blob: 42ce76b7cc24a9b431b9b77fa20a3f4ba7b154b5 [file] [log] [blame]
Chris Lattner7e044912010-01-04 07:17:19 +00001//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carrutha9174582015-01-22 05:25:13 +000015#include "InstCombineInternal.h"
James Molloy2b21a7c2015-05-20 18:41:25 +000016#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000018#include "llvm/IR/PatternMatch.h"
Chris Lattner7e044912010-01-04 07:17:19 +000019
20using namespace llvm;
Shuxin Yang63e999e2012-12-04 00:04:54 +000021using namespace llvm::PatternMatch;
Chris Lattner7e044912010-01-04 07:17:19 +000022
Chandler Carruth964daaa2014-04-22 02:55:47 +000023#define DEBUG_TYPE "instcombine"
24
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000025/// Check to see if the specified operand of the specified instruction is a
26/// constant integer. If so, check to see if there are any bits set in the
27/// constant that are not demanded. If so, shrink the constant and return true.
Craig Topper4c947752012-12-22 18:09:02 +000028static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
Chris Lattner7e044912010-01-04 07:17:19 +000029 APInt Demanded) {
30 assert(I && "No instruction?");
31 assert(OpNo < I->getNumOperands() && "Operand index too large");
32
Sanjay Patelae3b43e2017-02-09 21:43:06 +000033 // The operand must be a constant integer or splat integer.
34 Value *Op = I->getOperand(OpNo);
35 const APInt *C;
36 if (!match(Op, m_APInt(C)))
37 return false;
Chris Lattner7e044912010-01-04 07:17:19 +000038
39 // If there are no bits set that aren't demanded, nothing to do.
Sanjay Patelae3b43e2017-02-09 21:43:06 +000040 Demanded = Demanded.zextOrTrunc(C->getBitWidth());
41 if ((~Demanded & *C) == 0)
Chris Lattner7e044912010-01-04 07:17:19 +000042 return false;
43
44 // This instruction is producing bits that are not demanded. Shrink the RHS.
Sanjay Patelae3b43e2017-02-09 21:43:06 +000045 Demanded &= *C;
46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), Demanded));
David Majnemer42b83a52014-08-22 07:56:32 +000047
Chris Lattner7e044912010-01-04 07:17:19 +000048 return true;
49}
50
51
52
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000053/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54/// the instruction has any properties that allow us to simplify its operands.
Chris Lattner7e044912010-01-04 07:17:19 +000055bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
Craig Topper4c947752012-12-22 18:09:02 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
61 0, &Inst);
Craig Topperf40110f2014-04-25 05:29:35 +000062 if (!V) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000063 if (V == &Inst) return true;
Sanjay Patel4b198802016-02-01 22:23:39 +000064 replaceInstUsesWith(Inst, V);
Chris Lattner7e044912010-01-04 07:17:19 +000065 return true;
66}
67
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000068/// This form of SimplifyDemandedBits simplifies the specified instruction
69/// operand if possible, updating it in place. It returns true if it made any
70/// change and false otherwise.
Benjamin Kramerc321e532016-06-08 19:09:22 +000071bool InstCombiner::SimplifyDemandedBits(Use &U, const APInt &DemandedMask,
Chris Lattner7e044912010-01-04 07:17:19 +000072 APInt &KnownZero, APInt &KnownOne,
73 unsigned Depth) {
David Majnemerfe58d132015-04-22 20:59:28 +000074 auto *UserI = dyn_cast<Instruction>(U.getUser());
75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
76 KnownOne, Depth, UserI);
Craig Topperf40110f2014-04-25 05:29:35 +000077 if (!NewVal) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000078 U = NewVal;
79 return true;
80}
81
82
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000083/// This function attempts to replace V with a simpler value based on the
84/// demanded bits. When this function is called, it is known that only the bits
85/// set in DemandedMask of the result of V are ever used downstream.
86/// Consequently, depending on the mask and V, it may be possible to replace V
87/// with a constant or one of its operands. In such cases, this function does
88/// the replacement and returns true. In all other cases, it returns false after
89/// analyzing the expression and setting KnownOne and known to be one in the
90/// expression. KnownZero contains all the bits that are known to be zero in the
91/// expression. These are provided to potentially allow the caller (which might
92/// recursively be SimplifyDemandedBits itself) to simplify the expression.
93/// KnownOne and KnownZero always follow the invariant that:
94/// KnownOne & KnownZero == 0.
95/// That is, a bit can't be both 1 and 0. Note that the bits in KnownOne and
96/// KnownZero may only be accurate for those bits set in DemandedMask. Note also
97/// that the bitwidth of V, DemandedMask, KnownZero and KnownOne must all be the
98/// same.
Chris Lattner7e044912010-01-04 07:17:19 +000099///
100/// This returns null if it did not change anything and it permits no
101/// simplification. This returns V itself if it did some simplification of V's
102/// operands based on the information about what bits are demanded. This returns
103/// some other non-null value if it found out that V is equal to another value
104/// in the context where the specified bits are demanded, but not for all users.
105Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
106 APInt &KnownZero, APInt &KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +0000107 unsigned Depth,
108 Instruction *CxtI) {
Craig Toppere73658d2014-04-28 04:05:08 +0000109 assert(V != nullptr && "Null pointer of Value???");
Chris Lattner7e044912010-01-04 07:17:19 +0000110 assert(Depth <= 6 && "Limit Search Depth");
111 uint32_t BitWidth = DemandedMask.getBitWidth();
Chris Lattner229907c2011-07-18 04:54:35 +0000112 Type *VTy = V->getType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000113 assert(
114 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
115 KnownZero.getBitWidth() == BitWidth &&
116 KnownOne.getBitWidth() == BitWidth &&
117 "Value *V, DemandedMask, KnownZero and KnownOne "
118 "must have same BitWidth");
Sanjay Patelae3b43e2017-02-09 21:43:06 +0000119 const APInt *C;
120 if (match(V, m_APInt(C))) {
121 // We know all of the bits for a scalar constant or a splat vector constant!
122 KnownOne = *C & DemandedMask;
Chris Lattner7e044912010-01-04 07:17:19 +0000123 KnownZero = ~KnownOne & DemandedMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000124 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000125 }
126 if (isa<ConstantPointerNull>(V)) {
127 // We know all of the bits for a constant!
Jay Foad25a5e4c2010-12-01 08:53:58 +0000128 KnownOne.clearAllBits();
Chris Lattner7e044912010-01-04 07:17:19 +0000129 KnownZero = DemandedMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000130 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000131 }
132
Jay Foad25a5e4c2010-12-01 08:53:58 +0000133 KnownZero.clearAllBits();
134 KnownOne.clearAllBits();
Chris Lattner7e044912010-01-04 07:17:19 +0000135 if (DemandedMask == 0) { // Not demanding any bits from V.
136 if (isa<UndefValue>(V))
Craig Topperf40110f2014-04-25 05:29:35 +0000137 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000138 return UndefValue::get(VTy);
139 }
Craig Topper4c947752012-12-22 18:09:02 +0000140
Chris Lattner7e044912010-01-04 07:17:19 +0000141 if (Depth == 6) // Limit search depth.
Craig Topperf40110f2014-04-25 05:29:35 +0000142 return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000143
Chris Lattner7e044912010-01-04 07:17:19 +0000144 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000145 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +0000146
147 Instruction *I = dyn_cast<Instruction>(V);
148 if (!I) {
Hal Finkel60db0582014-09-07 18:57:58 +0000149 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000150 return nullptr; // Only analyze instructions.
Chris Lattner7e044912010-01-04 07:17:19 +0000151 }
152
153 // If there are multiple uses of this value and we aren't at the root, then
154 // we can't do any simplifications of the operands, because DemandedMask
155 // only reflects the bits demanded by *one* of the users.
156 if (Depth != 0 && !I->hasOneUse()) {
157 // Despite the fact that we can't simplify this instruction in all User's
158 // context, we can at least compute the knownzero/knownone bits, and we can
159 // do simplifications that apply to *just* the one user if we know that
160 // this instruction has a simpler value in that context.
161 if (I->getOpcode() == Instruction::And) {
162 // If either the LHS or the RHS are Zero, the result is zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000163 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 CxtI);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
Hal Finkel60db0582014-09-07 18:57:58 +0000166 CxtI);
Craig Topper4c947752012-12-22 18:09:02 +0000167
Chris Lattner7e044912010-01-04 07:17:19 +0000168 // If all of the demanded bits are known 1 on one side, return the other.
169 // These bits cannot contribute to the result of the 'and' in this
170 // context.
Craig Topper4c947752012-12-22 18:09:02 +0000171 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000172 (DemandedMask & ~LHSKnownZero))
173 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000174 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000175 (DemandedMask & ~RHSKnownZero))
176 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000177
Chris Lattner7e044912010-01-04 07:17:19 +0000178 // If all of the demanded bits in the inputs are known zeros, return zero.
