| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 1 | //===--- HexagonBitTracker.cpp --------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 11 | #include "llvm/IR/Module.h" |
| 12 | #include "llvm/Support/Debug.h" |
| 13 | #include "llvm/Support/raw_ostream.h" |
| 14 | |
| 15 | #include "Hexagon.h" |
| 16 | #include "HexagonInstrInfo.h" |
| 17 | #include "HexagonRegisterInfo.h" |
| 18 | #include "HexagonTargetMachine.h" |
| 19 | #include "HexagonBitTracker.h" |
| 20 | |
| 21 | using namespace llvm; |
| 22 | |
| 23 | typedef BitTracker BT; |
| 24 | |
| Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 25 | HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri, |
| 26 | MachineRegisterInfo &mri, |
| 27 | const HexagonInstrInfo &tii, |
| 28 | MachineFunction &mf) |
| 29 | : MachineEvaluator(tri, mri), MF(mf), MFI(*mf.getFrameInfo()), TII(tii) { |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 30 | // Populate the VRX map (VR to extension-type). |
| 31 | // Go over all the formal parameters of the function. If a given parameter |
| 32 | // P is sign- or zero-extended, locate the virtual register holding that |
| 33 | // parameter and create an entry in the VRX map indicating the type of ex- |
| 34 | // tension (and the source type). |
| 35 | // This is a bit complicated to do accurately, since the memory layout in- |
| 36 | // formation is necessary to precisely determine whether an aggregate para- |
| 37 | // meter will be passed in a register or in memory. What is given in MRI |
| 38 | // is the association between the physical register that is live-in (i.e. |
| 39 | // holds an argument), and the virtual register that this value will be |
| 40 | // copied into. This, by itself, is not sufficient to map back the virtual |
| 41 | // register to a formal parameter from Function (since consecutive live-ins |
| 42 | // from MRI may not correspond to consecutive formal parameters from Func- |
| 43 | // tion). To avoid the complications with in-memory arguments, only consi- |
| 44 | // der the initial sequence of formal parameters that are known to be |
| 45 | // passed via registers. |
| 46 | unsigned AttrIdx = 0; |
| 47 | unsigned InVirtReg, InPhysReg = 0; |
| 48 | const Function &F = *MF.getFunction(); |
| 49 | typedef Function::const_arg_iterator arg_iterator; |
| 50 | for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { |
| 51 | AttrIdx++; |
| 52 | const Argument &Arg = *I; |
| 53 | Type *ATy = Arg.getType(); |
| 54 | unsigned Width = 0; |
| 55 | if (ATy->isIntegerTy()) |
| 56 | Width = ATy->getIntegerBitWidth(); |
| 57 | else if (ATy->isPointerTy()) |
| 58 | Width = 32; |
| 59 | // If pointer size is not set through target data, it will default to |
| 60 | // Module::AnyPointerSize. |
| 61 | if (Width == 0 || Width > 64) |
| 62 | break; |
| 63 | InPhysReg = getNextPhysReg(InPhysReg, Width); |
| 64 | if (!InPhysReg) |
| 65 | break; |
| 66 | InVirtReg = getVirtRegFor(InPhysReg); |
| 67 | if (!InVirtReg) |
| 68 | continue; |
| 69 | AttributeSet Attrs = F.getAttributes(); |
| 70 | if (Attrs.hasAttribute(AttrIdx, Attribute::SExt)) |
| 71 | VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width))); |
| 72 | else if (Attrs.hasAttribute(AttrIdx, Attribute::ZExt)) |
| 73 | VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width))); |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | |
| 78 | BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const { |
| 79 | if (Sub == 0) |
| 80 | return MachineEvaluator::mask(Reg, 0); |
| 81 | using namespace Hexagon; |
| 82 | const TargetRegisterClass *RC = MRI.getRegClass(Reg); |
| 83 | unsigned ID = RC->getID(); |
| 84 | uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub)); |
| 85 | switch (ID) { |
| 86 | case DoubleRegsRegClassID: |
| 87 | return (Sub == subreg_loreg) ? BT::BitMask(0, RW-1) |
| 88 | : BT::BitMask(RW, 2*RW-1); |
| 89 | default: |
| 90 | break; |
| 91 | } |
| 92 | #ifndef NDEBUG |
| 93 | dbgs() << PrintReg(Reg, &TRI, Sub) << '\n'; |
| 94 | #endif |
| 95 | llvm_unreachable("Unexpected register/subregister"); |
| 96 | } |
| 97 | |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 98 | namespace { |
| Benjamin Kramer | 9a5d788 | 2015-07-18 17:43:23 +0000 | [diff] [blame] | 99 | class RegisterRefs { |
| 100 | std::vector<BT::RegisterRef> Vector; |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 101 | |
