blob: 7e442b2f654dd88cccb35f106415b7897388d98b [file] [log] [blame]
Chris Lattner466a0492002-05-21 20:50:24 +00001//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
John Criswell482202a2003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner466a0492002-05-21 20:50:24 +00009//
Chris Lattnera704ac82002-10-08 21:36:33 +000010// Peephole optimize the CFG.
Chris Lattner466a0492002-05-21 20:50:24 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner9734fd02004-06-20 01:13:18 +000014#define DEBUG_TYPE "simplifycfg"
Chris Lattner466a0492002-05-21 20:50:24 +000015#include "llvm/Transforms/Utils/Local.h"
Chris Lattner18d1f192004-02-11 03:36:04 +000016#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
Chris Lattner6f4b45a2004-02-24 05:38:11 +000018#include "llvm/Type.h"
Chris Lattner466a0492002-05-21 20:50:24 +000019#include "llvm/Support/CFG.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000020#include "llvm/Support/Debug.h"
Chris Lattner466a0492002-05-21 20:50:24 +000021#include <algorithm>
22#include <functional>
Chris Lattnera2ab4892004-02-24 07:23:58 +000023#include <set>
Chris Lattner5edb2f32004-10-18 04:07:22 +000024#include <map>
Chris Lattnerdf3c3422004-01-09 06:12:26 +000025using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000026
Chris Lattner6f4b45a2004-02-24 05:38:11 +000027// PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
28// predecessors from "BB". This is a little tricky because "Succ" has PHI
29// nodes, which need to have extra slots added to them to hold the merge edges
30// from BB's predecessors, and BB itself might have had PHI nodes in it. This
31// function returns true (failure) if the Succ BB already has a predecessor that
32// is a predecessor of BB and incoming PHI arguments would not be discernible.
Chris Lattner466a0492002-05-21 20:50:24 +000033//
34// Assumption: Succ is the single successor for BB.
35//
Misha Brukman632df282002-10-29 23:06:16 +000036static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
Chris Lattner466a0492002-05-21 20:50:24 +000037 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
Chris Lattner5325c5f2002-09-24 00:09:26 +000038
39 if (!isa<PHINode>(Succ->front()))
40 return false; // We can make the transformation, no problem.
Chris Lattner466a0492002-05-21 20:50:24 +000041
42 // If there is more than one predecessor, and there are PHI nodes in
43 // the successor, then we need to add incoming edges for the PHI nodes
44 //
45 const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
46
47 // Check to see if one of the predecessors of BB is already a predecessor of
Chris Lattner31116ba2003-03-05 21:01:52 +000048 // Succ. If so, we cannot do the transformation if there are any PHI nodes
49 // with incompatible values coming in from the two edges!
Chris Lattner466a0492002-05-21 20:50:24 +000050 //
Chris Lattner31116ba2003-03-05 21:01:52 +000051 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000052 if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
Chris Lattner31116ba2003-03-05 21:01:52 +000053 // Loop over all of the PHI nodes checking to see if there are
54 // incompatible values coming in.
Reid Spencer66149462004-09-15 17:06:42 +000055 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
56 PHINode *PN = cast<PHINode>(I);
Chris Lattner31116ba2003-03-05 21:01:52 +000057 // Loop up the entries in the PHI node for BB and for *PI if the values
58 // coming in are non-equal, we cannot merge these two blocks (instead we
59 // should insert a conditional move or something, then merge the
60 // blocks).
61 int Idx1 = PN->getBasicBlockIndex(BB);
62 int Idx2 = PN->getBasicBlockIndex(*PI);
63 assert(Idx1 != -1 && Idx2 != -1 &&
64 "Didn't have entries for my predecessors??");
65 if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
66 return true; // Values are not equal...
67 }
68 }
Chris Lattner466a0492002-05-21 20:50:24 +000069
Chris Lattner9734fd02004-06-20 01:13:18 +000070 // Loop over all of the PHI nodes in the successor BB.
Reid Spencer66149462004-09-15 17:06:42 +000071 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
72 PHINode *PN = cast<PHINode>(I);
Chris Lattnera704ac82002-10-08 21:36:33 +000073 Value *OldVal = PN->removeIncomingValue(BB, false);
Chris Lattner466a0492002-05-21 20:50:24 +000074 assert(OldVal && "No entry in PHI for Pred BB!");
75
Chris Lattner9734fd02004-06-20 01:13:18 +000076 // If this incoming value is one of the PHI nodes in BB, the new entries in
77 // the PHI node are the entries from the old PHI.
Chris Lattnere54d2142003-03-05 21:36:33 +000078 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
79 PHINode *OldValPN = cast<PHINode>(OldVal);
Chris Lattner9734fd02004-06-20 01:13:18 +000080 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
81 PN->addIncoming(OldValPN->getIncomingValue(i),
82 OldValPN->getIncomingBlock(i));
Chris Lattnere54d2142003-03-05 21:36:33 +000083 } else {
84 for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
85 End = BBPreds.end(); PredI != End; ++PredI) {
86 // Add an incoming value for each of the new incoming values...
87 PN->addIncoming(OldVal, *PredI);
88 }
Chris Lattner466a0492002-05-21 20:50:24 +000089 }
90 }
91 return false;
92}
93
Chris Lattner18d1f192004-02-11 03:36:04 +000094/// GetIfCondition - Given a basic block (BB) with two predecessors (and
95/// presumably PHI nodes in it), check to see if the merge at this block is due
96/// to an "if condition". If so, return the boolean condition that determines
97/// which entry into BB will be taken. Also, return by references the block
98/// that will be entered from if the condition is true, and the block that will
99/// be entered if the condition is false.
100///
101///
102static Value *GetIfCondition(BasicBlock *BB,
103 BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
104 assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
105 "Function can only handle blocks with 2 predecessors!");
106 BasicBlock *Pred1 = *pred_begin(BB);
107 BasicBlock *Pred2 = *++pred_begin(BB);
108
109 // We can only handle branches. Other control flow will be lowered to
110 // branches if possible anyway.
111 if (!isa<BranchInst>(Pred1->getTerminator()) ||
112 !isa<BranchInst>(Pred2->getTerminator()))
113 return 0;
114 BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
115 BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
116
117 // Eliminate code duplication by ensuring that Pred1Br is conditional if
118 // either are.
119 if (Pred2Br->isConditional()) {
120 // If both branches are conditional, we don't have an "if statement". In
121 // reality, we could transform this case, but since the condition will be
122 // required anyway, we stand no chance of eliminating it, so the xform is
123 // probably not profitable.
124 if (Pred1Br->isConditional())
125 return 0;
126
127 std::swap(Pred1, Pred2);
128 std::swap(Pred1Br, Pred2Br);
129 }
130
131 if (Pred1Br->isConditional()) {
132 // If we found a conditional branch predecessor, make sure that it branches
133 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
134 if (Pred1Br->getSuccessor(0) == BB &&
135 Pred1Br->getSuccessor(1) == Pred2) {
136 IfTrue = Pred1;
137 IfFalse = Pred2;
138 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
139 Pred1Br->getSuccessor(1) == BB) {
140 IfTrue = Pred2;
141 IfFalse = Pred1;
142 } else {
143 // We know that one arm of the conditional goes to BB, so the other must
144 // go somewhere unrelated, and this must not be an "if statement".
145 return 0;
146 }
147
148 // The only thing we have to watch out for here is to make sure that Pred2
149 // doesn't have incoming edges from other blocks. If it does, the condition
150 // doesn't dominate BB.
151 if (++pred_begin(Pred2) != pred_end(Pred2))
152 return 0;
153
154 return Pred1Br->getCondition();
155 }
156
157 // Ok, if we got here, both predecessors end with an unconditional branch to
158 // BB. Don't panic! If both blocks only have a single (identical)
159 // predecessor, and THAT is a conditional branch, then we're all ok!
160 if (pred_begin(Pred1) == pred_end(Pred1) ||
161 ++pred_begin(Pred1) != pred_end(Pred1) ||
162 pred_begin(Pred2) == pred_end(Pred2) ||
163 ++pred_begin(Pred2) != pred_end(Pred2) ||
164 *pred_begin(Pred1) != *pred_begin(Pred2))
165 return 0;
166
167 // Otherwise, if this is a conditional branch, then we can use it!
168 BasicBlock *CommonPred = *pred_begin(Pred1);
169 if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
170 assert(BI->isConditional() && "Two successors but not conditional?");
171 if (BI->getSuccessor(0) == Pred1) {
172 IfTrue = Pred1;
173 IfFalse = Pred2;
174 } else {
175 IfTrue = Pred2;
176 IfFalse = Pred1;
177 }
178 return BI->getCondition();
179 }
180 return 0;
181}
182
183
184// If we have a merge point of an "if condition" as accepted above, return true
185// if the specified value dominates the block. We don't handle the true
186// generality of domination here, just a special case which works well enough
187// for us.
