Erik Eckstein | 4d6fb72 | 2016-11-11 21:15:13 +0000 | [diff] [blame] | 1 | //===- FunctionComparator.h - Function Comparator -------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the FunctionComparator and GlobalNumberState classes |
| 11 | // which are used by the MergeFunctions pass for comparing functions. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Transforms/Utils/FunctionComparator.h" |
| 16 | #include "llvm/ADT/SmallSet.h" |
| 17 | #include "llvm/IR/CallSite.h" |
Erik Eckstein | 4d6fb72 | 2016-11-11 21:15:13 +0000 | [diff] [blame] | 18 | #include "llvm/IR/InlineAsm.h" |
Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame] | 19 | #include "llvm/IR/Instructions.h" |
Erik Eckstein | 4d6fb72 | 2016-11-11 21:15:13 +0000 | [diff] [blame] | 20 | #include "llvm/IR/Module.h" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | #include "llvm/Support/raw_ostream.h" |
| 23 | |
| 24 | using namespace llvm; |
| 25 | |
| 26 | #define DEBUG_TYPE "functioncomparator" |
| 27 | |
| 28 | int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { |
| 29 | if (L < R) return -1; |
| 30 | if (L > R) return 1; |
| 31 | return 0; |
| 32 | } |
| 33 | |
| 34 | int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { |
| 35 | if ((int)L < (int)R) return -1; |
| 36 | if ((int)L > (int)R) return 1; |
| 37 | return 0; |
| 38 | } |
| 39 | |
| 40 | int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { |
| 41 | if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) |
| 42 | return Res; |
| 43 | if (L.ugt(R)) return 1; |
| 44 | if (R.ugt(L)) return -1; |
| 45 | return 0; |
| 46 | } |
| 47 | |
| 48 | int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { |
| 49 | // Floats are ordered first by semantics (i.e. float, double, half, etc.), |
| 50 | // then by value interpreted as a bitstring (aka APInt). |
| 51 | const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); |
| 52 | if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), |
| 53 | APFloat::semanticsPrecision(SR))) |
| 54 | return Res; |
| 55 | if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), |
| 56 | APFloat::semanticsMaxExponent(SR))) |
| 57 | return Res; |
| 58 | if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), |
| 59 | APFloat::semanticsMinExponent(SR))) |
| 60 | return Res; |
| 61 | if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), |
| 62 | APFloat::semanticsSizeInBits(SR))) |
| 63 | return Res; |
| 64 | return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); |
| 65 | } |
| 66 | |
| 67 | int FunctionComparator::cmpMem(StringRef L, StringRef R) const { |
| 68 | // Prevent heavy comparison, compare sizes first. |
| 69 | if (int Res = cmpNumbers(L.size(), R.size())) |
| 70 | return Res; |
| 71 | |
| 72 | // Compare strings lexicographically only when it is necessary: only when |
| 73 | // strings are equal in size. |
| 74 | return L.compare(R); |
| 75 | } |
| 76 | |
Reid Kleckner | b518054 | 2017-03-21 16:57:19 +0000 | [diff] [blame] | 77 | int FunctionComparator::cmpAttrs(const AttributeList L, |
| 78 | const AttributeList R) const { |
Reid Kleckner | 8bf67fe | 2017-05-23 17:01:48 +0000 | [diff] [blame] | 79 | if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) |
Erik Eckstein | 4d6fb72 | 2016-11-11 21:15:13 +0000 | [diff] [blame] | 80 | return Res; |
| 81 | |
Reid Kleckner | 8bf67fe | 2017-05-23 17:01:48 +0000 | [diff] [blame] | 82 | for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { |
| 83 | AttributeSet LAS = L.getAttributes(i); |
| 84 | AttributeSet RAS = R.getAttributes(i); |
| 85 | AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); |
| 86 | AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); |
Erik Eckstein | 4d6fb72 | 2016-11-11 21:15:13 +0000 | [diff] [blame] | 87 | for (; LI != LE && RI != RE; ++LI, ++RI) { |
| 88 | Attribute LA = *LI; |
| 89 | Attribute RA = *RI; |
| 90 | if (LA < RA) |
| 91 | return -1; |
| 92 | if (RA < LA) |
| 93 | return 1; |
| 94 | } |
| 95 | if (LI != LE) |
| 96 | return 1; |
| 97 | if (RI != RE) |
| 98 | return -1; |
| 99 | } |
| 100 | return 0; |
| 101 | } |
| 102 | |
| 103 | int FunctionComparator::cmpRangeMetadata(const MDNode *L, |
| 104 | const MDNode *R) const { |
| 105 | if (L == R) |
| 106 | return 0; |
| 107 | if (!L) |
| 108 | return -1; |
| 109 | if (!R) |
| 110 | return 1; |
| 111 | // Range metadata is a sequence of numbers. Make sure they are the same |
| 112 | // sequence. |
| 113 | // TODO: Note that as this is metadata, it is possible to drop and/or merge |
| 114 | // this data when considering functions to merge. Thus this comparison would |
| 115 | // return 0 (i.e. equivalent), but merging would become more complicated |
| 116 | // because the ranges would need to be unioned. It is not likely that |