179 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
180 return Constant::getNullValue(VTy);
Craig Topper4c947752012-12-22 18:09:02 +0000181
Chris Lattner7e044912010-01-04 07:17:19 +0000182 } else if (I->getOpcode() == Instruction::Or) {
183 // We can simplify (X|Y) -> X or Y in the user's context if we know that
184 // only bits from X or Y are demanded.
Craig Topper4c947752012-12-22 18:09:02 +0000185
Chris Lattner7e044912010-01-04 07:17:19 +0000186 // If either the LHS or the RHS are One, the result is One.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000187 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
Hal Finkel60db0582014-09-07 18:57:58 +0000188 CxtI);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000189 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
Hal Finkel60db0582014-09-07 18:57:58 +0000190 CxtI);
Craig Topper4c947752012-12-22 18:09:02 +0000191
Chris Lattner7e044912010-01-04 07:17:19 +0000192 // If all of the demanded bits are known zero on one side, return the
193 // other. These bits cannot contribute to the result of the 'or' in this
194 // context.
Craig Topper4c947752012-12-22 18:09:02 +0000195 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000196 (DemandedMask & ~LHSKnownOne))
197 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000198 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000199 (DemandedMask & ~RHSKnownOne))
200 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000201
Chris Lattner7e044912010-01-04 07:17:19 +0000202 // If all of the potentially set bits on one side are known to be set on
203 // the other side, just use the 'other' side.
Craig Topper4c947752012-12-22 18:09:02 +0000204 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000205 (DemandedMask & (~RHSKnownZero)))
206 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000207 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000208 (DemandedMask & (~LHSKnownZero)))
209 return I->getOperand(1);
Shuxin Yang73285932012-12-04 22:15:32 +0000210 } else if (I->getOpcode() == Instruction::Xor) {
211 // We can simplify (X^Y) -> X or Y in the user's context if we know that
212 // only bits from X or Y are demanded.
Craig Topper4c947752012-12-22 18:09:02 +0000213
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000214 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
Hal Finkel60db0582014-09-07 18:57:58 +0000215 CxtI);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000216 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
Hal Finkel60db0582014-09-07 18:57:58 +0000217 CxtI);
Craig Topper4c947752012-12-22 18:09:02 +0000218
Shuxin Yang73285932012-12-04 22:15:32 +0000219 // If all of the demanded bits are known zero on one side, return the
Craig Topper4c947752012-12-22 18:09:02 +0000220 // other.
Shuxin Yang73285932012-12-04 22:15:32 +0000221 if ((DemandedMask & RHSKnownZero) == DemandedMask)
222 return I->getOperand(0);
223 if ((DemandedMask & LHSKnownZero) == DemandedMask)
224 return I->getOperand(1);
Chris Lattner7e044912010-01-04 07:17:19 +0000225 }
Shuxin Yang73285932012-12-04 22:15:32 +0000226
Chris Lattner7e044912010-01-04 07:17:19 +0000227 // Compute the KnownZero/KnownOne bits to simplify things downstream.
Hal Finkel60db0582014-09-07 18:57:58 +0000228 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000229 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000230 }
Craig Topper4c947752012-12-22 18:09:02 +0000231
Chris Lattner7e044912010-01-04 07:17:19 +0000232 // If this is the root being simplified, allow it to have multiple uses,
233 // just set the DemandedMask to all bits so that we can try to simplify the
234 // operands. This allows visitTruncInst (for example) to simplify the
235 // operand of a trunc without duplicating all the logic below.
236 if (Depth == 0 && !V->hasOneUse())
237 DemandedMask = APInt::getAllOnesValue(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000238
Chris Lattner7e044912010-01-04 07:17:19 +0000239 switch (I->getOpcode()) {
240 default:
Hal Finkel60db0582014-09-07 18:57:58 +0000241 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000242 break;
243 case Instruction::And:
244 // If either the LHS or the RHS are Zero, the result is zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000245 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
246 RHSKnownOne, Depth + 1) ||
Chris Lattner7e044912010-01-04 07:17:19 +0000247 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000248 LHSKnownZero, LHSKnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000249 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000250 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
251 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000252
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000253 // If the client is only demanding bits that we know, return the known
254 // constant.
255 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
256 (RHSKnownOne & LHSKnownOne))) == DemandedMask)
257 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
258
Chris Lattner7e044912010-01-04 07:17:19 +0000259 // If all of the demanded bits are known 1 on one side, return the other.
260 // These bits cannot contribute to the result of the 'and'.
Craig Topper4c947752012-12-22 18:09:02 +0000261 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000262 (DemandedMask & ~LHSKnownZero))
263 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000264 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000265 (DemandedMask & ~RHSKnownZero))
266 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000267
Chris Lattner7e044912010-01-04 07:17:19 +0000268 // If all of the demanded bits in the inputs are known zeros, return zero.
269 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
270 return Constant::getNullValue(VTy);
Craig Topper4c947752012-12-22 18:09:02 +0000271
Chris Lattner7e044912010-01-04 07:17:19 +0000272 // If the RHS is a constant, see if we can simplify it.
273 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
274 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000275
Chris Lattner7e044912010-01-04 07:17:19 +0000276 // Output known-1 bits are only known if set in both the LHS & RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000277 KnownOne = RHSKnownOne & LHSKnownOne;
Chris Lattner7e044912010-01-04 07:17:19 +0000278 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000279 KnownZero = RHSKnownZero | LHSKnownZero;
Chris Lattner7e044912010-01-04 07:17:19 +0000280 break;
281 case Instruction::Or:
282 // If either the LHS or the RHS are One, the result is One.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000283 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
284 RHSKnownOne, Depth + 1) ||
Craig Topper4c947752012-12-22 18:09:02 +0000285 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000286 LHSKnownZero, LHSKnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000287 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000288 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
289 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
290
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000291 // If the client is only demanding bits that we know, return the known
292 // constant.
293 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
294 (RHSKnownOne | LHSKnownOne))) == DemandedMask)
295 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
296
Chris Lattner7e044912010-01-04 07:17:19 +0000297 // If all of the demanded bits are known zero on one side, return the other.
298 // These bits cannot contribute to the result of the 'or'.
Craig Topper4c947752012-12-22 18:09:02 +0000299 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000300 (DemandedMask & ~LHSKnownOne))
301 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000302 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000303 (DemandedMask & ~RHSKnownOne))
304 return I->getOperand(1);
305
306 // If all of the potentially set bits on one side are known to be set on
307 // the other side, just use the 'other' side.
Craig Topper4c947752012-12-22 18:09:02 +0000308 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000309 (DemandedMask & (~RHSKnownZero)))
310 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000311 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
Chris Lattner7e044912010-01-04 07:17:19 +0000312 (DemandedMask & (~LHSKnownZero)))
313 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000314
Chris Lattner7e044912010-01-04 07:17:19 +0000315 // If the RHS is a constant, see if we can simplify it.
316 if (ShrinkDemandedConstant(I, 1, DemandedMask))
317 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000318
Chris Lattner7e044912010-01-04 07:17:19 +0000319 // Output known-0 bits are only known if clear in both the LHS & RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000320 KnownZero = RHSKnownZero & LHSKnownZero;
Chris Lattner7e044912010-01-04 07:17:19 +0000321 // Output known-1 are known to be set if set in either the LHS | RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000322 KnownOne = RHSKnownOne | LHSKnownOne;
Chris Lattner7e044912010-01-04 07:17:19 +0000323 break;
324 case Instruction::Xor: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000325 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
326 RHSKnownOne, Depth + 1) ||
327 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
328 LHSKnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000329 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000330 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
331 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
332
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000333 // Output known-0 bits are known if clear or set in both the LHS & RHS.
334 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
335 (RHSKnownOne & LHSKnownOne);
336 // Output known-1 are known to be set if set in only one of the LHS, RHS.
337 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) |
338 (RHSKnownOne & LHSKnownZero);
339
340 // If the client is only demanding bits that we know, return the known
341 // constant.
342 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
343 return Constant::getIntegerValue(VTy, IKnownOne);
344
Chris Lattner7e044912010-01-04 07:17:19 +0000345 // If all of the demanded bits are known zero on one side, return the other.
346 // These bits cannot contribute to the result of the 'xor'.