Chris Lattner45c35b12004-10-14 05:13:36 +0000188//
189// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
190// see if V (which must be an instruction) is cheap to compute and is
191// non-trapping. If both are true, the instruction is inserted into the set and
192// true is returned.
193static bool DominatesMergePoint(Value *V, BasicBlock *BB,
194 std::set<Instruction*> *AggressiveInsts) {
Chris Lattner0aa56562004-04-09 22:50:22 +0000195 Instruction *I = dyn_cast<Instruction>(V);
196 if (!I) return true; // Non-instructions all dominate instructions.
197 BasicBlock *PBB = I->getParent();
Chris Lattner18d1f192004-02-11 03:36:04 +0000198
Chris Lattner0aa56562004-04-09 22:50:22 +0000199 // We don't want to allow wierd loops that might have the "if condition" in
200 // the bottom of this block.
201 if (PBB == BB) return false;
Chris Lattner18d1f192004-02-11 03:36:04 +0000202
Chris Lattner0aa56562004-04-09 22:50:22 +0000203 // If this instruction is defined in a block that contains an unconditional
204 // branch to BB, then it must be in the 'conditional' part of the "if
205 // statement".
206 if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
207 if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
Chris Lattner45c35b12004-10-14 05:13:36 +0000208 if (!AggressiveInsts) return false;
Chris Lattner0aa56562004-04-09 22:50:22 +0000209 // Okay, it looks like the instruction IS in the "condition". Check to
210 // see if its a cheap instruction to unconditionally compute, and if it
211 // only uses stuff defined outside of the condition. If so, hoist it out.
212 switch (I->getOpcode()) {
213 default: return false; // Cannot hoist this out safely.
214 case Instruction::Load:
215 // We can hoist loads that are non-volatile and obviously cannot trap.
216 if (cast<LoadInst>(I)->isVolatile())
217 return false;
218 if (!isa<AllocaInst>(I->getOperand(0)) &&
Reid Spenceref784f02004-07-18 00:32:14 +0000219 !isa<Constant>(I->getOperand(0)))
Chris Lattner0aa56562004-04-09 22:50:22 +0000220 return false;
221
222 // Finally, we have to check to make sure there are no instructions
223 // before the load in its basic block, as we are going to hoist the loop
224 // out to its predecessor.
225 if (PBB->begin() != BasicBlock::iterator(I))
226 return false;
227 break;
228 case Instruction::Add:
229 case Instruction::Sub:
230 case Instruction::And:
231 case Instruction::Or:
232 case Instruction::Xor:
233 case Instruction::Shl:
234 case Instruction::Shr:
235 break; // These are all cheap and non-trapping instructions.
236 }
237
238 // Okay, we can only really hoist these out if their operands are not
239 // defined in the conditional region.
240 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
Chris Lattner45c35b12004-10-14 05:13:36 +0000241 if (!DominatesMergePoint(I->getOperand(i), BB, 0))
Chris Lattner0aa56562004-04-09 22:50:22 +0000242 return false;
Chris Lattner45c35b12004-10-14 05:13:36 +0000243 // Okay, it's safe to do this! Remember this instruction.
244 AggressiveInsts->insert(I);
Chris Lattner0aa56562004-04-09 22:50:22 +0000245 }
246
Chris Lattner18d1f192004-02-11 03:36:04 +0000247 return true;
248}
Chris Lattner466a0492002-05-21 20:50:24 +0000249
Chris Lattner6f4b45a2004-02-24 05:38:11 +0000250// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
251// instructions that compare a value against a constant, return the value being
252// compared, and stick the constant into the Values vector.
Chris Lattnerb2b151d2004-06-19 07:02:14 +0000253static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
Chris Lattner6f4b45a2004-02-24 05:38:11 +0000254 if (Instruction *Inst = dyn_cast<Instruction>(V))
255 if (Inst->getOpcode() == Instruction::SetEQ) {
Chris Lattnerb2b151d2004-06-19 07:02:14 +0000256 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
Chris Lattner6f4b45a2004-02-24 05:38:11 +0000257 Values.push_back(C);
258 return Inst->getOperand(0);
Chris Lattnerb2b151d2004-06-19 07:02:14 +0000259 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
Chris Lattner6f4b45a2004-02-24 05:38:11 +0000260 Values.push_back(C);
261 return Inst->getOperand(1);
262 }
263 } else if (Inst->getOpcode() == Instruction::Or) {
264 if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
265 if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
266 if (LHS == RHS)
267 return LHS;
268 }
269 return 0;
270}
271
272// GatherConstantSetNEs - Given a potentially 'and'd together collection of
273// setne instructions that compare a value against a constant, return the value
274// being compared, and stick the constant into the Values vector.
Chris Lattnerb2b151d2004-06-19 07:02:14 +0000275static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
Chris Lattner6f4b45a2004-02-24 05:38:11 +0000276 if (Instruction *Inst = dyn_cast<Instruction>(V))
277 if (Inst->getOpcode() == Instruction::SetNE) {
Chris Lattnerb2b151d2004-06-19 07:02:14 +0000278 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
Chris Lattner6f4b45a2004-02-24 05:38:11 +0000279 Values.push_back(C);
280 return Inst->getOperand(0);
Chris Lattnerb2b151d2004-06-19 07:02:14 +0000281 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
Chris Lattner6f4b45a2004-02-24 05:38:11 +0000282 Values.push_back(C);
283 return Inst->getOperand(1);
284 }
285 } else if (Inst->getOpcode() == Instruction::Cast) {
286 // Cast of X to bool is really a comparison against zero.
287 assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
Chris Lattnerb2b151d2004-06-19 07:02:14 +0000288 Values.push_back(ConstantInt::get(Inst->getOperand(0)->getType(), 0));
Chris Lattner6f4b45a2004-02-24 05:38:11 +0000289 return Inst->getOperand(0);
290 } else if (Inst->getOpcode() == Instruction::And) {
291 if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
292 if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
293 if (LHS == RHS)
294 return LHS;
295 }
296 return 0;
297}
298
299
300
301/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
302/// bunch of comparisons of one value against constants, return the value and
303/// the constants being compared.
304static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
Chris Lattnerb2b151d2004-06-19 07:02:14 +0000305 std::vector<ConstantInt*> &Values) {
Chris Lattner6f4b45a2004-02-24 05:38:11 +0000306 if (Cond->getOpcode() == Instruction::Or) {
307 CompVal = GatherConstantSetEQs(Cond, Values);
308
309 // Return true to indicate that the condition is true if the CompVal is
310 // equal to one of the constants.
311 return true;
312 } else if (Cond->getOpcode() == Instruction::And) {
313 CompVal = GatherConstantSetNEs(Cond, Values);
314
315 // Return false to indicate that the condition is false if the CompVal is
316 // equal to one of the constants.
317 return false;
318 }
319 return false;
320}
321
322/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
323/// has no side effects, nuke it. If it uses any instructions that become dead
324/// because the instruction is now gone, nuke them too.
325static void ErasePossiblyDeadInstructionTree(Instruction *I) {
326 if (isInstructionTriviallyDead(I)) {
327 std::vector<Value*> Operands(I->op_begin(), I->op_end());
328 I->getParent()->getInstList().erase(I);
329 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
330 if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
331 ErasePossiblyDeadInstructionTree(OpI);
332 }
333}
334
Chris Lattnera2ab4892004-02-24 07:23:58 +0000335/// SafeToMergeTerminators - Return true if it is safe to merge these two
336/// terminator instructions together.
337///
338static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
339 if (SI1 == SI2) return false; // Can't merge with self!
340
341 // It is not safe to merge these two switch instructions if they have a common
Chris Lattnerf12c4a32004-06-21 07:19:01 +0000342 // successor, and if that successor has a PHI node, and if *that* PHI node has
Chris Lattnera2ab4892004-02-24 07:23:58 +0000343 // conflicting incoming values from the two switch blocks.
344 BasicBlock *SI1BB = SI1->getParent();
345 BasicBlock *SI2BB = SI2->getParent();
346 std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
347
348 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
349 if (SI1Succs.count(*I))
350 for (BasicBlock::iterator BBI = (*I)->begin();
Reid Spencer66149462004-09-15 17:06:42 +0000351 isa<PHINode>(BBI); ++BBI) {
352 PHINode *PN = cast<PHINode>(BBI);
Chris Lattnera2ab4892004-02-24 07:23:58 +0000353 if (PN->getIncomingValueForBlock(SI1BB) !=
354 PN->getIncomingValueForBlock(SI2BB))
355 return false;
Reid Spencer66149462004-09-15 17:06:42 +0000356 }
Chris Lattnera2ab4892004-02-24 07:23:58 +0000357
358 return true;
359}
360
361/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
362/// now be entries in it from the 'NewPred' block. The values that will be
363/// flowing into the PHI nodes will be the same as those coming in from
Chris Lattnerf12c4a32004-06-21 07:19:01 +0000364/// ExistPred, an existing predecessor of Succ.