| Benjamin Kramer | 9a5d788 | 2015-07-18 17:43:23 +0000 | [diff] [blame] | 102 | public: |
| 103 | RegisterRefs(const MachineInstr *MI) : Vector(MI->getNumOperands()) { |
| 104 | for (unsigned i = 0, n = Vector.size(); i < n; ++i) { |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 105 | const MachineOperand &MO = MI->getOperand(i); |
| 106 | if (MO.isReg()) |
| Benjamin Kramer | 9a5d788 | 2015-07-18 17:43:23 +0000 | [diff] [blame] | 107 | Vector[i] = BT::RegisterRef(MO); |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 108 | // For indices that don't correspond to registers, the entry will |
| 109 | // remain constructed via the default constructor. |
| 110 | } |
| 111 | } |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 112 | |
| Benjamin Kramer | 9a5d788 | 2015-07-18 17:43:23 +0000 | [diff] [blame] | 113 | size_t size() const { return Vector.size(); } |
| 114 | const BT::RegisterRef &operator[](unsigned n) const { |
| 115 | // The main purpose of this operator is to assert with bad argument. |
| 116 | assert(n < Vector.size()); |
| 117 | return Vector[n]; |
| 118 | } |
| 119 | }; |
| 120 | } |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 121 | |
| 122 | bool HexagonEvaluator::evaluate(const MachineInstr *MI, |
| 123 | const CellMapType &Inputs, CellMapType &Outputs) const { |
| 124 | unsigned NumDefs = 0; |
| 125 | |
| 126 | // Sanity verification: there should not be any defs with subregisters. |
| 127 | for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { |
| 128 | const MachineOperand &MO = MI->getOperand(i); |
| 129 | if (!MO.isReg() || !MO.isDef()) |
| 130 | continue; |
| 131 | NumDefs++; |
| 132 | assert(MO.getSubReg() == 0); |
| 133 | } |
| 134 | |
| 135 | if (NumDefs == 0) |
| 136 | return false; |
| 137 | |
| 138 | if (MI->mayLoad()) |
| 139 | return evaluateLoad(MI, Inputs, Outputs); |
| 140 | |
| 141 | // Check COPY instructions that copy formal parameters into virtual |
| 142 | // registers. Such parameters can be sign- or zero-extended at the |
| 143 | // call site, and we should take advantage of this knowledge. The MRI |
| 144 | // keeps a list of pairs of live-in physical and virtual registers, |
| 145 | // which provides information about which virtual registers will hold |
| 146 | // the argument values. The function will still contain instructions |
| 147 | // defining those virtual registers, and in practice those are COPY |
| 148 | // instructions from a physical to a virtual register. In such cases, |
| 149 | // applying the argument extension to the virtual register can be seen |
| 150 | // as simply mirroring the extension that had already been applied to |
| 151 | // the physical register at the call site. If the defining instruction |
| 152 | // was not a COPY, it would not be clear how to mirror that extension |
| 153 | // on the callee's side. For that reason, only check COPY instructions |
| 154 | // for potential extensions. |
| 155 | if (MI->isCopy()) { |
| 156 | if (evaluateFormalCopy(MI, Inputs, Outputs)) |
| 157 | return true; |
| 158 | } |
| 159 | |
| 160 | // Beyond this point, if any operand is a global, skip that instruction. |
| 161 | // The reason is that certain instructions that can take an immediate |
| 162 | // operand can also have a global symbol in that operand. To avoid |
| 163 | // checking what kind of operand a given instruction has individually |
| 164 | // for each instruction, do it here. Global symbols as operands gene- |
| 165 | // rally do not provide any useful information. |
| 166 | for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { |
| 167 | const MachineOperand &MO = MI->getOperand(i); |
| 168 | if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() || |
| 169 | MO.isCPI()) |
| 170 | return false; |
| 171 | } |
| 172 | |
| 173 | RegisterRefs Reg(MI); |
| 174 | unsigned Opc = MI->getOpcode(); |
| 175 | using namespace Hexagon; |
| 176 | #define op(i) MI->getOperand(i) |
| 177 | #define rc(i) RegisterCell::ref(getCell(Reg[i],Inputs)) |
| 178 | #define im(i) MI->getOperand(i).getImm() |
| 179 | |
| 180 | // If the instruction has no register operands, skip it. |
| 181 | if (Reg.size() == 0) |
| 182 | return false; |
| 183 | |
| 184 | // Record result for register in operand 0. |
| 185 | auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs) |
| 186 | -> bool { |
| 187 | putCell(Reg[0], Val, Outputs); |
| 188 | return true; |