347 if ((DemandedMask & RHSKnownZero) == DemandedMask)
348 return I->getOperand(0);
349 if ((DemandedMask & LHSKnownZero) == DemandedMask)
350 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000351
Chris Lattner7e044912010-01-04 07:17:19 +0000352 // If all of the demanded bits are known to be zero on one side or the
353 // other, turn this into an *inclusive* or.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000354 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattner7e044912010-01-04 07:17:19 +0000355 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
Craig Topper4c947752012-12-22 18:09:02 +0000356 Instruction *Or =
Chris Lattner7e044912010-01-04 07:17:19 +0000357 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
358 I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000359 return InsertNewInstWith(Or, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000360 }
Craig Topper4c947752012-12-22 18:09:02 +0000361
Chris Lattner7e044912010-01-04 07:17:19 +0000362 // If all of the demanded bits on one side are known, and all of the set
363 // bits on that side are also known to be set on the other side, turn this
364 // into an AND, as we know the bits will be cleared.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000365 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
Craig Topper4c947752012-12-22 18:09:02 +0000366 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
Chris Lattner7e044912010-01-04 07:17:19 +0000367 // all known
368 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
369 Constant *AndC = Constant::getIntegerValue(VTy,
370 ~RHSKnownOne & DemandedMask);
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000371 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000372 return InsertNewInstWith(And, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000373 }
374 }
Craig Topper4c947752012-12-22 18:09:02 +0000375
Chris Lattner7e044912010-01-04 07:17:19 +0000376 // If the RHS is a constant, see if we can simplify it.
377 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
378 if (ShrinkDemandedConstant(I, 1, DemandedMask))
379 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000380
Chris Lattner7e044912010-01-04 07:17:19 +0000381 // If our LHS is an 'and' and if it has one use, and if any of the bits we
382 // are flipping are known to be set, then the xor is just resetting those
383 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
384 // simplifying both of them.
385 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
386 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
387 isa<ConstantInt>(I->getOperand(1)) &&
388 isa<ConstantInt>(LHSInst->getOperand(1)) &&
389 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
390 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
391 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
392 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
Craig Topper4c947752012-12-22 18:09:02 +0000393
Chris Lattner7e044912010-01-04 07:17:19 +0000394 Constant *AndC =
395 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000396 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000397 InsertNewInstWith(NewAnd, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000398
Chris Lattner7e044912010-01-04 07:17:19 +0000399 Constant *XorC =
400 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000401 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000402 return InsertNewInstWith(NewXor, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000403 }
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000404
405 // Output known-0 bits are known if clear or set in both the LHS & RHS.
406 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
407 // Output known-1 are known to be set if set in only one of the LHS, RHS.
408 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
Chris Lattner7e044912010-01-04 07:17:19 +0000409 break;
410 }
411 case Instruction::Select:
James Molloy2b21a7c2015-05-20 18:41:25 +0000412 // If this is a select as part of a min/max pattern, don't simplify any
413 // further in case we break the structure.
414 Value *LHS, *RHS;
James Molloy134bec22015-08-11 09:12:57 +0000415 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
James Molloy2b21a7c2015-05-20 18:41:25 +0000416 return nullptr;
Simon Pilgrim61116dd2015-09-17 20:32:45 +0000417
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000418 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
419 RHSKnownOne, Depth + 1) ||
420 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
421 LHSKnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000422 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000423 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
424 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
425
Chris Lattner7e044912010-01-04 07:17:19 +0000426 // If the operands are constants, see if we can simplify them.
427 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
428 ShrinkDemandedConstant(I, 2, DemandedMask))
429 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000430
Chris Lattner7e044912010-01-04 07:17:19 +0000431 // Only known if known in both the LHS and RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000432 KnownOne = RHSKnownOne & LHSKnownOne;
433 KnownZero = RHSKnownZero & LHSKnownZero;
Chris Lattner7e044912010-01-04 07:17:19 +0000434 break;
435 case Instruction::Trunc: {
436 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
Jay Foad583abbc2010-12-07 08:25:19 +0000437 DemandedMask = DemandedMask.zext(truncBf);
438 KnownZero = KnownZero.zext(truncBf);
439 KnownOne = KnownOne.zext(truncBf);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000440 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
441 KnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000442 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000443 DemandedMask = DemandedMask.trunc(BitWidth);
444 KnownZero = KnownZero.trunc(BitWidth);
445 KnownOne = KnownOne.trunc(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000446 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000447 break;
448 }
449 case Instruction::BitCast:
Duncan Sands9dff9be2010-02-15 16:12:20 +0000450 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
Craig Topperf40110f2014-04-25 05:29:35 +0000451 return nullptr; // vector->int or fp->int?
Chris Lattner7e044912010-01-04 07:17:19 +0000452
Chris Lattner229907c2011-07-18 04:54:35 +0000453 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
454 if (VectorType *SrcVTy =
Chris Lattner7e044912010-01-04 07:17:19 +0000455 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
456 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
457 // Don't touch a bitcast between vectors of different element counts.
Craig Topperf40110f2014-04-25 05:29:35 +0000458 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000459 } else
460 // Don't touch a scalar-to-vector bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000461 return nullptr;
Duncan Sands19d0b472010-02-16 11:11:14 +0000462 } else if (I->getOperand(0)->getType()->isVectorTy())
Chris Lattner7e044912010-01-04 07:17:19 +0000463 // Don't touch a vector-to-scalar bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000464 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000465
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000466 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
467 KnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000468 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000469 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000470 break;
471 case Instruction::ZExt: {
472 // Compute the bits in the result that are not present in the input.
473 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000474
Jay Foad583abbc2010-12-07 08:25:19 +0000475 DemandedMask = DemandedMask.trunc(SrcBitWidth);
476 KnownZero = KnownZero.trunc(SrcBitWidth);
477 KnownOne = KnownOne.trunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000478 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
479 KnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000480 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000481 DemandedMask = DemandedMask.zext(BitWidth);
482 KnownZero = KnownZero.zext(BitWidth);
483 KnownOne = KnownOne.zext(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000484 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000485 // The top bits are known to be zero.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000486 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +0000487 break;
488 }
489 case Instruction::SExt: {
490 // Compute the bits in the result that are not present in the input.
491 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000492
493 APInt InputDemandedBits = DemandedMask &
Chris Lattner7e044912010-01-04 07:17:19 +0000494 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
495
496 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
497 // If any of the sign extended bits are demanded, we know that the sign
498 // bit is demanded.
499 if ((NewBits & DemandedMask) != 0)
Jay Foad25a5e4c2010-12-01 08:53:58 +0000500 InputDemandedBits.setBit(SrcBitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000501
Jay Foad583abbc2010-12-07 08:25:19 +0000502 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
503 KnownZero = KnownZero.trunc(SrcBitWidth);
504 KnownOne = KnownOne.trunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000505 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
506 KnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000507 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000508 InputDemandedBits = InputDemandedBits.zext(BitWidth);
509 KnownZero = KnownZero.zext(BitWidth);
510 KnownOne = KnownOne.zext(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000511 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
512
Chris Lattner7e044912010-01-04 07:17:19 +0000513 // If the sign bit of the input is known set or clear, then we know the
514 // top bits of the result.
515
516 // If the input sign bit is known zero, or if the NewBits are not demanded
517 // convert this into a zero extension.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000518 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
Chris Lattner7e044912010-01-04 07:17:19 +0000519 // Convert to ZExt cast
520 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000521 return InsertNewInstWith(NewCast, *I);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000522 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
523 KnownOne |= NewBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000524 }
525 break;
526 }
Matthias Braune48484c2015-04-30 22:05:30 +0000527 case Instruction::Add:
528 case Instruction::Sub: {
529 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
530 /// about the high bits of the operands.
Chris Lattner7e044912010-01-04 07:17:19 +0000531 unsigned NLZ = DemandedMask.countLeadingZeros();
Matthias Braune48484c2015-04-30 22:05:30 +0000532 if (NLZ > 0) {
533 // Right fill the mask of bits for this ADD/SUB to demand the most
Chris Lattner7e044912010-01-04 07:17:19 +0000534 // significant bit and all those below it.
Chris Lattner7e044912010-01-04 07:17:19 +0000535 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
536 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000537 LHSKnownZero, LHSKnownOne, Depth + 1) ||
Matthias Braune48484c2015-04-30 22:05:30 +0000538 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
Chris Lattner7e044912010-01-04 07:17:19 +0000539 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
David Majnemer7d0e99c2015-04-22 22:42:05 +0000540 LHSKnownZero, LHSKnownOne, Depth + 1)) {
Matthias Braune48484c2015-04-30 22:05:30 +0000541 // Disable the nsw and nuw flags here: We can no longer guarantee that
542 // we won't wrap after simplification. Removing the nsw/nuw flags is
543 // legal here because the top bit is not demanded.
544 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
545 BinOP.setHasNoSignedWrap(false);
546 BinOP.setHasNoUnsignedWrap(false);
Chris Lattner7e044912010-01-04 07:17:19 +0000547 return I;
David Majnemer7d0e99c2015-04-22 22:42:05 +0000548 }
Chris Lattner7e044912010-01-04 07:17:19 +0000549 }
Benjamin Kramer010337c2011-12-24 17:31:38 +0000550
Matthias Braune48484c2015-04-30 22:05:30 +0000551 // Otherwise just hand the add/sub off to computeKnownBits to fill in
Chris Lattner7e044912010-01-04 07:17:19 +0000552 // the known zeros and ones.
