blob: 5e81549fc10620e23819484f29055d0a07c83e78 [file] [log] [blame]
Chris Lattner7e044912010-01-04 07:17:19 +00001//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carrutha9174582015-01-22 05:25:13 +000015#include "InstCombineInternal.h"
James Molloy2b21a7c2015-05-20 18:41:25 +000016#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000018#include "llvm/IR/PatternMatch.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000019#include "llvm/Support/KnownBits.h"
Chris Lattner7e044912010-01-04 07:17:19 +000020
21using namespace llvm;
Shuxin Yang63e999e2012-12-04 00:04:54 +000022using namespace llvm::PatternMatch;
Chris Lattner7e044912010-01-04 07:17:19 +000023
Chandler Carruth964daaa2014-04-22 02:55:47 +000024#define DEBUG_TYPE "instcombine"
25
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000026/// Check to see if the specified operand of the specified instruction is a
27/// constant integer. If so, check to see if there are any bits set in the
28/// constant that are not demanded. If so, shrink the constant and return true.
Craig Topper4c947752012-12-22 18:09:02 +000029static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
Craig Topper358cd9a2017-04-20 23:58:27 +000030 const APInt &Demanded) {
Chris Lattner7e044912010-01-04 07:17:19 +000031 assert(I && "No instruction?");
32 assert(OpNo < I->getNumOperands() && "Operand index too large");
33
Sanjay Patelae3b43e2017-02-09 21:43:06 +000034 // The operand must be a constant integer or splat integer.
35 Value *Op = I->getOperand(OpNo);
36 const APInt *C;
37 if (!match(Op, m_APInt(C)))
38 return false;
Chris Lattner7e044912010-01-04 07:17:19 +000039
40 // If there are no bits set that aren't demanded, nothing to do.
Craig Toppera8129a12017-04-20 16:17:13 +000041 if (C->isSubsetOf(Demanded))
Chris Lattner7e044912010-01-04 07:17:19 +000042 return false;
43
44 // This instruction is producing bits that are not demanded. Shrink the RHS.
Craig Topper358cd9a2017-04-20 23:58:27 +000045 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
David Majnemer42b83a52014-08-22 07:56:32 +000046
Chris Lattner7e044912010-01-04 07:17:19 +000047 return true;
48}
49
50
51
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000052/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
53/// the instruction has any properties that allow us to simplify its operands.
Chris Lattner7e044912010-01-04 07:17:19 +000054bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
55 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +000056 KnownBits Known(BitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +000057 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
Craig Topper4c947752012-12-22 18:09:02 +000058
Craig Topperb45eabc2017-04-26 16:39:58 +000059 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 0, &Inst);
Craig Topperf40110f2014-04-25 05:29:35 +000061 if (!V) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000062 if (V == &Inst) return true;
Sanjay Patel4b198802016-02-01 22:23:39 +000063 replaceInstUsesWith(Inst, V);
Chris Lattner7e044912010-01-04 07:17:19 +000064 return true;
65}
66
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000067/// This form of SimplifyDemandedBits simplifies the specified instruction
68/// operand if possible, updating it in place. It returns true if it made any
69/// change and false otherwise.
Craig Topper47596dd2017-03-25 06:52:52 +000070bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
71 const APInt &DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +000072 KnownBits &Known,
Chris Lattner7e044912010-01-04 07:17:19 +000073 unsigned Depth) {
Craig Topper47596dd2017-03-25 06:52:52 +000074 Use &U = I->getOperandUse(OpNo);
Craig Topperb45eabc2017-04-26 16:39:58 +000075 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76 Depth, I);
Craig Topperf40110f2014-04-25 05:29:35 +000077 if (!NewVal) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000078 U = NewVal;
79 return true;
80}
81
82
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000083/// This function attempts to replace V with a simpler value based on the
84/// demanded bits. When this function is called, it is known that only the bits
85/// set in DemandedMask of the result of V are ever used downstream.
86/// Consequently, depending on the mask and V, it may be possible to replace V
87/// with a constant or one of its operands. In such cases, this function does
88/// the replacement and returns true. In all other cases, it returns false after
89/// analyzing the expression and setting KnownOne and known to be one in the
Craig Topperb45eabc2017-04-26 16:39:58 +000090/// expression. Known.Zero contains all the bits that are known to be zero in
91/// the expression. These are provided to potentially allow the caller (which
92/// might recursively be SimplifyDemandedBits itself) to simplify the
93/// expression.
94/// Known.One and Known.Zero always follow the invariant that:
95/// Known.One & Known.Zero == 0.
96/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
97/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
98/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
99/// be the same.
Chris Lattner7e044912010-01-04 07:17:19 +0000100///
101/// This returns null if it did not change anything and it permits no
102/// simplification. This returns V itself if it did some simplification of V's
103/// operands based on the information about what bits are demanded. This returns
104/// some other non-null value if it found out that V is equal to another value
105/// in the context where the specified bits are demanded, but not for all users.
106Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +0000107 KnownBits &Known, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000108 Instruction *CxtI) {
Craig Toppere73658d2014-04-28 04:05:08 +0000109 assert(V != nullptr && "Null pointer of Value???");
Chris Lattner7e044912010-01-04 07:17:19 +0000110 assert(Depth <= 6 && "Limit Search Depth");
111 uint32_t BitWidth = DemandedMask.getBitWidth();
Chris Lattner229907c2011-07-18 04:54:35 +0000112 Type *VTy = V->getType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000113 assert(
114 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
Craig Topperb45eabc2017-04-26 16:39:58 +0000115 Known.getBitWidth() == BitWidth &&
116 "Value *V, DemandedMask and Known must have same BitWidth");
Craig Topper83dc1c62017-04-20 16:14:58 +0000117
118 if (isa<Constant>(V)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000119 computeKnownBits(V, Known, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000120 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000121 }
122
Craig Topperf0aeee02017-05-05 17:36:09 +0000123 Known.resetAll();
Craig Topper83dc1c62017-04-20 16:14:58 +0000124 if (DemandedMask == 0) // Not demanding any bits from V.
Chris Lattner7e044912010-01-04 07:17:19 +0000125 return UndefValue::get(VTy);
Craig Topper4c947752012-12-22 18:09:02 +0000126
Chris Lattner7e044912010-01-04 07:17:19 +0000127 if (Depth == 6) // Limit search depth.
Craig Topperf40110f2014-04-25 05:29:35 +0000128 return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000129
Chris Lattner7e044912010-01-04 07:17:19 +0000130 Instruction *I = dyn_cast<Instruction>(V);
131 if (!I) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000132 computeKnownBits(V, Known, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000133 return nullptr; // Only analyze instructions.
Chris Lattner7e044912010-01-04 07:17:19 +0000134 }
135
136 // If there are multiple uses of this value and we aren't at the root, then
137 // we can't do any simplifications of the operands, because DemandedMask
138 // only reflects the bits demanded by *one* of the users.
Craig Topper7603dce2017-04-25 16:48:19 +0000139 if (Depth != 0 && !I->hasOneUse())
Craig Topperb45eabc2017-04-26 16:39:58 +0000140 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
Craig Topper4c947752012-12-22 18:09:02 +0000141
Craig Topperb45eabc2017-04-26 16:39:58 +0000142 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
Craig Topperb0076fe2017-04-12 18:05:21 +0000143
Chris Lattner7e044912010-01-04 07:17:19 +0000144 // If this is the root being simplified, allow it to have multiple uses,
145 // just set the DemandedMask to all bits so that we can try to simplify the
146 // operands. This allows visitTruncInst (for example) to simplify the
147 // operand of a trunc without duplicating all the logic below.
148 if (Depth == 0 && !V->hasOneUse())
Craig Toppere06b6bc2017-04-04 05:03:02 +0000149 DemandedMask.setAllBits();
Craig Topper4c947752012-12-22 18:09:02 +0000150
Chris Lattner7e044912010-01-04 07:17:19 +0000151 switch (I->getOpcode()) {
152 default:
Craig Topperb45eabc2017-04-26 16:39:58 +0000153 computeKnownBits(I, Known, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000154 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000155 case Instruction::And: {
Chris Lattner7e044912010-01-04 07:17:19 +0000156 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000157 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
158 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
159 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000160 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000161 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
162 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000163
Craig Topper9a458cd2017-04-14 22:34:14 +0000164 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000165 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
Craig Topper9a458cd2017-04-14 22:34:14 +0000166 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000167 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000168
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000169 // If the client is only demanding bits that we know, return the known
170 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000171 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000172 return Constant::getIntegerValue(VTy, IKnownOne);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000173
Chris Lattner7e044912010-01-04 07:17:19 +0000174 // If all of the demanded bits are known 1 on one side, return the other.
175 // These bits cannot contribute to the result of the 'and'.
Craig Topperb45eabc2017-04-26 16:39:58 +0000176 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
Chris Lattner7e044912010-01-04 07:17:19 +0000177 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000178 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
Chris Lattner7e044912010-01-04 07:17:19 +0000179 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000180
Chris Lattner7e044912010-01-04 07:17:19 +0000181 // If the RHS is a constant, see if we can simplify it.
Craig Topperb45eabc2017-04-26 16:39:58 +0000182 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000183 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000184
Craig Topperb45eabc2017-04-26 16:39:58 +0000185 Known.Zero = std::move(IKnownZero);
186 Known.One = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000187 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000188 }
189 case Instruction::Or: {
Chris Lattner7e044912010-01-04 07:17:19 +0000190 // If either the LHS or the RHS are One, the result is One.
Craig Topperb45eabc2017-04-26 16:39:58 +0000191 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
192 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
193 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000194 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000195 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
196 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000197
Craig Topper9a458cd2017-04-14 22:34:14 +0000198 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000199 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
200 // Output known-1 are known. to be set if s.et in either the LHS | RHS.
201 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000202
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000203 // If the client is only demanding bits that we know, return the known
204 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000205 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000206 return Constant::getIntegerValue(VTy, IKnownOne);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000207
Chris Lattner7e044912010-01-04 07:17:19 +0000208 // If all of the demanded bits are known zero on one side, return the other.