| 189 | }; |
| 190 | // Get the cell corresponding to the N-th operand. |
| Krzysztof Parzyszek | 79512b8 | 2015-10-20 19:33:46 +0000 | [diff] [blame] | 191 | auto cop = [this,&Reg,&MI,&Inputs] (unsigned N, uint16_t W) |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 192 | -> BT::RegisterCell { |
| 193 | const MachineOperand &Op = MI->getOperand(N); |
| 194 | if (Op.isImm()) |
| 195 | return eIMM(Op.getImm(), W); |
| 196 | if (!Op.isReg()) |
| 197 | return RegisterCell::self(0, W); |
| Krzysztof Parzyszek | a45971a | 2015-07-07 16:02:11 +0000 | [diff] [blame] | 198 | assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch"); |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 199 | return rc(N); |
| 200 | }; |
| 201 | // Extract RW low bits of the cell. |
| 202 | auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW) |
| 203 | -> BT::RegisterCell { |
| Krzysztof Parzyszek | a45971a | 2015-07-07 16:02:11 +0000 | [diff] [blame] | 204 | assert(RW <= RC.width()); |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 205 | return eXTR(RC, 0, RW); |
| 206 | }; |
| 207 | // Extract RW high bits of the cell. |
| 208 | auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW) |
| 209 | -> BT::RegisterCell { |
| 210 | uint16_t W = RC.width(); |
| 211 | assert(RW <= W); |
| 212 | return eXTR(RC, W-RW, W); |
| 213 | }; |
| 214 | // Extract N-th halfword (counting from the least significant position). |
| 215 | auto half = [this] (const BT::RegisterCell &RC, unsigned N) |
| 216 | -> BT::RegisterCell { |
| Krzysztof Parzyszek | a45971a | 2015-07-07 16:02:11 +0000 | [diff] [blame] | 217 | assert(N*16+16 <= RC.width()); |
| Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 218 | return eXTR(RC, N*16, N*16+16); |
| 219 | }; |
| 220 | // Shuffle bits (pick even/odd from cells and merge into result). |
| 221 | auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt, |
| 222 | uint16_t BW, bool Odd) -> BT::RegisterCell { |
| 223 | uint16_t I = Odd, Ws = Rs.width(); |
| 224 | assert(Ws == Rt.width()); |
| 225 | RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW)); |
| 226 | I += 2; |
| 227 | while (I*BW < Ws) { |
| 228 | RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW)); |
| 229 | I += 2; |
| 230 | } |
| 231 | return RC; |
| 232 | }; |
| 233 | |
| 234 | // The bitwidth of the 0th operand. In most (if not all) of the |
| 235 | // instructions below, the 0th operand is the defined register. |
| 236 | // Pre-compute the bitwidth here, because it is needed in many cases |
| 237 | // cases below. |
| 238 | uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0; |
| 239 | |
| 240 | switch (Opc) { |
| 241 | // Transfer immediate: |
| 242 | |
| 243 | case A2_tfrsi: |
| 244 | case A2_tfrpi: |
| 245 | case CONST32: |
| 246 | case CONST32_Float_Real: |
| 247 | case CONST32_Int_Real: |
| 248 | case CONST64_Float_Real: |
| 249 | case CONST64_Int_Real: |
| 250 | return rr0(eIMM(im(1), W0), Outputs); |
| 251 | case TFR_PdFalse: |
| 252 | return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs); |
| 253 | case TFR_PdTrue: |
| 254 | return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs); |
| 255 | case TFR_FI: { |
| 256 | int FI = op(1).getIndex(); |
| 257 | int Off = op(2).getImm(); |
| 258 | unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off); |
| 259 | unsigned L = Log2_32(A); |
| 260 | RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0); |
| 261 | RC.fill(0, L, BT::BitValue::Zero); |
| 262 | return rr0(RC, Outputs); |
| 263 | } |
| 264 | |
| 265 | // Transfer register: |
| 266 | |
| 267 | case A2_tfr: |
| 268 | case A2_tfrp: |
| 269 | case C2_pxfer_map: |
| 270 | return rr0(rc(1), Outputs); |
| 271 | case C2_tfrpr: { |
| 272 | uint16_t RW = W0; |
| 273 | uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); |
| 274 | assert(PW <= RW); |
| 275 | RegisterCell PC = eXTR(rc(1), 0, PW); |
| 276 | RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1)); |
| 277 | RC.fill(PW, RW, BT::BitValue::Zero); |
| 278 | return rr0(RC, Outputs); |
| 279 | } |
| 280 | case C2_tfrrp: { |
| 281 | RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0); |
| 282 | W0 = 8; // XXX Pred size |
| 283 | return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs); |
| 284 | } |
| 285 | |
| 286 | // Arithmetic: |
| 287 | |
| 288 | case A2_abs: |
| 289 | case A2_absp: |
| 290 | // TODO |
| 291 | break; |