| 117 | // functions differ ONLY in this metadata if they are actually the same |
| 118 | // function semantically. |
| 119 | if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) |
| 120 | return Res; |
| 121 | for (size_t I = 0; I < L->getNumOperands(); ++I) { |
| 122 | ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); |
| 123 | ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); |
| 124 | if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) |
| 125 | return Res; |
| 126 | } |
| 127 | return 0; |
| 128 | } |
| 129 | |
| 130 | int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, |
| 131 | const Instruction *R) const { |
| 132 | ImmutableCallSite LCS(L); |
| 133 | ImmutableCallSite RCS(R); |
| 134 | |
| 135 | assert(LCS && RCS && "Must be calls or invokes!"); |
| 136 | assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); |
| 137 | |
| 138 | if (int Res = |
| 139 | cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) |
| 140 | return Res; |
| 141 | |
| 142 | for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { |
| 143 | auto OBL = LCS.getOperandBundleAt(i); |
| 144 | auto OBR = RCS.getOperandBundleAt(i); |
| 145 | |
| 146 | if (int Res = OBL.getTagName().compare(OBR.getTagName())) |
| 147 | return Res; |
| 148 | |
| 149 | if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) |
| 150 | return Res; |
| 151 | } |
| 152 | |
| 153 | return 0; |
| 154 | } |
| 155 | |
| 156 | /// Constants comparison: |
| 157 | /// 1. Check whether type of L constant could be losslessly bitcasted to R |
| 158 | /// type. |
| 159 | /// 2. Compare constant contents. |
| 160 | /// For more details see declaration comments. |
| 161 | int FunctionComparator::cmpConstants(const Constant *L, |
| 162 | const Constant *R) const { |
| 163 | |
| 164 | Type *TyL = L->getType(); |
| 165 | Type *TyR = R->getType(); |
| 166 | |
| 167 | // Check whether types are bitcastable. This part is just re-factored |
| 168 | // Type::canLosslesslyBitCastTo method, but instead of returning true/false, |
| 169 | // we also pack into result which type is "less" for us. |
| 170 | int TypesRes = cmpTypes(TyL, TyR); |
| 171 | if (TypesRes != 0) { |
| 172 | // Types are different, but check whether we can bitcast them. |
| 173 | if (!TyL->isFirstClassType()) { |
| 174 | if (TyR->isFirstClassType()) |
| 175 | return -1; |
| 176 | // Neither TyL nor TyR are values of first class type. Return the result |
| 177 | // of comparing the types |
| 178 | return TypesRes; |
| 179 | } |
| 180 | if (!TyR->isFirstClassType()) { |
| 181 | if (TyL->isFirstClassType()) |
| 182 | return 1; |
| 183 | return TypesRes; |
| 184 | } |
| 185 | |
| 186 | // Vector -> Vector conversions are always lossless if the two vector types |
| 187 | // have the same size, otherwise not. |
| 188 | unsigned TyLWidth = 0; |
| 189 | unsigned TyRWidth = 0; |
| 190 | |
| 191 | if (auto *VecTyL = dyn_cast<VectorType>(TyL)) |
| 192 | TyLWidth = VecTyL->getBitWidth(); |
| 193 | if (auto *VecTyR = dyn_cast<VectorType>(TyR)) |
| 194 | TyRWidth = VecTyR->getBitWidth(); |
| 195 | |
| 196 | if (TyLWidth != TyRWidth) |
| 197 | return cmpNumbers(TyLWidth, TyRWidth); |
| 198 | |
| 199 | // Zero bit-width means neither TyL nor TyR are vectors. |
| 200 | if (!TyLWidth) { |
| 201 | PointerType *PTyL = dyn_cast<PointerType>(TyL); |
| 202 | PointerType *PTyR = dyn_cast<PointerType>(TyR); |
| 203 | if (PTyL && PTyR) { |
| 204 | unsigned AddrSpaceL = PTyL->getAddressSpace(); |
| 205 | unsigned AddrSpaceR = PTyR->getAddressSpace(); |
| 206 | if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) |
| 207 | return Res; |
| 208 | } |
| 209 | if (PTyL) |
| 210 | return 1; |
| 211 | if (PTyR) |
| 212 | return -1; |
| 213 | |
| 214 | // TyL and TyR aren't vectors, nor pointers. We don't know how to |
| 215 | // bitcast them. |
| 216 | return TypesRes; |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | // OK, types are bitcastable, now check constant contents. |
| 221 | |
| 222 | if (L->isNullValue() && R->isNullValue()) |
| 223 | return TypesRes; |
| 224 | if (L->isNullValue() && !R->isNullValue()) |
| 225 | return 1; |
| 226 | if (!L->isNullValue() && R->isNullValue()) |
| 227 | return -1; |
| 228 | |
| 229 | auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); |
| 230 | auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); |
| 231 | if (GlobalValueL && GlobalValueR) { |
| 232 | return cmpGlobalValues(GlobalValueL, GlobalValueR); |
| 233 | } |
| 234 | |
| 235 | if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) |
| 236 | return Res; |
| 237 | |
| 238 | if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { |
| 239 | const auto *SeqR = cast<ConstantDataSequential>(R); |
| 240 | // This handles ConstantDataArray and ConstantDataVector. Note that we |