209 // These bits cannot contribute to the result of the 'or'.
Craig Topperb45eabc2017-04-26 16:39:58 +0000210 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000211 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000212 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000213 return I->getOperand(1);
214
Chris Lattner7e044912010-01-04 07:17:19 +0000215 // If the RHS is a constant, see if we can simplify it.
216 if (ShrinkDemandedConstant(I, 1, DemandedMask))
217 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000218
Craig Topperb45eabc2017-04-26 16:39:58 +0000219 Known.Zero = std::move(IKnownZero);
220 Known.One = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000221 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000222 }
Chris Lattner7e044912010-01-04 07:17:19 +0000223 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000224 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
225 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000226 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000227 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
228 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000229
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000230 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000231 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
232 (RHSKnown.One & LHSKnown.One);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000233 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000234 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
235 (RHSKnown.One & LHSKnown.Zero);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000236
237 // If the client is only demanding bits that we know, return the known
238 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000239 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000240 return Constant::getIntegerValue(VTy, IKnownOne);
241
Chris Lattner7e044912010-01-04 07:17:19 +0000242 // If all of the demanded bits are known zero on one side, return the other.
243 // These bits cannot contribute to the result of the 'xor'.
Craig Topperb45eabc2017-04-26 16:39:58 +0000244 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000245 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000246 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000247 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000248
Chris Lattner7e044912010-01-04 07:17:19 +0000249 // If all of the demanded bits are known to be zero on one side or the
250 // other, turn this into an *inclusive* or.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000251 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Craig Topperb45eabc2017-04-26 16:39:58 +0000252 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
Craig Topper4c947752012-12-22 18:09:02 +0000253 Instruction *Or =
Chris Lattner7e044912010-01-04 07:17:19 +0000254 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
255 I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000256 return InsertNewInstWith(Or, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000257 }
Craig Topper4c947752012-12-22 18:09:02 +0000258
Chris Lattner7e044912010-01-04 07:17:19 +0000259 // If all of the demanded bits on one side are known, and all of the set
260 // bits on that side are also known to be set on the other side, turn this
261 // into an AND, as we know the bits will be cleared.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000262 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
Craig Topperb45eabc2017-04-26 16:39:58 +0000263 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
264 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
Craig Topper17f37ba2017-04-20 20:47:35 +0000265 Constant *AndC = Constant::getIntegerValue(VTy,
Craig Topperb45eabc2017-04-26 16:39:58 +0000266 ~RHSKnown.One & DemandedMask);
Craig Topper17f37ba2017-04-20 20:47:35 +0000267 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
268 return InsertNewInstWith(And, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000269 }
Craig Topper4c947752012-12-22 18:09:02 +0000270
Sanjay Patel8ce1d4c2017-04-21 20:29:17 +0000271 // If the RHS is a constant, see if we can simplify it.
272 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
273 if (ShrinkDemandedConstant(I, 1, DemandedMask))
274 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000275
Chris Lattner7e044912010-01-04 07:17:19 +0000276 // If our LHS is an 'and' and if it has one use, and if any of the bits we
277 // are flipping are known to be set, then the xor is just resetting those
278 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
279 // simplifying both of them.
280 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
281 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
282 isa<ConstantInt>(I->getOperand(1)) &&
283 isa<ConstantInt>(LHSInst->getOperand(1)) &&
Craig Topperb45eabc2017-04-26 16:39:58 +0000284 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
Chris Lattner7e044912010-01-04 07:17:19 +0000285 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
286 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
Craig Topperb45eabc2017-04-26 16:39:58 +0000287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
Craig Topper4c947752012-12-22 18:09:02 +0000288
Chris Lattner7e044912010-01-04 07:17:19 +0000289 Constant *AndC =
290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000292 InsertNewInstWith(NewAnd, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000293
Chris Lattner7e044912010-01-04 07:17:19 +0000294 Constant *XorC =
295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000297 return InsertNewInstWith(NewXor, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000298 }
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000299
300 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000301 Known.Zero = std::move(IKnownZero);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000302 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000303 Known.One = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000304 break;
305 }
306 case Instruction::Select:
James Molloy2b21a7c2015-05-20 18:41:25 +0000307 // If this is a select as part of a min/max pattern, don't simplify any
308 // further in case we break the structure.
309 Value *LHS, *RHS;
James Molloy134bec22015-08-11 09:12:57 +0000310 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
James Molloy2b21a7c2015-05-20 18:41:25 +0000311 return nullptr;
Simon Pilgrim61116dd2015-09-17 20:32:45 +0000312
Craig Topperb45eabc2017-04-26 16:39:58 +0000313 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
314 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000315 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000316 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
317 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000318
Chris Lattner7e044912010-01-04 07:17:19 +0000319 // If the operands are constants, see if we can simplify them.
320 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
321 ShrinkDemandedConstant(I, 2, DemandedMask))
322 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000323
Chris Lattner7e044912010-01-04 07:17:19 +0000324 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000325 Known.One = RHSKnown.One & LHSKnown.One;
326 Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
Chris Lattner7e044912010-01-04 07:17:19 +0000327 break;
328 case Instruction::Trunc: {
329 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
Jay Foad583abbc2010-12-07 08:25:19 +0000330 DemandedMask = DemandedMask.zext(truncBf);
Craig Topperd938fd12017-05-03 22:07:25 +0000331 Known = Known.zext(truncBf);
Craig Topperb45eabc2017-04-26 16:39:58 +0000332 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000333 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000334 DemandedMask = DemandedMask.trunc(BitWidth);
Craig Topperd938fd12017-05-03 22:07:25 +0000335 Known = Known.trunc(BitWidth);
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000336 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000337 break;
338 }
339 case Instruction::BitCast:
Duncan Sands9dff9be2010-02-15 16:12:20 +0000340 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
Craig Topperf40110f2014-04-25 05:29:35 +0000341 return nullptr; // vector->int or fp->int?
Chris Lattner7e044912010-01-04 07:17:19 +0000342
Chris Lattner229907c2011-07-18 04:54:35 +0000343 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
344 if (VectorType *SrcVTy =
Chris Lattner7e044912010-01-04 07:17:19 +0000345 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
346 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
347 // Don't touch a bitcast between vectors of different element counts.
Craig Topperf40110f2014-04-25 05:29:35 +0000348 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000349 } else
350 // Don't touch a scalar-to-vector bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000351 return nullptr;
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 } else if (I->getOperand(0)->getType()->isVectorTy())
Chris Lattner7e044912010-01-04 07:17:19 +0000353 // Don't touch a vector-to-scalar bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000354 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000355
Craig Topperb45eabc2017-04-26 16:39:58 +0000356 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000357 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000358 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000359 break;
360 case Instruction::ZExt: {
361 // Compute the bits in the result that are not present in the input.
362 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000363
Jay Foad583abbc2010-12-07 08:25:19 +0000364 DemandedMask = DemandedMask.trunc(SrcBitWidth);
Craig Topperd938fd12017-05-03 22:07:25 +0000365 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +0000366 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000367 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000368 DemandedMask = DemandedMask.zext(BitWidth);
Craig Topperd938fd12017-05-03 22:07:25 +0000369 Known = Known.zext(BitWidth);
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000370 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000371 // The top bits are known to be zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000372 Known.Zero.setBitsFrom(SrcBitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +0000373 break;
374 }
375 case Instruction::SExt: {
376 // Compute the bits in the result that are not present in the input.
377 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000378
379 APInt InputDemandedBits = DemandedMask &
Chris Lattner7e044912010-01-04 07:17:19 +0000380 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
381
Craig Topper3a86a042017-03-19 05:49:16 +0000382 APInt NewBits(APInt::getBitsSetFrom(BitWidth, SrcBitWidth));
Chris Lattner7e044912010-01-04 07:17:19 +0000383 // If any of the sign extended bits are demanded, we know that the sign
384 // bit is demanded.
385 if ((NewBits & DemandedMask) != 0)
Jay Foad25a5e4c2010-12-01 08:53:58 +0000386 InputDemandedBits.setBit(SrcBitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000387
Jay Foad583abbc2010-12-07 08:25:19 +0000388 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
Craig Topperd938fd12017-05-03 22:07:25 +0000389 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +0000390 if (SimplifyDemandedBits(I, 0, InputDemandedBits, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000391 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000392 InputDemandedBits = InputDemandedBits.zext(BitWidth);
Craig Topperd938fd12017-05-03 22:07:25 +0000393 Known = Known.zext(BitWidth);
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000394 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000395
Chris Lattner7e044912010-01-04 07:17:19 +0000396 // If the sign bit of the input is known set or clear, then we know the
397 // top bits of the result.
398
399 // If the input sign bit is known zero, or if the NewBits are not demanded
400 // convert this into a zero extension.
Craig Topperb45eabc2017-04-26 16:39:58 +0000401 if (Known.Zero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
Chris Lattner7e044912010-01-04 07:17:19 +0000402 // Convert to ZExt cast
403 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000404 return InsertNewInstWith(NewCast, *I);
Craig Topperb45eabc2017-04-26 16:39:58 +0000405 } else if (Known.One[SrcBitWidth-1]) { // Input sign bit known set
406 Known.One |= NewBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000407 }
408 break;
409 }
Matthias Braune48484c2015-04-30 22:05:30 +0000410 case Instruction::Add:
411 case Instruction::Sub: {
412 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
413 /// about the high bits of the operands.
Chris Lattner7e044912010-01-04 07:17:19 +0000414 unsigned NLZ = DemandedMask.countLeadingZeros();
Matthias Braune48484c2015-04-30 22:05:30 +0000415 if (NLZ > 0) {
416 // Right fill the mask of bits for this ADD/SUB to demand the most
Chris Lattner7e044912010-01-04 07:17:19 +0000417 // significant bit and all those below it.