Hal Finkel60db0582014-09-07 18:57:58 +0000553 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000554 break;
Matthias Braune48484c2015-04-30 22:05:30 +0000555 }
Chris Lattner7e044912010-01-04 07:17:19 +0000556 case Instruction::Shl:
557 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Shuxin Yang63e999e2012-12-04 00:04:54 +0000558 {
559 Value *VarX; ConstantInt *C1;
560 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
561 Instruction *Shr = cast<Instruction>(I->getOperand(0));
562 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
563 KnownZero, KnownOne);
564 if (R)
565 return R;
566 }
567 }
568
Chris Lattner768003c2011-02-10 05:09:34 +0000569 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner7e044912010-01-04 07:17:19 +0000570 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000571
Chris Lattner768003c2011-02-10 05:09:34 +0000572 // If the shift is NUW/NSW, then it does demand the high bits.
573 ShlOperator *IOp = cast<ShlOperator>(I);
574 if (IOp->hasNoSignedWrap())
575 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
576 else if (IOp->hasNoUnsignedWrap())
577 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000578
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000579 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
580 KnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000581 return I;
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000582 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
583 KnownZero <<= ShiftAmt;
584 KnownOne <<= ShiftAmt;
Chris Lattner7e044912010-01-04 07:17:19 +0000585 // low bits known zero.
586 if (ShiftAmt)
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000587 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
Chris Lattner7e044912010-01-04 07:17:19 +0000588 }
589 break;
590 case Instruction::LShr:
591 // For a logical shift right
592 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000593 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000594
Chris Lattner7e044912010-01-04 07:17:19 +0000595 // Unsigned shift right.
596 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000597
Chris Lattner768003c2011-02-10 05:09:34 +0000598 // If the shift is exact, then it does demand the low bits (and knows that
599 // they are zero).
600 if (cast<LShrOperator>(I)->isExact())
601 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000602
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000603 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
604 KnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000605 return I;
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000606 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
607 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
608 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Chris Lattner7e044912010-01-04 07:17:19 +0000609 if (ShiftAmt) {
610 // Compute the new bits that are at the top now.
611 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000612 KnownZero |= HighBits; // high bits known zero.
Chris Lattner7e044912010-01-04 07:17:19 +0000613 }
614 }
615 break;
616 case Instruction::AShr:
617 // If this is an arithmetic shift right and only the low-bit is set, we can
618 // always convert this into a logical shr, even if the shift amount is
619 // variable. The low bit of the shift cannot be an input sign bit unless
620 // the shift amount is >= the size of the datatype, which is undefined.
621 if (DemandedMask == 1) {
622 // Perform the logical shift right.
623 Instruction *NewVal = BinaryOperator::CreateLShr(
624 I->getOperand(0), I->getOperand(1), I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000625 return InsertNewInstWith(NewVal, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000626 }
Chris Lattner7e044912010-01-04 07:17:19 +0000627
628 // If the sign bit is the only bit demanded by this ashr, then there is no
629 // need to do it, the shift doesn't change the high bit.
630 if (DemandedMask.isSignBit())
631 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000632
Chris Lattner7e044912010-01-04 07:17:19 +0000633 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000634 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000635
Chris Lattner7e044912010-01-04 07:17:19 +0000636 // Signed shift right.
637 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
638 // If any of the "high bits" are demanded, we should set the sign bit as
639 // demanded.
640 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
Jay Foad25a5e4c2010-12-01 08:53:58 +0000641 DemandedMaskIn.setBit(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000642
Chris Lattner768003c2011-02-10 05:09:34 +0000643 // If the shift is exact, then it does demand the low bits (and knows that
644 // they are zero).
645 if (cast<AShrOperator>(I)->isExact())
646 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000647
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000648 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
649 KnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000650 return I;
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000651 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000652 // Compute the new bits that are at the top now.
653 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000654 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
655 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000656
Chris Lattner7e044912010-01-04 07:17:19 +0000657 // Handle the sign bits.
658 APInt SignBit(APInt::getSignBit(BitWidth));
659 // Adjust to where it is now in the mask.
Craig Topper4c947752012-12-22 18:09:02 +0000660 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
661
Chris Lattner7e044912010-01-04 07:17:19 +0000662 // If the input sign bit is known to be zero, or if none of the top bits
663 // are demanded, turn this into an unsigned shift right.
Craig Topper4c947752012-12-22 18:09:02 +0000664 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
Chris Lattner7e044912010-01-04 07:17:19 +0000665 (HighBits & ~DemandedMask) == HighBits) {
666 // Perform the logical shift right.
Nick Lewycky0c48afa2012-01-04 09:28:29 +0000667 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
668 SA, I->getName());
669 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000670 return InsertNewInstWith(NewVal, *I);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000671 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
672 KnownOne |= HighBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000673 }
674 }
675 break;
676 case Instruction::SRem:
677 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Eli Friedmana81a82d2011-03-09 01:28:35 +0000678 // X % -1 demands all the bits because we don't want to introduce
679 // INT_MIN % -1 (== undef) by accident.
680 if (Rem->isAllOnesValue())
681 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000682 APInt RA = Rem->getValue().abs();
683 if (RA.isPowerOf2()) {
684 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
685 return I->getOperand(0);
686
687 APInt LowBits = RA - 1;
688 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000689 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
690 LHSKnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000691 return I;
692
Duncan Sands3a48b872010-01-28 17:22:42 +0000693 // The low bits of LHS are unchanged by the srem.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000694 KnownZero = LHSKnownZero & LowBits;
695 KnownOne = LHSKnownOne & LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000696
Duncan Sands3a48b872010-01-28 17:22:42 +0000697 // If LHS is non-negative or has all low bits zero, then the upper bits
698 // are all zero.
699 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
700 KnownZero |= ~LowBits;
701
702 // If LHS is negative and not all low bits are zero, then the upper bits
703 // are all one.
704 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
705 KnownOne |= ~LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000706
Craig Topper4c947752012-12-22 18:09:02 +0000707 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000708 }
709 }
Nick Lewyckye4679792011-03-07 01:50:10 +0000710
711 // The sign bit is the LHS's sign bit, except when the result of the
712 // remainder is zero.
713 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +0000714 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000715 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
Hal Finkel60db0582014-09-07 18:57:58 +0000716 CxtI);
Nick Lewyckye4679792011-03-07 01:50:10 +0000717 // If it's known zero, our sign bit is also zero.
718 if (LHSKnownZero.isNegative())
Benjamin Kramer21b972a2013-05-09 16:32:32 +0000719 KnownZero.setBit(KnownZero.getBitWidth() - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +0000720 }
Chris Lattner7e044912010-01-04 07:17:19 +0000721 break;
722 case Instruction::URem: {
723 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
724 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000725 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
726 KnownOne2, Depth + 1) ||
727 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
728 KnownOne2, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000729 return I;
730
731 unsigned Leaders = KnownZero2.countLeadingOnes();
732 Leaders = std::max(Leaders,
733 KnownZero2.countLeadingOnes());
734 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
735 break;
736 }
737 case Instruction::Call:
738 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
739 switch (II->getIntrinsicID()) {
740 default: break;
741 case Intrinsic::bswap: {
742 // If the only bits demanded come from one byte of the bswap result,
743 // just shift the input byte into position to eliminate the bswap.
744 unsigned NLZ = DemandedMask.countLeadingZeros();
745 unsigned NTZ = DemandedMask.countTrailingZeros();
Craig Topper4c947752012-12-22 18:09:02 +0000746
Chris Lattner7e044912010-01-04 07:17:19 +0000747 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
748 // we need all the bits down to bit 8. Likewise, round NLZ. If we
749 // have 14 leading zeros, round to 8.
750 NLZ &= ~7;
751 NTZ &= ~7;
752 // If we need exactly one byte, we can do this transformation.
753 if (BitWidth-NLZ-NTZ == 8) {
754 unsigned ResultBit = NTZ;
755 unsigned InputBit = BitWidth-NTZ-8;
Craig Topper4c947752012-12-22 18:09:02 +0000756
Chris Lattner7e044912010-01-04 07:17:19 +0000757 // Replace this with either a left or right shift to get the byte into
758 // the right place.
759 Instruction *NewVal;
760 if (InputBit > ResultBit)
Gabor Greif79430172010-06-24 12:35:13 +0000761 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000762 ConstantInt::get(I->getType(), InputBit-ResultBit));
763 else
Gabor Greif79430172010-06-24 12:35:13 +0000764 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000765 ConstantInt::get(I->getType(), ResultBit-InputBit));
766 NewVal->takeName(I);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000767 return InsertNewInstWith(NewVal, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000768 }
Craig Topper4c947752012-12-22 18:09:02 +0000769
Chris Lattner7e044912010-01-04 07:17:19 +0000770 // TODO: Could compute known zero/one bits based on the input.