Chris Lattnera2ab4892004-02-24 07:23:58 +0000365static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
366 BasicBlock *ExistPred) {
367 assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
368 succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
369 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
370
Reid Spencer66149462004-09-15 17:06:42 +0000371 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
372 PHINode *PN = cast<PHINode>(I);
Chris Lattnera2ab4892004-02-24 07:23:58 +0000373 Value *V = PN->getIncomingValueForBlock(ExistPred);
374 PN->addIncoming(V, NewPred);
375 }
376}
377
Chris Lattnerd3e6ae22004-02-28 21:28:10 +0000378// isValueEqualityComparison - Return true if the specified terminator checks to
379// see if a value is equal to constant integer value.
380static Value *isValueEqualityComparison(TerminatorInst *TI) {
Chris Lattnera64923a2004-03-16 19:45:22 +0000381 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
382 // Do not permit merging of large switch instructions into their
383 // predecessors unless there is only one predecessor.
384 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
385 pred_end(SI->getParent())) > 128)
386 return 0;
387
Chris Lattnerd3e6ae22004-02-28 21:28:10 +0000388 return SI->getCondition();
Chris Lattnera64923a2004-03-16 19:45:22 +0000389 }
Chris Lattnerd3e6ae22004-02-28 21:28:10 +0000390 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
391 if (BI->isConditional() && BI->getCondition()->hasOneUse())
392 if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
393 if ((SCI->getOpcode() == Instruction::SetEQ ||
394 SCI->getOpcode() == Instruction::SetNE) &&
395 isa<ConstantInt>(SCI->getOperand(1)))
396 return SCI->getOperand(0);
397 return 0;
398}
399
400// Given a value comparison instruction, decode all of the 'cases' that it
401// represents and return the 'default' block.
402static BasicBlock *
403GetValueEqualityComparisonCases(TerminatorInst *TI,
404 std::vector<std::pair<ConstantInt*,
405 BasicBlock*> > &Cases) {
406 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
407 Cases.reserve(SI->getNumCases());
408 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
409 Cases.push_back(std::make_pair(cast<ConstantInt>(SI->getCaseValue(i)),
410 SI->getSuccessor(i)));
411 return SI->getDefaultDest();
412 }
413
414 BranchInst *BI = cast<BranchInst>(TI);
415 SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
416 Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
417 BI->getSuccessor(SCI->getOpcode() ==
418 Instruction::SetNE)));
419 return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
420}
421
422
Chris Lattner1cca9592005-02-24 06:17:52 +0000423// EliminateBlockCases - Given an vector of bb/value pairs, remove any entries
424// in the list that match the specified block.
425static void EliminateBlockCases(BasicBlock *BB,
426 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
427 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
428 if (Cases[i].second == BB) {
429 Cases.erase(Cases.begin()+i);
430 --i; --e;
431 }
432}
433
434// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
435// well.
436static bool
437ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
438 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
439 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
440
441 // Make V1 be smaller than V2.
442 if (V1->size() > V2->size())
443 std::swap(V1, V2);
444
445 if (V1->size() == 0) return false;
446 if (V1->size() == 1) {
447 // Just scan V2.
448 ConstantInt *TheVal = (*V1)[0].first;
449 for (unsigned i = 0, e = V2->size(); i != e; ++i)
450 if (TheVal == (*V2)[i].first)
451 return true;
452 }
453
454 // Otherwise, just sort both lists and compare element by element.
455 std::sort(V1->begin(), V1->end());
456 std::sort(V2->begin(), V2->end());
457 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
458 while (i1 != e1 && i2 != e2) {
459 if ((*V1)[i1].first == (*V2)[i2].first)
460 return true;
461 if ((*V1)[i1].first < (*V2)[i2].first)
462 ++i1;
463 else
464 ++i2;
465 }
466 return false;
467}
468
469// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
470// terminator instruction and its block is known to only have a single
471// predecessor block, check to see if that predecessor is also a value
472// comparison with the same value, and if that comparison determines the outcome
473// of this comparison. If so, simplify TI. This does a very limited form of
474// jump threading.
475static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
476 BasicBlock *Pred) {
477 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
478 if (!PredVal) return false; // Not a value comparison in predecessor.
479
480 Value *ThisVal = isValueEqualityComparison(TI);
481 assert(ThisVal && "This isn't a value comparison!!");
482 if (ThisVal != PredVal) return false; // Different predicates.
483
484 // Find out information about when control will move from Pred to TI's block.
485 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
486 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
487 PredCases);
488 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
489
490 // Find information about how control leaves this block.
491 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
492 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
493 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
494
495 // If TI's block is the default block from Pred's comparison, potentially
496 // simplify TI based on this knowledge.
497 if (PredDef == TI->getParent()) {
498 // If we are here, we know that the value is none of those cases listed in
499 // PredCases. If there are any cases in ThisCases that are in PredCases, we
500 // can simplify TI.
501 if (ValuesOverlap(PredCases, ThisCases)) {
502 if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
503 // Okay, one of the successors of this condbr is dead. Convert it to a
504 // uncond br.
505 assert(ThisCases.size() == 1 && "Branch can only have one case!");
506 Value *Cond = BTI->getCondition();
507 // Insert the new branch.
508 Instruction *NI = new BranchInst(ThisDef, TI);
509
510 // Remove PHI node entries for the dead edge.
511 ThisCases[0].second->removePredecessor(TI->getParent());
512
513 DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
514 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
515
516 TI->eraseFromParent(); // Nuke the old one.
517 // If condition is now dead, nuke it.
518 if (Instruction *CondI = dyn_cast<Instruction>(Cond))
519 ErasePossiblyDeadInstructionTree(CondI);
520 return true;
521
522 } else {
523 SwitchInst *SI = cast<SwitchInst>(TI);
524 // Okay, TI has cases that are statically dead, prune them away.
525 std::set<Constant*> DeadCases;
526 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
527 DeadCases.insert(PredCases[i].first);
528
529 DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
530 << "Through successor TI: " << *TI);
531
532 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
533 if (DeadCases.count(SI->getCaseValue(i))) {
534 SI->getSuccessor(i)->removePredecessor(TI->getParent());
535 SI->removeCase(i);
536 }
537
538 DEBUG(std::cerr << "Leaving: " << *TI << "\n");
539 return true;
540 }
541 }
542
543 } else {
544 // Otherwise, TI's block must correspond to some matched value. Find out
545 // which value (or set of values) this is.
546 ConstantInt *TIV = 0;
547 BasicBlock *TIBB = TI->getParent();
548 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
549 if (PredCases[i].second == TIBB)
550 if (TIV == 0)
551 TIV = PredCases[i].first;
552 else
553 return false; // Cannot handle multiple values coming to this block.
554 assert(TIV && "No edge from pred to succ?");
555
556 // Okay, we found the one constant that our value can be if we get into TI's
557 // BB. Find out which successor will unconditionally be branched to.
558 BasicBlock *TheRealDest = 0;
559 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
560 if (ThisCases[i].first == TIV) {
561 TheRealDest = ThisCases[i].second;
562 break;
563 }
564
565 // If not handled by any explicit cases, it is handled by the default case.
566 if (TheRealDest == 0) TheRealDest = ThisDef;
567
568 // Remove PHI node entries for dead edges.
569 BasicBlock *CheckEdge = TheRealDest;
570 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
571 if (*SI != CheckEdge)
572 (*SI)->removePredecessor(TIBB);
573 else
574 CheckEdge = 0;
575
576 // Insert the new branch.
577 Instruction *NI = new BranchInst(TheRealDest, TI);
578
579 DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
580 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
581 Instruction *Cond = 0;
582 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
583 Cond = dyn_cast<Instruction>(BI->getCondition());
584 TI->eraseFromParent(); // Nuke the old one.
585
586 if (Cond) ErasePossiblyDeadInstructionTree(Cond);
587 return true;
588 }
589 return false;
590}
591
Chris Lattnerd3e6ae22004-02-28 21:28:10 +0000592// FoldValueComparisonIntoPredecessors - The specified terminator is a value
593// equality comparison instruction (either a switch or a branch on "X == c").
594// See if any of the predecessors of the terminator block are value comparisons
595// on the same value. If so, and if safe to do so, fold them together.
596static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
597 BasicBlock *BB = TI->getParent();
598 Value *CV = isValueEqualityComparison(TI); // CondVal
599 assert(CV && "Not a comparison?");
600 bool Changed = false;
601
602 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
603 while (!Preds.empty()) {
604 BasicBlock *Pred = Preds.back();
605 Preds.pop_back();
606
607 // See if the predecessor is a comparison with the same value.
608 TerminatorInst *PTI = Pred->getTerminator();
609 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
610
611 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
612 // Figure out which 'cases' to copy from SI to PSI.
613 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
614 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
615
616 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
617 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
618
619 // Based on whether the default edge from PTI goes to BB or not, fill in
620 // PredCases and PredDefault with the new switch cases we would like to
621 // build.