| 241 | // compare the two raw data arrays, which might differ depending on the host |
| 242 | // endianness. This isn't a problem though, because the endiness of a module |
| 243 | // will affect the order of the constants, but this order is the same |
| 244 | // for a given input module and host platform. |
| 245 | return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); |
| 246 | } |
| 247 | |
| 248 | switch (L->getValueID()) { |
| 249 | case Value::UndefValueVal: |
| 250 | case Value::ConstantTokenNoneVal: |
| 251 | return TypesRes; |
| 252 | case Value::ConstantIntVal: { |
| 253 | const APInt &LInt = cast<ConstantInt>(L)->getValue(); |
| 254 | const APInt &RInt = cast<ConstantInt>(R)->getValue(); |
| 255 | return cmpAPInts(LInt, RInt); |
| 256 | } |
| 257 | case Value::ConstantFPVal: { |
| 258 | const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); |
| 259 | const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); |
| 260 | return cmpAPFloats(LAPF, RAPF); |
| 261 | } |
| 262 | case Value::ConstantArrayVal: { |
| 263 | const ConstantArray *LA = cast<ConstantArray>(L); |
| 264 | const ConstantArray *RA = cast<ConstantArray>(R); |
| 265 | uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); |
| 266 | uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); |
| 267 | if (int Res = cmpNumbers(NumElementsL, NumElementsR)) |
| 268 | return Res; |
| 269 | for (uint64_t i = 0; i < NumElementsL; ++i) { |
| 270 | if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), |
| 271 | cast<Constant>(RA->getOperand(i)))) |
| 272 | return Res; |
| 273 | } |
| 274 | return 0; |
| 275 | } |
| 276 | case Value::ConstantStructVal: { |
| 277 | const ConstantStruct *LS = cast<ConstantStruct>(L); |
| 278 | const ConstantStruct *RS = cast<ConstantStruct>(R); |
| 279 | unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); |
| 280 | unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); |
| 281 | if (int Res = cmpNumbers(NumElementsL, NumElementsR)) |
| 282 | return Res; |
| 283 | for (unsigned i = 0; i != NumElementsL; ++i) { |
| 284 | if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), |
| 285 | cast<Constant>(RS->getOperand(i)))) |
| 286 | return Res; |
| 287 | } |
| 288 | return 0; |
| 289 | } |
| 290 | case Value::ConstantVectorVal: { |
| 291 | const ConstantVector *LV = cast<ConstantVector>(L); |
| 292 | const ConstantVector *RV = cast<ConstantVector>(R); |
| 293 | unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); |
| 294 | unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); |
| 295 | if (int Res = cmpNumbers(NumElementsL, NumElementsR)) |
| 296 | return Res; |
| 297 | for (uint64_t i = 0; i < NumElementsL; ++i) { |
| 298 | if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), |
| 299 | cast<Constant>(RV->getOperand(i)))) |
| 300 | return Res; |
| 301 | } |
| 302 | return 0; |
| 303 | } |
| 304 | case Value::ConstantExprVal: { |
| 305 | const ConstantExpr *LE = cast<ConstantExpr>(L); |
| 306 | const ConstantExpr *RE = cast<ConstantExpr>(R); |
| 307 | unsigned NumOperandsL = LE->getNumOperands(); |
| 308 | unsigned NumOperandsR = RE->getNumOperands(); |
| 309 | if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) |
| 310 | return Res; |
| 311 | for (unsigned i = 0; i < NumOperandsL; ++i) { |
| 312 | if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), |
| 313 | cast<Constant>(RE->getOperand(i)))) |
| 314 | return Res; |
| 315 | } |
| 316 | return 0; |
| 317 | } |
| 318 | case Value::BlockAddressVal: { |
| 319 | const BlockAddress *LBA = cast<BlockAddress>(L); |
| 320 | const BlockAddress *RBA = cast<BlockAddress>(R); |
| 321 | if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) |
| 322 | return Res; |
| 323 | if (LBA->getFunction() == RBA->getFunction()) { |
| 324 | // They are BBs in the same function. Order by which comes first in the |
| 325 | // BB order of the function. This order is deterministic. |
| 326 | Function* F = LBA->getFunction(); |
| 327 | BasicBlock *LBB = LBA->getBasicBlock(); |
| 328 | BasicBlock *RBB = RBA->getBasicBlock(); |
| 329 | if (LBB == RBB) |
| 330 | return 0; |
| 331 | for(BasicBlock &BB : F->getBasicBlockList()) { |
| 332 | if (&BB == LBB) { |
| 333 | assert(&BB != RBB); |
| 334 | return -1; |
| 335 | } |
| 336 | if (&BB == RBB) |
| 337 | return 1; |
| 338 | } |
| 339 | llvm_unreachable("Basic Block Address does not point to a basic block in " |
| 340 | "its function."); |
| 341 | return -1; |
| 342 | } else { |
| 343 | // cmpValues said the functions are the same. So because they aren't |
| 344 | // literally the same pointer, they must respectively be the left and |
| 345 | // right functions. |
| 346 | assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); |