| 292 | |
| 293 | case A2_addsp: { |
| 294 | uint16_t W1 = getRegBitWidth(Reg[1]); |
| 295 | assert(W0 == 64 && W1 == 32); |
| 296 | RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1)); |
| 297 | RegisterCell RC = eADD(eSXT(CW, W1), rc(2)); |
| 298 | return rr0(RC, Outputs); |
| 299 | } |
| 300 | case A2_add: |
| 301 | case A2_addp: |
| 302 | return rr0(eADD(rc(1), rc(2)), Outputs); |
| 303 | case A2_addi: |
| 304 | return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs); |
| 305 | case S4_addi_asl_ri: { |
| 306 | RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3))); |
| 307 | return rr0(RC, Outputs); |
| 308 | } |
| 309 | case S4_addi_lsr_ri: { |
| 310 | RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3))); |
| 311 | return rr0(RC, Outputs); |
| 312 | } |
| 313 | case S4_addaddi: { |
| 314 | RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); |
| 315 | return rr0(RC, Outputs); |
| 316 | } |
| 317 | case M4_mpyri_addi: { |
| 318 | RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); |
| 319 | RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); |
| 320 | return rr0(RC, Outputs); |
| 321 | } |
| 322 | case M4_mpyrr_addi: { |
| 323 | RegisterCell M = eMLS(rc(2), rc(3)); |
| 324 | RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); |
| 325 | return rr0(RC, Outputs); |
| 326 | } |
| 327 | case M4_mpyri_addr_u2: { |
| 328 | RegisterCell M = eMLS(eIMM(im(2), W0), rc(3)); |
| 329 | RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| 330 | return rr0(RC, Outputs); |
| 331 | } |
| 332 | case M4_mpyri_addr: { |
| 333 | RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); |
| 334 | RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| 335 | return rr0(RC, Outputs); |
| 336 | } |
| 337 | case M4_mpyrr_addr: { |
| 338 | RegisterCell M = eMLS(rc(2), rc(3)); |
| 339 | RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| 340 | return rr0(RC, Outputs); |
| 341 | } |
| 342 | case S4_subaddi: { |
| 343 | RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3))); |
| 344 | return rr0(RC, Outputs); |
| 345 | } |
| 346 | case M2_accii: { |
| 347 | RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); |
| 348 | return rr0(RC, Outputs); |
| 349 | } |
| 350 | case M2_acci: { |
| 351 | RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3))); |
| 352 | return rr0(RC, Outputs); |
| 353 | } |
| 354 | case M2_subacc: { |
| 355 | RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3))); |
| 356 | return rr0(RC, Outputs); |
| 357 | } |
| 358 | case S2_addasl_rrri: { |
| 359 | RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3))); |
| 360 | return rr0(RC, Outputs); |
| 361 | } |
| 362 | case C4_addipc: { |
| 363 | RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0); |
| 364 | RPC.fill(0, 2, BT::BitValue::Zero); |
| 365 | return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs); |
| 366 | } |
| 367 | case A2_sub: |
| 368 | case A2_subp: |
| 369 | return rr0(eSUB(rc(1), rc(2)), Outputs); |
| 370 | case A2_subri: |
| 371 | return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs); |
| 372 | case S4_subi_asl_ri: { |
| 373 | RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3))); |
| 374 | return rr0(RC, Outputs); |
| 375 | } |
| 376 | case S4_subi_lsr_ri: { |
| 377 | RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3))); |
| 378 | return rr0(RC, Outputs); |
| 379 | } |
| 380 | case M2_naccii: { |
| 381 | RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0))); |
| 382 | return rr0(RC, Outputs); |
| 383 | } |
| 384 | case M2_nacci: { |
| 385 | RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3))); |
| 386 | return rr0(RC, Outputs); |
| 387 | } |
| 388 | // 32-bit negation is done by "Rd = A2_subri 0, Rs" |
| 389 | case A2_negp: |
| 390 | return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs); |
| 391 | |
| 392 | case M2_mpy_up: { |
| 393 | RegisterCell M = eMLS(rc(1), rc(2)); |
| 394 | return rr0(hi(M, W0), Outputs); |
| 395 | } |
| 396 | case M2_dpmpyss_s0: |
| 397 | return rr0(eMLS(rc(1), rc(2)), Outputs); |
| 398 | case M2_dpmpyss_acc_s0: |
| 399 | return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs); |
| 400 | case M2_dpmpyss_nac_s0: |
| 401 | return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs); |
| 402 | case M2_mpyi: { |
| 403 | RegisterCell M = eMLS(rc(1), rc(2)); |
| 404 | return rr0(lo(M, W0), Outputs); |
