blob: 4e07e93b55859057a0666232c9db2015ca8f876a [file] [log] [blame]
Peter Collingbournea4ccff32015-02-20 20:30:56 +00001===========================================
2Control Flow Integrity Design Documentation
3===========================================
4
5This page documents the design of the :doc:`ControlFlowIntegrity` schemes
6supported by Clang.
7
8Forward-Edge CFI for Virtual Calls
Peter Collingbourne03054d42015-02-25 03:35:03 +00009==================================
Peter Collingbournea4ccff32015-02-20 20:30:56 +000010
11This scheme works by allocating, for each static type used to make a virtual
12call, a region of read-only storage in the object file holding a bit vector
13that maps onto to the region of storage used for those virtual tables. Each
14set bit in the bit vector corresponds to the `address point`_ for a virtual
15table compatible with the static type for which the bit vector is being built.
16
17For example, consider the following three C++ classes:
18
19.. code-block:: c++
20
21 struct A {
Peter Collingbourne0100e6c2015-02-23 20:22:17 +000022 virtual void f1();
23 virtual void f2();
24 virtual void f3();
Peter Collingbournea4ccff32015-02-20 20:30:56 +000025 };
26
27 struct B : A {
Peter Collingbourne0100e6c2015-02-23 20:22:17 +000028 virtual void f1();
29 virtual void f2();
30 virtual void f3();
Peter Collingbournea4ccff32015-02-20 20:30:56 +000031 };
32
33 struct C : A {
Peter Collingbourne0100e6c2015-02-23 20:22:17 +000034 virtual void f1();
35 virtual void f2();
36 virtual void f3();
Peter Collingbournea4ccff32015-02-20 20:30:56 +000037 };
38
39The scheme will cause the virtual tables for A, B and C to be laid out
40consecutively:
41
42.. csv-table:: Virtual Table Layout for A, B, C
Peter Collingbourne0100e6c2015-02-23 20:22:17 +000043 :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Peter Collingbournea4ccff32015-02-20 20:30:56 +000044
Peter Collingbourne0100e6c2015-02-23 20:22:17 +000045 A::offset-to-top, &A::rtti, &A::f1, &A::f2, &A::f3, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, C::offset-to-top, &C::rtti, &C::f1, &C::f2, &C::f3
Peter Collingbournea4ccff32015-02-20 20:30:56 +000046
47The bit vector for static types A, B and C will look like this:
48
49.. csv-table:: Bit Vectors for A, B, C
Peter Collingbourne0100e6c2015-02-23 20:22:17 +000050 :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Peter Collingbournea4ccff32015-02-20 20:30:56 +000051
Peter Collingbourne0100e6c2015-02-23 20:22:17 +000052 A, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0
53 B, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
54 C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Peter Collingbournea4ccff32015-02-20 20:30:56 +000055
56To emit a virtual call, the compiler will assemble code that checks that
57the object's virtual table pointer is in-bounds and aligned and that the
58relevant bit is set in the bit vector.
59
Peter Collingbourne03054d42015-02-25 03:35:03 +000060For example on x86 a typical virtual call may look like this:
Peter Collingbourne0100e6c2015-02-23 20:22:17 +000061
62.. code-block:: none
63
64 159a: 48 8b 03 mov (%rbx),%rax
65 159d: 48 8d 15 6c 33 00 00 lea 0x336c(%rip),%rdx
66 15a4: 48 89 c1 mov %rax,%rcx
67 15a7: 48 29 d1 sub %rdx,%rcx
68 15aa: 48 c1 c1 3d rol $0x3d,%rcx
69 15ae: 48 83 f9 51 cmp $0x51,%rcx
70 15b2: 77 3b ja 15ef <main+0xcf>
71 15b4: 48 89 ca mov %rcx,%rdx
72 15b7: 48 c1 ea 05 shr $0x5,%rdx
73 15bb: 48 8d 35 b8 07 00 00 lea 0x7b8(%rip),%rsi
74 15c2: 8b 14 96 mov (%rsi,%rdx,4),%edx
75 15c5: 0f a3 ca bt %ecx,%edx
76 15c8: 73 25 jae 15ef <main+0xcf>
77 15ca: 48 89 df mov %rbx,%rdi
78 15cd: ff 10 callq *(%rax)
79 [...]
80 15ef: 0f 0b ud2
81
Peter Collingbourne03054d42015-02-25 03:35:03 +000082The compiler relies on co-operation from the linker in order to assemble
83the bit vectors for the whole program. It currently does this using LLVM's
84`bit sets`_ mechanism together with link-time optimization.
85
86.. _address point: https://mentorembedded.github.io/cxx-abi/abi.html#vtable-general
87.. _bit sets: http://llvm.org/docs/BitSets.html
88
89Optimizations
90-------------
91
92The scheme as described above is the fully general variant of the scheme.
93Most of the time we are able to apply one or more of the following
94optimizations to improve binary size or performance.
95
96Stripping Leading/Trailing Zeros in Bit Vectors
97~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
98
99If a bit vector contains leading or trailing zeros, we can strip them from
100the vector. The compiler will emit code to check if the pointer is in range
101of the region covered by ones, and perform the bit vector check using a
102truncated version of the bit vector. For example, the bit vectors for our
103example class hierarchy will be emitted like this:
104
105.. csv-table:: Bit Vectors for A, B, C
106 :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
107
108 A, , , 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, ,
109 B, , , , , , , , 1, , , , , , ,
110 C, , , , , , , , , , , , , 1, ,
111
112Short Inline Bit Vectors
113~~~~~~~~~~~~~~~~~~~~~~~~
114
115If the vector is sufficiently short, we can represent it as an inline constant
116on x86. This saves us a few instructions when reading the correct element
117of the bit vector.