Chris Lattner7e044912010-01-04 07:17:19 +0000418 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Craig Topper07f29152017-03-22 04:03:53 +0000419 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
Craig Topperb45eabc2017-04-26 16:39:58 +0000420 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
Matthias Braune48484c2015-04-30 22:05:30 +0000421 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
Craig Topperb45eabc2017-04-26 16:39:58 +0000422 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
Matthias Braune48484c2015-04-30 22:05:30 +0000423 // Disable the nsw and nuw flags here: We can no longer guarantee that
424 // we won't wrap after simplification. Removing the nsw/nuw flags is
425 // legal here because the top bit is not demanded.
426 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
427 BinOP.setHasNoSignedWrap(false);
428 BinOP.setHasNoUnsignedWrap(false);
Chris Lattner7e044912010-01-04 07:17:19 +0000429 return I;
David Majnemer7d0e99c2015-04-22 22:42:05 +0000430 }
Craig Topper845033a2017-04-12 16:49:59 +0000431
432 // If we are known to be adding/subtracting zeros to every bit below
433 // the highest demanded bit, we just return the other side.
Craig Topperb45eabc2017-04-26 16:39:58 +0000434 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
Craig Topper845033a2017-04-12 16:49:59 +0000435 return I->getOperand(0);
436 // We can't do this with the LHS for subtraction.
437 if (I->getOpcode() == Instruction::Add &&
Craig Topperb45eabc2017-04-26 16:39:58 +0000438 DemandedFromOps.isSubsetOf(LHSKnown.Zero))
Craig Topper845033a2017-04-12 16:49:59 +0000439 return I->getOperand(1);
Chris Lattner7e044912010-01-04 07:17:19 +0000440 }
Benjamin Kramer010337c2011-12-24 17:31:38 +0000441
Craig Topper8fbb74b2017-03-24 22:12:10 +0000442 // Otherwise just hand the add/sub off to computeKnownBits to fill in
443 // the known zeros and ones.
Craig Topperb45eabc2017-04-26 16:39:58 +0000444 computeKnownBits(V, Known, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000445 break;
Matthias Braune48484c2015-04-30 22:05:30 +0000446 }
Sanjay Patel3e1ae722017-04-20 21:33:02 +0000447 case Instruction::Shl: {
448 const APInt *SA;
449 if (match(I->getOperand(1), m_APInt(SA))) {
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000450 const APInt *ShrAmt;
451 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) {
452 Instruction *Shr = cast<Instruction>(I->getOperand(0));
Sanjay Patelcc663b82017-04-20 22:37:01 +0000453 if (Value *R = simplifyShrShlDemandedBits(
Craig Topperb45eabc2017-04-26 16:39:58 +0000454 Shr, *ShrAmt, I, *SA, DemandedMask, Known))
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000455 return R;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000456 }
457
Chris Lattner768003c2011-02-10 05:09:34 +0000458 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner7e044912010-01-04 07:17:19 +0000459 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000460
Chris Lattner768003c2011-02-10 05:09:34 +0000461 // If the shift is NUW/NSW, then it does demand the high bits.
462 ShlOperator *IOp = cast<ShlOperator>(I);
463 if (IOp->hasNoSignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000464 DemandedMaskIn.setHighBits(ShiftAmt+1);
Chris Lattner768003c2011-02-10 05:09:34 +0000465 else if (IOp->hasNoUnsignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000466 DemandedMaskIn.setHighBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000467
Craig Topperb45eabc2017-04-26 16:39:58 +0000468 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000469 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000470 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topperb45eabc2017-04-26 16:39:58 +0000471 Known.Zero <<= ShiftAmt;
472 Known.One <<= ShiftAmt;
Chris Lattner7e044912010-01-04 07:17:19 +0000473 // low bits known zero.
474 if (ShiftAmt)
Craig Topperb45eabc2017-04-26 16:39:58 +0000475 Known.Zero.setLowBits(ShiftAmt);
Chris Lattner7e044912010-01-04 07:17:19 +0000476 }
477 break;
Sanjay Patel3e1ae722017-04-20 21:33:02 +0000478 }
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000479 case Instruction::LShr: {
480 const APInt *SA;
481 if (match(I->getOperand(1), m_APInt(SA))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000482 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000483
Chris Lattner7e044912010-01-04 07:17:19 +0000484 // Unsigned shift right.
485 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000486
Chris Lattner768003c2011-02-10 05:09:34 +0000487 // If the shift is exact, then it does demand the low bits (and knows that
488 // they are zero).
489 if (cast<LShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000490 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000491
Craig Topperb45eabc2017-04-26 16:39:58 +0000492 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000493 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000494 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topperb45eabc2017-04-26 16:39:58 +0000495 Known.Zero.lshrInPlace(ShiftAmt);
496 Known.One.lshrInPlace(ShiftAmt);
Craig Topper3a86a042017-03-19 05:49:16 +0000497 if (ShiftAmt)
Craig Topperb45eabc2017-04-26 16:39:58 +0000498 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
Chris Lattner7e044912010-01-04 07:17:19 +0000499 }
500 break;
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000501 }
502 case Instruction::AShr: {
Chris Lattner7e044912010-01-04 07:17:19 +0000503 // If this is an arithmetic shift right and only the low-bit is set, we can
504 // always convert this into a logical shr, even if the shift amount is
505 // variable. The low bit of the shift cannot be an input sign bit unless
506 // the shift amount is >= the size of the datatype, which is undefined.
507 if (DemandedMask == 1) {
508 // Perform the logical shift right.
509 Instruction *NewVal = BinaryOperator::CreateLShr(
510 I->getOperand(0), I->getOperand(1), I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000511 return InsertNewInstWith(NewVal, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000512 }
Chris Lattner7e044912010-01-04 07:17:19 +0000513
514 // If the sign bit is the only bit demanded by this ashr, then there is no
515 // need to do it, the shift doesn't change the high bit.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000516 if (DemandedMask.isSignMask())
Chris Lattner7e044912010-01-04 07:17:19 +0000517 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000518
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000519 const APInt *SA;
520 if (match(I->getOperand(1), m_APInt(SA))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000521 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000522
Chris Lattner7e044912010-01-04 07:17:19 +0000523 // Signed shift right.
524 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000525 // If any of the high bits are demanded, we should set the sign bit as
Chris Lattner7e044912010-01-04 07:17:19 +0000526 // demanded.
527 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
Craig Topperc9a4fc02017-04-14 05:09:04 +0000528 DemandedMaskIn.setSignBit();
Craig Topper4c947752012-12-22 18:09:02 +0000529
Chris Lattner768003c2011-02-10 05:09:34 +0000530 // If the shift is exact, then it does demand the low bits (and knows that
531 // they are zero).
532 if (cast<AShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000533 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000534
Craig Topperb45eabc2017-04-26 16:39:58 +0000535 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000536 return I;
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000537
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000538 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000539 // Compute the new bits that are at the top now.
540 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Craig Topperb45eabc2017-04-26 16:39:58 +0000541 Known.Zero.lshrInPlace(ShiftAmt);
542 Known.One.lshrInPlace(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000543
Chris Lattner7e044912010-01-04 07:17:19 +0000544 // Handle the sign bits.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000545 APInt SignMask(APInt::getSignMask(BitWidth));
Chris Lattner7e044912010-01-04 07:17:19 +0000546 // Adjust to where it is now in the mask.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000547 SignMask.lshrInPlace(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000548
Chris Lattner7e044912010-01-04 07:17:19 +0000549 // If the input sign bit is known to be zero, or if none of the top bits
550 // are demanded, turn this into an unsigned shift right.
Craig Topperb45eabc2017-04-26 16:39:58 +0000551 if (BitWidth <= ShiftAmt || Known.Zero[BitWidth-ShiftAmt-1] ||
Craig Topperff238892017-04-20 21:24:37 +0000552 !DemandedMask.intersects(HighBits)) {
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000553 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
554 I->getOperand(1));
555 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
556 return InsertNewInstWith(LShr, *I);
Craig Topperb45eabc2017-04-26 16:39:58 +0000557 } else if (Known.One.intersects(SignMask)) { // New bits are known one.
558 Known.One |= HighBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000559 }
560 }
561 break;
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000562 }
Chris Lattner7e044912010-01-04 07:17:19 +0000563 case Instruction::SRem:
564 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Eli Friedmana81a82d2011-03-09 01:28:35 +0000565 // X % -1 demands all the bits because we don't want to introduce
566 // INT_MIN % -1 (== undef) by accident.
567 if (Rem->isAllOnesValue())
568 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000569 APInt RA = Rem->getValue().abs();
570 if (RA.isPowerOf2()) {
571 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
572 return I->getOperand(0);
573
574 APInt LowBits = RA - 1;
Craig Topperbcfd2d12017-04-20 16:56:25 +0000575 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +0000576 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000577 return I;
578
Duncan Sands3a48b872010-01-28 17:22:42 +0000579 // The low bits of LHS are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +0000580 Known.Zero = LHSKnown.Zero & LowBits;
581 Known.One = LHSKnown.One & LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000582
Duncan Sands3a48b872010-01-28 17:22:42 +0000583 // If LHS is non-negative or has all low bits zero, then the upper bits
584 // are all zero.
Craig Topperca48af32017-04-29 16:43:11 +0000585 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +0000586 Known.Zero |= ~LowBits;
Duncan Sands3a48b872010-01-28 17:22:42 +0000587
588 // If LHS is negative and not all low bits are zero, then the upper bits
589 // are all one.
Craig Topperca48af32017-04-29 16:43:11 +0000590 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
Craig Topperb45eabc2017-04-26 16:39:58 +0000591 Known.One |= ~LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000592
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000593 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +0000594 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000595 }
596 }
Nick Lewyckye4679792011-03-07 01:50:10 +0000597
598 // The sign bit is the LHS's sign bit, except when the result of the
599 // remainder is zero.
