // System call not supported
237 //
238 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
239 && (__kmp_affinity_type != affinity_none)
240 && (__kmp_affinity_type != affinity_default)
241 && (__kmp_affinity_type != affinity_disabled))) {
242 int error = errno;
243 __kmp_msg(
244 kmp_ms_warning,
245 KMP_MSG( GetAffSysCallNotSupported, env_var ),
246 KMP_ERR( error ),
247 __kmp_msg_null
248 );
249 }
250 __kmp_affin_mask_size = 0; // should already be 0
251 KMP_INTERNAL_FREE(buf);
252 return;
253 }
254 if (gCode > 0) { // Linux* OS only
255 // The optimal situation: the OS returns the size of the buffer
256 // it expects.
257 //
258 // A verification of correct behavior is that Isetaffinity on a NULL
259 // buffer with the same size fails with errno set to EFAULT.
260 sCode = syscall( __NR_sched_setaffinity, 0, gCode, NULL );
261 KA_TRACE(30, ( "__kmp_affinity_determine_capable: "
262 "setaffinity for mask size %d returned %d errno = %d\n",
263 gCode, sCode, errno));
264 if (sCode < 0) {
265 if (errno == ENOSYS) {
266 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
267 && (__kmp_affinity_type != affinity_none)
268 && (__kmp_affinity_type != affinity_default)
269 && (__kmp_affinity_type != affinity_disabled))) {
270 int error = errno;
271 __kmp_msg(
272 kmp_ms_warning,
273 KMP_MSG( SetAffSysCallNotSupported, env_var ),
274 KMP_ERR( error ),
275 __kmp_msg_null
276 );
277 }
278 __kmp_affin_mask_size = 0; // should already be 0
279 KMP_INTERNAL_FREE(buf);
280 }
281 if (errno == EFAULT) {
282 __kmp_affin_mask_size = gCode;
283 KA_TRACE(10, ( "__kmp_affinity_determine_capable: "
284 "affinity supported (mask size %d)\n",
285 (int)__kmp_affin_mask_size));
286 KMP_INTERNAL_FREE(buf);
287 return;
288 }
289 }
290 }
291
292 //
293 // Call the getaffinity system call repeatedly with increasing set sizes
294 // until we succeed, or reach an upper bound on the search.
295 //
296 KA_TRACE(30, ( "__kmp_affinity_determine_capable: "
297 "searching for proper set size\n"));
298 int size;
299 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
300 gCode = syscall( __NR_sched_getaffinity, 0, size, buf );
301 KA_TRACE(30, ( "__kmp_affinity_determine_capable: "
302 "getaffinity for mask size %d returned %d errno = %d\n", size,
303 gCode, errno));
304
305 if (gCode < 0) {
306 if ( errno == ENOSYS )
307 {
308 //
309 // We shouldn't get here
310 //
311 KA_TRACE(30, ( "__kmp_affinity_determine_capable: "
312 "inconsistent OS call behavior: errno == ENOSYS for mask size %d\n",
313 size));
314 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
315 && (__kmp_affinity_type != affinity_none)
316 && (__kmp_affinity_type != affinity_default)
317 && (__kmp_affinity_type != affinity_disabled))) {
318 int error = errno;
319 __kmp_msg(
320 kmp_ms_warning,
321 KMP_MSG( GetAffSysCallNotSupported, env_var ),
322 KMP_ERR( error ),
323 __kmp_msg_null
324 );
325 }
326 __kmp_affin_mask_size = 0; // should already be 0
327 KMP_INTERNAL_FREE(buf);
328 return;
329 }
330 continue;
331 }
332
333 sCode = syscall( __NR_sched_setaffinity, 0, gCode, NULL );
334 KA_TRACE(30, ( "__kmp_affinity_determine_capable: "
335 "setaffinity for mask size %d returned %d errno = %d\n",
336 gCode, sCode, errno));
337 if (sCode < 0) {
338 if (errno == ENOSYS) { // Linux* OS only
339 //
340 // We shouldn't get here
341 //
342 KA_TRACE(30, ( "__kmp_affinity_determine_capable: "
343 "inconsistent OS call behavior: errno == ENOSYS for mask size %d\n",
344 size));
345 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
346 && (__kmp_affinity_type != affinity_none)
347 && (__kmp_affinity_type != affinity_default)
348 && (__kmp_affinity_type != affinity_disabled))) {
349 int error = errno;
350 __kmp_msg(
351 kmp_ms_warning,
352 KMP_MSG( SetAffSysCallNotSupported, env_var ),
353 KMP_ERR( error ),
354 __kmp_msg_null
355 );
356 }
357 __kmp_affin_mask_size = 0; // should already be 0
358 KMP_INTERNAL_FREE(buf);
359 return;
360 }
361 if (errno == EFAULT) {
362 __kmp_affin_mask_size = gCode;
363 KA_TRACE(10, ( "__kmp_affinity_determine_capable: "
364 "affinity supported (mask size %d)\n",
365 (int)__kmp_affin_mask_size));
366 KMP_INTERNAL_FREE(buf);
367 return;
368 }
369 }
370 }
371 //int error = errno; // save uncaught error code
372 KMP_INTERNAL_FREE(buf);
373 // errno = error; // restore uncaught error code, will be printed at the next KMP_WARNING below
374
375 //
376 // Affinity is not supported
377 //
378 __kmp_affin_mask_size = 0;
379 KA_TRACE(10, ( "__kmp_affinity_determine_capable: "
380 "cannot determine mask size - affinity not supported\n"));
381 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
382 && (__kmp_affinity_type != affinity_none)
383 && (__kmp_affinity_type != affinity_default)
384 && (__kmp_affinity_type != affinity_disabled))) {
385 KMP_WARNING( AffCantGetMaskSize, env_var );
386 }
387}
388
389
390/*
391 * Change thread to the affinity mask pointed to by affin_mask argument
392 * and return a pointer to the old value in the old_mask argument, if argument
393 * is non-NULL.
394 */
395
396void
397__kmp_change_thread_affinity_mask( int gtid, kmp_affin_mask_t *new_mask,
398 kmp_affin_mask_t *old_mask )
399{
400 KMP_DEBUG_ASSERT( gtid == __kmp_get_gtid() );
401 if ( KMP_AFFINITY_CAPABLE() ) {
402 int status;
403 kmp_info_t *th = __kmp_threads[ gtid ];
404
405 KMP_DEBUG_ASSERT( new_mask != NULL );
406
407 if ( old_mask != NULL ) {
408 status = __kmp_get_system_affinity( old_mask, TRUE );
409 int error = errno;
410 if ( status != 0 ) {
411 __kmp_msg(
412 kmp_ms_fatal,
413 KMP_MSG( ChangeThreadAffMaskError ),
414 KMP_ERR( error ),
415 __kmp_msg_null
416 );
417 }
418 }
419
420 __kmp_set_system_affinity( new_mask, TRUE );
421
422 if (__kmp_affinity_verbose) {
423 char old_buf[KMP_AFFIN_MASK_PRINT_LEN];
424 char new_buf[KMP_AFFIN_MASK_PRINT_LEN];
425 __kmp_affinity_print_mask(old_buf, KMP_AFFIN_MASK_PRINT_LEN, old_mask);
426 __kmp_affinity_print_mask(new_buf, KMP_AFFIN_MASK_PRINT_LEN, new_mask);
427 KMP_INFORM( ChangeAffMask, "KMP_AFFINITY (Bind)", gtid, old_buf, new_buf );
428
429 }
430
431 /* Make sure old value is correct in thread data structures */
432 KMP_DEBUG_ASSERT( old_mask != NULL && (memcmp(old_mask,
433 th->th.th_affin_mask, __kmp_affin_mask_size) == 0) );
434 KMP_CPU_COPY( th->th.th_affin_mask, new_mask );
435 }
436}
437
438#endif // KMP_OS_LINUX
439
440/* ------------------------------------------------------------------------ */
441/* ------------------------------------------------------------------------ */
442
Jim Cownie181b4bb2013-12-23 17:28:57 +0000443#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
Jim Cownie5e8470a2013-09-27 10:38:44 +0000444
445int
446__kmp_futex_determine_capable()
447{
448 int loc = 0;
449 int rc = syscall( __NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0 );
450 int retval = ( rc == 0 ) || ( errno != ENOSYS );
451
452 KA_TRACE(10, ( "__kmp_futex_determine_capable: rc = %d errno = %d\n", rc,
453 errno ) );
454 KA_TRACE(10, ( "__kmp_futex_determine_capable: futex syscall%s supported\n",
455 retval ? "" : " not" ) );
456
457 return retval;
458}
459
Jim Cownie181b4bb2013-12-23 17:28:57 +0000460#endif // KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
Jim Cownie5e8470a2013-09-27 10:38:44 +0000461
462/* ------------------------------------------------------------------------ */
463/* ------------------------------------------------------------------------ */
464
465#if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS)
466/*
467 * Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
468 * use compare_and_store for these routines
469 */
470
471kmp_int32
472__kmp_test_then_or32( volatile kmp_int32 *p, kmp_int32 d )
473{
474 kmp_int32 old_value, new_value;
475
476 old_value = TCR_4( *p );
477 new_value = old_value | d;
478
479 while ( ! __kmp_compare_and_store32 ( p, old_value, new_value ) )
480 {
481 KMP_CPU_PAUSE();
482 old_value = TCR_4( *p );
483 new_value = old_value | d;
484 }
485 return old_value;
486}
487
488kmp_int32
489__kmp_test_then_and32( volatile kmp_int32 *p, kmp_int32 d )
490{
491 kmp_int32 old_value, new_value;
492
493 old_value = TCR_4( *p );
494 new_value = old_value & d;
495
496 while ( ! __kmp_compare_and_store32 ( p, old_value, new_value ) )
497 {
498 KMP_CPU_PAUSE();
499 old_value = TCR_4( *p );
500 new_value = old_value & d;
501 }
502 return old_value;
503}
504
505# if KMP_ARCH_X86
506kmp_int64
507__kmp_test_then_add64( volatile kmp_int64 *p, kmp_int64 d )
508{
509 kmp_int64 old_value, new_value;
510
511 old_value = TCR_8( *p );
512 new_value = old_value + d;
513
514 while ( ! __kmp_compare_and_store64 ( p, old_value, new_value ) )
515 {
516 KMP_CPU_PAUSE();
517 old_value = TCR_8( *p );
518 new_value = old_value + d;
519 }
520 return old_value;
521}
522# endif /* KMP_ARCH_X86 */
523
524kmp_int64
525__kmp_test_then_or64( volatile kmp_int64 *p, kmp_int64 d )
526{
527 kmp_int64 old_value, new_value;
528
529 old_value = TCR_8( *p );
530 new_value = old_value | d;
531 while ( ! __kmp_compare_and_store64 ( p, old_value, new_value ) )
532 {
533 KMP_CPU_PAUSE();
534 old_value = TCR_8( *p );
535 new_value = old_value | d;
536 }
537 return old_value;
538}
539
540kmp_int64
541__kmp_test_then_and64( volatile kmp_int64 *p, kmp_int64 d )
542{
543 kmp_int64 old_value, new_value;
544
545 old_value = TCR_8( *p );
546 new_value = old_value & d;
547 while ( ! __kmp_compare_and_store64 ( p, old_value, new_value ) )
548 {
549 KMP_CPU_PAUSE();
550 old_value = TCR_8( *p );
551 new_value = old_value & d;
552 }
553 return old_value;
554}
555
556#endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
557
558void
559__kmp_terminate_thread( int gtid )
560{
561 int status;
562 kmp_info_t *th = __kmp_threads[ gtid ];
563
564 if ( !th ) return;
565
566 #ifdef KMP_CANCEL_THREADS
567 KA_TRACE( 10, ("__kmp_terminate_thread: kill (%d)\n", gtid ) );
568 status = pthread_cancel( th->th.th_info.ds.ds_thread );
569 if ( status != 0 && status != ESRCH ) {
570 __kmp_msg(
571 kmp_ms_fatal,
572 KMP_MSG( CantTerminateWorkerThread ),
573 KMP_ERR( status ),
574 __kmp_msg_null
575 );
576 }; // if
577 #endif
578 __kmp_yield( TRUE );
579} //
580
581/* ------------------------------------------------------------------------ */
582/* ------------------------------------------------------------------------ */
583
584/* ------------------------------------------------------------------------ */
585/* ------------------------------------------------------------------------ */
586
587/*
588 * Set thread stack info according to values returned by
589 * pthread_getattr_np().