118
119If the bit vector fits in 32 bits, the code looks like this:
Peter Collingbourne0100e6c2015-02-23 20:22:17 +0000120
121.. code-block:: none
122
123 dc2: 48 8b 03 mov (%rbx),%rax
124 dc5: 48 8d 15 14 1e 00 00 lea 0x1e14(%rip),%rdx
125 dcc: 48 89 c1 mov %rax,%rcx
126 dcf: 48 29 d1 sub %rdx,%rcx
127 dd2: 48 c1 c1 3d rol $0x3d,%rcx
128 dd6: 48 83 f9 03 cmp $0x3,%rcx
129 dda: 77 2f ja e0b <main+0x9b>
130 ddc: ba 09 00 00 00 mov $0x9,%edx
131 de1: 0f a3 ca bt %ecx,%edx
132 de4: 73 25 jae e0b <main+0x9b>
133 de6: 48 89 df mov %rbx,%rdi
134 de9: ff 10 callq *(%rax)
135 [...]
136 e0b: 0f 0b ud2
137
138Or if the bit vector fits in 64 bits:
139
140.. code-block:: none
141
142 11a6: 48 8b 03 mov (%rbx),%rax
143 11a9: 48 8d 15 d0 28 00 00 lea 0x28d0(%rip),%rdx
144 11b0: 48 89 c1 mov %rax,%rcx
145 11b3: 48 29 d1 sub %rdx,%rcx
146 11b6: 48 c1 c1 3d rol $0x3d,%rcx
147 11ba: 48 83 f9 2a cmp $0x2a,%rcx
148 11be: 77 35 ja 11f5 <main+0xb5>
149 11c0: 48 ba 09 00 00 00 00 movabs $0x40000000009,%rdx
150 11c7: 04 00 00
151 11ca: 48 0f a3 ca bt %rcx,%rdx
152 11ce: 73 25 jae 11f5 <main+0xb5>
153 11d0: 48 89 df mov %rbx,%rdi
154 11d3: ff 10 callq *(%rax)
155 [...]
156 11f5: 0f 0b ud2
157
Peter Collingbourne03054d42015-02-25 03:35:03 +0000158If the bit vector consists of a single bit, there is only one possible
159virtual table, and the check can consist of a single equality comparison:
Peter Collingbournea4ccff32015-02-20 20:30:56 +0000160
Peter Collingbourne03054d42015-02-25 03:35:03 +0000161.. code-block:: none
162
163 9a2: 48 8b 03 mov (%rbx),%rax
164 9a5: 48 8d 0d a4 13 00 00 lea 0x13a4(%rip),%rcx
165 9ac: 48 39 c8 cmp %rcx,%rax
166 9af: 75 25 jne 9d6 <main+0x86>
167 9b1: 48 89 df mov %rbx,%rdi
168 9b4: ff 10 callq *(%rax)
169 [...]
170 9d6: 0f 0b ud2
171
172Virtual Table Layout
173~~~~~~~~~~~~~~~~~~~~
174
175The compiler lays out classes of disjoint hierarchies in separate regions
176of the object file. At worst, bit vectors in disjoint hierarchies only
177need to cover their disjoint hierarchy. But the closer that classes in
178sub-hierarchies are laid out to each other, the smaller the bit vectors for
179those sub-hierarchies need to be (see "Stripping Leading/Trailing Zeros in Bit
180Vectors" above). The `GlobalLayoutBuilder`_ class is responsible for laying
181out the globals efficiently to minimize the sizes of the underlying bitsets.
182
183.. _GlobalLayoutBuilder: http://llvm.org/klaus/llvm/blob/master/include/llvm/Transforms/IPO/LowerBitSets.h
184
185Alignment
186~~~~~~~~~
187
188If all gaps between address points in a particular bit vector are multiples
189of powers of 2, the compiler can compress the bit vector by strengthening
190the alignment requirements of the virtual table pointer. For example, given
191this class hierarchy:
192
193.. code-block:: c++
194
195 struct A {
196 virtual void f1();
197 virtual void f2();
198 };
199
200 struct B : A {
201 virtual void f1();
202 virtual void f2();
203 virtual void f3();
204 virtual void f4();
205 virtual void f5();
206 virtual void f6();
207 };
208
209 struct C : A {
210 virtual void f1();
211 virtual void f2();
212 };
213
214The virtual tables will be laid out like this:
215
216.. csv-table:: Virtual Table Layout for A, B, C
217 :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
218
219 A::offset-to-top, &A::rtti, &A::f1, &A::f2, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, &B::f4, &B::f5, &B::f6, C::offset-to-top, &C::rtti, &C::f1, &C::f2
220
221Notice that each address point for A is separated by 4 words. This lets us
222emit a compressed bit vector for A that looks like this:
223
224.. csv-table::
225 :header: 2, 6, 10, 14
226
227 1, 1, 0, 1
228
229At call sites, the compiler will strengthen the alignment requirements by
230using a different rotate count. For example, on a 64-bit machine where the
231address points are 4-word aligned (as in A from our example), the ``rol``
232instruction may look like this:
233
234.. code-block:: none
235
236 dd2: 48 c1 c1 3b rol $0x3b,%rcx