| 347 | // cmpValues will tell us if these are equivalent BasicBlocks, in the |
| 348 | // context of their respective functions. |
| 349 | return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); |
| 350 | } |
| 351 | } |
| 352 | default: // Unknown constant, abort. |
| 353 | DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); |
| 354 | llvm_unreachable("Constant ValueID not recognized."); |
| 355 | return -1; |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { |
Erik Eckstein | c1d52e5 | 2016-11-11 22:21:39 +0000 | [diff] [blame] | 360 | uint64_t LNumber = GlobalNumbers->getNumber(L); |
| 361 | uint64_t RNumber = GlobalNumbers->getNumber(R); |
| 362 | return cmpNumbers(LNumber, RNumber); |
Erik Eckstein | 4d6fb72 | 2016-11-11 21:15:13 +0000 | [diff] [blame] | 363 | } |
| 364 | |
| 365 | /// cmpType - compares two types, |
| 366 | /// defines total ordering among the types set. |
| 367 | /// See method declaration comments for more details. |
| 368 | int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { |
| 369 | PointerType *PTyL = dyn_cast<PointerType>(TyL); |
| 370 | PointerType *PTyR = dyn_cast<PointerType>(TyR); |
| 371 | |
| 372 | const DataLayout &DL = FnL->getParent()->getDataLayout(); |
| 373 | if (PTyL && PTyL->getAddressSpace() == 0) |
| 374 | TyL = DL.getIntPtrType(TyL); |
| 375 | if (PTyR && PTyR->getAddressSpace() == 0) |
| 376 | TyR = DL.getIntPtrType(TyR); |
| 377 | |
| 378 | if (TyL == TyR) |
| 379 | return 0; |
| 380 | |
| 381 | if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) |
| 382 | return Res; |
| 383 | |
| 384 | switch (TyL->getTypeID()) { |
| 385 | default: |
| 386 | llvm_unreachable("Unknown type!"); |
| 387 | // Fall through in Release mode. |
| 388 | LLVM_FALLTHROUGH; |
| 389 | case Type::IntegerTyID: |
| 390 | return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), |
| 391 | cast<IntegerType>(TyR)->getBitWidth()); |
Erik Eckstein | 4d6fb72 | 2016-11-11 21:15:13 +0000 | [diff] [blame] | 392 | // TyL == TyR would have returned true earlier, because types are uniqued. |
| 393 | case Type::VoidTyID: |
| 394 | case Type::FloatTyID: |
| 395 | case Type::DoubleTyID: |
| 396 | case Type::X86_FP80TyID: |
| 397 | case Type::FP128TyID: |
| 398 | case Type::PPC_FP128TyID: |
| 399 | case Type::LabelTyID: |
| 400 | case Type::MetadataTyID: |
| 401 | case Type::TokenTyID: |
| 402 | return 0; |
| 403 | |
| 404 | case Type::PointerTyID: { |
| 405 | assert(PTyL && PTyR && "Both types must be pointers here."); |
| 406 | return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); |
| 407 | } |
| 408 | |
| 409 | case Type::StructTyID: { |
| 410 | StructType *STyL = cast<StructType>(TyL); |
| 411 | StructType *STyR = cast<StructType>(TyR); |
| 412 | if (STyL->getNumElements() != STyR->getNumElements()) |
| 413 | return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); |
| 414 | |
| 415 | if (STyL->isPacked() != STyR->isPacked()) |
| 416 | return cmpNumbers(STyL->isPacked(), STyR->isPacked()); |
| 417 | |
| 418 | for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { |
| 419 | if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) |
| 420 | return Res; |
| 421 | } |
| 422 | return 0; |
| 423 | } |
| 424 | |
| 425 | case Type::FunctionTyID: { |
| 426 | FunctionType *FTyL = cast<FunctionType>(TyL); |
| 427 | FunctionType *FTyR = cast<FunctionType>(TyR); |
| 428 | if (FTyL->getNumParams() != FTyR->getNumParams()) |
| 429 | return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); |
| 430 | |
| 431 | if (FTyL->isVarArg() != FTyR->isVarArg()) |
| 432 | return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); |
| 433 | |
| 434 | if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) |
| 435 | return Res; |
| 436 | |
| 437 | for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { |
| 438 | if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) |
| 439 | return Res; |
| 440 | } |
| 441 | return 0; |
| 442 | } |
| 443 | |
Peter Collingbourne | bc07052 | 2016-12-02 03:20:58 +0000 | [diff] [blame] | 444 | case Type::ArrayTyID: |
| 445 | case Type::VectorTyID: { |
| 446 | auto *STyL = cast<SequentialType>(TyL); |
| 447 | auto *STyR = cast<SequentialType>(TyR); |
| 448 | if (STyL->getNumElements() != STyR->getNumElements()) |
| 449 | return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); |
| 450 | return cmpTypes(STyL->getElementType(), STyR->getElementType()); |
Erik Eckstein | 4d6fb72 | 2016-11-11 21:15:13 +0000 | [diff] [blame] | 451 | } |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | // Determine whether the two operations are the same except that pointer-to-A |
| 456 | // and pointer-to-B are equivalent. This should be kept in sync with |
| 457 | // Instruction::isSameOperationAs. |
| 458 | // Read method declaration comments for more details. |