| 405 | } |
| 406 | case M2_macsip: { |
| 407 | RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); |
| 408 | RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| 409 | return rr0(RC, Outputs); |
| 410 | } |
| 411 | case M2_macsin: { |
| 412 | RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); |
| 413 | RegisterCell RC = eSUB(rc(1), lo(M, W0)); |
| 414 | return rr0(RC, Outputs); |
| 415 | } |
| 416 | case M2_maci: { |
| 417 | RegisterCell M = eMLS(rc(2), rc(3)); |
| 418 | RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| 419 | return rr0(RC, Outputs); |
| 420 | } |
| 421 | case M2_mpysmi: { |
| 422 | RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); |
| 423 | return rr0(lo(M, 32), Outputs); |
| 424 | } |
| 425 | case M2_mpysin: { |
| 426 | RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0)); |
| 427 | return rr0(lo(M, 32), Outputs); |
| 428 | } |
| 429 | case M2_mpysip: { |
| 430 | RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); |
| 431 | return rr0(lo(M, 32), Outputs); |
| 432 | } |
| 433 | case M2_mpyu_up: { |
| 434 | RegisterCell M = eMLU(rc(1), rc(2)); |
| 435 | return rr0(hi(M, W0), Outputs); |
| 436 | } |
| 437 | case M2_dpmpyuu_s0: |
| 438 | return rr0(eMLU(rc(1), rc(2)), Outputs); |
| 439 | case M2_dpmpyuu_acc_s0: |
| 440 | return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs); |
| 441 | case M2_dpmpyuu_nac_s0: |
| 442 | return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs); |
| 443 | //case M2_mpysu_up: |
| 444 | |
| 445 | // Logical/bitwise: |
| 446 | |
| 447 | case A2_andir: |
| 448 | return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs); |
| 449 | case A2_and: |
| 450 | case A2_andp: |
| 451 | return rr0(eAND(rc(1), rc(2)), Outputs); |
| 452 | case A4_andn: |
| 453 | case A4_andnp: |
| 454 | return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); |
| 455 | case S4_andi_asl_ri: { |
| 456 | RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3))); |
| 457 | return rr0(RC, Outputs); |
| 458 | } |
| 459 | case S4_andi_lsr_ri: { |
| 460 | RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3))); |
| 461 | return rr0(RC, Outputs); |
| 462 | } |
| 463 | case M4_and_and: |
| 464 | return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); |
| 465 | case M4_and_andn: |
| 466 | return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| 467 | case M4_and_or: |
| 468 | return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); |
| 469 | case M4_and_xor: |
| 470 | return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs); |
| 471 | case A2_orir: |
| 472 | return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs); |
| 473 | case A2_or: |
| 474 | case A2_orp: |
| 475 | return rr0(eORL(rc(1), rc(2)), Outputs); |
| 476 | case A4_orn: |
| 477 | case A4_ornp: |
| 478 | return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); |
| 479 | case S4_ori_asl_ri: { |
| 480 | RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3))); |
| 481 | return rr0(RC, Outputs); |
| 482 | } |
| 483 | case S4_ori_lsr_ri: { |
| 484 | RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3))); |
| 485 | return rr0(RC, Outputs); |
| 486 | } |
| 487 | case M4_or_and: |
| 488 | return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); |
| 489 | case M4_or_andn: |
| 490 | return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| 491 | case S4_or_andi: |
| 492 | case S4_or_andix: { |
| 493 | RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0))); |
| 494 | return rr0(RC, Outputs); |
| 495 | } |
| 496 | case S4_or_ori: { |
| 497 | RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0))); |
| 498 | return rr0(RC, Outputs); |
| 499 | } |
| 500 | case M4_or_or: |
| 501 | return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); |
| 502 | case M4_or_xor: |
| 503 | return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs); |
| 504 | case A2_xor: |
| 505 | case A2_xorp: |
| 506 | return rr0(eXOR(rc(1), rc(2)), Outputs); |
| 507 | case M4_xor_and: |
| 508 | return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs); |
| 509 | case M4_xor_andn: |
| 510 | return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| 511 | case M4_xor_or: |
| 512 | return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs); |
| 513 | case M4_xor_xacc: |
| 514 | return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs); |
| 515 | case A2_not: |