590 * If values are unreasonable, assume call failed and use
591 * incremental stack refinement method instead.
592 * Returns TRUE if the stack parameters could be determined exactly,
593 * FALSE if incremental refinement is necessary.
594 */
595static kmp_int32
596__kmp_set_stack_info( int gtid, kmp_info_t *th )
597{
598 int stack_data;
599#if KMP_OS_LINUX
600 /* Linux* OS only -- no pthread_getattr_np support on OS X* */
601 pthread_attr_t attr;
602 int status;
603 size_t size = 0;
604 void * addr = 0;
605
606 /* Always do incremental stack refinement for ubermaster threads since the initial
607 thread stack range can be reduced by sibling thread creation so pthread_attr_getstack
608 may cause thread gtid aliasing */
609 if ( ! KMP_UBER_GTID(gtid) ) {
610
611 /* Fetch the real thread attributes */
612 status = pthread_attr_init( &attr );
613 KMP_CHECK_SYSFAIL( "pthread_attr_init", status );
614 status = pthread_getattr_np( pthread_self(), &attr );
615 KMP_CHECK_SYSFAIL( "pthread_getattr_np", status );
616 status = pthread_attr_getstack( &attr, &addr, &size );
617 KMP_CHECK_SYSFAIL( "pthread_attr_getstack", status );
618 KA_TRACE( 60, ( "__kmp_set_stack_info: T#%d pthread_attr_getstack returned size: %lu, "
619 "low addr: %p\n",
620 gtid, size, addr ));
621
622 status = pthread_attr_destroy( &attr );
623 KMP_CHECK_SYSFAIL( "pthread_attr_destroy", status );
624 }
625
626 if ( size != 0 && addr != 0 ) { /* was stack parameter determination successful? */
627 /* Store the correct base and size */
628 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
629 TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
630 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
631 return TRUE;
632 } else {
633#endif /* KMP_OS_LINUX */
634 /* Use incremental refinement starting from initial conservative estimate */
635 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
636 TCW_PTR(th -> th.th_info.ds.ds_stackbase, &stack_data);
637 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
638 return FALSE;
639#if KMP_OS_LINUX
640 }
641#endif /* KMP_OS_LINUX */
642}
643
644static void*
645__kmp_launch_worker( void *thr )
646{
647 int status, old_type, old_state;
648#ifdef KMP_BLOCK_SIGNALS
649 sigset_t new_set, old_set;
650#endif /* KMP_BLOCK_SIGNALS */
651 void *exit_val;
652 void *padding = 0;
653 int gtid;
654 int error;
655
656 gtid = ((kmp_info_t*)thr) -> th.th_info.ds.ds_gtid;
657 __kmp_gtid_set_specific( gtid );
658#ifdef KMP_TDATA_GTID
659 __kmp_gtid = gtid;
660#endif
661
662#if USE_ITT_BUILD
663 __kmp_itt_thread_name( gtid );
664#endif /* USE_ITT_BUILD */
665
666#if KMP_OS_LINUX
667 __kmp_affinity_set_init_mask( gtid, FALSE );
668#elif KMP_OS_DARWIN
669 // affinity not supported
670#else
671 #error "Unknown or unsupported OS"
672#endif
673
674#ifdef KMP_CANCEL_THREADS
675 status = pthread_setcanceltype( PTHREAD_CANCEL_ASYNCHRONOUS, & old_type );
676 KMP_CHECK_SYSFAIL( "pthread_setcanceltype", status );
677 /* josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? */
678 status = pthread_setcancelstate( PTHREAD_CANCEL_ENABLE, & old_state );
679 KMP_CHECK_SYSFAIL( "pthread_setcancelstate", status );
680#endif
681
682#if KMP_ARCH_X86 || KMP_ARCH_X86_64
683 //
684 // Set the FP control regs to be a copy of
685 // the parallel initialization thread's.
686 //
687 __kmp_clear_x87_fpu_status_word();
688 __kmp_load_x87_fpu_control_word( &__kmp_init_x87_fpu_control_word );
689 __kmp_load_mxcsr( &__kmp_init_mxcsr );
690#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
691
692#ifdef KMP_BLOCK_SIGNALS
693 status = sigfillset( & new_set );
694 KMP_CHECK_SYSFAIL_ERRNO( "sigfillset", status );
695 status = pthread_sigmask( SIG_BLOCK, & new_set, & old_set );
696 KMP_CHECK_SYSFAIL( "pthread_sigmask", status );
697#endif /* KMP_BLOCK_SIGNALS */
698
699#if KMP_OS_LINUX
700 if ( __kmp_stkoffset > 0 && gtid > 0 ) {
701 padding = alloca( gtid * __kmp_stkoffset );
702 }
703#endif
704
705 KMP_MB();
706 __kmp_set_stack_info( gtid, (kmp_info_t*)thr );
707
708 __kmp_check_stack_overlap( (kmp_info_t*)thr );
709
710 exit_val = __kmp_launch_thread( (kmp_info_t *) thr );
711
712#ifdef KMP_BLOCK_SIGNALS
713 status = pthread_sigmask( SIG_SETMASK, & old_set, NULL );
714 KMP_CHECK_SYSFAIL( "pthread_sigmask", status );
715#endif /* KMP_BLOCK_SIGNALS */
716
717 return exit_val;
718}
719
720
721/* The monitor thread controls all of the threads in the complex */
722
723static void*
724__kmp_launch_monitor( void *thr )
725{
726 int status, old_type, old_state;
727#ifdef KMP_BLOCK_SIGNALS
728 sigset_t new_set;
729#endif /* KMP_BLOCK_SIGNALS */
730 struct timespec interval;
731 int yield_count;
732 int yield_cycles = 0;
733 int error;
734
735 KMP_MB(); /* Flush all pending memory write invalidates. */
736
737 KA_TRACE( 10, ("__kmp_launch_monitor: #1 launched\n" ) );
738
739 /* register us as the monitor thread */
740 __kmp_gtid_set_specific( KMP_GTID_MONITOR );
741#ifdef KMP_TDATA_GTID
742 __kmp_gtid = KMP_GTID_MONITOR;
743#endif
744
745 KMP_MB();
746
747#if USE_ITT_BUILD
748 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore monitor thread.
749#endif /* USE_ITT_BUILD */
750
751 __kmp_set_stack_info( ((kmp_info_t*)thr)->th.th_info.ds.ds_gtid, (kmp_info_t*)thr );
752
753 __kmp_check_stack_overlap( (kmp_info_t*)thr );
754
755#ifdef KMP_CANCEL_THREADS
756 status = pthread_setcanceltype( PTHREAD_CANCEL_ASYNCHRONOUS, & old_type );
757 KMP_CHECK_SYSFAIL( "pthread_setcanceltype", status );
758 /* josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? */
759 status = pthread_setcancelstate( PTHREAD_CANCEL_ENABLE, & old_state );
760 KMP_CHECK_SYSFAIL( "pthread_setcancelstate", status );
761#endif
762
763 #if KMP_REAL_TIME_FIX
764 // This is a potential fix which allows application with real-time scheduling policy work.
765 // However, decision about the fix is not made yet, so it is disabled by default.
766 { // Are program started with real-time scheduling policy?
767 int sched = sched_getscheduler( 0 );
768 if ( sched == SCHED_FIFO || sched == SCHED_RR ) {
769 // Yes, we are a part of real-time application. Try to increase the priority of the
770 // monitor.
771 struct sched_param param;
772 int max_priority = sched_get_priority_max( sched );
773 int rc;
774 KMP_WARNING( RealTimeSchedNotSupported );
775 sched_getparam( 0, & param );
776 if ( param.sched_priority < max_priority ) {
777 param.sched_priority += 1;
778 rc = sched_setscheduler( 0, sched, & param );
779 if ( rc != 0 ) {
780 int error = errno;
781 __kmp_msg(
782 kmp_ms_warning,
783 KMP_MSG( CantChangeMonitorPriority ),
784 KMP_ERR( error ),
785 KMP_MSG( MonitorWillStarve ),
786 __kmp_msg_null
787 );
788 }; // if
789 } else {
790 // We cannot abort here, because number of CPUs may be enough for all the threads,
791 // including the monitor thread, so application could potentially work...