| 459 | int FunctionComparator::cmpOperations(const Instruction *L, |
| 460 | const Instruction *R, |
| 461 | bool &needToCmpOperands) const { |
| 462 | needToCmpOperands = true; |
| 463 | if (int Res = cmpValues(L, R)) |
| 464 | return Res; |
| 465 | |
| 466 | // Differences from Instruction::isSameOperationAs: |
| 467 | // * replace type comparison with calls to cmpTypes. |
| 468 | // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. |
| 469 | // * because of the above, we don't test for the tail bit on calls later on. |
| 470 | if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) |
| 471 | return Res; |
| 472 | |
| 473 | if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { |
| 474 | needToCmpOperands = false; |
| 475 | const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); |
| 476 | if (int Res = |
| 477 | cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) |
| 478 | return Res; |
| 479 | return cmpGEPs(GEPL, GEPR); |
| 480 | } |
| 481 | |
| 482 | if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) |
| 483 | return Res; |
| 484 | |
| 485 | if (int Res = cmpTypes(L->getType(), R->getType())) |
| 486 | return Res; |
| 487 | |
| 488 | if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), |
| 489 | R->getRawSubclassOptionalData())) |
| 490 | return Res; |
| 491 | |
| 492 | // We have two instructions of identical opcode and #operands. Check to see |
| 493 | // if all operands are the same type |
| 494 | for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { |
| 495 | if (int Res = |
| 496 | cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) |
| 497 | return Res; |
| 498 | } |
| 499 | |
| 500 | // Check special state that is a part of some instructions. |
| 501 | if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { |
| 502 | if (int Res = cmpTypes(AI->getAllocatedType(), |
| 503 | cast<AllocaInst>(R)->getAllocatedType())) |
| 504 | return Res; |
| 505 | return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); |
| 506 | } |
| 507 | if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { |
| 508 | if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) |
| 509 | return Res; |
| 510 | if (int Res = |
| 511 | cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) |
| 512 | return Res; |
| 513 | if (int Res = |
| 514 | cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) |
| 515 | return Res; |
| 516 | if (int Res = |
| 517 | cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) |
| 518 | return Res; |
| 519 | return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), |
| 520 | cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); |
| 521 | } |
| 522 | if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { |
| 523 | if (int Res = |
| 524 | cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) |
| 525 | return Res; |
| 526 | if (int Res = |
| 527 | cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) |
| 528 | return Res; |
| 529 | if (int Res = |
| 530 | cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) |
| 531 | return Res; |
| 532 | return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); |
| 533 | } |
| 534 | if (const CmpInst *CI = dyn_cast<CmpInst>(L)) |
| 535 | return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); |
| 536 | if (const CallInst *CI = dyn_cast<CallInst>(L)) { |
| 537 | if (int Res = cmpNumbers(CI->getCallingConv(), |
| 538 | cast<CallInst>(R)->getCallingConv())) |
| 539 | return Res; |
| 540 | if (int Res = |
| 541 | cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) |
| 542 | return Res; |
| 543 | if (int Res = cmpOperandBundlesSchema(CI, R)) |
| 544 | return Res; |
| 545 | return cmpRangeMetadata( |
| 546 | CI->getMetadata(LLVMContext::MD_range), |
| 547 | cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); |
| 548 | } |
| 549 | if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { |
| 550 | if (int Res = cmpNumbers(II->getCallingConv(), |
| 551 | cast<InvokeInst>(R)->getCallingConv())) |
| 552 | return Res; |
| 553 | if (int Res = |
| 554 | cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) |
| 555 | return Res; |
| 556 | if (int Res = cmpOperandBundlesSchema(II, R)) |
| 557 | return Res; |
| 558 | return cmpRangeMetadata( |
| 559 | II->getMetadata(LLVMContext::MD_range), |
| 560 | cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); |
| 561 | } |
| 562 | if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { |
| 563 | ArrayRef<unsigned> LIndices = IVI->getIndices(); |
| 564 | ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); |
| 565 | if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) |
| 566 | return Res; |
| 567 | for (size_t i = 0, e = LIndices.size(); i != e; ++i) { |
| 568 | if (int Res = cmpNumbers(LIndices[i], RIndices[i])) |