771 break;
772 }
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000773 case Intrinsic::x86_mmx_pmovmskb:
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000774 case Intrinsic::x86_sse_movmsk_ps:
775 case Intrinsic::x86_sse2_movmsk_pd:
776 case Intrinsic::x86_sse2_pmovmskb_128:
777 case Intrinsic::x86_avx_movmsk_ps_256:
778 case Intrinsic::x86_avx_movmsk_pd_256:
779 case Intrinsic::x86_avx2_pmovmskb: {
780 // MOVMSK copies the vector elements' sign bits to the low bits
781 // and zeros the high bits.
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000782 unsigned ArgWidth;
783 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
784 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
785 } else {
786 auto Arg = II->getArgOperand(0);
787 auto ArgType = cast<VectorType>(Arg->getType());
788 ArgWidth = ArgType->getNumElements();
789 }
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000790
791 // If we don't need any of low bits then return zero,
792 // we know that DemandedMask is non-zero already.
793 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
794 if (DemandedElts == 0)
795 return ConstantInt::getNullValue(VTy);
796
Ahmed Bougacha17482a52016-04-28 14:36:07 +0000797 // We know that the upper bits are set to zero.
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000798 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - ArgWidth);
799 return nullptr;
800 }
Chad Rosierb3628842011-05-26 23:13:19 +0000801 case Intrinsic::x86_sse42_crc32_64_64:
Evan Chenge8d2e9e2011-05-20 00:54:37 +0000802 KnownZero = APInt::getHighBitsSet(64, 32);
Craig Topperf40110f2014-04-25 05:29:35 +0000803 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000804 }
805 }
Hal Finkel60db0582014-09-07 18:57:58 +0000806 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000807 break;
808 }
Craig Topper4c947752012-12-22 18:09:02 +0000809
Chris Lattner7e044912010-01-04 07:17:19 +0000810 // If the client is only demanding bits that we know, return the known
811 // constant.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000812 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
813 return Constant::getIntegerValue(VTy, KnownOne);
Craig Topperf40110f2014-04-25 05:29:35 +0000814 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000815}
816
Shuxin Yang63e999e2012-12-04 00:04:54 +0000817/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
818/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
819/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
820/// of "C2-C1".
821///
822/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
823/// ..., bn}, without considering the specific value X is holding.
824/// This transformation is legal iff one of following conditions is hold:
825/// 1) All the bit in S are 0, in this case E1 == E2.
826/// 2) We don't care those bits in S, per the input DemandedMask.
827/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
828/// rest bits.
829///
830/// Currently we only test condition 2).
831///
832/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
833/// not successful.
834Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
Benjamin Kramerc321e532016-06-08 19:09:22 +0000835 Instruction *Shl,
836 const APInt &DemandedMask,
837 APInt &KnownZero,
838 APInt &KnownOne) {
Shuxin Yang63e999e2012-12-04 00:04:54 +0000839
Benjamin Kramer010f1082013-08-30 14:35:35 +0000840 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
841 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
842 if (!ShlOp1 || !ShrOp1)
Craig Topperf40110f2014-04-25 05:29:35 +0000843 return nullptr; // Noop.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000844
845 Value *VarX = Shr->getOperand(0);
846 Type *Ty = VarX->getType();
847 unsigned BitWidth = Ty->getIntegerBitWidth();
848 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
Craig Topperf40110f2014-04-25 05:29:35 +0000849 return nullptr; // Undef.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000850
851 unsigned ShlAmt = ShlOp1.getZExtValue();
852 unsigned ShrAmt = ShrOp1.getZExtValue();
Shuxin Yang63e999e2012-12-04 00:04:54 +0000853
854 KnownOne.clearAllBits();
855 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
856 KnownZero &= DemandedMask;
857
Benjamin Kramer010f1082013-08-30 14:35:35 +0000858 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
859 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
Shuxin Yang63e999e2012-12-04 00:04:54 +0000860
861 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
862 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
863 (BitMask1.ashr(ShrAmt) << ShlAmt);
864
865 if (ShrAmt <= ShlAmt) {
866 BitMask2 <<= (ShlAmt - ShrAmt);
867 } else {
868 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
869 BitMask2.ashr(ShrAmt - ShlAmt);
870 }
871
872 // Check if condition-2 (see the comment to this function) is satified.
873 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
874 if (ShrAmt == ShlAmt)
875 return VarX;
876
877 if (!Shr->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +0000878 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000879
880 BinaryOperator *New;
881 if (ShrAmt < ShlAmt) {
882 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
883 New = BinaryOperator::CreateShl(VarX, Amt);
884 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
885 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
886 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
887 } else {
888 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
Shuxin Yang86c0e232012-12-04 03:28:32 +0000889 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
890 BinaryOperator::CreateAShr(VarX, Amt);
Shuxin Yang81b36782012-12-12 00:29:03 +0000891 if (cast<BinaryOperator>(Shr)->isExact())
892 New->setIsExact(true);
Shuxin Yang63e999e2012-12-04 00:04:54 +0000893 }
894
895 return InsertNewInstWith(New, *Shl);
896 }
897
Craig Topperf40110f2014-04-25 05:29:35 +0000898 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000899}
Chris Lattner7e044912010-01-04 07:17:19 +0000900
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +0000901/// The specified value produces a vector with any number of elements.
902/// DemandedElts contains the set of elements that are actually used by the
903/// caller. This method analyzes which elements of the operand are undef and
904/// returns that information in UndefElts.
Chris Lattner7e044912010-01-04 07:17:19 +0000905///
906/// If the information about demanded elements can be used to simplify the
907/// operation, the operation is simplified, then the resultant value is
908/// returned. This returns null if no change was made.
909Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Chris Lattnerb22423c2010-02-08 23:56:03 +0000910 APInt &UndefElts,
Chris Lattner7e044912010-01-04 07:17:19 +0000911 unsigned Depth) {
Sanjay Patel9190b4a2016-04-29 20:54:56 +0000912 unsigned VWidth = V->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +0000913 APInt EltMask(APInt::getAllOnesValue(VWidth));
914 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
915
916 if (isa<UndefValue>(V)) {
917 // If the entire vector is undefined, just return this info.
918 UndefElts = EltMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000919 return nullptr;
Chris Lattnerb22423c2010-02-08 23:56:03 +0000920 }
Craig Topper4c947752012-12-22 18:09:02 +0000921
Chris Lattnerb22423c2010-02-08 23:56:03 +0000922 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000923 UndefElts = EltMask;
924 return UndefValue::get(V->getType());
925 }
926
927 UndefElts = 0;
Craig Topper4c947752012-12-22 18:09:02 +0000928
Chris Lattner67058832012-01-25 06:48:06 +0000929 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
930 if (Constant *C = dyn_cast<Constant>(V)) {
931 // Check if this is identity. If so, return 0 since we are not simplifying
932 // anything.
933 if (DemandedElts.isAllOnesValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000934 return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +0000935
Chris Lattner229907c2011-07-18 04:54:35 +0000936 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner7e044912010-01-04 07:17:19 +0000937 Constant *Undef = UndefValue::get(EltTy);
Craig Topper4c947752012-12-22 18:09:02 +0000938
Chris Lattner67058832012-01-25 06:48:06 +0000939 SmallVector<Constant*, 16> Elts;
940 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7e044912010-01-04 07:17:19 +0000941 if (!DemandedElts[i]) { // If not demanded, set to undef.
942 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000943 UndefElts.setBit(i);
Chris Lattner67058832012-01-25 06:48:06 +0000944 continue;
945 }
Craig Topper4c947752012-12-22 18:09:02 +0000946
Chris Lattner67058832012-01-25 06:48:06 +0000947 Constant *Elt = C->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +0000948 if (!Elt) return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000949
Chris Lattner67058832012-01-25 06:48:06 +0000950 if (isa<UndefValue>(Elt)) { // Already undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000951 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000952 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +0000953 } else { // Otherwise, defined.
Chris Lattner67058832012-01-25 06:48:06 +0000954 Elts.push_back(Elt);
Chris Lattner7e044912010-01-04 07:17:19 +0000955 }
Chris Lattner67058832012-01-25 06:48:06 +0000956 }
Craig Topper4c947752012-12-22 18:09:02 +0000957
Chris Lattner7e044912010-01-04 07:17:19 +0000958 // If we changed the constant, return it.
Chris Lattner47a86bd2012-01-25 06:02:56 +0000959 Constant *NewCV = ConstantVector::get(Elts);
Craig Topperf40110f2014-04-25 05:29:35 +0000960 return NewCV != C ? NewCV : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000961 }
Craig Topper4c947752012-12-22 18:09:02 +0000962
Chris Lattner7e044912010-01-04 07:17:19 +0000963 // Limit search depth.
964 if (Depth == 10)
Craig Topperf40110f2014-04-25 05:29:35 +0000965 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000966
Stuart Hastings5bd18b62011-05-17 22:13:31 +0000967 // If multiple users are using the root value, proceed with
Chris Lattner7e044912010-01-04 07:17:19 +0000968 // simplification conservatively assuming that all elements
969 // are needed.