792 __kmp_msg(
793 kmp_ms_warning,
794 KMP_MSG( RunningAtMaxPriority ),
795 KMP_MSG( MonitorWillStarve ),
796 KMP_HNT( RunningAtMaxPriority ),
797 __kmp_msg_null
798 );
799 }; // if
800 }; // if
801 }
802 #endif // KMP_REAL_TIME_FIX
803
804 KMP_MB(); /* Flush all pending memory write invalidates. */
805
806 if ( __kmp_monitor_wakeups == 1 ) {
807 interval.tv_sec = 1;
808 interval.tv_nsec = 0;
809 } else {
810 interval.tv_sec = 0;
811 interval.tv_nsec = (NSEC_PER_SEC / __kmp_monitor_wakeups);
812 }
813
814 KA_TRACE( 10, ("__kmp_launch_monitor: #2 monitor\n" ) );
815
816 if (__kmp_yield_cycle) {
817 __kmp_yielding_on = 0; /* Start out with yielding shut off */
818 yield_count = __kmp_yield_off_count;
819 } else {
820 __kmp_yielding_on = 1; /* Yielding is on permanently */
821 }
822
823 while( ! TCR_4( __kmp_global.g.g_done ) ) {
824 struct timespec now;
825 struct timeval tval;
826
827 /* This thread monitors the state of the system */
828
829 KA_TRACE( 15, ( "__kmp_launch_monitor: update\n" ) );
830
831 status = gettimeofday( &tval, NULL );
832 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status );
833 TIMEVAL_TO_TIMESPEC( &tval, &now );
834
835 now.tv_sec += interval.tv_sec;
836 now.tv_nsec += interval.tv_nsec;
837
838 if (now.tv_nsec >= NSEC_PER_SEC) {
839 now.tv_sec += 1;
840 now.tv_nsec -= NSEC_PER_SEC;
841 }
842
843 status = pthread_mutex_lock( & __kmp_wait_mx.m_mutex );
844 KMP_CHECK_SYSFAIL( "pthread_mutex_lock", status );
845 status = pthread_cond_timedwait( & __kmp_wait_cv.c_cond, & __kmp_wait_mx.m_mutex,
846 & now );
847 if ( status != 0 ) {
848 if ( status != ETIMEDOUT && status != EINTR ) {
849 KMP_SYSFAIL( "pthread_cond_timedwait", status );
850 };
851 };
852
853 status = pthread_mutex_unlock( & __kmp_wait_mx.m_mutex );
854 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status );
855
856 if (__kmp_yield_cycle) {
857 yield_cycles++;
858 if ( (yield_cycles % yield_count) == 0 ) {
859 if (__kmp_yielding_on) {
860 __kmp_yielding_on = 0; /* Turn it off now */
861 yield_count = __kmp_yield_off_count;
862 } else {
863 __kmp_yielding_on = 1; /* Turn it on now */
864 yield_count = __kmp_yield_on_count;
865 }
866 yield_cycles = 0;
867 }
868 } else {
869 __kmp_yielding_on = 1;
870 }
871
872 TCW_4( __kmp_global.g.g_time.dt.t_value,
873 TCR_4( __kmp_global.g.g_time.dt.t_value ) + 1 );
874
875 KMP_MB(); /* Flush all pending memory write invalidates. */
876 }
877
878 KA_TRACE( 10, ("__kmp_launch_monitor: #3 cleanup\n" ) );
879
880#ifdef KMP_BLOCK_SIGNALS
881 status = sigfillset( & new_set );
882 KMP_CHECK_SYSFAIL_ERRNO( "sigfillset", status );
883 status = pthread_sigmask( SIG_UNBLOCK, & new_set, NULL );
884 KMP_CHECK_SYSFAIL( "pthread_sigmask", status );
885#endif /* KMP_BLOCK_SIGNALS */
886
887 KA_TRACE( 10, ("__kmp_launch_monitor: #4 finished\n" ) );
888
889 if( __kmp_global.g.g_abort != 0 ) {
890 /* now we need to terminate the worker threads */
891 /* the value of t_abort is the signal we caught */
892
893 int gtid;
894
895 KA_TRACE( 10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", __kmp_global.g.g_abort ) );
896
897 /* terminate the OpenMP worker threads */
898 /* TODO this is not valid for sibling threads!!
899 * the uber master might not be 0 anymore.. */
900 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
901 __kmp_terminate_thread( gtid );
902
903 __kmp_cleanup();
904
905 KA_TRACE( 10, ("__kmp_launch_monitor: #6 raise sig=%d\n", __kmp_global.g.g_abort ) );
906
907 if (__kmp_global.g.g_abort > 0)
908 raise( __kmp_global.g.g_abort );
909
910 }
911
912 KA_TRACE( 10, ("__kmp_launch_monitor: #7 exit\n" ) );
913
914 return thr;
915}
916
917void
918__kmp_create_worker( int gtid, kmp_info_t *th, size_t stack_size )
919{
920 pthread_t handle;
921 pthread_attr_t thread_attr;
922 int status;
923
924
925 th->th.th_info.ds.ds_gtid = gtid;
926
927 if ( KMP_UBER_GTID(gtid) ) {
928 KA_TRACE( 10, ("__kmp_create_worker: uber thread (%d)\n", gtid ) );
929 th -> th.th_info.ds.ds_thread = pthread_self();
930 __kmp_set_stack_info( gtid, th );
931 __kmp_check_stack_overlap( th );
932 return;
933 }; // if
934
935 KA_TRACE( 10, ("__kmp_create_worker: try to create thread (%d)\n", gtid ) );
936
937 KMP_MB(); /* Flush all pending memory write invalidates. */
938
939#ifdef KMP_THREAD_ATTR
940 {
941 status = pthread_attr_init( &thread_attr );
942 if ( status != 0 ) {
943 __kmp_msg(
944 kmp_ms_fatal,
945 KMP_MSG( CantInitThreadAttrs ),
946 KMP_ERR( status ),
947 __kmp_msg_null
948 );
949 }; // if
950 status = pthread_attr_setdetachstate( & thread_attr, PTHREAD_CREATE_JOINABLE );
951 if ( status != 0 ) {
952 __kmp_msg(
953 kmp_ms_fatal,
954 KMP_MSG( CantSetWorkerState ),
955 KMP_ERR( status ),
956 __kmp_msg_null
957 );
958 }; // if
959
960 /* Set stack size for this thread now. */
961 stack_size += gtid * __kmp_stkoffset;
962
963 KA_TRACE( 10, ( "__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
964 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
965 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size ) );
966
967# ifdef _POSIX_THREAD_ATTR_STACKSIZE
968 status = pthread_attr_setstacksize( & thread_attr, stack_size );
969# ifdef KMP_BACKUP_STKSIZE
970 if ( status != 0 ) {
971 if ( ! __kmp_env_stksize ) {
972 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
973 __kmp_stksize = KMP_BACKUP_STKSIZE;
974 KA_TRACE( 10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
975 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
976 "bytes\n",
977 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size )
978 );
979 status = pthread_attr_setstacksize( &thread_attr, stack_size );
980 }; // if
981 }; // if
982# endif /* KMP_BACKUP_STKSIZE */
983 if ( status != 0 ) {
984 __kmp_msg(
985 kmp_ms_fatal,
986 KMP_MSG( CantSetWorkerStackSize, stack_size ),
987 KMP_ERR( status ),
988 KMP_HNT( ChangeWorkerStackSize ),
989 __kmp_msg_null
990 );
991 }; // if
992# endif /* _POSIX_THREAD_ATTR_STACKSIZE */
993 }
994#endif /* KMP_THREAD_ATTR */
995
996 {
997 status = pthread_create( & handle, & thread_attr, __kmp_launch_worker, (void *) th );
998 if ( status != 0 || ! handle ) { // ??? Why do we check handle??
999#ifdef _POSIX_THREAD_ATTR_STACKSIZE
1000 if ( status == EINVAL ) {
1001 __kmp_msg(
1002 kmp_ms_fatal,
1003 KMP_MSG( CantSetWorkerStackSize, stack_size ),
1004 KMP_ERR( status ),
1005 KMP_HNT( IncreaseWorkerStackSize ),
1006 __kmp_msg_null
1007 );
1008 };
1009 if ( status == ENOMEM ) {
1010 __kmp_msg(
1011 kmp_ms_fatal,
1012 KMP_MSG( CantSetWorkerStackSize, stack_size ),
1013 KMP_ERR( status ),
1014 KMP_HNT( DecreaseWorkerStackSize ),
1015 __kmp_msg_null
1016 );
1017 };
1018#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1019 if ( status == EAGAIN ) {
1020 __kmp_msg(
1021 kmp_ms_fatal,
1022 KMP_MSG( NoResourcesForWorkerThread ),
1023 KMP_ERR( status ),
1024 KMP_HNT( Decrease_NUM_THREADS ),
1025 __kmp_msg_null
1026 );
1027 }; // if
1028 KMP_SYSFAIL( "pthread_create", status );
1029 }; // if
1030
1031 th->th.th_info.ds.ds_thread = handle;
1032 }
1033
1034#ifdef KMP_THREAD_ATTR
1035 {
1036 status = pthread_attr_destroy( & thread_attr );
1037 if ( status ) {
1038 __kmp_msg(
1039 kmp_ms_warning,
1040 KMP_MSG( CantDestroyThreadAttrs ),
1041 KMP_ERR( status ),
1042 __kmp_msg_null
1043 );
1044 }; // if
1045 }
1046#endif /* KMP_THREAD_ATTR */
1047
1048 KMP_MB(); /* Flush all pending memory write invalidates. */
1049
1050 KA_TRACE( 10, ("__kmp_create_worker: done creating thread (%d)\n", gtid ) );
1051
1052} // __kmp_create_worker
1053
1054
1055void
1056__kmp_create_monitor( kmp_info_t *th )
1057{
1058 pthread_t handle;
1059 pthread_attr_t thread_attr;
1060 size_t size;
1061 int status;
1062 int caller_gtid = __kmp_get_gtid();
1063 int auto_adj_size = FALSE;
1064
1065 KA_TRACE( 10, ("__kmp_create_monitor: try to create monitor\n" ) );
1066
1067 KMP_MB(); /* Flush all pending memory write invalidates. */
1068
1069 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1070 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1071 #if KMP_REAL_TIME_FIX
1072 TCW_4( __kmp_global.g.g_time.dt.t_value, -1 ); // Will use it for synchronization a bit later.
1073 #endif // KMP_REAL_TIME_FIX
1074
1075 #ifdef KMP_THREAD_ATTR
1076 if ( __kmp_monitor_stksize == 0 ) {
1077 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1078 auto_adj_size = TRUE;
1079 }
1080 status = pthread_attr_init( &thread_attr );
1081 if ( status != 0 ) {
1082 __kmp_msg(
1083 kmp_ms_fatal,
1084 KMP_MSG( CantInitThreadAttrs ),
1085 KMP_ERR( status ),
1086 __kmp_msg_null
1087 );
1088 }; // if
1089 status = pthread_attr_setdetachstate( & thread_attr, PTHREAD_CREATE_JOINABLE );
1090 if ( status != 0 ) {
1091 __kmp_msg(
1092 kmp_ms_fatal,
1093 KMP_MSG( CantSetMonitorState ),
1094 KMP_ERR( status ),
1095 __kmp_msg_null
1096 );
1097 }; // if
1098
1099 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
1100 status = pthread_attr_getstacksize( & thread_attr, & size );
1101 KMP_CHECK_SYSFAIL( "pthread_attr_getstacksize", status );
1102 #else
1103 size = __kmp_sys_min_stksize;
1104 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1105 #endif /* KMP_THREAD_ATTR */
1106
1107 if ( __kmp_monitor_stksize == 0 ) {
1108 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1109 }
1110 if ( __kmp_monitor_stksize < __kmp_sys_min_stksize ) {
1111 __kmp_monitor_stksize = __kmp_sys_min_stksize;
1112 }
1113
1114 KA_TRACE( 10, ( "__kmp_create_monitor: default stacksize = %lu bytes,"
1115 "requested stacksize = %lu bytes\n",
1116 size, __kmp_monitor_stksize ) );
1117
1118 retry:
1119
1120 /* Set stack size for this thread now. */
1121
1122 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
1123 KA_TRACE( 10, ( "__kmp_create_monitor: setting stacksize = %lu bytes,",
1124 __kmp_monitor_stksize ) );
1125 status = pthread_attr_setstacksize( & thread_attr, __kmp_monitor_stksize );
1126 if ( status != 0 ) {
1127 if ( auto_adj_size ) {
1128 __kmp_monitor_stksize *= 2;
1129 goto retry;
1130 }
1131 __kmp_msg(
1132 kmp_ms_warning, // should this be fatal? BB
1133 KMP_MSG( CantSetMonitorStackSize, (long int) __kmp_monitor_stksize ),
1134 KMP_ERR( status ),
1135 KMP_HNT( ChangeMonitorStackSize ),
1136 __kmp_msg_null
1137 );
1138 }; // if
1139 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1140
1141 TCW_4( __kmp_global.g.g_time.dt.t_value, 0 );
1142
1143 status = pthread_create( &handle, & thread_attr, __kmp_launch_monitor, (void *) th );
1144
1145 if ( status != 0 ) {
1146 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
1147 if ( status == EINVAL ) {
1148 if ( auto_adj_size && ( __kmp_monitor_stksize < (size_t)0x40000000 ) ) {
1149 __kmp_monitor_stksize *= 2;
1150 goto retry;
1151 }
1152 __kmp_msg(
1153 kmp_ms_fatal,
1154 KMP_MSG( CantSetMonitorStackSize, __kmp_monitor_stksize ),
1155 KMP_ERR( status ),
1156 KMP_HNT( IncreaseMonitorStackSize ),
1157 __kmp_msg_null
1158 );
1159 }; // if
1160 if ( status == ENOMEM ) {
1161 __kmp_msg(
1162 kmp_ms_fatal,
1163 KMP_MSG( CantSetMonitorStackSize, __kmp_monitor_stksize ),
1164 KMP_ERR( status ),
1165 KMP_HNT( DecreaseMonitorStackSize ),
1166 __kmp_msg_null
1167 );
1168 }; // if
1169 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1170 if ( status == EAGAIN ) {
1171 __kmp_msg(
1172 kmp_ms_fatal,
1173 KMP_MSG( NoResourcesForMonitorThread ),
1174 KMP_ERR( status ),
1175 KMP_HNT( DecreaseNumberOfThreadsInUse ),
1176 __kmp_msg_null
1177 );
1178 }; // if
1179 KMP_SYSFAIL( "pthread_create", status );
1180 }; // if
1181
1182 th->th.th_info.ds.ds_thread = handle;
1183
1184 #if KMP_REAL_TIME_FIX
1185 // Wait for the monitor thread is really started and set its *priority*.