Craig Topperd23004c2017-04-17 16:38:20 +0000600 if (DemandedMask.isSignBitSet()) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000601 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
Nick Lewyckye4679792011-03-07 01:50:10 +0000602 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +0000603 if (LHSKnown.isNonNegative())
604 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +0000605 }
Chris Lattner7e044912010-01-04 07:17:19 +0000606 break;
607 case Instruction::URem: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000608 KnownBits Known2(BitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +0000609 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +0000610 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
611 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000612 return I;
613
Craig Topper8df66c62017-05-12 17:20:30 +0000614 unsigned Leaders = Known2.countMinLeadingZeros();
Craig Topperb45eabc2017-04-26 16:39:58 +0000615 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Chris Lattner7e044912010-01-04 07:17:19 +0000616 break;
617 }
618 case Instruction::Call:
619 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
620 switch (II->getIntrinsicID()) {
621 default: break;
622 case Intrinsic::bswap: {
623 // If the only bits demanded come from one byte of the bswap result,
624 // just shift the input byte into position to eliminate the bswap.
625 unsigned NLZ = DemandedMask.countLeadingZeros();
626 unsigned NTZ = DemandedMask.countTrailingZeros();
Craig Topper4c947752012-12-22 18:09:02 +0000627
Chris Lattner7e044912010-01-04 07:17:19 +0000628 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
629 // we need all the bits down to bit 8. Likewise, round NLZ. If we
630 // have 14 leading zeros, round to 8.
631 NLZ &= ~7;
632 NTZ &= ~7;
633 // If we need exactly one byte, we can do this transformation.
634 if (BitWidth-NLZ-NTZ == 8) {
635 unsigned ResultBit = NTZ;
636 unsigned InputBit = BitWidth-NTZ-8;
Craig Topper4c947752012-12-22 18:09:02 +0000637
Chris Lattner7e044912010-01-04 07:17:19 +0000638 // Replace this with either a left or right shift to get the byte into
639 // the right place.
640 Instruction *NewVal;
641 if (InputBit > ResultBit)
Gabor Greif79430172010-06-24 12:35:13 +0000642 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000643 ConstantInt::get(I->getType(), InputBit-ResultBit));
644 else
Gabor Greif79430172010-06-24 12:35:13 +0000645 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000646 ConstantInt::get(I->getType(), ResultBit-InputBit));
647 NewVal->takeName(I);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000648 return InsertNewInstWith(NewVal, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000649 }
Craig Topper4c947752012-12-22 18:09:02 +0000650
Chris Lattner7e044912010-01-04 07:17:19 +0000651 // TODO: Could compute known zero/one bits based on the input.
652 break;
653 }
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000654 case Intrinsic::x86_mmx_pmovmskb:
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000655 case Intrinsic::x86_sse_movmsk_ps:
656 case Intrinsic::x86_sse2_movmsk_pd:
657 case Intrinsic::x86_sse2_pmovmskb_128:
658 case Intrinsic::x86_avx_movmsk_ps_256:
659 case Intrinsic::x86_avx_movmsk_pd_256:
660 case Intrinsic::x86_avx2_pmovmskb: {
661 // MOVMSK copies the vector elements' sign bits to the low bits
662 // and zeros the high bits.
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000663 unsigned ArgWidth;
664 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
665 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
666 } else {
667 auto Arg = II->getArgOperand(0);
668 auto ArgType = cast<VectorType>(Arg->getType());
669 ArgWidth = ArgType->getNumElements();
670 }
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000671
672 // If we don't need any of low bits then return zero,
673 // we know that DemandedMask is non-zero already.
674 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
675 if (DemandedElts == 0)
676 return ConstantInt::getNullValue(VTy);
677
Ahmed Bougacha17482a52016-04-28 14:36:07 +0000678 // We know that the upper bits are set to zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000679 Known.Zero.setBitsFrom(ArgWidth);
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000680 return nullptr;
681 }
Chad Rosierb3628842011-05-26 23:13:19 +0000682 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +0000683 Known.Zero.setBitsFrom(32);
Craig Topperf40110f2014-04-25 05:29:35 +0000684 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000685 }
686 }
Craig Topperb45eabc2017-04-26 16:39:58 +0000687 computeKnownBits(V, Known, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000688 break;
689 }
Craig Topper4c947752012-12-22 18:09:02 +0000690
Chris Lattner7e044912010-01-04 07:17:19 +0000691 // If the client is only demanding bits that we know, return the known
692 // constant.
Craig Topperb45eabc2017-04-26 16:39:58 +0000693 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
694 return Constant::getIntegerValue(VTy, Known.One);
Craig Topperf40110f2014-04-25 05:29:35 +0000695 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000696}
697
Craig Topperb45eabc2017-04-26 16:39:58 +0000698/// Helper routine of SimplifyDemandedUseBits. It computes Known
Craig Topperb0076fe2017-04-12 18:05:21 +0000699/// bits. It also tries to handle simplifications that can be done based on
700/// DemandedMask, but without modifying the Instruction.
701Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
702 const APInt &DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +0000703 KnownBits &Known,
Craig Topperb0076fe2017-04-12 18:05:21 +0000704 unsigned Depth,
705 Instruction *CxtI) {
706 unsigned BitWidth = DemandedMask.getBitWidth();
707 Type *ITy = I->getType();
708
Craig Topperb45eabc2017-04-26 16:39:58 +0000709 KnownBits LHSKnown(BitWidth);
710 KnownBits RHSKnown(BitWidth);
Craig Topperb0076fe2017-04-12 18:05:21 +0000711
712 // Despite the fact that we can't simplify this instruction in all User's
Craig Topperb45eabc2017-04-26 16:39:58 +0000713 // context, we can at least compute the known bits, and we can
Craig Topperb0076fe2017-04-12 18:05:21 +0000714 // do simplifications that apply to *just* the one user if we know that
715 // this instruction has a simpler value in that context.
Craig Topperf35a7f72017-04-12 18:25:25 +0000716 switch (I->getOpcode()) {
Craig Topper9a458cd2017-04-14 22:34:14 +0000717 case Instruction::And: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000718 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000719 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
720 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
Craig Topperb0076fe2017-04-12 18:05:21 +0000721 CxtI);
722
Craig Topper9a458cd2017-04-14 22:34:14 +0000723 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000724 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
Craig Topper9a458cd2017-04-14 22:34:14 +0000725 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000726 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000727
Craig Topperc75f94b2017-04-12 19:32:47 +0000728 // If the client is only demanding bits that we know, return the known
729 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000730 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000731 return Constant::getIntegerValue(ITy, IKnownOne);
Craig Topperc75f94b2017-04-12 19:32:47 +0000732
Craig Topperb0076fe2017-04-12 18:05:21 +0000733 // If all of the demanded bits are known 1 on one side, return the other.
734 // These bits cannot contribute to the result of the 'and' in this
735 // context.
Craig Topperb45eabc2017-04-26 16:39:58 +0000736 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
Craig Topperb0076fe2017-04-12 18:05:21 +0000737 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000738 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
Craig Topperb0076fe2017-04-12 18:05:21 +0000739 return I->getOperand(1);
740
Craig Topperb45eabc2017-04-26 16:39:58 +0000741 Known.Zero = std::move(IKnownZero);
742 Known.One = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000743 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000744 }
745 case Instruction::Or: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000746 // We can simplify (X|Y) -> X or Y in the user's context if we know that
747 // only bits from X or Y are demanded.
748
749 // If either the LHS or the RHS are One, the result is One.
Craig Topperb45eabc2017-04-26 16:39:58 +0000750 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
751 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
Craig Topperb0076fe2017-04-12 18:05:21 +0000752 CxtI);
753
Craig Topper9a458cd2017-04-14 22:34:14 +0000754 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000755 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
Craig Topper9a458cd2017-04-14 22:34:14 +0000756 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000757 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000758
Craig Topperc75f94b2017-04-12 19:32:47 +0000759 // If the client is only demanding bits that we know, return the known
760 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000761 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000762 return Constant::getIntegerValue(ITy, IKnownOne);
Craig Topperc75f94b2017-04-12 19:32:47 +0000763
Craig Topperb0076fe2017-04-12 18:05:21 +0000764 // If all of the demanded bits are known zero on one side, return the
765 // other. These bits cannot contribute to the result of the 'or' in this
766 // context.
Craig Topperb45eabc2017-04-26 16:39:58 +0000767 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000768 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000769 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000770 return I->getOperand(1);
771
Craig Topperb45eabc2017-04-26 16:39:58 +0000772 Known.Zero = std::move(IKnownZero);
773 Known.One = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000774 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000775 }
Craig Topperc75f94b2017-04-12 19:32:47 +0000776 case Instruction::Xor: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000777 // We can simplify (X^Y) -> X or Y in the user's context if we know that
778 // only bits from X or Y are demanded.
779
Craig Topperb45eabc2017-04-26 16:39:58 +0000780 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
781 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
Craig Topperb0076fe2017-04-12 18:05:21 +0000782 CxtI);
783
Craig Topperc75f94b2017-04-12 19:32:47 +0000784 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000785 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
786 (RHSKnown.One & LHSKnown.One);
Craig Topperc75f94b2017-04-12 19:32:47 +0000787 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000788 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
789 (RHSKnown.One & LHSKnown.Zero);
Craig Topperc75f94b2017-04-12 19:32:47 +0000790
791 // If the client is only demanding bits that we know, return the known
792 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000793 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topperc75f94b2017-04-12 19:32:47 +0000794 return Constant::getIntegerValue(ITy, IKnownOne);
795
Craig Topperb0076fe2017-04-12 18:05:21 +0000796 // If all of the demanded bits are known zero on one side, return the
797 // other.
Craig Topperb45eabc2017-04-26 16:39:58 +0000798 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000799 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000800 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000801 return I->getOperand(1);
Craig Topperf35a7f72017-04-12 18:25:25 +0000802
Craig Topperc75f94b2017-04-12 19:32:47 +0000803 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000804 Known.Zero = std::move(IKnownZero);
Craig Topperc75f94b2017-04-12 19:32:47 +0000805 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000806 Known.One = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000807 break;
Craig Topperb0076fe2017-04-12 18:05:21 +0000808 }
Craig Topperc75f94b2017-04-12 19:32:47 +0000809 default:
Craig Topperb45eabc2017-04-26 16:39:58 +0000810 // Compute the Known bits to simplify things downstream.
811 computeKnownBits(I, Known, Depth, CxtI);
Craig Topperb0076fe2017-04-12 18:05:21 +0000812
Craig Topperc75f94b2017-04-12 19:32:47 +0000813 // If this user is only demanding bits that we know, return the known
814 // constant.