970 if (!V->hasOneUse()) {
971 // Quit if we find multiple users of a non-root value though.
972 // They'll be handled when it's their turn to be visited by
973 // the main instcombine process.
974 if (Depth != 0)
975 // TODO: Just compute the UndefElts information recursively.
Craig Topperf40110f2014-04-25 05:29:35 +0000976 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000977
978 // Conservatively assume that all elements are needed.
979 DemandedElts = EltMask;
980 }
Craig Topper4c947752012-12-22 18:09:02 +0000981
Chris Lattner7e044912010-01-04 07:17:19 +0000982 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000983 if (!I) return nullptr; // Only analyze instructions.
Craig Topper4c947752012-12-22 18:09:02 +0000984
Chris Lattner7e044912010-01-04 07:17:19 +0000985 bool MadeChange = false;
986 APInt UndefElts2(VWidth, 0);
Craig Topper23ebd952016-12-11 08:54:52 +0000987 APInt UndefElts3(VWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +0000988 Value *TmpV;
989 switch (I->getOpcode()) {
990 default: break;
Craig Topper4c947752012-12-22 18:09:02 +0000991
Chris Lattner7e044912010-01-04 07:17:19 +0000992 case Instruction::InsertElement: {
993 // If this is a variable index, we don't know which element it overwrites.
994 // demand exactly the same input as we produce.
995 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Craig Topperf40110f2014-04-25 05:29:35 +0000996 if (!Idx) {
Chris Lattner7e044912010-01-04 07:17:19 +0000997 // Note that we can't propagate undef elt info, because we don't know
998 // which elt is getting updated.
999 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001000 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001001 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1002 break;
1003 }
Craig Topper4c947752012-12-22 18:09:02 +00001004
Chris Lattner7e044912010-01-04 07:17:19 +00001005 // If this is inserting an element that isn't demanded, remove this
1006 // insertelement.
1007 unsigned IdxNo = Idx->getZExtValue();
1008 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1009 Worklist.Add(I);
1010 return I->getOperand(0);
1011 }
Craig Topper4c947752012-12-22 18:09:02 +00001012
Chris Lattner7e044912010-01-04 07:17:19 +00001013 // Otherwise, the element inserted overwrites whatever was there, so the
1014 // input demanded set is simpler than the output set.
1015 APInt DemandedElts2 = DemandedElts;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001016 DemandedElts2.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001017 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001018 UndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001019 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1020
1021 // The inserted element is defined.
Jay Foad25a5e4c2010-12-01 08:53:58 +00001022 UndefElts.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001023 break;
1024 }
1025 case Instruction::ShuffleVector: {
1026 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Craig Topper2e18bcf2016-12-29 04:24:32 +00001027 unsigned LHSVWidth =
1028 Shuffle->getOperand(0)->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +00001029 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1030 for (unsigned i = 0; i < VWidth; i++) {
1031 if (DemandedElts[i]) {
1032 unsigned MaskVal = Shuffle->getMaskValue(i);
1033 if (MaskVal != -1u) {
1034 assert(MaskVal < LHSVWidth * 2 &&
1035 "shufflevector mask index out of range!");
1036 if (MaskVal < LHSVWidth)
Jay Foad25a5e4c2010-12-01 08:53:58 +00001037 LeftDemanded.setBit(MaskVal);
Chris Lattner7e044912010-01-04 07:17:19 +00001038 else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001039 RightDemanded.setBit(MaskVal - LHSVWidth);
Chris Lattner7e044912010-01-04 07:17:19 +00001040 }
1041 }
1042 }
1043
Alexey Bataevfee90782016-09-23 09:14:08 +00001044 APInt LHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001045 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001046 LHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001047 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1048
Alexey Bataevfee90782016-09-23 09:14:08 +00001049 APInt RHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001050 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001051 RHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001052 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1053
1054 bool NewUndefElts = false;
Alexey Bataev793c9462016-09-26 13:18:59 +00001055 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1056 unsigned RHSIdx = -1u, RHSValIdx = -1u;
Alexey Bataevfee90782016-09-23 09:14:08 +00001057 bool LHSUniform = true;
1058 bool RHSUniform = true;
Chris Lattner7e044912010-01-04 07:17:19 +00001059 for (unsigned i = 0; i < VWidth; i++) {
1060 unsigned MaskVal = Shuffle->getMaskValue(i);
1061 if (MaskVal == -1u) {
Jay Foad25a5e4c2010-12-01 08:53:58 +00001062 UndefElts.setBit(i);
Eli Friedman888bea02011-09-15 01:14:29 +00001063 } else if (!DemandedElts[i]) {
1064 NewUndefElts = true;
1065 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +00001066 } else if (MaskVal < LHSVWidth) {
Alexey Bataevfee90782016-09-23 09:14:08 +00001067 if (LHSUndefElts[MaskVal]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001068 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001069 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001070 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001071 LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1072 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001073 LHSUniform = LHSUniform && (MaskVal == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001074 }
1075 } else {
Alexey Bataevfee90782016-09-23 09:14:08 +00001076 if (RHSUndefElts[MaskVal - LHSVWidth]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001077 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001078 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001079 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001080 RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1081 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001082 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001083 }
1084 }
1085 }
1086
Alexey Bataevfee90782016-09-23 09:14:08 +00001087 // Try to transform shuffle with constant vector and single element from
1088 // this constant vector to single insertelement instruction.
1089 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1090 // insertelement V, C[ci], ci-n
1091 if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1092 Value *Op = nullptr;
1093 Constant *Value = nullptr;
1094 unsigned Idx = -1u;
1095
Craig Topper62f06e22016-12-29 05:38:31 +00001096 // Find constant vector with the single element in shuffle (LHS or RHS).
Alexey Bataevfee90782016-09-23 09:14:08 +00001097 if (LHSIdx < LHSVWidth && RHSUniform) {
1098 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1099 Op = Shuffle->getOperand(1);
Alexey Bataev793c9462016-09-26 13:18:59 +00001100 Value = CV->getOperand(LHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001101 Idx = LHSIdx;
1102 }
1103 }
1104 if (RHSIdx < LHSVWidth && LHSUniform) {
1105 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1106 Op = Shuffle->getOperand(0);
Alexey Bataev793c9462016-09-26 13:18:59 +00001107 Value = CV->getOperand(RHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001108 Idx = RHSIdx;
1109 }
1110 }
1111 // Found constant vector with single element - convert to insertelement.
1112 if (Op && Value) {
1113 Instruction *New = InsertElementInst::Create(
1114 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1115 Shuffle->getName());
1116 InsertNewInstWith(New, *Shuffle);
1117 return New;
1118 }
1119 }
Chris Lattner7e044912010-01-04 07:17:19 +00001120 if (NewUndefElts) {
1121 // Add additional discovered undefs.
Chris Lattner0256be92012-01-27 03:08:05 +00001122 SmallVector<Constant*, 16> Elts;
Chris Lattner7e044912010-01-04 07:17:19 +00001123 for (unsigned i = 0; i < VWidth; ++i) {
1124 if (UndefElts[i])
1125 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1126 else
1127 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1128 Shuffle->getMaskValue(i)));
1129 }
1130 I->setOperand(2, ConstantVector::get(Elts));
1131 MadeChange = true;
1132 }
1133 break;
1134 }
Pete Cooperabc13af2012-07-26 23:10:24 +00001135 case Instruction::Select: {
1136 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1137 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1138 for (unsigned i = 0; i < VWidth; i++) {
Andrea Di Biagio40f59e42015-10-06 10:34:53 +00001139 Constant *CElt = CV->getAggregateElement(i);
1140 // Method isNullValue always returns false when called on a
1141 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1142 // to avoid propagating incorrect information.
1143 if (isa<ConstantExpr>(CElt))
1144 continue;
1145 if (CElt->isNullValue())
Pete Cooperabc13af2012-07-26 23:10:24 +00001146 LeftDemanded.clearBit(i);
1147 else
1148 RightDemanded.clearBit(i);
1149 }
1150 }
1151
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001152 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1153 Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001154 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1155
1156 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001157 UndefElts2, Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001158 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001159
Pete Cooperabc13af2012-07-26 23:10:24 +00001160 // Output elements are undefined if both are undefined.
1161 UndefElts &= UndefElts2;
1162 break;
1163 }
Chris Lattner7e044912010-01-04 07:17:19 +00001164 case Instruction::BitCast: {
1165 // Vector->vector casts only.
Chris Lattner229907c2011-07-18 04:54:35 +00001166 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
Chris Lattner7e044912010-01-04 07:17:19 +00001167 if (!VTy) break;
1168 unsigned InVWidth = VTy->getNumElements();
1169 APInt InputDemandedElts(InVWidth, 0);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001170 UndefElts2 = APInt(InVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001171 unsigned Ratio;
1172
1173 if (VWidth == InVWidth) {
1174 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1175 // elements as are demanded of us.