1186 KMP_DEBUG_ASSERT( sizeof( kmp_uint32 ) == sizeof( __kmp_global.g.g_time.dt.t_value ) );
1187 __kmp_wait_yield_4(
1188 (kmp_uint32 volatile *) & __kmp_global.g.g_time.dt.t_value, -1, & __kmp_neq_4, NULL
1189 );
1190 #endif // KMP_REAL_TIME_FIX
1191
1192 #ifdef KMP_THREAD_ATTR
1193 status = pthread_attr_destroy( & thread_attr );
1194 if ( status != 0 ) {
1195 __kmp_msg( //
1196 kmp_ms_warning,
1197 KMP_MSG( CantDestroyThreadAttrs ),
1198 KMP_ERR( status ),
1199 __kmp_msg_null
1200 );
1201 }; // if
1202 #endif
1203
1204 KMP_MB(); /* Flush all pending memory write invalidates. */
1205
1206 KA_TRACE( 10, ( "__kmp_create_monitor: monitor created %#.8lx\n", th->th.th_info.ds.ds_thread ) );
1207
1208} // __kmp_create_monitor
1209
1210void
1211__kmp_exit_thread(
1212 int exit_status
1213) {
1214 pthread_exit( (void *) exit_status );
1215} // __kmp_exit_thread
1216
1217void
1218__kmp_reap_monitor( kmp_info_t *th )
1219{
1220 int status, i;
1221 void *exit_val;
1222
1223 KA_TRACE( 10, ("__kmp_reap_monitor: try to reap monitor thread with handle %#.8lx\n",
1224 th->th.th_info.ds.ds_thread ) );
1225
1226 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1227 // If both tid and gtid are 0, it means the monitor did not ever start.
1228 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1229 KMP_DEBUG_ASSERT( th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid );
1230 if ( th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR ) {
1231 return;
1232 }; // if
1233
1234 KMP_MB(); /* Flush all pending memory write invalidates. */
1235
1236
1237 /* First, check to see whether the monitor thread exists. This could prevent a hang,
1238 but if the monitor dies after the pthread_kill call and before the pthread_join
1239 call, it will still hang. */
1240
1241 status = pthread_kill( th->th.th_info.ds.ds_thread, 0 );
1242 if (status == ESRCH) {
1243
1244 KA_TRACE( 10, ("__kmp_reap_monitor: monitor does not exist, returning\n") );
1245
1246 } else
1247 {
1248 status = pthread_join( th->th.th_info.ds.ds_thread, & exit_val);
1249 if (exit_val != th) {
1250 __kmp_msg(
1251 kmp_ms_fatal,
1252 KMP_MSG( ReapMonitorError ),
1253 KMP_ERR( status ),
1254 __kmp_msg_null
1255 );
1256 }
1257 }
1258
1259 th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1260 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1261
1262 KA_TRACE( 10, ("__kmp_reap_monitor: done reaping monitor thread with handle %#.8lx\n",
1263 th->th.th_info.ds.ds_thread ) );
1264
1265 KMP_MB(); /* Flush all pending memory write invalidates. */
1266
1267}
1268
1269void
1270__kmp_reap_worker( kmp_info_t *th )
1271{
1272 int status;
1273 void *exit_val;
1274
1275 KMP_MB(); /* Flush all pending memory write invalidates. */
1276
1277 KA_TRACE( 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid ) );
1278
1279 /* First, check to see whether the worker thread exists. This could prevent a hang,
1280 but if the worker dies after the pthread_kill call and before the pthread_join
1281 call, it will still hang. */
1282
1283 {
1284 status = pthread_kill( th->th.th_info.ds.ds_thread, 0 );
1285 if (status == ESRCH) {
1286 KA_TRACE( 10, ("__kmp_reap_worker: worker T#%d does not exist, returning\n",
1287 th->th.th_info.ds.ds_gtid ) );
1288 }
1289 else {
1290 KA_TRACE( 10, ("__kmp_reap_worker: try to join with worker T#%d\n",
1291 th->th.th_info.ds.ds_gtid ) );
1292
1293 status = pthread_join( th->th.th_info.ds.ds_thread, & exit_val);
1294#ifdef KMP_DEBUG
1295 /* Don't expose these to the user until we understand when they trigger */
1296 if ( status != 0 ) {
1297 __kmp_msg(
1298 kmp_ms_fatal,
1299 KMP_MSG( ReapWorkerError ),
1300 KMP_ERR( status ),
1301 __kmp_msg_null
1302 );
1303 }
1304 if ( exit_val != th ) {
1305 KA_TRACE( 10, ( "__kmp_reap_worker: worker T#%d did not reap properly, "
1306 "exit_val = %p\n",
1307 th->th.th_info.ds.ds_gtid, exit_val ) );
1308 }
1309#endif /* KMP_DEBUG */
1310 }
1311 }
1312
1313 KA_TRACE( 10, ("__kmp_reap_worker: done reaping T#%d\n", th->th.th_info.ds.ds_gtid ) );
1314
1315 KMP_MB(); /* Flush all pending memory write invalidates. */
1316}
1317
1318
1319/* ------------------------------------------------------------------------ */
1320/* ------------------------------------------------------------------------ */
1321
1322#if KMP_HANDLE_SIGNALS
1323
1324
1325static void
1326__kmp_null_handler( int signo )
1327{
1328 // Do nothing, for doing SIG_IGN-type actions.
1329} // __kmp_null_handler
1330
1331
1332static void
1333__kmp_team_handler( int signo )
1334{
1335 if ( __kmp_global.g.g_abort == 0 ) {
1336 /* Stage 1 signal handler, let's shut down all of the threads */
1337 #ifdef KMP_DEBUG
1338 __kmp_debug_printf( "__kmp_team_handler: caught signal = %d\n", signo );
1339 #endif
1340 switch ( signo ) {
1341 case SIGHUP :
1342 case SIGINT :
1343 case SIGQUIT :
1344 case SIGILL :
1345 case SIGABRT :
1346 case SIGFPE :
1347 case SIGBUS :
1348 case SIGSEGV :
1349 #ifdef SIGSYS
1350 case SIGSYS :
1351 #endif
1352 case SIGTERM :
1353 if ( __kmp_debug_buf ) {
1354 __kmp_dump_debug_buffer( );
1355 }; // if
1356 KMP_MB(); // Flush all pending memory write invalidates.
1357 TCW_4( __kmp_global.g.g_abort, signo );
1358 KMP_MB(); // Flush all pending memory write invalidates.
1359 TCW_4( __kmp_global.g.g_done, TRUE );
1360 KMP_MB(); // Flush all pending memory write invalidates.
1361 break;
1362 default:
1363 #ifdef KMP_DEBUG
1364 __kmp_debug_printf( "__kmp_team_handler: unknown signal type" );
1365 #endif
1366 break;
1367 }; // switch
1368 }; // if
1369} // __kmp_team_handler
1370
1371
1372static
1373void __kmp_sigaction( int signum, const struct sigaction * act, struct sigaction * oldact ) {
1374 int rc = sigaction( signum, act, oldact );
1375 KMP_CHECK_SYSFAIL_ERRNO( "sigaction", rc );
1376}
1377
1378
1379static void
1380__kmp_install_one_handler( int sig, sig_func_t handler_func, int parallel_init )
1381{
1382 KMP_MB(); // Flush all pending memory write invalidates.
1383 KB_TRACE( 60, ( "__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init ) );
1384 if ( parallel_init ) {
1385 struct sigaction new_action;
1386 struct sigaction old_action;
1387 new_action.sa_handler = handler_func;
1388 new_action.sa_flags = 0;
1389 sigfillset( & new_action.sa_mask );
1390 __kmp_sigaction( sig, & new_action, & old_action );
1391 if ( old_action.sa_handler == __kmp_sighldrs[ sig ].sa_handler ) {
1392 sigaddset( & __kmp_sigset, sig );
1393 } else {
1394 // Restore/keep user's handler if one previously installed.
1395 __kmp_sigaction( sig, & old_action, NULL );
1396 }; // if
1397 } else {
1398 // Save initial/system signal handlers to see if user handlers installed.
1399 __kmp_sigaction( sig, NULL, & __kmp_sighldrs[ sig ] );
1400 }; // if
1401 KMP_MB(); // Flush all pending memory write invalidates.
1402} // __kmp_install_one_handler
1403
1404
1405static void
1406__kmp_remove_one_handler( int sig )
1407{
1408 KB_TRACE( 60, ( "__kmp_remove_one_handler( %d )\n", sig ) );
1409 if ( sigismember( & __kmp_sigset, sig ) ) {
1410 struct sigaction old;
1411 KMP_MB(); // Flush all pending memory write invalidates.
1412 __kmp_sigaction( sig, & __kmp_sighldrs[ sig ], & old );
1413 if ( ( old.sa_handler != __kmp_team_handler ) && ( old.sa_handler != __kmp_null_handler ) ) {
1414 // Restore the users signal handler.