Craig Topperb45eabc2017-04-26 16:39:58 +0000815 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
816 return Constant::getIntegerValue(ITy, Known.One);
Craig Topper9a51c7f2017-04-12 18:17:46 +0000817
Craig Topperc75f94b2017-04-12 19:32:47 +0000818 break;
819 }
Craig Topper9a51c7f2017-04-12 18:17:46 +0000820
Craig Topperb0076fe2017-04-12 18:05:21 +0000821 return nullptr;
822}
823
824
Shuxin Yang63e999e2012-12-04 00:04:54 +0000825/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
826/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
827/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
828/// of "C2-C1".
829///
830/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
831/// ..., bn}, without considering the specific value X is holding.
832/// This transformation is legal iff one of following conditions is hold:
833/// 1) All the bit in S are 0, in this case E1 == E2.
834/// 2) We don't care those bits in S, per the input DemandedMask.
835/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
836/// rest bits.
837///
838/// Currently we only test condition 2).
839///
840/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
841/// not successful.
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000842Value *
Sanjay Patelcc663b82017-04-20 22:37:01 +0000843InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000844 Instruction *Shl, const APInt &ShlOp1,
845 const APInt &DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +0000846 KnownBits &Known) {
Benjamin Kramer010f1082013-08-30 14:35:35 +0000847 if (!ShlOp1 || !ShrOp1)
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000848 return nullptr; // No-op.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000849
850 Value *VarX = Shr->getOperand(0);
851 Type *Ty = VarX->getType();
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000852 unsigned BitWidth = Ty->getScalarSizeInBits();
Benjamin Kramer010f1082013-08-30 14:35:35 +0000853 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
Craig Topperf40110f2014-04-25 05:29:35 +0000854 return nullptr; // Undef.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000855
856 unsigned ShlAmt = ShlOp1.getZExtValue();
857 unsigned ShrAmt = ShrOp1.getZExtValue();
Shuxin Yang63e999e2012-12-04 00:04:54 +0000858
Craig Topperb45eabc2017-04-26 16:39:58 +0000859 Known.One.clearAllBits();
860 Known.Zero.setLowBits(ShlAmt - 1);
861 Known.Zero &= DemandedMask;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000862
Benjamin Kramer010f1082013-08-30 14:35:35 +0000863 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
864 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
Shuxin Yang63e999e2012-12-04 00:04:54 +0000865
866 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
867 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
868 (BitMask1.ashr(ShrAmt) << ShlAmt);
869
870 if (ShrAmt <= ShlAmt) {
871 BitMask2 <<= (ShlAmt - ShrAmt);
872 } else {
873 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
874 BitMask2.ashr(ShrAmt - ShlAmt);
875 }
876
877 // Check if condition-2 (see the comment to this function) is satified.
878 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
879 if (ShrAmt == ShlAmt)
880 return VarX;
881
882 if (!Shr->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +0000883 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000884
885 BinaryOperator *New;
886 if (ShrAmt < ShlAmt) {
887 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
888 New = BinaryOperator::CreateShl(VarX, Amt);
889 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
890 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
891 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
892 } else {
893 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
Shuxin Yang86c0e232012-12-04 03:28:32 +0000894 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
895 BinaryOperator::CreateAShr(VarX, Amt);
Shuxin Yang81b36782012-12-12 00:29:03 +0000896 if (cast<BinaryOperator>(Shr)->isExact())
897 New->setIsExact(true);
Shuxin Yang63e999e2012-12-04 00:04:54 +0000898 }
899
900 return InsertNewInstWith(New, *Shl);
901 }
902
Craig Topperf40110f2014-04-25 05:29:35 +0000903 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000904}
Chris Lattner7e044912010-01-04 07:17:19 +0000905
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +0000906/// The specified value produces a vector with any number of elements.
907/// DemandedElts contains the set of elements that are actually used by the
908/// caller. This method analyzes which elements of the operand are undef and
909/// returns that information in UndefElts.
Chris Lattner7e044912010-01-04 07:17:19 +0000910///
911/// If the information about demanded elements can be used to simplify the
912/// operation, the operation is simplified, then the resultant value is
913/// returned. This returns null if no change was made.
914Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Chris Lattnerb22423c2010-02-08 23:56:03 +0000915 APInt &UndefElts,
Chris Lattner7e044912010-01-04 07:17:19 +0000916 unsigned Depth) {
Sanjay Patel9190b4a2016-04-29 20:54:56 +0000917 unsigned VWidth = V->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +0000918 APInt EltMask(APInt::getAllOnesValue(VWidth));
919 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
920
921 if (isa<UndefValue>(V)) {
922 // If the entire vector is undefined, just return this info.
923 UndefElts = EltMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000924 return nullptr;
Chris Lattnerb22423c2010-02-08 23:56:03 +0000925 }
Craig Topper4c947752012-12-22 18:09:02 +0000926
Chris Lattnerb22423c2010-02-08 23:56:03 +0000927 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000928 UndefElts = EltMask;
929 return UndefValue::get(V->getType());
930 }
931
932 UndefElts = 0;
Craig Topper4c947752012-12-22 18:09:02 +0000933
Chris Lattner67058832012-01-25 06:48:06 +0000934 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
935 if (Constant *C = dyn_cast<Constant>(V)) {
936 // Check if this is identity. If so, return 0 since we are not simplifying
937 // anything.
938 if (DemandedElts.isAllOnesValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000939 return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +0000940
Chris Lattner229907c2011-07-18 04:54:35 +0000941 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner7e044912010-01-04 07:17:19 +0000942 Constant *Undef = UndefValue::get(EltTy);
Craig Topper4c947752012-12-22 18:09:02 +0000943
Chris Lattner67058832012-01-25 06:48:06 +0000944 SmallVector<Constant*, 16> Elts;
945 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7e044912010-01-04 07:17:19 +0000946 if (!DemandedElts[i]) { // If not demanded, set to undef.
947 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000948 UndefElts.setBit(i);
Chris Lattner67058832012-01-25 06:48:06 +0000949 continue;
950 }
Craig Topper4c947752012-12-22 18:09:02 +0000951
Chris Lattner67058832012-01-25 06:48:06 +0000952 Constant *Elt = C->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +0000953 if (!Elt) return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000954
Chris Lattner67058832012-01-25 06:48:06 +0000955 if (isa<UndefValue>(Elt)) { // Already undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000956 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000957 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +0000958 } else { // Otherwise, defined.
Chris Lattner67058832012-01-25 06:48:06 +0000959 Elts.push_back(Elt);
Chris Lattner7e044912010-01-04 07:17:19 +0000960 }
Chris Lattner67058832012-01-25 06:48:06 +0000961 }
Craig Topper4c947752012-12-22 18:09:02 +0000962
Chris Lattner7e044912010-01-04 07:17:19 +0000963 // If we changed the constant, return it.
Chris Lattner47a86bd2012-01-25 06:02:56 +0000964 Constant *NewCV = ConstantVector::get(Elts);
Craig Topperf40110f2014-04-25 05:29:35 +0000965 return NewCV != C ? NewCV : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000966 }
Craig Topper4c947752012-12-22 18:09:02 +0000967
Chris Lattner7e044912010-01-04 07:17:19 +0000968 // Limit search depth.
969 if (Depth == 10)
Craig Topperf40110f2014-04-25 05:29:35 +0000970 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000971
Stuart Hastings5bd18b62011-05-17 22:13:31 +0000972 // If multiple users are using the root value, proceed with
Chris Lattner7e044912010-01-04 07:17:19 +0000973 // simplification conservatively assuming that all elements
974 // are needed.
975 if (!V->hasOneUse()) {
976 // Quit if we find multiple users of a non-root value though.
977 // They'll be handled when it's their turn to be visited by
978 // the main instcombine process.
979 if (Depth != 0)
980 // TODO: Just compute the UndefElts information recursively.
Craig Topperf40110f2014-04-25 05:29:35 +0000981 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000982
983 // Conservatively assume that all elements are needed.
984 DemandedElts = EltMask;
985 }
Craig Topper4c947752012-12-22 18:09:02 +0000986
Chris Lattner7e044912010-01-04 07:17:19 +0000987 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000988 if (!I) return nullptr; // Only analyze instructions.
Craig Topper4c947752012-12-22 18:09:02 +0000989
Chris Lattner7e044912010-01-04 07:17:19 +0000990 bool MadeChange = false;
991 APInt UndefElts2(VWidth, 0);
Craig Topper23ebd952016-12-11 08:54:52 +0000992 APInt UndefElts3(VWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +0000993 Value *TmpV;
994 switch (I->getOpcode()) {
995 default: break;
Craig Topper4c947752012-12-22 18:09:02 +0000996
Chris Lattner7e044912010-01-04 07:17:19 +0000997 case Instruction::InsertElement: {
998 // If this is a variable index, we don't know which element it overwrites.
999 // demand exactly the same input as we produce.
1000 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Craig Topperf40110f2014-04-25 05:29:35 +00001001 if (!Idx) {
Chris Lattner7e044912010-01-04 07:17:19 +00001002 // Note that we can't propagate undef elt info, because we don't know
1003 // which elt is getting updated.
1004 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001005 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001006 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1007 break;
1008 }
Craig Topper4c947752012-12-22 18:09:02 +00001009
Chris Lattner7e044912010-01-04 07:17:19 +00001010 // If this is inserting an element that isn't demanded, remove this
1011 // insertelement.
1012 unsigned IdxNo = Idx->getZExtValue();
1013 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1014 Worklist.Add(I);
1015 return I->getOperand(0);
1016 }
Craig Topper4c947752012-12-22 18:09:02 +00001017
Chris Lattner7e044912010-01-04 07:17:19 +00001018 // Otherwise, the element inserted overwrites whatever was there, so the
1019 // input demanded set is simpler than the output set.
1020 APInt DemandedElts2 = DemandedElts;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001021 DemandedElts2.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001022 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001023 UndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001024 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1025
1026 // The inserted element is defined.