1176 Ratio = 1;
1177 InputDemandedElts = DemandedElts;
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001178 } else if ((VWidth % InVWidth) == 0) {
1179 // If the number of elements in the output is a multiple of the number of
1180 // elements in the input then an input element is live if any of the
1181 // corresponding output elements are live.
1182 Ratio = VWidth / InVWidth;
1183 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Chris Lattner7e044912010-01-04 07:17:19 +00001184 if (DemandedElts[OutIdx])
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001185 InputDemandedElts.setBit(OutIdx / Ratio);
1186 } else if ((InVWidth % VWidth) == 0) {
1187 // If the number of elements in the input is a multiple of the number of
1188 // elements in the output then an input element is live if the
1189 // corresponding output element is live.
1190 Ratio = InVWidth / VWidth;
Chris Lattner7e044912010-01-04 07:17:19 +00001191 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001192 if (DemandedElts[InIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001193 InputDemandedElts.setBit(InIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001194 } else {
1195 // Unsupported so far.
1196 break;
Chris Lattner7e044912010-01-04 07:17:19 +00001197 }
Craig Topper4c947752012-12-22 18:09:02 +00001198
Chris Lattner7e044912010-01-04 07:17:19 +00001199 // div/rem demand all inputs, because they don't want divide by zero.
1200 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001201 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001202 if (TmpV) {
1203 I->setOperand(0, TmpV);
1204 MadeChange = true;
1205 }
Craig Topper4c947752012-12-22 18:09:02 +00001206
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001207 if (VWidth == InVWidth) {
1208 UndefElts = UndefElts2;
1209 } else if ((VWidth % InVWidth) == 0) {
1210 // If the number of elements in the output is a multiple of the number of
1211 // elements in the input then an output element is undef if the
1212 // corresponding input element is undef.
Chris Lattner7e044912010-01-04 07:17:19 +00001213 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001214 if (UndefElts2[OutIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001215 UndefElts.setBit(OutIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001216 } else if ((InVWidth % VWidth) == 0) {
1217 // If the number of elements in the input is a multiple of the number of
1218 // elements in the output then an output element is undef if all of the
1219 // corresponding input elements are undef.
1220 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1221 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1222 if (SubUndef.countPopulation() == Ratio)
1223 UndefElts.setBit(OutIdx);
1224 }
1225 } else {
Chris Lattner7e044912010-01-04 07:17:19 +00001226 llvm_unreachable("Unimp");
Chris Lattner7e044912010-01-04 07:17:19 +00001227 }
1228 break;
1229 }
1230 case Instruction::And:
1231 case Instruction::Or:
1232 case Instruction::Xor:
1233 case Instruction::Add:
1234 case Instruction::Sub:
1235 case Instruction::Mul:
1236 // div/rem demand all inputs, because they don't want divide by zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001237 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1238 Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001239 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1240 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001241 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001242 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001243
Chris Lattner7e044912010-01-04 07:17:19 +00001244 // Output elements are undefined if both are undefined. Consider things
1245 // like undef&0. The result is known zero, not undef.
1246 UndefElts &= UndefElts2;
1247 break;
Pete Coopere807e452012-07-26 22:37:04 +00001248 case Instruction::FPTrunc:
1249 case Instruction::FPExt:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001250 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1251 Depth + 1);
Pete Coopere807e452012-07-26 22:37:04 +00001252 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1253 break;
Craig Topper4c947752012-12-22 18:09:02 +00001254
Chris Lattner7e044912010-01-04 07:17:19 +00001255 case Instruction::Call: {
1256 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1257 if (!II) break;
1258 switch (II->getIntrinsicID()) {
1259 default: break;
Craig Topper4c947752012-12-22 18:09:02 +00001260
Craig Topper7fc6d342016-12-11 22:32:38 +00001261 case Intrinsic::x86_xop_vfrcz_ss:
1262 case Intrinsic::x86_xop_vfrcz_sd:
1263 // The instructions for these intrinsics are speced to zero upper bits not
1264 // pass them through like other scalar intrinsics. So we shouldn't just
1265 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1266 // Instead we should return a zero vector.
Craig Topper1a8a3372016-12-29 03:30:17 +00001267 if (!DemandedElts[0]) {
1268 Worklist.Add(II);
Craig Topper7fc6d342016-12-11 22:32:38 +00001269 return ConstantAggregateZero::get(II->getType());
Craig Topper1a8a3372016-12-29 03:30:17 +00001270 }
Craig Topper7fc6d342016-12-11 22:32:38 +00001271
Craig Topperac75bca2016-12-13 07:45:45 +00001272 // Only the lower element is used.
1273 DemandedElts = 1;
Craig Topper7fc6d342016-12-11 22:32:38 +00001274 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1275 UndefElts, Depth + 1);
1276 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperac75bca2016-12-13 07:45:45 +00001277
1278 // Only the lower element is undefined. The high elements are zero.
1279 UndefElts = UndefElts[0];
Craig Topper7fc6d342016-12-11 22:32:38 +00001280 break;
1281
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001282 // Unary scalar-as-vector operations that work column-wise.
Simon Pilgrim83020942016-04-24 18:23:14 +00001283 case Intrinsic::x86_sse_rcp_ss:
1284 case Intrinsic::x86_sse_rsqrt_ss:
1285 case Intrinsic::x86_sse_sqrt_ss:
1286 case Intrinsic::x86_sse2_sqrt_sd:
Simon Pilgrim83020942016-04-24 18:23:14 +00001287 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1288 UndefElts, Depth + 1);
1289 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1290
1291 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001292 if (!DemandedElts[0]) {
1293 Worklist.Add(II);
Simon Pilgrim83020942016-04-24 18:23:14 +00001294 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001295 }
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001296 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1297 // checks).
Simon Pilgrim83020942016-04-24 18:23:14 +00001298 break;
1299
Craig Toppera0372de2016-12-14 03:17:27 +00001300 // Binary scalar-as-vector operations that work column-wise. The high
1301 // elements come from operand 0. The low element is a function of both
1302 // operands.
Chris Lattner7e044912010-01-04 07:17:19 +00001303 case Intrinsic::x86_sse_min_ss:
1304 case Intrinsic::x86_sse_max_ss:
Simon Pilgrim83020942016-04-24 18:23:14 +00001305 case Intrinsic::x86_sse_cmp_ss:
Chris Lattner7e044912010-01-04 07:17:19 +00001306 case Intrinsic::x86_sse2_min_sd:
1307 case Intrinsic::x86_sse2_max_sd:
Craig Toppera0372de2016-12-14 03:17:27 +00001308 case Intrinsic::x86_sse2_cmp_sd: {
1309 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1310 UndefElts, Depth + 1);
1311 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1312
1313 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001314 if (!DemandedElts[0]) {
1315 Worklist.Add(II);
Craig Toppera0372de2016-12-14 03:17:27 +00001316 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001317 }
Craig Toppera0372de2016-12-14 03:17:27 +00001318
1319 // Only lower element is used for operand 1.
1320 DemandedElts = 1;
1321 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1322 UndefElts2, Depth + 1);
1323 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1324
1325 // Lower element is undefined if both lower elements are undefined.
1326 // Consider things like undef&0. The result is known zero, not undef.
1327 if (!UndefElts2[0])
1328 UndefElts.clearBit(0);
1329
1330 break;
1331 }
1332
Craig Toppereb6a20e2016-12-14 03:17:30 +00001333 // Binary scalar-as-vector operations that work column-wise. The high
1334 // elements come from operand 0 and the low element comes from operand 1.
Simon Pilgrim83020942016-04-24 18:23:14 +00001335 case Intrinsic::x86_sse41_round_ss:
Craig Toppereb6a20e2016-12-14 03:17:30 +00001336 case Intrinsic::x86_sse41_round_sd: {
1337 // Don't use the low element of operand 0.
1338 APInt DemandedElts2 = DemandedElts;
1339 DemandedElts2.clearBit(0);
1340 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001341 UndefElts, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001342 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001343
1344 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001345 if (!DemandedElts[0]) {
1346 Worklist.Add(II);
Craig Toppereb6a20e2016-12-14 03:17:30 +00001347 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001348 }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001349
1350 // Only lower element is used for operand 1.
1351 DemandedElts = 1;
Gabor Greife23efee2010-06-28 16:45:00 +00001352 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001353 UndefElts2, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001354 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
Chris Lattner7e044912010-01-04 07:17:19 +00001355
Craig Toppereb6a20e2016-12-14 03:17:30 +00001356 // Take the high undef elements from operand 0 and take the lower element
1357 // from operand 1.
1358 UndefElts.clearBit(0);
1359 UndefElts |= UndefElts2[0];
Chris Lattner7e044912010-01-04 07:17:19 +00001360 break;
Craig Toppereb6a20e2016-12-14 03:17:30 +00001361 }
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001362
Craig Topperdfd268d2016-12-14 05:43:05 +00001363 // Three input scalar-as-vector operations that work column-wise. The high
1364 // elements come from operand 0 and the low element is a function of all
1365 // three inputs.