1415 KB_TRACE( 10, ( "__kmp_remove_one_handler: oops, not our handler, restoring: sig=%d\n", sig ) );
1416 __kmp_sigaction( sig, & old, NULL );
1417 }; // if
1418 sigdelset( & __kmp_sigset, sig );
1419 KMP_MB(); // Flush all pending memory write invalidates.
1420 }; // if
1421} // __kmp_remove_one_handler
1422
1423
1424void
1425__kmp_install_signals( int parallel_init )
1426{
1427 KB_TRACE( 10, ( "__kmp_install_signals( %d )\n", parallel_init ) );
1428 if ( __kmp_handle_signals || ! parallel_init ) {
1429 // If ! parallel_init, we do not install handlers, just save original handlers.
1430 // Let us do it even __handle_signals is 0.
1431 sigemptyset( & __kmp_sigset );
1432 __kmp_install_one_handler( SIGHUP, __kmp_team_handler, parallel_init );
1433 __kmp_install_one_handler( SIGINT, __kmp_team_handler, parallel_init );
1434 __kmp_install_one_handler( SIGQUIT, __kmp_team_handler, parallel_init );
1435 __kmp_install_one_handler( SIGILL, __kmp_team_handler, parallel_init );
1436 __kmp_install_one_handler( SIGABRT, __kmp_team_handler, parallel_init );
1437 __kmp_install_one_handler( SIGFPE, __kmp_team_handler, parallel_init );
1438 __kmp_install_one_handler( SIGBUS, __kmp_team_handler, parallel_init );
1439 __kmp_install_one_handler( SIGSEGV, __kmp_team_handler, parallel_init );
1440 #ifdef SIGSYS
1441 __kmp_install_one_handler( SIGSYS, __kmp_team_handler, parallel_init );
1442 #endif // SIGSYS
1443 __kmp_install_one_handler( SIGTERM, __kmp_team_handler, parallel_init );
1444 #ifdef SIGPIPE
1445 __kmp_install_one_handler( SIGPIPE, __kmp_team_handler, parallel_init );
1446 #endif // SIGPIPE
1447 }; // if
1448} // __kmp_install_signals
1449
1450
1451void
1452__kmp_remove_signals( void )
1453{
1454 int sig;
1455 KB_TRACE( 10, ( "__kmp_remove_signals()\n" ) );
1456 for ( sig = 1; sig < NSIG; ++ sig ) {
1457 __kmp_remove_one_handler( sig );
1458 }; // for sig
1459} // __kmp_remove_signals
1460
1461
1462#endif // KMP_HANDLE_SIGNALS
1463
1464/* ------------------------------------------------------------------------ */
1465/* ------------------------------------------------------------------------ */
1466
1467void
1468__kmp_enable( int new_state )
1469{
1470 #ifdef KMP_CANCEL_THREADS
1471 int status, old_state;
1472 status = pthread_setcancelstate( new_state, & old_state );
1473 KMP_CHECK_SYSFAIL( "pthread_setcancelstate", status );
1474 KMP_DEBUG_ASSERT( old_state == PTHREAD_CANCEL_DISABLE );
1475 #endif
1476}
1477
1478void
1479__kmp_disable( int * old_state )
1480{
1481 #ifdef KMP_CANCEL_THREADS
1482 int status;
1483 status = pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, old_state );
1484 KMP_CHECK_SYSFAIL( "pthread_setcancelstate", status );
1485 #endif
1486}
1487
1488/* ------------------------------------------------------------------------ */
1489/* ------------------------------------------------------------------------ */
1490
1491static void
1492__kmp_atfork_prepare (void)
1493{
1494 /* nothing to do */
1495}
1496
1497static void
1498__kmp_atfork_parent (void)
1499{
1500 /* nothing to do */
1501}
1502
1503/*
1504 Reset the library so execution in the child starts "all over again" with
1505 clean data structures in initial states. Don't worry about freeing memory
1506 allocated by parent, just abandon it to be safe.
1507*/
1508static void
1509__kmp_atfork_child (void)
1510{
1511 /* TODO make sure this is done right for nested/sibling */
1512 // ATT: Memory leaks are here? TODO: Check it and fix.
1513 /* KMP_ASSERT( 0 ); */
1514
1515 ++__kmp_fork_count;
1516
1517 __kmp_init_runtime = FALSE;
1518 __kmp_init_monitor = 0;
1519 __kmp_init_parallel = FALSE;
1520 __kmp_init_middle = FALSE;
1521 __kmp_init_serial = FALSE;
1522 TCW_4(__kmp_init_gtid, FALSE);
1523 __kmp_init_common = FALSE;
1524
1525 TCW_4(__kmp_init_user_locks, FALSE);
1526 __kmp_user_lock_table.used = 0;
1527 __kmp_user_lock_table.allocated = 0;
1528 __kmp_user_lock_table.table = NULL;
1529 __kmp_lock_blocks = NULL;
1530
1531 __kmp_all_nth = 0;
1532 TCW_4(__kmp_nth, 0);
1533
1534 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate here
1535 so threadprivate doesn't use stale data */
1536 KA_TRACE( 10, ( "__kmp_atfork_child: checking cache address list %p\n",
1537 __kmp_threadpriv_cache_list ) );
1538
1539 while ( __kmp_threadpriv_cache_list != NULL ) {
1540
1541 if ( *__kmp_threadpriv_cache_list -> addr != NULL ) {
1542 KC_TRACE( 50, ( "__kmp_atfork_child: zeroing cache at address %p\n",
1543 &(*__kmp_threadpriv_cache_list -> addr) ) );
1544
1545 *__kmp_threadpriv_cache_list -> addr = NULL;
1546 }
1547 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list -> next;
1548 }
1549
1550 __kmp_init_runtime = FALSE;
1551
1552 /* reset statically initialized locks */
1553 __kmp_init_bootstrap_lock( &__kmp_initz_lock );
1554 __kmp_init_bootstrap_lock( &__kmp_stdio_lock );
1555 __kmp_init_bootstrap_lock( &__kmp_console_lock );
1556
1557 /* This is necessary to make sure no stale data is left around */
1558 /* AC: customers complain that we use unsafe routines in the atfork
1559 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1560 in dynamic_link when check the presence of shared tbbmalloc library.
1561 Suggestion is to make the library initialization lazier, similar
1562 to what done for __kmpc_begin(). */
1563 // TODO: synchronize all static initializations with regular library
1564 // startup; look at kmp_global.c and etc.
1565 //__kmp_internal_begin ();
1566
1567}
1568
1569void
1570__kmp_register_atfork(void) {
1571 if ( __kmp_need_register_atfork ) {
1572 int status = pthread_atfork( __kmp_atfork_prepare, __kmp_atfork_parent, __kmp_atfork_child );
1573 KMP_CHECK_SYSFAIL( "pthread_atfork", status );
1574 __kmp_need_register_atfork = FALSE;
1575 }
1576}
1577
1578void
1579__kmp_suspend_initialize( void )
1580{
1581 int status;
1582 status = pthread_mutexattr_init( &__kmp_suspend_mutex_attr );
1583 KMP_CHECK_SYSFAIL( "pthread_mutexattr_init", status );
1584 status = pthread_condattr_init( &__kmp_suspend_cond_attr );
1585 KMP_CHECK_SYSFAIL( "pthread_condattr_init", status );
1586}
1587
1588static void
1589__kmp_suspend_initialize_thread( kmp_info_t *th )
1590{
1591 if ( th->th.th_suspend_init_count <= __kmp_fork_count ) {
1592 /* this means we haven't initialized the suspension pthread objects for this thread
1593 in this instance of the process */
1594 int status;
1595 status = pthread_cond_init( &th->th.th_suspend_cv.c_cond, &__kmp_suspend_cond_attr );
1596 KMP_CHECK_SYSFAIL( "pthread_cond_init", status );
1597 status = pthread_mutex_init( &th->th.th_suspend_mx.m_mutex, & __kmp_suspend_mutex_attr );
1598 KMP_CHECK_SYSFAIL( "pthread_mutex_init", status );
1599 *(volatile int*)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1600 };
1601}
1602
1603void
1604__kmp_suspend_uninitialize_thread( kmp_info_t *th )
1605{
1606 if(th->th.th_suspend_init_count > __kmp_fork_count) {
1607 /* this means we have initialize the suspension pthread objects for this thread
1608 in this instance of the process */
1609 int status;
1610
1611 status = pthread_cond_destroy( &th->th.th_suspend_cv.c_cond );
1612 if ( status != 0 && status != EBUSY ) {
1613 KMP_SYSFAIL( "pthread_cond_destroy", status );
1614 };
1615 status = pthread_mutex_destroy( &th->th.th_suspend_mx.m_mutex );
1616 if ( status != 0 && status != EBUSY ) {
1617 KMP_SYSFAIL( "pthread_mutex_destroy", status );
1618 };
1619 --th->th.th_suspend_init_count;
1620 KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1621 }
1622}
1623
1624/*
1625 * This routine puts the calling thread to sleep after setting the
1626 * sleep bit for the indicated spin variable to true.
1627 */
1628
1629void
1630__kmp_suspend( int th_gtid, volatile kmp_uint *spinner, kmp_uint checker )
1631{
1632 kmp_info_t *th = __kmp_threads[th_gtid];
1633 int status;
1634 kmp_uint old_spin;
1635
1636 KF_TRACE( 30, ("__kmp_suspend: T#%d enter for spin = %p\n", th_gtid, spinner ) );
1637
1638 __kmp_suspend_initialize_thread( th );
1639
1640 status = pthread_mutex_lock( &th->th.th_suspend_mx.m_mutex );
1641 KMP_CHECK_SYSFAIL( "pthread_mutex_lock", status );
1642
1643 KF_TRACE( 10, ( "__kmp_suspend: T#%d setting sleep bit for spin(%p)\n",
1644 th_gtid, spinner ) );
1645
1646 /* TODO: shouldn't this use release semantics to ensure that __kmp_suspend_initialize_thread
1647 gets called first?
1648 */
1649 old_spin = KMP_TEST_THEN_OR32( (volatile kmp_int32 *) spinner,
1650 KMP_BARRIER_SLEEP_STATE );
1651
1652 KF_TRACE( 5, ( "__kmp_suspend: T#%d set sleep bit for spin(%p)==%d\n",
1653 th_gtid, spinner, *spinner ) );
1654
1655 if ( old_spin == checker ) {
1656 KMP_TEST_THEN_AND32( (volatile kmp_int32 *) spinner, ~(KMP_BARRIER_SLEEP_STATE) );
1657
1658 KF_TRACE( 5, ( "__kmp_suspend: T#%d false alarm, reset sleep bit for spin(%p)\n",
1659 th_gtid, spinner) );
1660 } else {
1661
1662 /* Encapsulate in a loop as the documentation states that this may
1663 * "with low probability" return when the condition variable has
1664 * not been signaled or broadcast
1665 */
1666 int deactivated = FALSE;
1667 TCW_PTR(th->th.th_sleep_loc, spinner);
1668 while ( TCR_4( *spinner ) & KMP_BARRIER_SLEEP_STATE ) {
1669#ifdef DEBUG_SUSPEND
1670 char buffer[128];
1671 __kmp_suspend_count++;
1672 __kmp_print_cond( buffer, &th->th.th_suspend_cv );
1673 __kmp_printf( "__kmp_suspend: suspending T#%d: %s\n", th_gtid, buffer );
1674#endif
1675
1676 //
1677 // Mark the thread as no longer active
1678 // (only in the first iteration of the loop).