Jay Foad25a5e4c2010-12-01 08:53:58 +00001027 UndefElts.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001028 break;
1029 }
1030 case Instruction::ShuffleVector: {
1031 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Craig Topper2e18bcf2016-12-29 04:24:32 +00001032 unsigned LHSVWidth =
1033 Shuffle->getOperand(0)->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +00001034 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1035 for (unsigned i = 0; i < VWidth; i++) {
1036 if (DemandedElts[i]) {
1037 unsigned MaskVal = Shuffle->getMaskValue(i);
1038 if (MaskVal != -1u) {
1039 assert(MaskVal < LHSVWidth * 2 &&
1040 "shufflevector mask index out of range!");
1041 if (MaskVal < LHSVWidth)
Jay Foad25a5e4c2010-12-01 08:53:58 +00001042 LeftDemanded.setBit(MaskVal);
Chris Lattner7e044912010-01-04 07:17:19 +00001043 else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001044 RightDemanded.setBit(MaskVal - LHSVWidth);
Chris Lattner7e044912010-01-04 07:17:19 +00001045 }
1046 }
1047 }
1048
Alexey Bataevfee90782016-09-23 09:14:08 +00001049 APInt LHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001050 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001051 LHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001052 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1053
Alexey Bataevfee90782016-09-23 09:14:08 +00001054 APInt RHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001055 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001056 RHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001057 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1058
1059 bool NewUndefElts = false;
Alexey Bataev793c9462016-09-26 13:18:59 +00001060 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1061 unsigned RHSIdx = -1u, RHSValIdx = -1u;
Alexey Bataevfee90782016-09-23 09:14:08 +00001062 bool LHSUniform = true;
1063 bool RHSUniform = true;
Chris Lattner7e044912010-01-04 07:17:19 +00001064 for (unsigned i = 0; i < VWidth; i++) {
1065 unsigned MaskVal = Shuffle->getMaskValue(i);
1066 if (MaskVal == -1u) {
Jay Foad25a5e4c2010-12-01 08:53:58 +00001067 UndefElts.setBit(i);
Eli Friedman888bea02011-09-15 01:14:29 +00001068 } else if (!DemandedElts[i]) {
1069 NewUndefElts = true;
1070 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +00001071 } else if (MaskVal < LHSVWidth) {
Alexey Bataevfee90782016-09-23 09:14:08 +00001072 if (LHSUndefElts[MaskVal]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001073 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001074 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001075 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001076 LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1077 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001078 LHSUniform = LHSUniform && (MaskVal == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001079 }
1080 } else {
Alexey Bataevfee90782016-09-23 09:14:08 +00001081 if (RHSUndefElts[MaskVal - LHSVWidth]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001082 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001083 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001084 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001085 RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1086 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001087 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001088 }
1089 }
1090 }
1091
Alexey Bataevfee90782016-09-23 09:14:08 +00001092 // Try to transform shuffle with constant vector and single element from
1093 // this constant vector to single insertelement instruction.
1094 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1095 // insertelement V, C[ci], ci-n
1096 if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1097 Value *Op = nullptr;
1098 Constant *Value = nullptr;
1099 unsigned Idx = -1u;
1100
Craig Topper62f06e22016-12-29 05:38:31 +00001101 // Find constant vector with the single element in shuffle (LHS or RHS).
Alexey Bataevfee90782016-09-23 09:14:08 +00001102 if (LHSIdx < LHSVWidth && RHSUniform) {
1103 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1104 Op = Shuffle->getOperand(1);
Alexey Bataev793c9462016-09-26 13:18:59 +00001105 Value = CV->getOperand(LHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001106 Idx = LHSIdx;
1107 }
1108 }
1109 if (RHSIdx < LHSVWidth && LHSUniform) {
1110 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1111 Op = Shuffle->getOperand(0);
Alexey Bataev793c9462016-09-26 13:18:59 +00001112 Value = CV->getOperand(RHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001113 Idx = RHSIdx;
1114 }
1115 }
1116 // Found constant vector with single element - convert to insertelement.
1117 if (Op && Value) {
1118 Instruction *New = InsertElementInst::Create(
1119 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1120 Shuffle->getName());
1121 InsertNewInstWith(New, *Shuffle);
1122 return New;
1123 }
1124 }
Chris Lattner7e044912010-01-04 07:17:19 +00001125 if (NewUndefElts) {
1126 // Add additional discovered undefs.
Chris Lattner0256be92012-01-27 03:08:05 +00001127 SmallVector<Constant*, 16> Elts;
Chris Lattner7e044912010-01-04 07:17:19 +00001128 for (unsigned i = 0; i < VWidth; ++i) {
1129 if (UndefElts[i])
1130 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1131 else
1132 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1133 Shuffle->getMaskValue(i)));
1134 }
1135 I->setOperand(2, ConstantVector::get(Elts));
1136 MadeChange = true;
1137 }
1138 break;
1139 }
Pete Cooperabc13af2012-07-26 23:10:24 +00001140 case Instruction::Select: {
1141 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1142 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1143 for (unsigned i = 0; i < VWidth; i++) {
Andrea Di Biagio40f59e42015-10-06 10:34:53 +00001144 Constant *CElt = CV->getAggregateElement(i);
1145 // Method isNullValue always returns false when called on a
1146 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1147 // to avoid propagating incorrect information.
1148 if (isa<ConstantExpr>(CElt))
1149 continue;
1150 if (CElt->isNullValue())
Pete Cooperabc13af2012-07-26 23:10:24 +00001151 LeftDemanded.clearBit(i);
1152 else
1153 RightDemanded.clearBit(i);
1154 }
1155 }
1156
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001157 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1158 Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001159 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1160
1161 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001162 UndefElts2, Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001163 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001164
Pete Cooperabc13af2012-07-26 23:10:24 +00001165 // Output elements are undefined if both are undefined.
1166 UndefElts &= UndefElts2;
1167 break;
1168 }
Chris Lattner7e044912010-01-04 07:17:19 +00001169 case Instruction::BitCast: {
1170 // Vector->vector casts only.
Chris Lattner229907c2011-07-18 04:54:35 +00001171 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
Chris Lattner7e044912010-01-04 07:17:19 +00001172 if (!VTy) break;
1173 unsigned InVWidth = VTy->getNumElements();
1174 APInt InputDemandedElts(InVWidth, 0);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001175 UndefElts2 = APInt(InVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001176 unsigned Ratio;
1177
1178 if (VWidth == InVWidth) {
1179 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1180 // elements as are demanded of us.
1181 Ratio = 1;
1182 InputDemandedElts = DemandedElts;
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001183 } else if ((VWidth % InVWidth) == 0) {
1184 // If the number of elements in the output is a multiple of the number of
1185 // elements in the input then an input element is live if any of the
1186 // corresponding output elements are live.
1187 Ratio = VWidth / InVWidth;
1188 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Chris Lattner7e044912010-01-04 07:17:19 +00001189 if (DemandedElts[OutIdx])
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001190 InputDemandedElts.setBit(OutIdx / Ratio);
1191 } else if ((InVWidth % VWidth) == 0) {
1192 // If the number of elements in the input is a multiple of the number of
1193 // elements in the output then an input element is live if the
1194 // corresponding output element is live.
1195 Ratio = InVWidth / VWidth;
Chris Lattner7e044912010-01-04 07:17:19 +00001196 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001197 if (DemandedElts[InIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001198 InputDemandedElts.setBit(InIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001199 } else {
1200 // Unsupported so far.
1201 break;
Chris Lattner7e044912010-01-04 07:17:19 +00001202 }
Craig Topper4c947752012-12-22 18:09:02 +00001203
Chris Lattner7e044912010-01-04 07:17:19 +00001204 // div/rem demand all inputs, because they don't want divide by zero.
1205 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001206 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001207 if (TmpV) {
1208 I->setOperand(0, TmpV);
1209 MadeChange = true;
1210 }
Craig Topper4c947752012-12-22 18:09:02 +00001211
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001212 if (VWidth == InVWidth) {
1213 UndefElts = UndefElts2;
1214 } else if ((VWidth % InVWidth) == 0) {
1215 // If the number of elements in the output is a multiple of the number of
1216 // elements in the input then an output element is undef if the
1217 // corresponding input element is undef.
Chris Lattner7e044912010-01-04 07:17:19 +00001218 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001219 if (UndefElts2[OutIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001220 UndefElts.setBit(OutIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001221 } else if ((InVWidth % VWidth) == 0) {
1222 // If the number of elements in the input is a multiple of the number of
1223 // elements in the output then an output element is undef if all of the
1224 // corresponding input elements are undef.
1225 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1226 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1227 if (SubUndef.countPopulation() == Ratio)
1228 UndefElts.setBit(OutIdx);
1229 }
1230 } else {
Chris Lattner7e044912010-01-04 07:17:19 +00001231 llvm_unreachable("Unimp");
Chris Lattner7e044912010-01-04 07:17:19 +00001232 }
1233 break;
1234 }
1235 case Instruction::And:
1236 case Instruction::Or:
1237 case Instruction::Xor:
1238 case Instruction::Add:
1239 case Instruction::Sub:
1240 case Instruction::Mul:
1241 // div/rem demand all inputs, because they don't want divide by zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001242 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1243 Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001244 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1245 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001246 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001247 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001248
Chris Lattner7e044912010-01-04 07:17:19 +00001249 // Output elements are undefined if both are undefined. Consider things
1250 // like undef&0. The result is known zero, not undef.
1251 UndefElts &= UndefElts2;
1252 break;
Pete Coopere807e452012-07-26 22:37:04 +00001253 case Instruction::FPTrunc:
1254 case Instruction::FPExt:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001255 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1256 Depth + 1);
Pete Coopere807e452012-07-26 22:37:04 +00001257 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1258 break;
Craig Topper4c947752012-12-22 18:09:02 +00001259
Chris Lattner7e044912010-01-04 07:17:19 +00001260 case Instruction::Call: {
1261 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1262 if (!II) break;
1263 switch (II->getIntrinsicID()) {
1264 default: break;
Craig Topper4c947752012-12-22 18:09:02 +00001265
Craig Topper7fc6d342016-12-11 22:32:38 +00001266 case Intrinsic::x86_xop_vfrcz_ss:
1267 case Intrinsic::x86_xop_vfrcz_sd:
1268 // The instructions for these intrinsics are speced to zero upper bits not
1269 // pass them through like other scalar intrinsics. So we shouldn't just
1270 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1271 // Instead we should return a zero vector.