622 std::vector<BasicBlock*> NewSuccessors;
623
624 if (PredDefault == BB) {
625 // If this is the default destination from PTI, only the edges in TI
626 // that don't occur in PTI, or that branch to BB will be activated.
627 std::set<ConstantInt*> PTIHandled;
628 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
629 if (PredCases[i].second != BB)
630 PTIHandled.insert(PredCases[i].first);
631 else {
632 // The default destination is BB, we don't need explicit targets.
633 std::swap(PredCases[i], PredCases.back());
634 PredCases.pop_back();
635 --i; --e;
636 }
637
638 // Reconstruct the new switch statement we will be building.
639 if (PredDefault != BBDefault) {
640 PredDefault->removePredecessor(Pred);
641 PredDefault = BBDefault;
642 NewSuccessors.push_back(BBDefault);
643 }
644 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
645 if (!PTIHandled.count(BBCases[i].first) &&
646 BBCases[i].second != BBDefault) {
647 PredCases.push_back(BBCases[i]);
648 NewSuccessors.push_back(BBCases[i].second);
649 }
650
651 } else {
652 // If this is not the default destination from PSI, only the edges
653 // in SI that occur in PSI with a destination of BB will be
654 // activated.
655 std::set<ConstantInt*> PTIHandled;
656 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
657 if (PredCases[i].second == BB) {
658 PTIHandled.insert(PredCases[i].first);
659 std::swap(PredCases[i], PredCases.back());
660 PredCases.pop_back();
661 --i; --e;
662 }
663
664 // Okay, now we know which constants were sent to BB from the
665 // predecessor. Figure out where they will all go now.
666 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
667 if (PTIHandled.count(BBCases[i].first)) {
668 // If this is one we are capable of getting...
669 PredCases.push_back(BBCases[i]);
670 NewSuccessors.push_back(BBCases[i].second);
671 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
672 }
673
674 // If there are any constants vectored to BB that TI doesn't handle,
675 // they must go to the default destination of TI.
676 for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
677 E = PTIHandled.end(); I != E; ++I) {
678 PredCases.push_back(std::make_pair(*I, BBDefault));
679 NewSuccessors.push_back(BBDefault);
680 }
681 }
682
683 // Okay, at this point, we know which new successor Pred will get. Make
684 // sure we update the number of entries in the PHI nodes for these
685 // successors.
686 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
687 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
688
689 // Now that the successors are updated, create the new Switch instruction.
Chris Lattnera35dfce2005-01-29 00:38:26 +0000690 SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
Chris Lattnerd3e6ae22004-02-28 21:28:10 +0000691 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
692 NewSI->addCase(PredCases[i].first, PredCases[i].second);
Chris Lattner3215bb62005-01-01 16:02:12 +0000693
694 Instruction *DeadCond = 0;
695 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
696 // If PTI is a branch, remember the condition.
697 DeadCond = dyn_cast<Instruction>(BI->getCondition());
Chris Lattnerd3e6ae22004-02-28 21:28:10 +0000698 Pred->getInstList().erase(PTI);
699
Chris Lattner3215bb62005-01-01 16:02:12 +0000700 // If the condition is dead now, remove the instruction tree.
701 if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
702
Chris Lattnerd3e6ae22004-02-28 21:28:10 +0000703 // Okay, last check. If BB is still a successor of PSI, then we must
704 // have an infinite loop case. If so, add an infinitely looping block
705 // to handle the case to preserve the behavior of the code.
706 BasicBlock *InfLoopBlock = 0;
707 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
708 if (NewSI->getSuccessor(i) == BB) {
709 if (InfLoopBlock == 0) {
710 // Insert it at the end of the loop, because it's either code,
711 // or it won't matter if it's hot. :)
712 InfLoopBlock = new BasicBlock("infloop", BB->getParent());
713 new BranchInst(InfLoopBlock, InfLoopBlock);
714 }
715 NewSI->setSuccessor(i, InfLoopBlock);
716 }
717
718 Changed = true;
719 }
720 }
721 return Changed;
722}
723
Chris Lattner389cfac2004-11-30 00:29:14 +0000724/// HoistThenElseCodeToIf - Given a conditional branch that codes to BB1 and
725/// BB2, hoist any common code in the two blocks up into the branch block. The
726/// caller of this function guarantees that BI's block dominates BB1 and BB2.
727static bool HoistThenElseCodeToIf(BranchInst *BI) {
728 // This does very trivial matching, with limited scanning, to find identical
729 // instructions in the two blocks. In particular, we don't want to get into
730 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
731 // such, we currently just scan for obviously identical instructions in an
732 // identical order.
733 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
734 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
735
736 Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
737 if (I1->getOpcode() != I2->getOpcode() || !I1->isIdenticalTo(I2))
738 return false;
739
740 // If we get here, we can hoist at least one instruction.
741 BasicBlock *BIParent = BI->getParent();
Chris Lattner389cfac2004-11-30 00:29:14 +0000742
743 do {
744 // If we are hoisting the terminator instruction, don't move one (making a
745 // broken BB), instead clone it, and remove BI.
746 if (isa<TerminatorInst>(I1))
747 goto HoistTerminator;
748
749 // For a normal instruction, we just move one to right before the branch,
750 // then replace all uses of the other with the first. Finally, we remove
751 // the now redundant second instruction.
752 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
753 if (!I2->use_empty())
754 I2->replaceAllUsesWith(I1);
755 BB2->getInstList().erase(I2);
756
757 I1 = BB1->begin();
758 I2 = BB2->begin();
Chris Lattner389cfac2004-11-30 00:29:14 +0000759 } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
760
761 return true;
762
763HoistTerminator:
764 // Okay, it is safe to hoist the terminator.
765 Instruction *NT = I1->clone();
766 BIParent->getInstList().insert(BI, NT);
767 if (NT->getType() != Type::VoidTy) {
768 I1->replaceAllUsesWith(NT);
769 I2->replaceAllUsesWith(NT);
770 NT->setName(I1->getName());
771 }
772
773 // Hoisting one of the terminators from our successor is a great thing.
774 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
775 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
776 // nodes, so we insert select instruction to compute the final result.
777 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
778 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
779 PHINode *PN;
780 for (BasicBlock::iterator BBI = SI->begin();
Chris Lattner01944572004-11-30 07:47:34 +0000781 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Chris Lattner389cfac2004-11-30 00:29:14 +0000782 Value *BB1V = PN->getIncomingValueForBlock(BB1);
783 Value *BB2V = PN->getIncomingValueForBlock(BB2);
784 if (BB1V != BB2V) {
785 // These values do not agree. Insert a select instruction before NT
786 // that determines the right value.
787 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
788 if (SI == 0)
789 SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
790 BB1V->getName()+"."+BB2V->getName(), NT);
791 // Make the PHI node use the select for all incoming values for BB1/BB2
792 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
793 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
794 PN->setIncomingValue(i, SI);
795 }
796 }
797 }
798
799 // Update any PHI nodes in our new successors.
800 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
801 AddPredecessorToBlock(*SI, BIParent, BB1);
802
803 BI->eraseFromParent();
804 return true;
805}
806
Chris Lattnerb2b151d2004-06-19 07:02:14 +0000807namespace {
808 /// ConstantIntOrdering - This class implements a stable ordering of constant
809 /// integers that does not depend on their address. This is important for
810 /// applications that sort ConstantInt's to ensure uniqueness.
811 struct ConstantIntOrdering {
812 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
813 return LHS->getRawValue() < RHS->getRawValue();
814 }
815 };
816}
817
Chris Lattnerd3e6ae22004-02-28 21:28:10 +0000818
Chris Lattner466a0492002-05-21 20:50:24 +0000819// SimplifyCFG - This function is used to do simplification of a CFG. For
820// example, it adjusts branches to branches to eliminate the extra hop, it
821// eliminates unreachable basic blocks, and does other "peephole" optimization
Chris Lattner31116ba2003-03-05 21:01:52 +0000822// of the CFG. It returns true if a modification was made.
Chris Lattner466a0492002-05-21 20:50:24 +0000823//
824// WARNING: The entry node of a function may not be simplified.
825//
Chris Lattnerdf3c3422004-01-09 06:12:26 +0000826bool llvm::SimplifyCFG(BasicBlock *BB) {
Chris Lattner3f5823f2003-08-24 18:36:16 +0000827 bool Changed = false;
Chris Lattner466a0492002-05-21 20:50:24 +0000828 Function *M = BB->getParent();
829
830 assert(BB && BB->getParent() && "Block not embedded in function!");
831 assert(BB->getTerminator() && "Degenerate basic block encountered!");
Chris Lattnerfda72b12002-06-25 16:12:52 +0000832 assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
Chris Lattner466a0492002-05-21 20:50:24 +0000833
Chris Lattner466a0492002-05-21 20:50:24 +0000834 // Remove basic blocks that have no predecessors... which are unreachable.