| 569 | return Res; |
| 570 | } |
| 571 | return 0; |
| 572 | } |
| 573 | if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { |
| 574 | ArrayRef<unsigned> LIndices = EVI->getIndices(); |
| 575 | ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); |
| 576 | if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) |
| 577 | return Res; |
| 578 | for (size_t i = 0, e = LIndices.size(); i != e; ++i) { |
| 579 | if (int Res = cmpNumbers(LIndices[i], RIndices[i])) |
| 580 | return Res; |
| 581 | } |
| 582 | } |
| 583 | if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { |
| 584 | if (int Res = |
| 585 | cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) |
| 586 | return Res; |
| 587 | return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); |
| 588 | } |
| 589 | if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { |
| 590 | if (int Res = cmpNumbers(CXI->isVolatile(), |
| 591 | cast<AtomicCmpXchgInst>(R)->isVolatile())) |
| 592 | return Res; |
| 593 | if (int Res = cmpNumbers(CXI->isWeak(), |
| 594 | cast<AtomicCmpXchgInst>(R)->isWeak())) |
| 595 | return Res; |
| 596 | if (int Res = |
| 597 | cmpOrderings(CXI->getSuccessOrdering(), |
| 598 | cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) |
| 599 | return Res; |
| 600 | if (int Res = |
| 601 | cmpOrderings(CXI->getFailureOrdering(), |
| 602 | cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) |
| 603 | return Res; |
| 604 | return cmpNumbers(CXI->getSynchScope(), |
| 605 | cast<AtomicCmpXchgInst>(R)->getSynchScope()); |
| 606 | } |
| 607 | if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { |
| 608 | if (int Res = cmpNumbers(RMWI->getOperation(), |
| 609 | cast<AtomicRMWInst>(R)->getOperation())) |
| 610 | return Res; |
| 611 | if (int Res = cmpNumbers(RMWI->isVolatile(), |
| 612 | cast<AtomicRMWInst>(R)->isVolatile())) |
| 613 | return Res; |
| 614 | if (int Res = cmpOrderings(RMWI->getOrdering(), |
| 615 | cast<AtomicRMWInst>(R)->getOrdering())) |
| 616 | return Res; |
| 617 | return cmpNumbers(RMWI->getSynchScope(), |
| 618 | cast<AtomicRMWInst>(R)->getSynchScope()); |
| 619 | } |
| 620 | if (const PHINode *PNL = dyn_cast<PHINode>(L)) { |
| 621 | const PHINode *PNR = cast<PHINode>(R); |
| 622 | // Ensure that in addition to the incoming values being identical |
| 623 | // (checked by the caller of this function), the incoming blocks |
| 624 | // are also identical. |
| 625 | for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { |
| 626 | if (int Res = |
| 627 | cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) |
| 628 | return Res; |
| 629 | } |
| 630 | } |
| 631 | return 0; |
| 632 | } |
| 633 | |
| 634 | // Determine whether two GEP operations perform the same underlying arithmetic. |
| 635 | // Read method declaration comments for more details. |
| 636 | int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, |
| 637 | const GEPOperator *GEPR) const { |
| 638 | |
| 639 | unsigned int ASL = GEPL->getPointerAddressSpace(); |
| 640 | unsigned int ASR = GEPR->getPointerAddressSpace(); |
| 641 | |
| 642 | if (int Res = cmpNumbers(ASL, ASR)) |
| 643 | return Res; |
| 644 | |
| 645 | // When we have target data, we can reduce the GEP down to the value in bytes |
| 646 | // added to the address. |
| 647 | const DataLayout &DL = FnL->getParent()->getDataLayout(); |
| 648 | unsigned BitWidth = DL.getPointerSizeInBits(ASL); |
| 649 | APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); |
| 650 | if (GEPL->accumulateConstantOffset(DL, OffsetL) && |
| 651 | GEPR->accumulateConstantOffset(DL, OffsetR)) |
| 652 | return cmpAPInts(OffsetL, OffsetR); |
| 653 | if (int Res = cmpTypes(GEPL->getSourceElementType(), |
| 654 | GEPR->getSourceElementType())) |
| 655 | return Res; |
| 656 | |
| 657 | if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) |
| 658 | return Res; |
| 659 | |
| 660 | for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { |
| 661 | if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) |
| 662 | return Res; |
| 663 | } |
| 664 | |
| 665 | return 0; |
| 666 | } |
| 667 | |
| 668 | int FunctionComparator::cmpInlineAsm(const InlineAsm *L, |
| 669 | const InlineAsm *R) const { |
| 670 | // InlineAsm's are uniqued. If they are the same pointer, obviously they are |
| 671 | // the same, otherwise compare the fields. |
| 672 | if (L == R) |
| 673 | return 0; |
| 674 | if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) |
| 675 | return Res; |
| 676 | if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) |
| 677 | return Res; |
| 678 | if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) |
| 679 | return Res; |
| 680 | if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) |
| 681 | return Res; |