Craig Topper1a8a3372016-12-29 03:30:17 +00001272 if (!DemandedElts[0]) {
1273 Worklist.Add(II);
Craig Topper7fc6d342016-12-11 22:32:38 +00001274 return ConstantAggregateZero::get(II->getType());
Craig Topper1a8a3372016-12-29 03:30:17 +00001275 }
Craig Topper7fc6d342016-12-11 22:32:38 +00001276
Craig Topperac75bca2016-12-13 07:45:45 +00001277 // Only the lower element is used.
1278 DemandedElts = 1;
Craig Topper7fc6d342016-12-11 22:32:38 +00001279 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1280 UndefElts, Depth + 1);
1281 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperac75bca2016-12-13 07:45:45 +00001282
1283 // Only the lower element is undefined. The high elements are zero.
1284 UndefElts = UndefElts[0];
Craig Topper7fc6d342016-12-11 22:32:38 +00001285 break;
1286
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001287 // Unary scalar-as-vector operations that work column-wise.
Simon Pilgrim83020942016-04-24 18:23:14 +00001288 case Intrinsic::x86_sse_rcp_ss:
1289 case Intrinsic::x86_sse_rsqrt_ss:
1290 case Intrinsic::x86_sse_sqrt_ss:
1291 case Intrinsic::x86_sse2_sqrt_sd:
Simon Pilgrim83020942016-04-24 18:23:14 +00001292 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1293 UndefElts, Depth + 1);
1294 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1295
1296 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001297 if (!DemandedElts[0]) {
1298 Worklist.Add(II);
Simon Pilgrim83020942016-04-24 18:23:14 +00001299 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001300 }
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001301 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1302 // checks).
Simon Pilgrim83020942016-04-24 18:23:14 +00001303 break;
1304
Craig Toppera0372de2016-12-14 03:17:27 +00001305 // Binary scalar-as-vector operations that work column-wise. The high
1306 // elements come from operand 0. The low element is a function of both
1307 // operands.
Chris Lattner7e044912010-01-04 07:17:19 +00001308 case Intrinsic::x86_sse_min_ss:
1309 case Intrinsic::x86_sse_max_ss:
Simon Pilgrim83020942016-04-24 18:23:14 +00001310 case Intrinsic::x86_sse_cmp_ss:
Chris Lattner7e044912010-01-04 07:17:19 +00001311 case Intrinsic::x86_sse2_min_sd:
1312 case Intrinsic::x86_sse2_max_sd:
Craig Toppera0372de2016-12-14 03:17:27 +00001313 case Intrinsic::x86_sse2_cmp_sd: {
1314 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1315 UndefElts, Depth + 1);
1316 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1317
1318 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001319 if (!DemandedElts[0]) {
1320 Worklist.Add(II);
Craig Toppera0372de2016-12-14 03:17:27 +00001321 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001322 }
Craig Toppera0372de2016-12-14 03:17:27 +00001323
1324 // Only lower element is used for operand 1.
1325 DemandedElts = 1;
1326 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1327 UndefElts2, Depth + 1);
1328 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1329
1330 // Lower element is undefined if both lower elements are undefined.
1331 // Consider things like undef&0. The result is known zero, not undef.
1332 if (!UndefElts2[0])
1333 UndefElts.clearBit(0);
1334
1335 break;
1336 }
1337
Craig Toppereb6a20e2016-12-14 03:17:30 +00001338 // Binary scalar-as-vector operations that work column-wise. The high
1339 // elements come from operand 0 and the low element comes from operand 1.
Simon Pilgrim83020942016-04-24 18:23:14 +00001340 case Intrinsic::x86_sse41_round_ss:
Craig Toppereb6a20e2016-12-14 03:17:30 +00001341 case Intrinsic::x86_sse41_round_sd: {
1342 // Don't use the low element of operand 0.
1343 APInt DemandedElts2 = DemandedElts;
1344 DemandedElts2.clearBit(0);
1345 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001346 UndefElts, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001347 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001348
1349 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001350 if (!DemandedElts[0]) {
1351 Worklist.Add(II);
Craig Toppereb6a20e2016-12-14 03:17:30 +00001352 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001353 }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001354
1355 // Only lower element is used for operand 1.
1356 DemandedElts = 1;
Gabor Greife23efee2010-06-28 16:45:00 +00001357 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001358 UndefElts2, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001359 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
Chris Lattner7e044912010-01-04 07:17:19 +00001360
Craig Toppereb6a20e2016-12-14 03:17:30 +00001361 // Take the high undef elements from operand 0 and take the lower element
1362 // from operand 1.
1363 UndefElts.clearBit(0);
1364 UndefElts |= UndefElts2[0];
Chris Lattner7e044912010-01-04 07:17:19 +00001365 break;
Craig Toppereb6a20e2016-12-14 03:17:30 +00001366 }
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001367
Craig Topperdfd268d2016-12-14 05:43:05 +00001368 // Three input scalar-as-vector operations that work column-wise. The high
1369 // elements come from operand 0 and the low element is a function of all
1370 // three inputs.
Craig Topper268b3ab2016-12-14 06:06:58 +00001371 case Intrinsic::x86_avx512_mask_add_ss_round:
1372 case Intrinsic::x86_avx512_mask_div_ss_round:
1373 case Intrinsic::x86_avx512_mask_mul_ss_round:
1374 case Intrinsic::x86_avx512_mask_sub_ss_round:
1375 case Intrinsic::x86_avx512_mask_max_ss_round:
1376 case Intrinsic::x86_avx512_mask_min_ss_round:
1377 case Intrinsic::x86_avx512_mask_add_sd_round:
1378 case Intrinsic::x86_avx512_mask_div_sd_round:
1379 case Intrinsic::x86_avx512_mask_mul_sd_round:
1380 case Intrinsic::x86_avx512_mask_sub_sd_round:
1381 case Intrinsic::x86_avx512_mask_max_sd_round:
1382 case Intrinsic::x86_avx512_mask_min_sd_round:
Craig Topper23ebd952016-12-11 08:54:52 +00001383 case Intrinsic::x86_fma_vfmadd_ss:
1384 case Intrinsic::x86_fma_vfmsub_ss:
1385 case Intrinsic::x86_fma_vfnmadd_ss:
1386 case Intrinsic::x86_fma_vfnmsub_ss:
1387 case Intrinsic::x86_fma_vfmadd_sd:
1388 case Intrinsic::x86_fma_vfmsub_sd:
1389 case Intrinsic::x86_fma_vfnmadd_sd:
1390 case Intrinsic::x86_fma_vfnmsub_sd:
Craig Topperab5f3552016-12-15 03:49:45 +00001391 case Intrinsic::x86_avx512_mask_vfmadd_ss:
1392 case Intrinsic::x86_avx512_mask_vfmadd_sd:
1393 case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1394 case Intrinsic::x86_avx512_maskz_vfmadd_sd:
Craig Topper23ebd952016-12-11 08:54:52 +00001395 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1396 UndefElts, Depth + 1);
1397 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperdfd268d2016-12-14 05:43:05 +00001398
1399 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001400 if (!DemandedElts[0]) {
1401 Worklist.Add(II);
Craig Topperdfd268d2016-12-14 05:43:05 +00001402 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001403 }
Craig Topperdfd268d2016-12-14 05:43:05 +00001404
1405 // Only lower element is used for operand 1 and 2.
1406 DemandedElts = 1;
Craig Topper23ebd952016-12-11 08:54:52 +00001407 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1408 UndefElts2, Depth + 1);
1409 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1410 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1411 UndefElts3, Depth + 1);
1412 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1413
Craig Topperdfd268d2016-12-14 05:43:05 +00001414 // Lower element is undefined if all three lower elements are undefined.
1415 // Consider things like undef&0. The result is known zero, not undef.
1416 if (!UndefElts2[0] || !UndefElts3[0])
1417 UndefElts.clearBit(0);
Craig Topper23ebd952016-12-11 08:54:52 +00001418
Craig Topper23ebd952016-12-11 08:54:52 +00001419 break;
1420
Craig Topperab5f3552016-12-15 03:49:45 +00001421 case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1422 case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1423 case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1424 case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1425 case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1426 case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1427 // These intrinsics get the passthru bits from operand 2.
1428 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1429 UndefElts, Depth + 1);
1430 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1431
1432 // If lowest element of a scalar op isn't used then use Arg2.
Craig Topper1a8a3372016-12-29 03:30:17 +00001433 if (!DemandedElts[0]) {
1434 Worklist.Add(II);
Craig Topperab5f3552016-12-15 03:49:45 +00001435 return II->getArgOperand(2);
Craig Topper1a8a3372016-12-29 03:30:17 +00001436 }
Craig Topperab5f3552016-12-15 03:49:45 +00001437
1438 // Only lower element is used for operand 0 and 1.
1439 DemandedElts = 1;
1440 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1441 UndefElts2, Depth + 1);
1442 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1443 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1444 UndefElts3, Depth + 1);
1445 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1446
1447 // Lower element is undefined if all three lower elements are undefined.
1448 // Consider things like undef&0. The result is known zero, not undef.