Chris Lattnera2ab4892004-02-24 07:23:58 +0000835 if (pred_begin(BB) == pred_end(BB) ||
836 *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
Chris Lattner32c518e2004-07-15 02:06:12 +0000837 DEBUG(std::cerr << "Removing BB: \n" << *BB);
Chris Lattner466a0492002-05-21 20:50:24 +0000838
839 // Loop through all of our successors and make sure they know that one
840 // of their predecessors is going away.
841 for_each(succ_begin(BB), succ_end(BB),
842 std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
843
844 while (!BB->empty()) {
Chris Lattnerfda72b12002-06-25 16:12:52 +0000845 Instruction &I = BB->back();
Chris Lattner466a0492002-05-21 20:50:24 +0000846 // If this instruction is used, replace uses with an arbitrary
847 // constant value. Because control flow can't get here, we don't care
848 // what we replace the value with. Note that since this block is
849 // unreachable, and all values contained within it must dominate their
850 // uses, that all uses will eventually be removed.
Chris Lattnerfda72b12002-06-25 16:12:52 +0000851 if (!I.use_empty())
Chris Lattner466a0492002-05-21 20:50:24 +0000852 // Make all users of this instruction reference the constant instead
Chris Lattnerfda72b12002-06-25 16:12:52 +0000853 I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
Chris Lattner466a0492002-05-21 20:50:24 +0000854
855 // Remove the instruction from the basic block
Chris Lattnerfda72b12002-06-25 16:12:52 +0000856 BB->getInstList().pop_back();
Chris Lattner466a0492002-05-21 20:50:24 +0000857 }
Chris Lattnerfda72b12002-06-25 16:12:52 +0000858 M->getBasicBlockList().erase(BB);
Chris Lattner466a0492002-05-21 20:50:24 +0000859 return true;
860 }
861
Chris Lattner031340a2003-08-17 19:41:53 +0000862 // Check to see if we can constant propagate this terminator instruction
863 // away...
Chris Lattner3f5823f2003-08-24 18:36:16 +0000864 Changed |= ConstantFoldTerminator(BB);
Chris Lattner031340a2003-08-17 19:41:53 +0000865
Chris Lattnere54d2142003-03-05 21:36:33 +0000866 // Check to see if this block has no non-phi instructions and only a single
867 // successor. If so, replace references to this basic block with references
868 // to the successor.
Chris Lattner466a0492002-05-21 20:50:24 +0000869 succ_iterator SI(succ_begin(BB));
870 if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ?
Chris Lattnere54d2142003-03-05 21:36:33 +0000871 BasicBlock::iterator BBI = BB->begin(); // Skip over phi nodes...
872 while (isa<PHINode>(*BBI)) ++BBI;
873
Chris Lattner93d1e392004-11-01 06:53:58 +0000874 BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor.
875 if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
876 Succ != BB) { // Don't hurt infinite loops!
877 // If our successor has PHI nodes, then we need to update them to include
878 // entries for BB's predecessors, not for BB itself. Be careful though,
879 // if this transformation fails (returns true) then we cannot do this
880 // transformation!
881 //
882 if (!PropagatePredecessorsForPHIs(BB, Succ)) {
883 DEBUG(std::cerr << "Killing Trivial BB: \n" << *BB);
884
885 if (isa<PHINode>(&BB->front())) {
Chris Lattner569a57f2003-03-07 18:13:41 +0000886 std::vector<BasicBlock*>
887 OldSuccPreds(pred_begin(Succ), pred_end(Succ));
Chris Lattner93d1e392004-11-01 06:53:58 +0000888
Chris Lattnere54d2142003-03-05 21:36:33 +0000889 // Move all PHI nodes in BB to Succ if they are alive, otherwise
890 // delete them.
891 while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
892 if (PN->use_empty())
Chris Lattner93d1e392004-11-01 06:53:58 +0000893 BB->getInstList().erase(BB->begin()); // Nuke instruction.
Chris Lattnere54d2142003-03-05 21:36:33 +0000894 else {
895 // The instruction is alive, so this means that Succ must have
896 // *ONLY* had BB as a predecessor, and the PHI node is still valid
Chris Lattner569a57f2003-03-07 18:13:41 +0000897 // now. Simply move it into Succ, because we know that BB
898 // strictly dominated Succ.
Chris Lattnere54d2142003-03-05 21:36:33 +0000899 BB->getInstList().remove(BB->begin());
900 Succ->getInstList().push_front(PN);
Chris Lattner93d1e392004-11-01 06:53:58 +0000901
Chris Lattner569a57f2003-03-07 18:13:41 +0000902 // We need to add new entries for the PHI node to account for
903 // predecessors of Succ that the PHI node does not take into
904 // account. At this point, since we know that BB dominated succ,
905 // this means that we should any newly added incoming edges should
906 // use the PHI node as the value for these edges, because they are
907 // loop back edges.
Chris Lattner569a57f2003-03-07 18:13:41 +0000908 for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
909 if (OldSuccPreds[i] != BB)
910 PN->addIncoming(PN, OldSuccPreds[i]);
Chris Lattnere54d2142003-03-05 21:36:33 +0000911 }
Chris Lattner93d1e392004-11-01 06:53:58 +0000912 }
913
914 // Everything that jumped to BB now goes to Succ.
915 std::string OldName = BB->getName();
916 BB->replaceAllUsesWith(Succ);
917 BB->eraseFromParent(); // Delete the old basic block.
Chris Lattnere54d2142003-03-05 21:36:33 +0000918
Chris Lattner93d1e392004-11-01 06:53:58 +0000919 if (!OldName.empty() && !Succ->hasName()) // Transfer name if we can
920 Succ->setName(OldName);
921 return true;
Chris Lattner466a0492002-05-21 20:50:24 +0000922 }
923 }
924 }
925
Chris Lattnere42732e2004-02-16 06:35:48 +0000926 // If this is a returning block with only PHI nodes in it, fold the return
927 // instruction into any unconditional branch predecessors.
Chris Lattner9f0db322004-04-02 18:13:43 +0000928 //
929 // If any predecessor is a conditional branch that just selects among
930 // different return values, fold the replace the branch/return with a select
931 // and return.
Chris Lattnere42732e2004-02-16 06:35:48 +0000932 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
933 BasicBlock::iterator BBI = BB->getTerminator();
934 if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
Chris Lattner9f0db322004-04-02 18:13:43 +0000935 // Find predecessors that end with branches.
Chris Lattnere42732e2004-02-16 06:35:48 +0000936 std::vector<BasicBlock*> UncondBranchPreds;
Chris Lattner9f0db322004-04-02 18:13:43 +0000937 std::vector<BranchInst*> CondBranchPreds;
Chris Lattnere42732e2004-02-16 06:35:48 +0000938 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
939 TerminatorInst *PTI = (*PI)->getTerminator();
940 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
941 if (BI->isUnconditional())
942 UncondBranchPreds.push_back(*PI);
Chris Lattner9f0db322004-04-02 18:13:43 +0000943 else
944 CondBranchPreds.push_back(BI);
Chris Lattnere42732e2004-02-16 06:35:48 +0000945 }
946
947 // If we found some, do the transformation!
948 if (!UncondBranchPreds.empty()) {
949 while (!UncondBranchPreds.empty()) {
950 BasicBlock *Pred = UncondBranchPreds.back();
951 UncondBranchPreds.pop_back();
952 Instruction *UncondBranch = Pred->getTerminator();
953 // Clone the return and add it to the end of the predecessor.
954 Instruction *NewRet = RI->clone();
955 Pred->getInstList().push_back(NewRet);
956
957 // If the return instruction returns a value, and if the value was a
958 // PHI node in "BB", propagate the right value into the return.
959 if (NewRet->getNumOperands() == 1)
960 if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
961 if (PN->getParent() == BB)
962 NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
963 // Update any PHI nodes in the returning block to realize that we no
964 // longer branch to them.
965 BB->removePredecessor(Pred);
966 Pred->getInstList().erase(UncondBranch);
967 }
968
969 // If we eliminated all predecessors of the block, delete the block now.
970 if (pred_begin(BB) == pred_end(BB))
971 // We know there are no successors, so just nuke the block.
972 M->getBasicBlockList().erase(BB);
973
Chris Lattnere42732e2004-02-16 06:35:48 +0000974 return true;
975 }
Chris Lattner9f0db322004-04-02 18:13:43 +0000976
977 // Check out all of the conditional branches going to this return
978 // instruction. If any of them just select between returns, change the
979 // branch itself into a select/return pair.
980 while (!CondBranchPreds.empty()) {
981 BranchInst *BI = CondBranchPreds.back();
982 CondBranchPreds.pop_back();
983 BasicBlock *TrueSucc = BI->getSuccessor(0);
984 BasicBlock *FalseSucc = BI->getSuccessor(1);
985 BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
986
987 // Check to see if the non-BB successor is also a return block.
988 if (isa<ReturnInst>(OtherSucc->getTerminator())) {
989 // Check to see if there are only PHI instructions in this block.
990 BasicBlock::iterator OSI = OtherSucc->getTerminator();
991 if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
992 // Okay, we found a branch that is going to two return nodes. If
993 // there is no return value for this function, just change the
994 // branch into a return.