| 682 | if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) |
| 683 | return Res; |
| 684 | if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) |
| 685 | return Res; |
| 686 | llvm_unreachable("InlineAsm blocks were not uniqued."); |
| 687 | return 0; |
| 688 | } |
| 689 | |
| 690 | /// Compare two values used by the two functions under pair-wise comparison. If |
| 691 | /// this is the first time the values are seen, they're added to the mapping so |
| 692 | /// that we will detect mismatches on next use. |
| 693 | /// See comments in declaration for more details. |
| 694 | int FunctionComparator::cmpValues(const Value *L, const Value *R) const { |
| 695 | // Catch self-reference case. |
| 696 | if (L == FnL) { |
| 697 | if (R == FnR) |
| 698 | return 0; |
| 699 | return -1; |
| 700 | } |
| 701 | if (R == FnR) { |
| 702 | if (L == FnL) |
| 703 | return 0; |
| 704 | return 1; |
| 705 | } |
| 706 | |
| 707 | const Constant *ConstL = dyn_cast<Constant>(L); |
| 708 | const Constant *ConstR = dyn_cast<Constant>(R); |
| 709 | if (ConstL && ConstR) { |
| 710 | if (L == R) |
| 711 | return 0; |
| 712 | return cmpConstants(ConstL, ConstR); |
| 713 | } |
| 714 | |
| 715 | if (ConstL) |
| 716 | return 1; |
| 717 | if (ConstR) |
| 718 | return -1; |
| 719 | |
| 720 | const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); |
| 721 | const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); |
| 722 | |
| 723 | if (InlineAsmL && InlineAsmR) |
| 724 | return cmpInlineAsm(InlineAsmL, InlineAsmR); |
| 725 | if (InlineAsmL) |
| 726 | return 1; |
| 727 | if (InlineAsmR) |
| 728 | return -1; |
| 729 | |
| 730 | auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), |
| 731 | RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); |
| 732 | |
| 733 | return cmpNumbers(LeftSN.first->second, RightSN.first->second); |
| 734 | } |
| 735 | |
| 736 | // Test whether two basic blocks have equivalent behaviour. |
| 737 | int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, |
| 738 | const BasicBlock *BBR) const { |
| 739 | BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); |
| 740 | BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); |
| 741 | |
| 742 | do { |
| 743 | bool needToCmpOperands = true; |
| 744 | if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) |
| 745 | return Res; |
| 746 | if (needToCmpOperands) { |
| 747 | assert(InstL->getNumOperands() == InstR->getNumOperands()); |
| 748 | |
| 749 | for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { |
| 750 | Value *OpL = InstL->getOperand(i); |
| 751 | Value *OpR = InstR->getOperand(i); |
| 752 | if (int Res = cmpValues(OpL, OpR)) |
| 753 | return Res; |
| 754 | // cmpValues should ensure this is true. |
| 755 | assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | ++InstL; |
| 760 | ++InstR; |
| 761 | } while (InstL != InstLE && InstR != InstRE); |
| 762 | |
| 763 | if (InstL != InstLE && InstR == InstRE) |
| 764 | return 1; |
| 765 | if (InstL == InstLE && InstR != InstRE) |
| 766 | return -1; |
| 767 | return 0; |
| 768 | } |
| 769 | |
| 770 | int FunctionComparator::compareSignature() const { |
| 771 | if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) |
| 772 | return Res; |
| 773 | |
| 774 | if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) |
| 775 | return Res; |
| 776 | |
| 777 | if (FnL->hasGC()) { |
| 778 | if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) |
| 779 | return Res; |
| 780 | } |
| 781 | |
| 782 | if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) |
| 783 | return Res; |
| 784 | |
| 785 | if (FnL->hasSection()) { |
| 786 | if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) |
| 787 | return Res; |
| 788 | } |
| 789 | |
| 790 | if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) |
| 791 | return Res; |
| 792 | |
| 793 | // TODO: if it's internal and only used in direct calls, we could handle this |
| 794 | // case too. |
| 795 | if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) |
| 796 | return Res; |
| 797 | |
| 798 | if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) |
| 799 | return Res; |
| 800 | |
| 801 | assert(FnL->arg_size() == FnR->arg_size() && |
| 802 | "Identically typed functions have different numbers of args!"); |
| 803 | |
| 804 | // Visit the arguments so that they get enumerated in the order they're |
| 805 | // passed in. |
| 806 | for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), |
| 807 | ArgRI = FnR->arg_begin(), |
| 808 | ArgLE = FnL->arg_end(); |
| 809 | ArgLI != ArgLE; ++ArgLI, ++ArgRI) { |
| 810 | if (cmpValues(&*ArgLI, &*ArgRI) != 0) |
| 811 | llvm_unreachable("Arguments repeat!"); |
| 812 | } |
| 813 | return 0; |
| 814 | } |
| 815 | |
| 816 | // Test whether the two functions have equivalent behaviour. |