1679 //
1680 if ( ! deactivated ) {
1681 th->th.th_active = FALSE;
1682 if ( th->th.th_active_in_pool ) {
1683 th->th.th_active_in_pool = FALSE;
1684 KMP_TEST_THEN_DEC32(
1685 (kmp_int32 *) &__kmp_thread_pool_active_nth );
1686 KMP_DEBUG_ASSERT( TCR_4(__kmp_thread_pool_active_nth) >= 0 );
1687 }
1688 deactivated = TRUE;
1689
1690
1691 }
1692
1693#if USE_SUSPEND_TIMEOUT
1694 struct timespec now;
1695 struct timeval tval;
1696 int msecs;
1697
1698 status = gettimeofday( &tval, NULL );
1699 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status );
1700 TIMEVAL_TO_TIMESPEC( &tval, &now );
1701
1702 msecs = (4*__kmp_dflt_blocktime) + 200;
1703 now.tv_sec += msecs / 1000;
1704 now.tv_nsec += (msecs % 1000)*1000;
1705
1706 KF_TRACE( 15, ( "__kmp_suspend: T#%d about to perform pthread_cond_timedwait\n",
1707 th_gtid ) );
1708 status = pthread_cond_timedwait( &th->th.th_suspend_cv.c_cond, &th->th.th_suspend_mx.m_mutex, & now );
1709#else
1710 KF_TRACE( 15, ( "__kmp_suspend: T#%d about to perform pthread_cond_wait\n",
1711 th_gtid ) );
1712
1713 status = pthread_cond_wait( &th->th.th_suspend_cv.c_cond, &th->th.th_suspend_mx.m_mutex );
1714#endif
1715
1716 if ( (status != 0) && (status != EINTR) && (status != ETIMEDOUT) ) {
1717 KMP_SYSFAIL( "pthread_cond_wait", status );
1718 }
1719#ifdef KMP_DEBUG
1720 if (status == ETIMEDOUT) {
1721 if ( (*spinner) & KMP_BARRIER_SLEEP_STATE ) {
1722 KF_TRACE( 100, ( "__kmp_suspend: T#%d timeout wakeup\n", th_gtid ) );
1723 } else {
1724 KF_TRACE( 2, ( "__kmp_suspend: T#%d timeout wakeup, sleep bit not set!\n",
1725 th_gtid ) );
1726 }
1727 } else if ( (*spinner) & KMP_BARRIER_SLEEP_STATE ) {
1728 KF_TRACE( 100, ( "__kmp_suspend: T#%d spurious wakeup\n", th_gtid ) );
1729 }
1730#endif
1731
1732 } // while
1733
1734 //
1735 // Mark the thread as active again
1736 // (if it was previous marked as inactive)
1737 //
1738 if ( deactivated ) {
1739 th->th.th_active = TRUE;
1740 if ( TCR_4(th->th.th_in_pool) ) {
1741 KMP_TEST_THEN_INC32(
1742 (kmp_int32 *) &__kmp_thread_pool_active_nth );
1743 th->th.th_active_in_pool = TRUE;
1744 }
1745 }
1746 }
1747
1748#ifdef DEBUG_SUSPEND
1749 {
1750 char buffer[128];
1751 __kmp_print_cond( buffer, &th->th.th_suspend_cv);
1752 __kmp_printf( "__kmp_suspend: T#%d has awakened: %s\n", th_gtid, buffer );
1753 }
1754#endif
1755
1756
1757 status = pthread_mutex_unlock( &th->th.th_suspend_mx.m_mutex );
1758 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status );
1759
1760 KF_TRACE( 30, ("__kmp_suspend: T#%d exit\n", th_gtid ) );
1761}
1762
1763
1764/* This routine signals the thread specified by target_gtid to wake up
1765 * after setting the sleep bit indicated by the spin argument to FALSE.
1766 * The target thread must already have called __kmp_suspend()
1767 */
1768
1769void
1770__kmp_resume( int target_gtid, volatile kmp_uint *spin )
1771{
1772 kmp_info_t *th = __kmp_threads[target_gtid];
1773 int status;
1774 kmp_uint old_spin;
1775
1776#ifdef KMP_DEBUG
1777 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1778#endif
1779
1780 KF_TRACE( 30, ( "__kmp_resume: T#%d wants to wakeup T#%d enter\n",
1781 gtid, target_gtid ) );
1782
1783 KMP_DEBUG_ASSERT( gtid != target_gtid );
1784
1785 __kmp_suspend_initialize_thread( th );
1786
1787 status = pthread_mutex_lock( &th->th.th_suspend_mx.m_mutex );
1788 KMP_CHECK_SYSFAIL( "pthread_mutex_lock", status );
1789 if ( spin == NULL ) {
1790 spin = (volatile kmp_uint *)TCR_PTR(th->th.th_sleep_loc);
1791 if ( spin == NULL ) {
1792 KF_TRACE( 5, ( "__kmp_resume: T#%d exiting, thread T#%d already awake - spin(%p)\n",
1793 gtid, target_gtid, spin ) );
1794
1795 status = pthread_mutex_unlock( &th->th.th_suspend_mx.m_mutex );
1796 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status );
1797 return;
1798 }
1799 }
1800
1801 old_spin = KMP_TEST_THEN_AND32( (kmp_int32 volatile *) spin,
1802 ~( KMP_BARRIER_SLEEP_STATE ) );
1803 if ( ( old_spin & KMP_BARRIER_SLEEP_STATE ) == 0 ) {
1804 KF_TRACE( 5, ( "__kmp_resume: T#%d exiting, thread T#%d already awake - spin(%p): "
1805 "%u => %u\n",
1806 gtid, target_gtid, spin, old_spin, *spin ) );
1807
1808 status = pthread_mutex_unlock( &th->th.th_suspend_mx.m_mutex );
1809 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status );
1810 return;
1811 }
1812 TCW_PTR(th->th.th_sleep_loc, NULL);
1813
1814 KF_TRACE( 5, ( "__kmp_resume: T#%d about to wakeup T#%d, reset sleep bit for spin(%p): "
1815 "%u => %u\n",
1816 gtid, target_gtid, spin, old_spin, *spin ) );
1817
1818#ifdef DEBUG_SUSPEND
1819 {
1820 char buffer[128];
1821 __kmp_print_cond( buffer, &th->th.th_suspend_cv );
1822 __kmp_printf( "__kmp_resume: T#%d resuming T#%d: %s\n", gtid, target_gtid, buffer );
1823 }
1824#endif
1825
1826
1827 status = pthread_cond_signal( &th->th.th_suspend_cv.c_cond );
1828 KMP_CHECK_SYSFAIL( "pthread_cond_signal", status );
1829 status = pthread_mutex_unlock( &th->th.th_suspend_mx.m_mutex );
1830 KMP_CHECK_SYSFAIL( "pthread_mutex_unlock", status );
1831 KF_TRACE( 30, ( "__kmp_resume: T#%d exiting after signaling wake up for T#%d\n",
1832 gtid, target_gtid ) );
1833}
1834
1835
1836/* ------------------------------------------------------------------------ */
1837/* ------------------------------------------------------------------------ */
1838
1839void
1840__kmp_yield( int cond )
1841{
1842 if (cond && __kmp_yielding_on) {
1843 sched_yield();
1844 }
1845}
1846
1847/* ------------------------------------------------------------------------ */
1848/* ------------------------------------------------------------------------ */
1849
1850void
1851__kmp_gtid_set_specific( int gtid )
1852{
1853 int status;
1854 KMP_ASSERT( __kmp_init_runtime );
1855 status = pthread_setspecific( __kmp_gtid_threadprivate_key, (void*)(gtid+1) );
1856 KMP_CHECK_SYSFAIL( "pthread_setspecific", status );
1857}
1858
1859int
1860__kmp_gtid_get_specific()
1861{
1862 int gtid;
1863 if ( !__kmp_init_runtime ) {
1864 KA_TRACE( 50, ("__kmp_get_specific: runtime shutdown, returning KMP_GTID_SHUTDOWN\n" ) );
1865 return KMP_GTID_SHUTDOWN;
1866 }
1867 gtid = (int)(size_t)pthread_getspecific( __kmp_gtid_threadprivate_key );
1868 if ( gtid == 0 ) {
1869 gtid = KMP_GTID_DNE;
1870 }
1871 else {
1872 gtid--;
1873 }
1874 KA_TRACE( 50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1875 __kmp_gtid_threadprivate_key, gtid ));
1876 return gtid;
1877}
1878
1879/* ------------------------------------------------------------------------ */
1880/* ------------------------------------------------------------------------ */
1881
1882double
1883__kmp_read_cpu_time( void )
1884{
1885 /*clock_t t;*/
1886 struct tms buffer;
1887
1888 /*t =*/ times( & buffer );
1889
1890 return (buffer.tms_utime + buffer.tms_cutime) / (double) CLOCKS_PER_SEC;
1891}
1892
1893int
1894__kmp_read_system_info( struct kmp_sys_info *info )
1895{
1896 int status;
1897 struct rusage r_usage;
1898
1899 memset( info, 0, sizeof( *info ) );
1900
1901 status = getrusage( RUSAGE_SELF, &r_usage);
1902 KMP_CHECK_SYSFAIL_ERRNO( "getrusage", status );
1903
1904 info->maxrss = r_usage.ru_maxrss; /* the maximum resident set size utilized (in kilobytes) */
1905 info->minflt = r_usage.ru_minflt; /* the number of page faults serviced without any I/O */
1906 info->majflt = r_usage.ru_majflt; /* the number of page faults serviced that required I/O */
1907 info->nswap = r_usage.ru_nswap; /* the number of times a process was "swapped" out of memory */
1908 info->inblock = r_usage.ru_inblock; /* the number of times the file system had to perform input */
1909 info->oublock = r_usage.ru_oublock; /* the number of times the file system had to perform output */
1910 info->nvcsw = r_usage.ru_nvcsw; /* the number of times a context switch was voluntarily */
1911 info->nivcsw = r_usage.ru_nivcsw; /* the number of times a context switch was forced */
1912
1913 return (status != 0);
1914}
1915
1916/* ------------------------------------------------------------------------ */
1917/* ------------------------------------------------------------------------ */
1918
1919
1920void
1921__kmp_read_system_time( double *delta )
1922{
1923 double t_ns;
1924 struct timeval tval;
1925 struct timespec stop;
1926 int status;
1927
1928 status = gettimeofday( &tval, NULL );
1929 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status );
1930 TIMEVAL_TO_TIMESPEC( &tval, &stop );
1931 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1932 *delta = (t_ns * 1e-9);
1933}
1934
1935void
1936__kmp_clear_system_time( void )
1937{
1938 struct timeval tval;
1939 int status;
1940 status = gettimeofday( &tval, NULL );
1941 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status );
1942 TIMEVAL_TO_TIMESPEC( &tval, &__kmp_sys_timer_data.start );
1943}
1944
1945/* ------------------------------------------------------------------------ */
1946/* ------------------------------------------------------------------------ */
1947
1948#ifdef BUILD_TV
1949
1950void
1951__kmp_tv_threadprivate_store( kmp_info_t *th, void *global_addr, void *thread_addr )
1952{
1953 struct tv_data *p;
1954
1955 p = (struct tv_data *) __kmp_allocate( sizeof( *p ) );
1956
1957 p->u.tp.global_addr = global_addr;
1958 p->u.tp.thread_addr = thread_addr;
1959
1960 p->type = (void *) 1;
1961
1962 p->next = th->th.th_local.tv_data;
1963 th->th.th_local.tv_data = p;
1964
1965 if ( p->next == 0 ) {
1966 int rc = pthread_setspecific( __kmp_tv_key, p );
1967 KMP_CHECK_SYSFAIL( "pthread_setspecific", rc );
1968 }
1969}
1970
1971#endif /* BUILD_TV */
1972
1973/* ------------------------------------------------------------------------ */
1974/* ------------------------------------------------------------------------ */
1975
1976static int
1977__kmp_get_xproc( void ) {
1978
1979 int r = 0;
1980
1981 #if KMP_OS_LINUX
1982
1983 r = sysconf( _SC_NPROCESSORS_ONLN );
1984
1985 #elif KMP_OS_DARWIN
1986
1987 // Bug C77011 High "OpenMP Threads and number of active cores".