995 if (RI->getNumOperands() == 0) {
996 TrueSucc->removePredecessor(BI->getParent());
997 FalseSucc->removePredecessor(BI->getParent());
998 new ReturnInst(0, BI);
999 BI->getParent()->getInstList().erase(BI);
1000 return true;
1001 }
1002
1003 // Otherwise, figure out what the true and false return values are
1004 // so we can insert a new select instruction.
1005 Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
1006 Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
1007
1008 // Unwrap any PHI nodes in the return blocks.
1009 if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1010 if (TVPN->getParent() == TrueSucc)
1011 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1012 if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1013 if (FVPN->getParent() == FalseSucc)
1014 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1015
Chris Lattnereed034b2004-04-02 18:15:10 +00001016 TrueSucc->removePredecessor(BI->getParent());
1017 FalseSucc->removePredecessor(BI->getParent());
1018
Chris Lattner9f0db322004-04-02 18:13:43 +00001019 // Insert a new select instruction.
Chris Lattner879ce782004-09-29 05:43:32 +00001020 Value *NewRetVal;
1021 Value *BrCond = BI->getCondition();
1022 if (TrueValue != FalseValue)
1023 NewRetVal = new SelectInst(BrCond, TrueValue,
1024 FalseValue, "retval", BI);
1025 else
1026 NewRetVal = TrueValue;
1027
Chris Lattner9f0db322004-04-02 18:13:43 +00001028 new ReturnInst(NewRetVal, BI);
1029 BI->getParent()->getInstList().erase(BI);
Chris Lattner879ce782004-09-29 05:43:32 +00001030 if (BrCond->use_empty())
1031 if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1032 BrCondI->getParent()->getInstList().erase(BrCondI);
Chris Lattner9f0db322004-04-02 18:13:43 +00001033 return true;
1034 }
1035 }
1036 }
Chris Lattnere42732e2004-02-16 06:35:48 +00001037 }
Chris Lattner3cd98f02004-02-24 05:54:22 +00001038 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
1039 // Check to see if the first instruction in this block is just an unwind.
1040 // If so, replace any invoke instructions which use this as an exception
Chris Lattner5823ac12004-07-20 01:17:38 +00001041 // destination with call instructions, and any unconditional branch
1042 // predecessor with an unwind.
Chris Lattner3cd98f02004-02-24 05:54:22 +00001043 //
1044 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1045 while (!Preds.empty()) {
1046 BasicBlock *Pred = Preds.back();
Chris Lattner5823ac12004-07-20 01:17:38 +00001047 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1048 if (BI->isUnconditional()) {
1049 Pred->getInstList().pop_back(); // nuke uncond branch
1050 new UnwindInst(Pred); // Use unwind.
1051 Changed = true;
1052 }
1053 } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
Chris Lattner3cd98f02004-02-24 05:54:22 +00001054 if (II->getUnwindDest() == BB) {
1055 // Insert a new branch instruction before the invoke, because this
1056 // is now a fall through...
1057 BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1058 Pred->getInstList().remove(II); // Take out of symbol table
1059
1060 // Insert the call now...
1061 std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1062 CallInst *CI = new CallInst(II->getCalledValue(), Args,
1063 II->getName(), BI);
1064 // If the invoke produced a value, the Call now does instead
1065 II->replaceAllUsesWith(CI);
1066 delete II;
1067 Changed = true;
1068 }
1069
1070 Preds.pop_back();
1071 }
Chris Lattner90ea78e2004-02-24 16:09:21 +00001072
1073 // If this block is now dead, remove it.
1074 if (pred_begin(BB) == pred_end(BB)) {
1075 // We know there are no successors, so just nuke the block.
1076 M->getBasicBlockList().erase(BB);
1077 return true;
1078 }
1079
Chris Lattner1cca9592005-02-24 06:17:52 +00001080 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1081 if (isValueEqualityComparison(SI)) {
1082 // If we only have one predecessor, and if it is a branch on this value,
1083 // see if that predecessor totally determines the outcome of this switch.
1084 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1085 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1086 return SimplifyCFG(BB) || 1;
1087
1088 // If the block only contains the switch, see if we can fold the block
1089 // away into any preds.
1090 if (SI == &BB->front())
1091 if (FoldValueComparisonIntoPredecessors(SI))
1092 return SimplifyCFG(BB) || 1;
1093 }
Chris Lattnerd3e6ae22004-02-28 21:28:10 +00001094 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
Chris Lattner88da6f72004-05-01 22:36:37 +00001095 if (BI->isConditional()) {
Chris Lattner2e93c422004-05-01 23:35:43 +00001096 if (Value *CompVal = isValueEqualityComparison(BI)) {
Chris Lattner1cca9592005-02-24 06:17:52 +00001097 // If we only have one predecessor, and if it is a branch on this value,
1098 // see if that predecessor totally determines the outcome of this
1099 // switch.
1100 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1101 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1102 return SimplifyCFG(BB) || 1;
1103
Chris Lattner2e93c422004-05-01 23:35:43 +00001104 // This block must be empty, except for the setcond inst, if it exists.
1105 BasicBlock::iterator I = BB->begin();
1106 if (&*I == BI ||
1107 (&*I == cast<Instruction>(BI->getCondition()) &&
1108 &*++I == BI))
1109 if (FoldValueComparisonIntoPredecessors(BI))
1110 return SimplifyCFG(BB) | true;
1111 }
1112
1113 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1114 // branches to us and one of our successors, fold the setcc into the
1115 // predecessor and use logical operations to pick the right destination.
Chris Lattner51a6dbc2004-05-02 05:02:03 +00001116 BasicBlock *TrueDest = BI->getSuccessor(0);
1117 BasicBlock *FalseDest = BI->getSuccessor(1);
Chris Lattnerbe6f0682004-05-02 05:19:36 +00001118 if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(BI->getCondition()))
Chris Lattner2e93c422004-05-01 23:35:43 +00001119 if (Cond->getParent() == BB && &BB->front() == Cond &&
Chris Lattner51a6dbc2004-05-02 05:02:03 +00001120 Cond->getNext() == BI && Cond->hasOneUse() &&
1121 TrueDest != BB && FalseDest != BB)
Chris Lattner2e93c422004-05-01 23:35:43 +00001122 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
1123 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
Chris Lattner1e94ed62004-05-02 01:00:44 +00001124 if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
Chris Lattnerf12c4a32004-06-21 07:19:01 +00001125 BasicBlock *PredBlock = *PI;
Chris Lattner2e93c422004-05-01 23:35:43 +00001126 if (PBI->getSuccessor(0) == FalseDest ||
1127 PBI->getSuccessor(1) == TrueDest) {
1128 // Invert the predecessors condition test (xor it with true),
1129 // which allows us to write this code once.
1130 Value *NewCond =
1131 BinaryOperator::createNot(PBI->getCondition(),
1132 PBI->getCondition()->getName()+".not", PBI);
1133 PBI->setCondition(NewCond);
1134 BasicBlock *OldTrue = PBI->getSuccessor(0);
1135 BasicBlock *OldFalse = PBI->getSuccessor(1);
1136 PBI->setSuccessor(0, OldFalse);
1137 PBI->setSuccessor(1, OldTrue);
1138 }
1139
1140 if (PBI->getSuccessor(0) == TrueDest ||
1141 PBI->getSuccessor(1) == FalseDest) {
Chris Lattnerf12c4a32004-06-21 07:19:01 +00001142 // Clone Cond into the predecessor basic block, and or/and the
Chris Lattner2e93c422004-05-01 23:35:43 +00001143 // two conditions together.
1144 Instruction *New = Cond->clone();
1145 New->setName(Cond->getName());
1146 Cond->setName(Cond->getName()+".old");
Chris Lattnerf12c4a32004-06-21 07:19:01 +00001147 PredBlock->getInstList().insert(PBI, New);
Chris Lattner2e93c422004-05-01 23:35:43 +00001148 Instruction::BinaryOps Opcode =
1149 PBI->getSuccessor(0) == TrueDest ?
1150 Instruction::Or : Instruction::And;
1151 Value *NewCond =
1152 BinaryOperator::create(Opcode, PBI->getCondition(),
1153 New, "bothcond", PBI);
1154 PBI->setCondition(NewCond);
1155 if (PBI->getSuccessor(0) == BB) {
Chris Lattnerf12c4a32004-06-21 07:19:01 +00001156 AddPredecessorToBlock(TrueDest, PredBlock, BB);
Chris Lattner2e93c422004-05-01 23:35:43 +00001157 PBI->setSuccessor(0, TrueDest);
1158 }
1159 if (PBI->getSuccessor(1) == BB) {
Chris Lattnerf12c4a32004-06-21 07:19:01 +00001160 AddPredecessorToBlock(FalseDest, PredBlock, BB);
Chris Lattner2e93c422004-05-01 23:35:43 +00001161 PBI->setSuccessor(1, FalseDest);
1162 }
1163 return SimplifyCFG(BB) | 1;
1164 }
1165 }
Chris Lattner2e93c422004-05-01 23:35:43 +00001166
Chris Lattner88da6f72004-05-01 22:36:37 +00001167 // If this block ends with a branch instruction, and if there is one
1168 // predecessor, see if the previous block ended with a branch on the same
1169 // condition, which makes this conditional branch redundant.