| 516 | case A2_notp: |
| 517 | return rr0(eNOT(rc(1)), Outputs); |
| 518 | |
| 519 | case S2_asl_i_r: |
| 520 | case S2_asl_i_p: |
| 521 | return rr0(eASL(rc(1), im(2)), Outputs); |
| 522 | case A2_aslh: |
| 523 | return rr0(eASL(rc(1), 16), Outputs); |
| 524 | case S2_asl_i_r_acc: |
| 525 | case S2_asl_i_p_acc: |
| 526 | return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs); |
| 527 | case S2_asl_i_r_nac: |
| 528 | case S2_asl_i_p_nac: |
| 529 | return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs); |
| 530 | case S2_asl_i_r_and: |
| 531 | case S2_asl_i_p_and: |
| 532 | return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs); |
| 533 | case S2_asl_i_r_or: |
| 534 | case S2_asl_i_p_or: |
| 535 | return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs); |
| 536 | case S2_asl_i_r_xacc: |
| 537 | case S2_asl_i_p_xacc: |
| 538 | return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs); |
| 539 | case S2_asl_i_vh: |
| 540 | case S2_asl_i_vw: |
| 541 | // TODO |
| 542 | break; |
| 543 | |
| 544 | case S2_asr_i_r: |
| 545 | case S2_asr_i_p: |
| 546 | return rr0(eASR(rc(1), im(2)), Outputs); |
| 547 | case A2_asrh: |
| 548 | return rr0(eASR(rc(1), 16), Outputs); |
| 549 | case S2_asr_i_r_acc: |
| 550 | case S2_asr_i_p_acc: |
| 551 | return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs); |
| 552 | case S2_asr_i_r_nac: |
| 553 | case S2_asr_i_p_nac: |
| 554 | return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs); |
| 555 | case S2_asr_i_r_and: |
| 556 | case S2_asr_i_p_and: |
| 557 | return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs); |
| 558 | case S2_asr_i_r_or: |
| 559 | case S2_asr_i_p_or: |
| 560 | return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs); |
| 561 | case S2_asr_i_r_rnd: { |
| 562 | // The input is first sign-extended to 64 bits, then the output |
| 563 | // is truncated back to 32 bits. |
| 564 | assert(W0 == 32); |
| 565 | RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); |
| 566 | RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1); |
| 567 | return rr0(eXTR(RC, 0, W0), Outputs); |
| 568 | } |
| 569 | case S2_asr_i_r_rnd_goodsyntax: { |
| 570 | int64_t S = im(2); |
| 571 | if (S == 0) |
| 572 | return rr0(rc(1), Outputs); |
| 573 | // Result: S2_asr_i_r_rnd Rs, u5-1 |
| 574 | RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); |
| 575 | RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1); |
| 576 | return rr0(eXTR(RC, 0, W0), Outputs); |
| 577 | } |
| 578 | case S2_asr_r_vh: |
| 579 | case S2_asr_i_vw: |
| 580 | case S2_asr_i_svw_trun: |
| 581 | // TODO |
| 582 | break; |
| 583 | |
| 584 | case S2_lsr_i_r: |
| 585 | case S2_lsr_i_p: |
| 586 | return rr0(eLSR(rc(1), im(2)), Outputs); |
| 587 | case S2_lsr_i_r_acc: |
| 588 | case S2_lsr_i_p_acc: |
| 589 | return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs); |
| 590 | case S2_lsr_i_r_nac: |
| 591 | case S2_lsr_i_p_nac: |
| 592 | return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs); |
| 593 | case S2_lsr_i_r_and: |
| 594 | case S2_lsr_i_p_and: |
| 595 | return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs); |
| 596 | case S2_lsr_i_r_or: |
| 597 | case S2_lsr_i_p_or: |
| 598 | return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs); |
| 599 | case S2_lsr_i_r_xacc: |
| 600 | case S2_lsr_i_p_xacc: |
| 601 | return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs); |
| 602 | |
| 603 | case S2_clrbit_i: { |
| 604 | RegisterCell RC = rc(1); |
| 605 | RC[im(2)] = BT::BitValue::Zero; |
| 606 | return rr0(RC, Outputs); |
| 607 | } |
| 608 | case S2_setbit_i: { |
| 609 | RegisterCell RC = rc(1); |
| 610 | RC[im(2)] = BT::BitValue::One; |
| 611 | return rr0(RC, Outputs); |
| 612 | } |
| 613 | case S2_togglebit_i: { |
| 614 | RegisterCell RC = rc(1); |
| 615 | uint16_t BX = im(2); |
| 616 | RC[BX] = RC[BX].is(0) ? BT::BitValue::One |
| 617 | : RC[BX].is(1) ? BT::BitValue::Zero |
| 618 | : BT::BitValue::self(); |
| 619 | return rr0(RC, Outputs); |
| 620 | } |
| 621 | |
| 622 | case A4_bitspliti: { |
| 623 | uint16_t W1 = getRegBitWidth(Reg[1]); |
| 624 | uint16_t BX = im(2); |
| 625 | // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx] |
| 626 | const BT::BitValue Zero = BT::BitValue::Zero; |
| 627 | RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero) |
| 628 | .fill(W1+(W1-BX), W0, Zero); |
| 629 | RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1); |