1988
1989 // Find the number of available CPUs.
1990 kern_return_t rc;
1991 host_basic_info_data_t info;
1992 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1993 rc = host_info( mach_host_self(), HOST_BASIC_INFO, (host_info_t) & info, & num );
1994 if ( rc == 0 && num == HOST_BASIC_INFO_COUNT ) {
1995 // Cannot use KA_TRACE() here because this code works before trace support is
1996 // initialized.
1997 r = info.avail_cpus;
1998 } else {
1999 KMP_WARNING( CantGetNumAvailCPU );
2000 KMP_INFORM( AssumedNumCPU );
2001 }; // if
2002
2003 #else
2004
2005 #error "Unknown or unsupported OS."
2006
2007 #endif
2008
2009 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
2010
2011} // __kmp_get_xproc
2012
Jim Cownie181b4bb2013-12-23 17:28:57 +00002013int
2014__kmp_read_from_file( char const *path, char const *format, ... )
2015{
2016 int result;
2017 va_list args;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002018
Jim Cownie181b4bb2013-12-23 17:28:57 +00002019 va_start(args, format);
2020 FILE *f = fopen(path, "rb");
2021 if ( f == NULL )
2022 return 0;
2023 result = vfscanf(f, format, args);
2024 fclose(f);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002025
Jim Cownie5e8470a2013-09-27 10:38:44 +00002026 return result;
Jim Cownie181b4bb2013-12-23 17:28:57 +00002027}
Jim Cownie5e8470a2013-09-27 10:38:44 +00002028
2029void
2030__kmp_runtime_initialize( void )
2031{
2032 int status;
2033 pthread_mutexattr_t mutex_attr;
2034 pthread_condattr_t cond_attr;
2035
2036 if ( __kmp_init_runtime ) {
2037 return;
2038 }; // if
2039
2040 #if ( KMP_ARCH_X86 || KMP_ARCH_X86_64 )
2041 if ( ! __kmp_cpuinfo.initialized ) {
2042 __kmp_query_cpuid( &__kmp_cpuinfo );
2043 }; // if
2044 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2045
Jim Cownie5e8470a2013-09-27 10:38:44 +00002046 __kmp_xproc = __kmp_get_xproc();
2047
2048 if ( sysconf( _SC_THREADS ) ) {
2049
2050 /* Query the maximum number of threads */
2051 __kmp_sys_max_nth = sysconf( _SC_THREAD_THREADS_MAX );
2052 if ( __kmp_sys_max_nth == -1 ) {
2053 /* Unlimited threads for NPTL */
2054 __kmp_sys_max_nth = INT_MAX;
2055 }
2056 else if ( __kmp_sys_max_nth <= 1 ) {
2057 /* Can't tell, just use PTHREAD_THREADS_MAX */
2058 __kmp_sys_max_nth = KMP_MAX_NTH;
2059 }
2060
2061 /* Query the minimum stack size */
2062 __kmp_sys_min_stksize = sysconf( _SC_THREAD_STACK_MIN );
2063 if ( __kmp_sys_min_stksize <= 1 ) {
2064 __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
2065 }
2066 }
2067
2068 /* Set up minimum number of threads to switch to TLS gtid */
2069 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
2070
2071
2072 #ifdef BUILD_TV
2073 {
2074 int rc = pthread_key_create( & __kmp_tv_key, 0 );
2075 KMP_CHECK_SYSFAIL( "pthread_key_create", rc );
2076 }
2077 #endif
2078
2079 status = pthread_key_create( &__kmp_gtid_threadprivate_key, __kmp_internal_end_dest );
2080 KMP_CHECK_SYSFAIL( "pthread_key_create", status );
2081 status = pthread_mutexattr_init( & mutex_attr );
2082 KMP_CHECK_SYSFAIL( "pthread_mutexattr_init", status );
2083 status = pthread_mutex_init( & __kmp_wait_mx.m_mutex, & mutex_attr );
2084 KMP_CHECK_SYSFAIL( "pthread_mutex_init", status );
2085 status = pthread_condattr_init( & cond_attr );
2086 KMP_CHECK_SYSFAIL( "pthread_condattr_init", status );
2087 status = pthread_cond_init( & __kmp_wait_cv.c_cond, & cond_attr );
2088 KMP_CHECK_SYSFAIL( "pthread_cond_init", status );
2089#if USE_ITT_BUILD
2090 __kmp_itt_initialize();
2091#endif /* USE_ITT_BUILD */
2092
2093 __kmp_init_runtime = TRUE;
2094}
2095
2096void
2097__kmp_runtime_destroy( void )
2098{
2099 int status;
2100
2101 if ( ! __kmp_init_runtime ) {
2102 return; // Nothing to do.
2103 };
2104
2105#if USE_ITT_BUILD
2106 __kmp_itt_destroy();
2107#endif /* USE_ITT_BUILD */
2108
2109 status = pthread_key_delete( __kmp_gtid_threadprivate_key );
2110 KMP_CHECK_SYSFAIL( "pthread_key_delete", status );
2111 #ifdef BUILD_TV
2112 status = pthread_key_delete( __kmp_tv_key );
2113 KMP_CHECK_SYSFAIL( "pthread_key_delete", status );
2114 #endif
2115
2116 status = pthread_mutex_destroy( & __kmp_wait_mx.m_mutex );
2117 if ( status != 0 && status != EBUSY ) {
2118 KMP_SYSFAIL( "pthread_mutex_destroy", status );
2119 }
2120 status = pthread_cond_destroy( & __kmp_wait_cv.c_cond );
2121 if ( status != 0 && status != EBUSY ) {
2122 KMP_SYSFAIL( "pthread_cond_destroy", status );
2123 }
2124 #if KMP_OS_LINUX
2125 __kmp_affinity_uninitialize();
2126 #elif KMP_OS_DARWIN
2127 // affinity not supported
2128 #else
2129 #error "Unknown or unsupported OS"
2130 #endif
2131
2132 __kmp_init_runtime = FALSE;
2133}
2134
2135
2136/* Put the thread to sleep for a time period */
2137/* NOTE: not currently used anywhere */
2138void
2139__kmp_thread_sleep( int millis )
2140{
2141 sleep( ( millis + 500 ) / 1000 );
2142}
2143
2144/* Calculate the elapsed wall clock time for the user */
2145void
2146__kmp_elapsed( double *t )
2147{
2148 int status;
2149# ifdef FIX_SGI_CLOCK
2150 struct timespec ts;
2151
2152 status = clock_gettime( CLOCK_PROCESS_CPUTIME_ID, &ts );
2153 KMP_CHECK_SYSFAIL_ERRNO( "clock_gettime", status );
2154 *t = (double) ts.tv_nsec * (1.0 / (double) NSEC_PER_SEC) +
2155 (double) ts.tv_sec;
2156# else
2157 struct timeval tv;
2158
2159 status = gettimeofday( & tv, NULL );
2160 KMP_CHECK_SYSFAIL_ERRNO( "gettimeofday", status );
2161 *t = (double) tv.tv_usec * (1.0 / (double) USEC_PER_SEC) +
2162 (double) tv.tv_sec;
2163# endif
2164}
2165
2166/* Calculate the elapsed wall clock tick for the user */
2167void
2168__kmp_elapsed_tick( double *t )
2169{
2170 *t = 1 / (double) CLOCKS_PER_SEC;
2171}
2172
2173/*
2174 Determine whether the given address is mapped into the current address space.
2175*/
2176
2177int
2178__kmp_is_address_mapped( void * addr ) {
2179
2180 int found = 0;
2181 int rc;
2182
2183 #if KMP_OS_LINUX
2184
2185 /*
2186 On Linux* OS, read the /proc/<pid>/maps pseudo-file to get all the address ranges mapped
2187 into the address space.
2188 */
2189
2190 char * name = __kmp_str_format( "/proc/%d/maps", getpid() );
2191 FILE * file = NULL;
2192
2193 file = fopen( name, "r" );
2194 KMP_ASSERT( file != NULL );
2195
2196 for ( ; ; ) {
2197
2198 void * beginning = NULL;
2199 void * ending = NULL;
2200 char perms[ 5 ];
2201
2202 rc = fscanf( file, "%p-%p %4s %*[^\n]\n", & beginning, & ending, perms );
2203 if ( rc == EOF ) {
2204 break;
2205 }; // if
2206 KMP_ASSERT( rc == 3 && strlen( perms ) == 4 ); // Make sure all fields are read.
2207
2208 // Ending address is not included in the region, but beginning is.
2209 if ( ( addr >= beginning ) && ( addr < ending ) ) {
2210 perms[ 2 ] = 0; // 3th and 4th character does not matter.
2211 if ( strcmp( perms, "rw" ) == 0 ) {
2212 // Memory we are looking for should be readable and writable.
2213 found = 1;
2214 }; // if
2215 break;
2216 }; // if
2217
2218 }; // forever
2219
2220 // Free resources.
2221 fclose( file );
2222 KMP_INTERNAL_FREE( name );
2223
2224 #elif KMP_OS_DARWIN
2225
2226 /*
2227 On OS X*, /proc pseudo filesystem is not available. Try to read memory using vm
2228 interface.
2229 */
2230
2231 int buffer;
2232 vm_size_t count;
2233 rc =
2234 vm_read_overwrite(
2235 mach_task_self(), // Task to read memory of.
2236 (vm_address_t)( addr ), // Address to read from.
2237 1, // Number of bytes to be read.
2238 (vm_address_t)( & buffer ), // Address of buffer to save read bytes in.
2239 & count // Address of var to save number of read bytes in.
2240 );
2241 if ( rc == 0 ) {
2242 // Memory successfully read.
2243 found = 1;
2244 }; // if
2245
2246 #else
2247
2248 #error "Unknown or unsupported OS"
2249
2250 #endif
2251
2252 return found;
2253
2254} // __kmp_is_address_mapped
2255
2256#ifdef USE_LOAD_BALANCE
2257
2258
2259# if KMP_OS_DARWIN
2260
2261// The function returns the rounded value of the system load average
2262// during given time interval which depends on the value of
2263// __kmp_load_balance_interval variable (default is 60 sec, other values
2264// may be 300 sec or 900 sec).