1170 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1171 BasicBlock *OnlyPred = *PI++;
1172 for (; PI != PE; ++PI)// Search all predecessors, see if they are all same
1173 if (*PI != OnlyPred) {
1174 OnlyPred = 0; // There are multiple different predecessors...
1175 break;
1176 }
1177
1178 if (OnlyPred)
1179 if (BranchInst *PBI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1180 if (PBI->isConditional() &&
1181 PBI->getCondition() == BI->getCondition() &&
Chris Lattner4cbd1602004-05-01 22:41:51 +00001182 (PBI->getSuccessor(0) != BB || PBI->getSuccessor(1) != BB)) {
Chris Lattner88da6f72004-05-01 22:36:37 +00001183 // Okay, the outcome of this conditional branch is statically
1184 // knowable. Delete the outgoing CFG edge that is impossible to
1185 // execute.
1186 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1187 BI->getSuccessor(CondIsTrue)->removePredecessor(BB);
1188 new BranchInst(BI->getSuccessor(!CondIsTrue), BB);
1189 BB->getInstList().erase(BI);
1190 return SimplifyCFG(BB) | true;
1191 }
Chris Lattnera2ab4892004-02-24 07:23:58 +00001192 }
Chris Lattner5edb2f32004-10-18 04:07:22 +00001193 } else if (isa<UnreachableInst>(BB->getTerminator())) {
1194 // If there are any instructions immediately before the unreachable that can
1195 // be removed, do so.
1196 Instruction *Unreachable = BB->getTerminator();
1197 while (Unreachable != BB->begin()) {
1198 BasicBlock::iterator BBI = Unreachable;
1199 --BBI;
1200 if (isa<CallInst>(BBI)) break;
1201 // Delete this instruction
1202 BB->getInstList().erase(BBI);
1203 Changed = true;
1204 }
1205
1206 // If the unreachable instruction is the first in the block, take a gander
1207 // at all of the predecessors of this instruction, and simplify them.
1208 if (&BB->front() == Unreachable) {
1209 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1210 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1211 TerminatorInst *TI = Preds[i]->getTerminator();
1212
1213 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1214 if (BI->isUnconditional()) {
1215 if (BI->getSuccessor(0) == BB) {
1216 new UnreachableInst(TI);
1217 TI->eraseFromParent();
1218 Changed = true;
1219 }
1220 } else {
1221 if (BI->getSuccessor(0) == BB) {
1222 new BranchInst(BI->getSuccessor(1), BI);
1223 BI->eraseFromParent();
1224 } else if (BI->getSuccessor(1) == BB) {
1225 new BranchInst(BI->getSuccessor(0), BI);
1226 BI->eraseFromParent();
1227 Changed = true;
1228 }
1229 }
1230 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1231 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1232 if (SI->getSuccessor(i) == BB) {
1233 SI->removeCase(i);
1234 --i; --e;
1235 Changed = true;
1236 }
1237 // If the default value is unreachable, figure out the most popular
1238 // destination and make it the default.
1239 if (SI->getSuccessor(0) == BB) {
1240 std::map<BasicBlock*, unsigned> Popularity;
1241 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1242 Popularity[SI->getSuccessor(i)]++;
1243
1244 // Find the most popular block.
1245 unsigned MaxPop = 0;
1246 BasicBlock *MaxBlock = 0;
1247 for (std::map<BasicBlock*, unsigned>::iterator
1248 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1249 if (I->second > MaxPop) {
1250 MaxPop = I->second;
1251 MaxBlock = I->first;
1252 }
1253 }
1254 if (MaxBlock) {
1255 // Make this the new default, allowing us to delete any explicit
1256 // edges to it.
1257 SI->setSuccessor(0, MaxBlock);
1258 Changed = true;
1259
1260 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1261 if (SI->getSuccessor(i) == MaxBlock) {
1262 SI->removeCase(i);
1263 --i; --e;
1264 }
1265 }
1266 }
1267 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1268 if (II->getUnwindDest() == BB) {
1269 // Convert the invoke to a call instruction. This would be a good
1270 // place to note that the call does not throw though.
1271 BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1272 II->removeFromParent(); // Take out of symbol table
1273
1274 // Insert the call now...
1275 std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1276 CallInst *CI = new CallInst(II->getCalledValue(), Args,
1277 II->getName(), BI);
1278 // If the invoke produced a value, the Call does now instead.
1279 II->replaceAllUsesWith(CI);
1280 delete II;
1281 Changed = true;
1282 }
1283 }
1284 }
1285
1286 // If this block is now dead, remove it.
1287 if (pred_begin(BB) == pred_end(BB)) {
1288 // We know there are no successors, so just nuke the block.
1289 M->getBasicBlockList().erase(BB);
1290 return true;
1291 }
1292 }
Chris Lattnere42732e2004-02-16 06:35:48 +00001293 }
1294
Chris Lattner466a0492002-05-21 20:50:24 +00001295 // Merge basic blocks into their predecessor if there is only one distinct
1296 // pred, and if there is only one distinct successor of the predecessor, and
1297 // if there are no PHI nodes.
1298 //
Chris Lattner838b8452004-02-11 01:17:07 +00001299 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1300 BasicBlock *OnlyPred = *PI++;
1301 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
1302 if (*PI != OnlyPred) {
1303 OnlyPred = 0; // There are multiple different predecessors...
1304 break;
1305 }
Chris Lattner88da6f72004-05-01 22:36:37 +00001306
Chris Lattner838b8452004-02-11 01:17:07 +00001307 BasicBlock *OnlySucc = 0;
1308 if (OnlyPred && OnlyPred != BB && // Don't break self loops
1309 OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
1310 // Check to see if there is only one distinct successor...
1311 succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
1312 OnlySucc = BB;
1313 for (; SI != SE; ++SI)
1314 if (*SI != OnlySucc) {
1315 OnlySucc = 0; // There are multiple distinct successors!
Chris Lattner466a0492002-05-21 20:50:24 +00001316 break;
1317 }
Chris Lattner838b8452004-02-11 01:17:07 +00001318 }
1319
1320 if (OnlySucc) {
Chris Lattner32c518e2004-07-15 02:06:12 +00001321 DEBUG(std::cerr << "Merging: " << *BB << "into: " << *OnlyPred);
Chris Lattner838b8452004-02-11 01:17:07 +00001322 TerminatorInst *Term = OnlyPred->getTerminator();
1323
1324 // Resolve any PHI nodes at the start of the block. They are all
1325 // guaranteed to have exactly one entry if they exist, unless there are
1326 // multiple duplicate (but guaranteed to be equal) entries for the
1327 // incoming edges. This occurs when there are multiple edges from
1328 // OnlyPred to OnlySucc.
1329 //
1330 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1331 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1332 BB->getInstList().pop_front(); // Delete the phi node...
Chris Lattner466a0492002-05-21 20:50:24 +00001333 }
1334
Chris Lattner838b8452004-02-11 01:17:07 +00001335 // Delete the unconditional branch from the predecessor...
1336 OnlyPred->getInstList().pop_back();
Chris Lattner466a0492002-05-21 20:50:24 +00001337
Chris Lattner838b8452004-02-11 01:17:07 +00001338 // Move all definitions in the successor to the predecessor...
1339 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
Chris Lattnerfda72b12002-06-25 16:12:52 +00001340
Chris Lattner838b8452004-02-11 01:17:07 +00001341 // Make all PHI nodes that referred to BB now refer to Pred as their
1342 // source...
1343 BB->replaceAllUsesWith(OnlyPred);
Chris Lattnerfda72b12002-06-25 16:12:52 +00001344
Chris Lattner838b8452004-02-11 01:17:07 +00001345 std::string OldName = BB->getName();
Chris Lattnerfda72b12002-06-25 16:12:52 +00001346
Chris Lattner838b8452004-02-11 01:17:07 +00001347 // Erase basic block from the function...
1348 M->getBasicBlockList().erase(BB);
Chris Lattnerfda72b12002-06-25 16:12:52 +00001349
Chris Lattner838b8452004-02-11 01:17:07 +00001350 // Inherit predecessors name if it exists...
1351 if (!OldName.empty() && !OnlyPred->hasName())
1352 OnlyPred->setName(OldName);
Chris Lattner466a0492002-05-21 20:50:24 +00001353
Chris Lattner838b8452004-02-11 01:17:07 +00001354 return true;
Chris Lattner466a0492002-05-21 20:50:24 +00001355 }
Chris Lattner18d1f192004-02-11 03:36:04 +00001356
Chris Lattner389cfac2004-11-30 00:29:14 +00001357 // Otherwise, if this block only has a single predecessor, and if that block
1358 // is a conditional branch, see if we can hoist any code from this block up
1359 // into our predecessor.