| 630 | RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1); |
| 631 | return rr0(RC, Outputs); |
| 632 | } |
| 633 | case S4_extract: |
| 634 | case S4_extractp: |
| 635 | case S2_extractu: |
| 636 | case S2_extractup: { |
| 637 | uint16_t Wd = im(2), Of = im(3); |
| 638 | assert(Wd <= W0); |
| 639 | if (Wd == 0) |
| 640 | return rr0(eIMM(0, W0), Outputs); |
| 641 | // If the width extends beyond the register size, pad the register |
| 642 | // with 0 bits. |
| 643 | RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1); |
| 644 | RegisterCell Ext = eXTR(Pad, Of, Wd+Of); |
| 645 | // Ext is short, need to extend it with 0s or sign bit. |
| 646 | RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1)); |
| 647 | if (Opc == S2_extractu || Opc == S2_extractup) |
| 648 | return rr0(eZXT(RC, Wd), Outputs); |
| 649 | return rr0(eSXT(RC, Wd), Outputs); |
| 650 | } |
| 651 | case S2_insert: |
| 652 | case S2_insertp: { |
| 653 | uint16_t Wd = im(3), Of = im(4); |
| 654 | assert(Wd < W0 && Of < W0); |
| 655 | // If Wd+Of exceeds W0, the inserted bits are truncated. |
| 656 | if (Wd+Of > W0) |
| 657 | Wd = W0-Of; |
| 658 | if (Wd == 0) |
| 659 | return rr0(rc(1), Outputs); |
| 660 | return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs); |
| 661 | } |
| 662 | |
| 663 | // Bit permutations: |
| 664 | |
| 665 | case A2_combineii: |
| 666 | case A4_combineii: |
| 667 | case A4_combineir: |
| 668 | case A4_combineri: |
| 669 | case A2_combinew: |
| 670 | assert(W0 % 2 == 0); |
| 671 | return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs); |
| 672 | case A2_combine_ll: |
| 673 | case A2_combine_lh: |
| 674 | case A2_combine_hl: |
| 675 | case A2_combine_hh: { |
| 676 | assert(W0 == 32); |
| 677 | assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); |
| 678 | // Low half in the output is 0 for _ll and _hl, 1 otherwise: |
| 679 | unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl); |
| 680 | // High half in the output is 0 for _ll and _lh, 1 otherwise: |
| 681 | unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh); |
| 682 | RegisterCell R1 = rc(1); |
| 683 | RegisterCell R2 = rc(2); |
| 684 | RegisterCell RC = half(R2, LoH).cat(half(R1, HiH)); |
| 685 | return rr0(RC, Outputs); |
| 686 | } |
| 687 | case S2_packhl: { |
| 688 | assert(W0 == 64); |
| 689 | assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); |
| 690 | RegisterCell R1 = rc(1); |
| 691 | RegisterCell R2 = rc(2); |
| 692 | RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1)) |
| 693 | .cat(half(R1, 1)); |
| 694 | return rr0(RC, Outputs); |
| 695 | } |
| 696 | case S2_shuffeb: { |
| 697 | RegisterCell RC = shuffle(rc(1), rc(2), 8, false); |
| 698 | return rr0(RC, Outputs); |
| 699 | } |
| 700 | case S2_shuffeh: { |
| 701 | RegisterCell RC = shuffle(rc(1), rc(2), 16, false); |
| 702 | return rr0(RC, Outputs); |
| 703 | } |
| 704 | case S2_shuffob: { |
| 705 | RegisterCell RC = shuffle(rc(1), rc(2), 8, true); |
| 706 | return rr0(RC, Outputs); |
| 707 | } |
| 708 | case S2_shuffoh: { |
| 709 | RegisterCell RC = shuffle(rc(1), rc(2), 16, true); |
| 710 | return rr0(RC, Outputs); |
| 711 | } |
| 712 | case C2_mask: { |
| 713 | uint16_t WR = W0; |
| 714 | uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]); |
| 715 | assert(WR == 64 && WP == 8); |
| 716 | RegisterCell R1 = rc(1); |
| 717 | RegisterCell RC(WR); |
| 718 | for (uint16_t i = 0; i < WP; ++i) { |
| 719 | const BT::BitValue &V = R1[i]; |
| 720 | BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self(); |
| 721 | RC.fill(i*8, i*8+8, F); |
| 722 | } |
| 723 | return rr0(RC, Outputs); |
| 724 | } |
| 725 | |
| 726 | // Mux: |
| 727 | |
| 728 | case C2_muxii: |
| 729 | case C2_muxir: |
| 730 | case C2_muxri: |
| 731 | case C2_mux: { |
| 732 | BT::BitValue PC0 = rc(1)[0]; |
| 733 | RegisterCell R2 = cop(2, W0); |
| 734 | RegisterCell R3 = cop(3, W0); |
| 735 | if (PC0.is(0) || PC0.is(1)) |
| 736 | return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs); |
| 737 | R2.meet(R3, Reg[0].Reg); |
| 738 | return rr0(R2, Outputs); |
| 739 | } |
| 740 | case C2_vmux: |
| 741 | // TODO |
| 742 | break; |
| 743 | |
| 744 | // Sign- and zero-extension: |
| 745 | |
| 746 | case A2_sxtb: |
| 747 | return rr0(eSXT(rc(1), 8), Outputs); |
| 748 | case A2_sxth: |
| 749 | return rr0(eSXT(rc(1), 16), Outputs); |
| 750 | case A2_sxtw: { |