2265// It returns -1 in case of error.
2266int
2267__kmp_get_load_balance( int max )
2268{
2269 double averages[3];
2270 int ret_avg = 0;
2271
2272 int res = getloadavg( averages, 3 );
2273
2274 //Check __kmp_load_balance_interval to determine which of averages to use.
2275 // getloadavg() may return the number of samples less than requested that is
2276 // less than 3.
2277 if ( __kmp_load_balance_interval < 180 && ( res >= 1 ) ) {
2278 ret_avg = averages[0];// 1 min
2279 } else if ( ( __kmp_load_balance_interval >= 180
2280 && __kmp_load_balance_interval < 600 ) && ( res >= 2 ) ) {
2281 ret_avg = averages[1];// 5 min
2282 } else if ( ( __kmp_load_balance_interval >= 600 ) && ( res == 3 ) ) {
2283 ret_avg = averages[2];// 15 min
2284 } else {// Error occured
2285 return -1;
2286 }
2287
2288 return ret_avg;
2289}
2290
2291# else // Linux* OS
2292
2293// The fuction returns number of running (not sleeping) threads, or -1 in case of error.
2294// Error could be reported if Linux* OS kernel too old (without "/proc" support).
2295// Counting running threads stops if max running threads encountered.
2296int
2297__kmp_get_load_balance( int max )
2298{
2299 static int permanent_error = 0;
2300
2301 static int glb_running_threads = 0; /* Saved count of the running threads for the thread balance algortihm */
2302 static double glb_call_time = 0; /* Thread balance algorithm call time */
2303
2304 int running_threads = 0; // Number of running threads in the system.
2305
2306 DIR * proc_dir = NULL; // Handle of "/proc/" directory.
2307 struct dirent * proc_entry = NULL;
2308
2309 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2310 DIR * task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2311 struct dirent * task_entry = NULL;
2312 int task_path_fixed_len;
2313
2314 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2315 int stat_file = -1;
2316 int stat_path_fixed_len;
2317
2318 int total_processes = 0; // Total number of processes in system.
2319 int total_threads = 0; // Total number of threads in system.
2320
2321 double call_time = 0.0;
2322
2323 __kmp_str_buf_init( & task_path );
2324 __kmp_str_buf_init( & stat_path );
2325
2326 __kmp_elapsed( & call_time );
2327
2328 if ( glb_call_time &&
2329 ( call_time - glb_call_time < __kmp_load_balance_interval ) ) {
2330 running_threads = glb_running_threads;
2331 goto finish;
2332 }
2333
2334 glb_call_time = call_time;
2335
2336 // Do not spend time on scanning "/proc/" if we have a permanent error.
2337 if ( permanent_error ) {
2338 running_threads = -1;
2339 goto finish;
2340 }; // if
2341
2342 if ( max <= 0 ) {
2343 max = INT_MAX;
2344 }; // if
2345
2346 // Open "/proc/" directory.
2347 proc_dir = opendir( "/proc" );
2348 if ( proc_dir == NULL ) {
2349 // Cannot open "/prroc/". Probably the kernel does not support it. Return an error now and
2350 // in subsequent calls.
2351 running_threads = -1;
2352 permanent_error = 1;
2353 goto finish;
2354 }; // if
2355
2356 // Initialize fixed part of task_path. This part will not change.
2357 __kmp_str_buf_cat( & task_path, "/proc/", 6 );
2358 task_path_fixed_len = task_path.used; // Remember number of used characters.
2359
2360 proc_entry = readdir( proc_dir );
2361 while ( proc_entry != NULL ) {
2362 // Proc entry is a directory and name starts with a digit. Assume it is a process'
2363 // directory.
2364 if ( proc_entry->d_type == DT_DIR && isdigit( proc_entry->d_name[ 0 ] ) ) {
2365
2366 ++ total_processes;
2367 // Make sure init process is the very first in "/proc", so we can replace
2368 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 1.
2369 // We are going to check that total_processes == 1 => d_name == "1" is true (where
2370 // "=>" is implication). Since C++ does not have => operator, let us replace it with its
2371 // equivalent: a => b == ! a || b.
2372 KMP_DEBUG_ASSERT( total_processes != 1 || strcmp( proc_entry->d_name, "1" ) == 0 );
2373
2374 // Construct task_path.
2375 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2376 __kmp_str_buf_cat( & task_path, proc_entry->d_name, strlen( proc_entry->d_name ) );
2377 __kmp_str_buf_cat( & task_path, "/task", 5 );
2378
2379 task_dir = opendir( task_path.str );
2380 if ( task_dir == NULL ) {
2381 // Process can finish between reading "/proc/" directory entry and opening process'
2382 // "task/" directory. So, in general case we should not complain, but have to skip
2383 // this process and read the next one.
2384 // But on systems with no "task/" support we will spend lot of time to scan "/proc/"
2385 // tree again and again without any benefit. "init" process (its pid is 1) should
2386 // exist always, so, if we cannot open "/proc/1/task/" directory, it means "task/"
2387 // is not supported by kernel. Report an error now and in the future.
2388 if ( strcmp( proc_entry->d_name, "1" ) == 0 ) {
2389 running_threads = -1;
2390 permanent_error = 1;
2391 goto finish;
2392 }; // if
2393 } else {
2394 // Construct fixed part of stat file path.
2395 __kmp_str_buf_clear( & stat_path );
2396 __kmp_str_buf_cat( & stat_path, task_path.str, task_path.used );
2397 __kmp_str_buf_cat( & stat_path, "/", 1 );
2398 stat_path_fixed_len = stat_path.used;
2399
2400 task_entry = readdir( task_dir );
2401 while ( task_entry != NULL ) {
2402 // It is a directory and name starts with a digit.
2403 if ( proc_entry->d_type == DT_DIR && isdigit( task_entry->d_name[ 0 ] ) ) {
2404
2405 ++ total_threads;
2406
2407 // Consruct complete stat file path. Easiest way would be:
2408 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, task_entry->d_name );
2409 // but seriae of __kmp_str_buf_cat works a bit faster.
2410 stat_path.used = stat_path_fixed_len; // Reset stat path to its fixed part.
2411 __kmp_str_buf_cat( & stat_path, task_entry->d_name, strlen( task_entry->d_name ) );
2412 __kmp_str_buf_cat( & stat_path, "/stat", 5 );
2413
2414 // Note: Low-level API (open/read/close) is used. High-level API
2415 // (fopen/fclose) works ~ 30 % slower.
2416 stat_file = open( stat_path.str, O_RDONLY );
2417 if ( stat_file == -1 ) {
2418 // We cannot report an error because task (thread) can terminate just
2419 // before reading this file.
2420 } else {
2421 /*
2422 Content of "stat" file looks like:
2423
2424 24285 (program) S ...
2425
2426 It is a single line (if program name does not include fanny
2427 symbols). First number is a thread id, then name of executable file
2428 name in paretheses, then state of the thread. We need just thread
2429 state.
2430
2431 Good news: Length of program name is 15 characters max. Longer
2432 names are truncated.
2433
2434 Thus, we need rather short buffer: 15 chars for program name +
2435 2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2436
2437 Bad news: Program name may contain special symbols like space,
2438 closing parenthesis, or even new line. This makes parsing "stat"
2439 file not 100 % reliable. In case of fanny program names parsing
2440 may fail (report incorrect thread state).
2441
2442 Parsing "status" file looks more promissing (due to different
2443 file structure and escaping special symbols) but reading and
2444 parsing of "status" file works slower.
2445
2446 -- ln
2447 */
2448 char buffer[ 65 ];
2449 int len;
2450 len = read( stat_file, buffer, sizeof( buffer ) - 1 );
2451 if ( len >= 0 ) {
2452 buffer[ len ] = 0;
2453 // Using scanf:
2454 // sscanf( buffer, "%*d (%*s) %c ", & state );
2455 // looks very nice, but searching for a closing parenthesis works a
2456 // bit faster.
2457 char * close_parent = strstr( buffer, ") " );
2458 if ( close_parent != NULL ) {
2459 char state = * ( close_parent + 2 );
2460 if ( state == 'R' ) {
2461 ++ running_threads;
2462 if ( running_threads >= max ) {
2463 goto finish;
2464 }; // if
2465 }; // if
2466 }; // if
2467 }; // if
2468 close( stat_file );
2469 stat_file = -1;
2470 }; // if
2471 }; // if
2472 task_entry = readdir( task_dir );
2473 }; // while
2474 closedir( task_dir );
2475 task_dir = NULL;
2476 }; // if
2477 }; // if
2478 proc_entry = readdir( proc_dir );
2479 }; // while
2480
2481 //
2482 // There _might_ be a timing hole where the thread executing this
2483 // code get skipped in the load balance, and running_threads is 0.
2484 // Assert in the debug builds only!!!
2485 //
2486 KMP_DEBUG_ASSERT( running_threads > 0 );
2487 if ( running_threads <= 0 ) {
2488 running_threads = 1;
2489 }
2490
2491 finish: // Clean up and exit.
2492 if ( proc_dir != NULL ) {
2493 closedir( proc_dir );
2494 }; // if
2495 __kmp_str_buf_free( & task_path );
2496 if ( task_dir != NULL ) {
2497 closedir( task_dir );
2498 }; // if
2499 __kmp_str_buf_free( & stat_path );
2500 if ( stat_file != -1 ) {
2501 close( stat_file );
2502 }; // if
2503
2504 glb_running_threads = running_threads;
2505
2506 return running_threads;
2507
2508} // __kmp_get_load_balance
2509
2510# endif // KMP_OS_DARWIN
2511
2512#endif // USE_LOAD_BALANCE
2513
Jim Cownie181b4bb2013-12-23 17:28:57 +00002514
2515#if KMP_COMPILER_GCC && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2516
2517int __kmp_invoke_microtask( microtask_t pkfn, int gtid, int tid, int argc,
2518 void *p_argv[] )
2519{
2520 int argc_full = argc + 2;
2521 int i;
2522 ffi_cif cif;
2523 ffi_type *types[argc_full];
2524 void *args[argc_full];
2525 void *idp[2];
2526
2527 /* We're only passing pointers to the target. */
2528 for (i = 0; i < argc_full; i++)
2529 types[i] = &ffi_type_pointer;
2530
2531 /* Ugly double-indirection, but that's how it goes... */
2532 idp[0] = &gtid;
2533 idp[1] = &tid;
2534 args[0] = &idp[0];
2535 args[1] = &idp[1];
2536
2537 for (i = 0; i < argc; i++)
2538 args[2 + i] = &p_argv[i];
2539
2540 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, argc_full,
2541 &ffi_type_void, types) != FFI_OK)
2542 abort();
2543
2544 ffi_call(&cif, (void (*)(void))pkfn, NULL, args);
2545
2546 return 1;
2547}
2548
2549#endif // KMP_COMPILER_GCC && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2550
Jim Cownie5e8470a2013-09-27 10:38:44 +00002551// end of file //
2552