1360 if (OnlyPred)
Chris Lattner4fc998d2004-12-10 17:42:31 +00001361 if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1362 if (BI->isConditional()) {
1363 // Get the other block.
1364 BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1365 PI = pred_begin(OtherBB);
1366 ++PI;
1367 if (PI == pred_end(OtherBB)) {
1368 // We have a conditional branch to two blocks that are only reachable
1369 // from the condbr. We know that the condbr dominates the two blocks,
1370 // so see if there is any identical code in the "then" and "else"
1371 // blocks. If so, we can hoist it up to the branching block.
1372 Changed |= HoistThenElseCodeToIf(BI);
1373 }
Chris Lattner389cfac2004-11-30 00:29:14 +00001374 }
Chris Lattner389cfac2004-11-30 00:29:14 +00001375
Chris Lattner6f4b45a2004-02-24 05:38:11 +00001376 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1377 if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1378 // Change br (X == 0 | X == 1), T, F into a switch instruction.
1379 if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
1380 Instruction *Cond = cast<Instruction>(BI->getCondition());
1381 // If this is a bunch of seteq's or'd together, or if it's a bunch of
1382 // 'setne's and'ed together, collect them.
1383 Value *CompVal = 0;
Chris Lattnerb2b151d2004-06-19 07:02:14 +00001384 std::vector<ConstantInt*> Values;
Chris Lattner6f4b45a2004-02-24 05:38:11 +00001385 bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
1386 if (CompVal && CompVal->getType()->isInteger()) {
1387 // There might be duplicate constants in the list, which the switch
1388 // instruction can't handle, remove them now.
Chris Lattnerb2b151d2004-06-19 07:02:14 +00001389 std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
Chris Lattner6f4b45a2004-02-24 05:38:11 +00001390 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1391
1392 // Figure out which block is which destination.
1393 BasicBlock *DefaultBB = BI->getSuccessor(1);
1394 BasicBlock *EdgeBB = BI->getSuccessor(0);
1395 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1396
1397 // Create the new switch instruction now.
Chris Lattnera35dfce2005-01-29 00:38:26 +00001398 SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
Chris Lattner6f4b45a2004-02-24 05:38:11 +00001399
1400 // Add all of the 'cases' to the switch instruction.
1401 for (unsigned i = 0, e = Values.size(); i != e; ++i)
1402 New->addCase(Values[i], EdgeBB);
1403
1404 // We added edges from PI to the EdgeBB. As such, if there were any
1405 // PHI nodes in EdgeBB, they need entries to be added corresponding to
1406 // the number of edges added.
1407 for (BasicBlock::iterator BBI = EdgeBB->begin();
Reid Spencer66149462004-09-15 17:06:42 +00001408 isa<PHINode>(BBI); ++BBI) {
1409 PHINode *PN = cast<PHINode>(BBI);
Chris Lattner6f4b45a2004-02-24 05:38:11 +00001410 Value *InVal = PN->getIncomingValueForBlock(*PI);
1411 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1412 PN->addIncoming(InVal, *PI);
1413 }
1414
1415 // Erase the old branch instruction.
1416 (*PI)->getInstList().erase(BI);
1417
1418 // Erase the potentially condition tree that was used to computed the
1419 // branch condition.
1420 ErasePossiblyDeadInstructionTree(Cond);
1421 return true;
1422 }
1423 }
1424
Chris Lattner18d1f192004-02-11 03:36:04 +00001425 // If there is a trivial two-entry PHI node in this basic block, and we can
1426 // eliminate it, do so now.
1427 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1428 if (PN->getNumIncomingValues() == 2) {
1429 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1430 // statement", which has a very simple dominance structure. Basically, we
1431 // are trying to find the condition that is being branched on, which
1432 // subsequently causes this merge to happen. We really want control
1433 // dependence information for this check, but simplifycfg can't keep it up
1434 // to date, and this catches most of the cases we care about anyway.
1435 //
1436 BasicBlock *IfTrue, *IfFalse;
1437 if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
Chris Lattner9734fd02004-06-20 01:13:18 +00001438 DEBUG(std::cerr << "FOUND IF CONDITION! " << *IfCond << " T: "
1439 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
Chris Lattner18d1f192004-02-11 03:36:04 +00001440
Chris Lattner45c35b12004-10-14 05:13:36 +00001441 // Loop over the PHI's seeing if we can promote them all to select
1442 // instructions. While we are at it, keep track of the instructions
1443 // that need to be moved to the dominating block.
1444 std::set<Instruction*> AggressiveInsts;
1445 bool CanPromote = true;
1446
Chris Lattner18d1f192004-02-11 03:36:04 +00001447 BasicBlock::iterator AfterPHIIt = BB->begin();
Chris Lattner45c35b12004-10-14 05:13:36 +00001448 while (isa<PHINode>(AfterPHIIt)) {
1449 PHINode *PN = cast<PHINode>(AfterPHIIt++);
1450 if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
1451 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1452 else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1453 &AggressiveInsts) ||
1454 !DominatesMergePoint(PN->getIncomingValue(1), BB,
1455 &AggressiveInsts)) {
1456 CanPromote = false;
1457 break;
1458 }
1459 }
Chris Lattner18d1f192004-02-11 03:36:04 +00001460
Chris Lattner45c35b12004-10-14 05:13:36 +00001461 // Did we eliminate all PHI's?
1462 CanPromote |= AfterPHIIt == BB->begin();
Chris Lattner18d1f192004-02-11 03:36:04 +00001463
Chris Lattner45c35b12004-10-14 05:13:36 +00001464 // If we all PHI nodes are promotable, check to make sure that all
1465 // instructions in the predecessor blocks can be promoted as well. If
1466 // not, we won't be able to get rid of the control flow, so it's not
1467 // worth promoting to select instructions.
Reid Spencerfad217c2004-10-22 16:10:39 +00001468 BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
Chris Lattner45c35b12004-10-14 05:13:36 +00001469 if (CanPromote) {
1470 PN = cast<PHINode>(BB->begin());
1471 BasicBlock *Pred = PN->getIncomingBlock(0);
1472 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1473 IfBlock1 = Pred;
1474 DomBlock = *pred_begin(Pred);
1475 for (BasicBlock::iterator I = Pred->begin();
1476 !isa<TerminatorInst>(I); ++I)
1477 if (!AggressiveInsts.count(I)) {
1478 // This is not an aggressive instruction that we can promote.
1479 // Because of this, we won't be able to get rid of the control
1480 // flow, so the xform is not worth it.
1481 CanPromote = false;
1482 break;
1483 }
1484 }
1485
1486 Pred = PN->getIncomingBlock(1);
1487 if (CanPromote &&
1488 cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1489 IfBlock2 = Pred;
1490 DomBlock = *pred_begin(Pred);
1491 for (BasicBlock::iterator I = Pred->begin();
1492 !isa<TerminatorInst>(I); ++I)
1493 if (!AggressiveInsts.count(I)) {
1494 // This is not an aggressive instruction that we can promote.
1495 // Because of this, we won't be able to get rid of the control
1496 // flow, so the xform is not worth it.
1497 CanPromote = false;
1498 break;
1499 }
1500 }
1501 }
1502
1503 // If we can still promote the PHI nodes after this gauntlet of tests,
1504 // do all of the PHI's now.
1505 if (CanPromote) {
1506 // Move all 'aggressive' instructions, which are defined in the
1507 // conditional parts of the if's up to the dominating block.
1508 if (IfBlock1) {
1509 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1510 IfBlock1->getInstList(),
1511 IfBlock1->begin(),
1512 IfBlock1->getTerminator());
1513 }
1514 if (IfBlock2) {
1515 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1516 IfBlock2->getInstList(),
1517 IfBlock2->begin(),
1518 IfBlock2->getTerminator());
1519 }
1520
1521 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1522 // Change the PHI node into a select instruction.
Chris Lattner18d1f192004-02-11 03:36:04 +00001523 Value *TrueVal =
1524 PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1525 Value *FalseVal =
1526 PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1527
Chris Lattner81bdcb92004-03-30 19:44:05 +00001528 std::string Name = PN->getName(); PN->setName("");
1529 PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
Chris Lattner45c35b12004-10-14 05:13:36 +00001530 Name, AfterPHIIt));
Chris Lattner81bdcb92004-03-30 19:44:05 +00001531 BB->getInstList().erase(PN);
Chris Lattner18d1f192004-02-11 03:36:04 +00001532 }
Chris Lattner45c35b12004-10-14 05:13:36 +00001533 Changed = true;
Chris Lattner18d1f192004-02-11 03:36:04 +00001534 }
1535 }
1536 }
Chris Lattner466a0492002-05-21 20:50:24 +00001537
Chris Lattner031340a2003-08-17 19:41:53 +00001538 return Changed;
Chris Lattner466a0492002-05-21 20:50:24 +00001539}