1449 if (!UndefElts2[0] || !UndefElts3[0])
1450 UndefElts.clearBit(0);
1451
1452 break;
1453
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001454 case Intrinsic::x86_sse2_pmulu_dq:
1455 case Intrinsic::x86_sse41_pmuldq:
1456 case Intrinsic::x86_avx2_pmul_dq:
Craig Topper72f2d4e2016-12-27 05:30:09 +00001457 case Intrinsic::x86_avx2_pmulu_dq:
1458 case Intrinsic::x86_avx512_pmul_dq_512:
1459 case Intrinsic::x86_avx512_pmulu_dq_512: {
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001460 Value *Op0 = II->getArgOperand(0);
1461 Value *Op1 = II->getArgOperand(1);
1462 unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1463 assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1464
1465 APInt InnerDemandedElts(InnerVWidth, 0);
1466 for (unsigned i = 0; i != VWidth; ++i)
1467 if (DemandedElts[i])
1468 InnerDemandedElts.setBit(i * 2);
1469
1470 UndefElts2 = APInt(InnerVWidth, 0);
1471 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1472 Depth + 1);
1473 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1474
1475 UndefElts3 = APInt(InnerVWidth, 0);
1476 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1477 Depth + 1);
1478 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1479
1480 break;
1481 }
1482
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001483 case Intrinsic::x86_sse2_packssdw_128:
1484 case Intrinsic::x86_sse2_packsswb_128:
1485 case Intrinsic::x86_sse2_packuswb_128:
1486 case Intrinsic::x86_sse41_packusdw:
1487 case Intrinsic::x86_avx2_packssdw:
1488 case Intrinsic::x86_avx2_packsswb:
1489 case Intrinsic::x86_avx2_packusdw:
Craig Topper3731f4d2017-02-16 07:35:23 +00001490 case Intrinsic::x86_avx2_packuswb:
1491 case Intrinsic::x86_avx512_packssdw_512:
1492 case Intrinsic::x86_avx512_packsswb_512:
1493 case Intrinsic::x86_avx512_packusdw_512:
1494 case Intrinsic::x86_avx512_packuswb_512: {
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001495 auto *Ty0 = II->getArgOperand(0)->getType();
1496 unsigned InnerVWidth = Ty0->getVectorNumElements();
1497 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1498
1499 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1500 unsigned VWidthPerLane = VWidth / NumLanes;
1501 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1502
1503 // Per lane, pack the elements of the first input and then the second.
1504 // e.g.
1505 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1506 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1507 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1508 APInt OpDemandedElts(InnerVWidth, 0);
1509 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1510 unsigned LaneIdx = Lane * VWidthPerLane;
1511 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1512 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1513 if (DemandedElts[Idx])
1514 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1515 }
1516 }
1517
1518 // Demand elements from the operand.
1519 auto *Op = II->getArgOperand(OpNum);
1520 APInt OpUndefElts(InnerVWidth, 0);
1521 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1522 Depth + 1);
1523 if (TmpV) {
1524 II->setArgOperand(OpNum, TmpV);
1525 MadeChange = true;
1526 }
1527
1528 // Pack the operand's UNDEF elements, one lane at a time.
1529 OpUndefElts = OpUndefElts.zext(VWidth);
1530 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1531 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1532 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
Craig Topper24e71012017-04-28 03:36:24 +00001533 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001534 UndefElts |= LaneElts;
1535 }
1536 }
1537 break;
1538 }
1539
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001540 // PSHUFB
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001541 case Intrinsic::x86_ssse3_pshuf_b_128:
1542 case Intrinsic::x86_avx2_pshuf_b:
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001543 case Intrinsic::x86_avx512_pshuf_b_512:
1544 // PERMILVAR
1545 case Intrinsic::x86_avx_vpermilvar_ps:
1546 case Intrinsic::x86_avx_vpermilvar_ps_256:
1547 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1548 case Intrinsic::x86_avx_vpermilvar_pd:
1549 case Intrinsic::x86_avx_vpermilvar_pd_256:
Simon Pilgrimfe2c0ed2017-01-18 14:47:49 +00001550 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1551 // PERMV
1552 case Intrinsic::x86_avx2_permd:
1553 case Intrinsic::x86_avx2_permps: {
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001554 Value *Op1 = II->getArgOperand(1);
1555 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1556 Depth + 1);
1557 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1558 break;
1559 }
1560
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001561 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1562 // in an undefined state.
1563 case Intrinsic::x86_sse4a_extrq:
1564 case Intrinsic::x86_sse4a_extrqi:
1565 case Intrinsic::x86_sse4a_insertq:
1566 case Intrinsic::x86_sse4a_insertqi:
Craig Topper3a86a042017-03-19 05:49:16 +00001567 UndefElts.setHighBits(VWidth / 2);
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001568 break;
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001569 case Intrinsic::amdgcn_buffer_load:
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001570 case Intrinsic::amdgcn_buffer_load_format:
1571 case Intrinsic::amdgcn_image_sample:
1572 case Intrinsic::amdgcn_image_sample_cl:
1573 case Intrinsic::amdgcn_image_sample_d:
1574 case Intrinsic::amdgcn_image_sample_d_cl:
1575 case Intrinsic::amdgcn_image_sample_l:
1576 case Intrinsic::amdgcn_image_sample_b:
1577 case Intrinsic::amdgcn_image_sample_b_cl:
1578 case Intrinsic::amdgcn_image_sample_lz:
1579 case Intrinsic::amdgcn_image_sample_cd:
1580 case Intrinsic::amdgcn_image_sample_cd_cl:
1581
1582 case Intrinsic::amdgcn_image_sample_c:
1583 case Intrinsic::amdgcn_image_sample_c_cl:
1584 case Intrinsic::amdgcn_image_sample_c_d:
1585 case Intrinsic::amdgcn_image_sample_c_d_cl:
1586 case Intrinsic::amdgcn_image_sample_c_l:
1587 case Intrinsic::amdgcn_image_sample_c_b:
1588 case Intrinsic::amdgcn_image_sample_c_b_cl:
1589 case Intrinsic::amdgcn_image_sample_c_lz:
1590 case Intrinsic::amdgcn_image_sample_c_cd:
1591 case Intrinsic::amdgcn_image_sample_c_cd_cl:
1592
1593 case Intrinsic::amdgcn_image_sample_o:
1594 case Intrinsic::amdgcn_image_sample_cl_o:
1595 case Intrinsic::amdgcn_image_sample_d_o:
1596 case Intrinsic::amdgcn_image_sample_d_cl_o:
1597 case Intrinsic::amdgcn_image_sample_l_o:
1598 case Intrinsic::amdgcn_image_sample_b_o:
1599 case Intrinsic::amdgcn_image_sample_b_cl_o:
1600 case Intrinsic::amdgcn_image_sample_lz_o:
1601 case Intrinsic::amdgcn_image_sample_cd_o:
1602 case Intrinsic::amdgcn_image_sample_cd_cl_o:
1603
1604 case Intrinsic::amdgcn_image_sample_c_o:
1605 case Intrinsic::amdgcn_image_sample_c_cl_o:
1606 case Intrinsic::amdgcn_image_sample_c_d_o:
1607 case Intrinsic::amdgcn_image_sample_c_d_cl_o:
1608 case Intrinsic::amdgcn_image_sample_c_l_o:
1609 case Intrinsic::amdgcn_image_sample_c_b_o:
1610 case Intrinsic::amdgcn_image_sample_c_b_cl_o:
1611 case Intrinsic::amdgcn_image_sample_c_lz_o:
1612 case Intrinsic::amdgcn_image_sample_c_cd_o:
1613 case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
1614
1615 case Intrinsic::amdgcn_image_getlod: {
Craig Topperd33ee1b2017-04-03 16:34:59 +00001616 if (VWidth == 1 || !DemandedElts.isMask())
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001617 return nullptr;
1618
1619 // TODO: Handle 3 vectors when supported in code gen.
1620 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
1621 if (NewNumElts == VWidth)
1622 return nullptr;
1623
1624 Module *M = II->getParent()->getParent()->getParent();
1625 Type *EltTy = V->getType()->getVectorElementType();
1626
1627 Type *NewTy = (NewNumElts == 1) ? EltTy :
1628 VectorType::get(EltTy, NewNumElts);
1629
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001630 auto IID = II->getIntrinsicID();
1631
1632 bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load ||
1633 IID == Intrinsic::amdgcn_buffer_load_format;
1634
1635 Function *NewIntrin = IsBuffer ?
1636 Intrinsic::getDeclaration(M, IID, NewTy) :
1637 // Samplers have 3 mangled types.
1638 Intrinsic::getDeclaration(M, IID,
1639 { NewTy, II->getArgOperand(0)->getType(),
1640 II->getArgOperand(1)->getType()});
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001641
1642 SmallVector<Value *, 5> Args;
1643 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1644 Args.push_back(II->getArgOperand(I));
1645
Matt Arsenaulta3bdd8f2017-03-10 05:25:49 +00001646 IRBuilderBase::InsertPointGuard Guard(*Builder);
1647 Builder->SetInsertPoint(II);
1648
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001649 CallInst *NewCall = Builder->CreateCall(NewIntrin, Args);
1650 NewCall->takeName(II);
1651 NewCall->copyMetadata(*II);
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001652
1653 if (!IsBuffer) {
1654 ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3));
1655 if (DMask) {
1656 unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1657
1658 unsigned PopCnt = 0;
1659 unsigned NewDMask = 0;
1660 for (unsigned I = 0; I < 4; ++I) {
1661 const unsigned Bit = 1 << I;
1662 if (!!(DMaskVal & Bit)) {
1663 if (++PopCnt > NewNumElts)
1664 break;
1665
1666 NewDMask |= Bit;
1667 }
1668 }
1669
1670 NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask));
1671 }
1672 }
1673
1674
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001675 if (NewNumElts == 1) {
1676 return Builder->CreateInsertElement(UndefValue::get(V->getType()),
1677 NewCall, static_cast<uint64_t>(0));
1678 }
1679
1680 SmallVector<uint32_t, 8> EltMask;
1681 for (unsigned I = 0; I < VWidth; ++I)
1682 EltMask.push_back(I);
1683
1684 Value *Shuffle = Builder->CreateShuffleVector(
1685 NewCall, UndefValue::get(NewTy), EltMask);
1686
1687 MadeChange = true;
1688 return Shuffle;
1689 }
Chris Lattner7e044912010-01-04 07:17:19 +00001690 }
1691 break;
1692 }
1693 }
Craig Topperf40110f2014-04-25 05:29:35 +00001694 return MadeChange ? I : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001695}