Craig Topper268b3ab2016-12-14 06:06:58 +00001366 case Intrinsic::x86_avx512_mask_add_ss_round:
1367 case Intrinsic::x86_avx512_mask_div_ss_round:
1368 case Intrinsic::x86_avx512_mask_mul_ss_round:
1369 case Intrinsic::x86_avx512_mask_sub_ss_round:
1370 case Intrinsic::x86_avx512_mask_max_ss_round:
1371 case Intrinsic::x86_avx512_mask_min_ss_round:
1372 case Intrinsic::x86_avx512_mask_add_sd_round:
1373 case Intrinsic::x86_avx512_mask_div_sd_round:
1374 case Intrinsic::x86_avx512_mask_mul_sd_round:
1375 case Intrinsic::x86_avx512_mask_sub_sd_round:
1376 case Intrinsic::x86_avx512_mask_max_sd_round:
1377 case Intrinsic::x86_avx512_mask_min_sd_round:
Craig Topper23ebd952016-12-11 08:54:52 +00001378 case Intrinsic::x86_fma_vfmadd_ss:
1379 case Intrinsic::x86_fma_vfmsub_ss:
1380 case Intrinsic::x86_fma_vfnmadd_ss:
1381 case Intrinsic::x86_fma_vfnmsub_ss:
1382 case Intrinsic::x86_fma_vfmadd_sd:
1383 case Intrinsic::x86_fma_vfmsub_sd:
1384 case Intrinsic::x86_fma_vfnmadd_sd:
1385 case Intrinsic::x86_fma_vfnmsub_sd:
Craig Topperab5f3552016-12-15 03:49:45 +00001386 case Intrinsic::x86_avx512_mask_vfmadd_ss:
1387 case Intrinsic::x86_avx512_mask_vfmadd_sd:
1388 case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1389 case Intrinsic::x86_avx512_maskz_vfmadd_sd:
Craig Topper23ebd952016-12-11 08:54:52 +00001390 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1391 UndefElts, Depth + 1);
1392 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperdfd268d2016-12-14 05:43:05 +00001393
1394 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001395 if (!DemandedElts[0]) {
1396 Worklist.Add(II);
Craig Topperdfd268d2016-12-14 05:43:05 +00001397 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001398 }
Craig Topperdfd268d2016-12-14 05:43:05 +00001399
1400 // Only lower element is used for operand 1 and 2.
1401 DemandedElts = 1;
Craig Topper23ebd952016-12-11 08:54:52 +00001402 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1403 UndefElts2, Depth + 1);
1404 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1405 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1406 UndefElts3, Depth + 1);
1407 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1408
Craig Topperdfd268d2016-12-14 05:43:05 +00001409 // Lower element is undefined if all three lower elements are undefined.
1410 // Consider things like undef&0. The result is known zero, not undef.
1411 if (!UndefElts2[0] || !UndefElts3[0])
1412 UndefElts.clearBit(0);
Craig Topper23ebd952016-12-11 08:54:52 +00001413
Craig Topper23ebd952016-12-11 08:54:52 +00001414 break;
1415
Craig Topperab5f3552016-12-15 03:49:45 +00001416 case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1417 case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1418 case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1419 case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1420 case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1421 case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1422 // These intrinsics get the passthru bits from operand 2.
1423 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1424 UndefElts, Depth + 1);
1425 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1426
1427 // If lowest element of a scalar op isn't used then use Arg2.
Craig Topper1a8a3372016-12-29 03:30:17 +00001428 if (!DemandedElts[0]) {
1429 Worklist.Add(II);
Craig Topperab5f3552016-12-15 03:49:45 +00001430 return II->getArgOperand(2);
Craig Topper1a8a3372016-12-29 03:30:17 +00001431 }
Craig Topperab5f3552016-12-15 03:49:45 +00001432
1433 // Only lower element is used for operand 0 and 1.
1434 DemandedElts = 1;
1435 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1436 UndefElts2, Depth + 1);
1437 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1438 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1439 UndefElts3, Depth + 1);
1440 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1441
1442 // Lower element is undefined if all three lower elements are undefined.
1443 // Consider things like undef&0. The result is known zero, not undef.
1444 if (!UndefElts2[0] || !UndefElts3[0])
1445 UndefElts.clearBit(0);
1446
1447 break;
1448
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001449 case Intrinsic::x86_sse2_pmulu_dq:
1450 case Intrinsic::x86_sse41_pmuldq:
1451 case Intrinsic::x86_avx2_pmul_dq:
Craig Topper72f2d4e2016-12-27 05:30:09 +00001452 case Intrinsic::x86_avx2_pmulu_dq:
1453 case Intrinsic::x86_avx512_pmul_dq_512:
1454 case Intrinsic::x86_avx512_pmulu_dq_512: {
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001455 Value *Op0 = II->getArgOperand(0);
1456 Value *Op1 = II->getArgOperand(1);
1457 unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1458 assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1459
1460 APInt InnerDemandedElts(InnerVWidth, 0);
1461 for (unsigned i = 0; i != VWidth; ++i)
1462 if (DemandedElts[i])
1463 InnerDemandedElts.setBit(i * 2);
1464
1465 UndefElts2 = APInt(InnerVWidth, 0);
1466 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1467 Depth + 1);
1468 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1469
1470 UndefElts3 = APInt(InnerVWidth, 0);
1471 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1472 Depth + 1);
1473 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1474
1475 break;
1476 }
1477
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001478 case Intrinsic::x86_sse2_packssdw_128:
1479 case Intrinsic::x86_sse2_packsswb_128:
1480 case Intrinsic::x86_sse2_packuswb_128:
1481 case Intrinsic::x86_sse41_packusdw:
1482 case Intrinsic::x86_avx2_packssdw:
1483 case Intrinsic::x86_avx2_packsswb:
1484 case Intrinsic::x86_avx2_packusdw:
1485 case Intrinsic::x86_avx2_packuswb: {
1486 // TODO Add support for Intrinsic::x86_avx512_mask_pack*
1487 auto *Ty0 = II->getArgOperand(0)->getType();
1488 unsigned InnerVWidth = Ty0->getVectorNumElements();
1489 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1490
1491 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1492 unsigned VWidthPerLane = VWidth / NumLanes;
1493 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1494
1495 // Per lane, pack the elements of the first input and then the second.
1496 // e.g.
1497 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1498 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1499 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1500 APInt OpDemandedElts(InnerVWidth, 0);
1501 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1502 unsigned LaneIdx = Lane * VWidthPerLane;
1503 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1504 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1505 if (DemandedElts[Idx])
1506 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1507 }
1508 }
1509
1510 // Demand elements from the operand.
1511 auto *Op = II->getArgOperand(OpNum);
1512 APInt OpUndefElts(InnerVWidth, 0);
1513 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1514 Depth + 1);
1515 if (TmpV) {
1516 II->setArgOperand(OpNum, TmpV);
1517 MadeChange = true;
1518 }
1519
1520 // Pack the operand's UNDEF elements, one lane at a time.
1521 OpUndefElts = OpUndefElts.zext(VWidth);
1522 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1523 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1524 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1525 LaneElts = LaneElts.shl(InnerVWidthPerLane * (2 * Lane + OpNum));
1526 UndefElts |= LaneElts;
1527 }
1528 }
1529 break;
1530 }
1531
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001532 // PSHUFB
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001533 case Intrinsic::x86_ssse3_pshuf_b_128:
1534 case Intrinsic::x86_avx2_pshuf_b:
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001535 case Intrinsic::x86_avx512_pshuf_b_512:
1536 // PERMILVAR
1537 case Intrinsic::x86_avx_vpermilvar_ps:
1538 case Intrinsic::x86_avx_vpermilvar_ps_256:
1539 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1540 case Intrinsic::x86_avx_vpermilvar_pd:
1541 case Intrinsic::x86_avx_vpermilvar_pd_256:
Simon Pilgrimfe2c0ed2017-01-18 14:47:49 +00001542 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1543 // PERMV
1544 case Intrinsic::x86_avx2_permd:
1545 case Intrinsic::x86_avx2_permps: {
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001546 Value *Op1 = II->getArgOperand(1);
1547 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1548 Depth + 1);
1549 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1550 break;
1551 }
1552
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001553 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1554 // in an undefined state.
1555 case Intrinsic::x86_sse4a_extrq:
1556 case Intrinsic::x86_sse4a_extrqi:
1557 case Intrinsic::x86_sse4a_insertq:
1558 case Intrinsic::x86_sse4a_insertqi:
1559 UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2);
1560 break;
Chris Lattner7e044912010-01-04 07:17:19 +00001561 }
1562 break;
1563 }
1564 }
Craig Topperf40110f2014-04-25 05:29:35 +00001565 return MadeChange ? I : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001566}