| 817 | int FunctionComparator::compare() { |
| 818 | beginCompare(); |
| 819 | |
| 820 | if (int Res = compareSignature()) |
| 821 | return Res; |
| 822 | |
| 823 | // We do a CFG-ordered walk since the actual ordering of the blocks in the |
| 824 | // linked list is immaterial. Our walk starts at the entry block for both |
| 825 | // functions, then takes each block from each terminator in order. As an |
| 826 | // artifact, this also means that unreachable blocks are ignored. |
| 827 | SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; |
| 828 | SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. |
| 829 | |
| 830 | FnLBBs.push_back(&FnL->getEntryBlock()); |
| 831 | FnRBBs.push_back(&FnR->getEntryBlock()); |
| 832 | |
| 833 | VisitedBBs.insert(FnLBBs[0]); |
| 834 | while (!FnLBBs.empty()) { |
| 835 | const BasicBlock *BBL = FnLBBs.pop_back_val(); |
| 836 | const BasicBlock *BBR = FnRBBs.pop_back_val(); |
| 837 | |
| 838 | if (int Res = cmpValues(BBL, BBR)) |
| 839 | return Res; |
| 840 | |
| 841 | if (int Res = cmpBasicBlocks(BBL, BBR)) |
| 842 | return Res; |
| 843 | |
| 844 | const TerminatorInst *TermL = BBL->getTerminator(); |
| 845 | const TerminatorInst *TermR = BBR->getTerminator(); |
| 846 | |
| 847 | assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); |
| 848 | for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { |
| 849 | if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) |
| 850 | continue; |
| 851 | |
| 852 | FnLBBs.push_back(TermL->getSuccessor(i)); |
| 853 | FnRBBs.push_back(TermR->getSuccessor(i)); |
| 854 | } |
| 855 | } |
| 856 | return 0; |
| 857 | } |
| 858 | |
| 859 | namespace { |
| 860 | |
| 861 | // Accumulate the hash of a sequence of 64-bit integers. This is similar to a |
| 862 | // hash of a sequence of 64bit ints, but the entire input does not need to be |
| 863 | // available at once. This interface is necessary for functionHash because it |
| 864 | // needs to accumulate the hash as the structure of the function is traversed |
| 865 | // without saving these values to an intermediate buffer. This form of hashing |
| 866 | // is not often needed, as usually the object to hash is just read from a |
| 867 | // buffer. |
| 868 | class HashAccumulator64 { |
| 869 | uint64_t Hash; |
| 870 | public: |
| 871 | // Initialize to random constant, so the state isn't zero. |
| 872 | HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } |
| 873 | void add(uint64_t V) { |
| 874 | Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); |
| 875 | } |
| 876 | // No finishing is required, because the entire hash value is used. |
| 877 | uint64_t getHash() { return Hash; } |
| 878 | }; |
| 879 | } // end anonymous namespace |
| 880 | |
| 881 | // A function hash is calculated by considering only the number of arguments and |
| 882 | // whether a function is varargs, the order of basic blocks (given by the |
| 883 | // successors of each basic block in depth first order), and the order of |
| 884 | // opcodes of each instruction within each of these basic blocks. This mirrors |
| 885 | // the strategy compare() uses to compare functions by walking the BBs in depth |
| 886 | // first order and comparing each instruction in sequence. Because this hash |
| 887 | // does not look at the operands, it is insensitive to things such as the |
| 888 | // target of calls and the constants used in the function, which makes it useful |
| 889 | // when possibly merging functions which are the same modulo constants and call |
| 890 | // targets. |
| 891 | FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { |
| 892 | HashAccumulator64 H; |
| 893 | H.add(F.isVarArg()); |
| 894 | H.add(F.arg_size()); |
| 895 | |
| 896 | SmallVector<const BasicBlock *, 8> BBs; |
| 897 | SmallSet<const BasicBlock *, 16> VisitedBBs; |
| 898 | |
| 899 | // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), |
| 900 | // accumulating the hash of the function "structure." (BB and opcode sequence) |
| 901 | BBs.push_back(&F.getEntryBlock()); |
| 902 | VisitedBBs.insert(BBs[0]); |
| 903 | while (!BBs.empty()) { |
| 904 | const BasicBlock *BB = BBs.pop_back_val(); |
| 905 | // This random value acts as a block header, as otherwise the partition of |
| 906 | // opcodes into BBs wouldn't affect the hash, only the order of the opcodes |
| 907 | H.add(45798); |
| 908 | for (auto &Inst : *BB) { |
| 909 | H.add(Inst.getOpcode()); |
| 910 | } |
| 911 | const TerminatorInst *Term = BB->getTerminator(); |
| 912 | for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { |
| 913 | if (!VisitedBBs.insert(Term->getSuccessor(i)).second) |
| 914 | continue; |
| 915 | BBs.push_back(Term->getSuccessor(i)); |
| 916 | } |
| 917 | } |
| 918 | return H.getHash(); |
| 919 | } |
| 920 | |
| 921 | |