| 751 | uint16_t W1 = getRegBitWidth(Reg[1]); |
| 752 | assert(W0 == 64 && W1 == 32); |
| 753 | RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1); |
| 754 | return rr0(RC, Outputs); |
| 755 | } |
| 756 | case A2_zxtb: |
| 757 | return rr0(eZXT(rc(1), 8), Outputs); |
| 758 | case A2_zxth: |
| 759 | return rr0(eZXT(rc(1), 16), Outputs); |
| 760 | |
| 761 | // Bit count: |
| 762 | |
| 763 | case S2_cl0: |
| 764 | case S2_cl0p: |
| 765 | // Always produce a 32-bit result. |
| 766 | return rr0(eCLB(rc(1), 0/*bit*/, 32), Outputs); |
| 767 | case S2_cl1: |
| 768 | case S2_cl1p: |
| 769 | return rr0(eCLB(rc(1), 1/*bit*/, 32), Outputs); |
| 770 | case S2_clb: |
| 771 | case S2_clbp: { |
| 772 | uint16_t W1 = getRegBitWidth(Reg[1]); |
| 773 | RegisterCell R1 = rc(1); |
| 774 | BT::BitValue TV = R1[W1-1]; |
| 775 | if (TV.is(0) || TV.is(1)) |
| 776 | return rr0(eCLB(R1, TV, 32), Outputs); |
| 777 | break; |
| 778 | } |
| 779 | case S2_ct0: |
| 780 | case S2_ct0p: |
| 781 | return rr0(eCTB(rc(1), 0/*bit*/, 32), Outputs); |
| 782 | case S2_ct1: |
| 783 | case S2_ct1p: |
| 784 | return rr0(eCTB(rc(1), 1/*bit*/, 32), Outputs); |
| 785 | case S5_popcountp: |
| 786 | // TODO |
| 787 | break; |
| 788 | |
| 789 | case C2_all8: { |
| 790 | RegisterCell P1 = rc(1); |
| 791 | bool Has0 = false, All1 = true; |
| 792 | for (uint16_t i = 0; i < 8/*XXX*/; ++i) { |
| 793 | if (!P1[i].is(1)) |
| 794 | All1 = false; |
| 795 | if (!P1[i].is(0)) |
| 796 | continue; |
| 797 | Has0 = true; |
| 798 | break; |
| 799 | } |
| 800 | if (!Has0 && !All1) |
| 801 | break; |
| 802 | RegisterCell RC(W0); |
| 803 | RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero)); |
| 804 | return rr0(RC, Outputs); |
| 805 | } |
| 806 | case C2_any8: { |
| 807 | RegisterCell P1 = rc(1); |
| 808 | bool Has1 = false, All0 = true; |
| 809 | for (uint16_t i = 0; i < 8/*XXX*/; ++i) { |
| 810 | if (!P1[i].is(0)) |
| 811 | All0 = false; |
| 812 | if (!P1[i].is(1)) |
| 813 | continue; |
| 814 | Has1 = true; |
| 815 | break; |
| 816 | } |
| 817 | if (!Has1 && !All0) |
| 818 | break; |
| 819 | RegisterCell RC(W0); |
| 820 | RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero)); |
| 821 | return rr0(RC, Outputs); |
| 822 | } |
| 823 | case C2_and: |
| 824 | return rr0(eAND(rc(1), rc(2)), Outputs); |
| 825 | case C2_andn: |
| 826 | return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); |
| 827 | case C2_not: |
| 828 | return rr0(eNOT(rc(1)), Outputs); |
| 829 | case C2_or: |
| 830 | return rr0(eORL(rc(1), rc(2)), Outputs); |
| 831 | case C2_orn: |
| 832 | return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); |
| 833 | case C2_xor: |
| 834 | return rr0(eXOR(rc(1), rc(2)), Outputs); |
| 835 | case C4_and_and: |
| 836 | return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); |
| 837 | case C4_and_andn: |
| 838 | return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| 839 | case C4_and_or: |
| 840 | return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); |
| 841 | case C4_and_orn: |
| 842 | return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); |
| 843 | case C4_or_and: |
| 844 | return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); |
| 845 | case C4_or_andn: |
| 846 | return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| 847 | case C4_or_or: |
| 848 | return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); |
| 849 | case C4_or_orn: |
| 850 | return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); |
| 851 | case C2_bitsclr: |
| 852 | case C2_bitsclri: |
| 853 | case C2_bitsset: |
| 854 | case C4_nbitsclr: |
| 855 | case C4_nbitsclri: |
| 856 | case C4_nbitsset: |
| 857 | // TODO |
| 858 | break; |
| 859 | case S2_tstbit_i: |
| 860 | case S4_ntstbit_i: { |
| 861 | BT::BitValue V = rc(1)[im(2)]; |
| 862 | if (V.is(0) || V.is(1)) { |
| 863 | // If instruction is S2_tstbit_i, test for 1, otherwise test for 0. |
| 864 | bool TV = (Opc == S2_tstbit_i); |
| 865 | BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero; |
| 866 | return rr0(RegisterCell(W0).fill(0, W0, F), Outputs); |
| 867 | } |
| 868 | break; |
| 869 | } |
| 870 | |
| 871 | default: |
| 872 | return MachineEvaluator::evaluate(MI, Inputs, Outputs); |
| 873 | } |
| 874 | #undef im |
| 875 | #undef rc |
| 876 | #undef op |
| 877 | return false; |
| 878 | } |
| 879 | |
| 880 | |
| 881 | bool HexagonEvaluator::evaluate(const MachineInstr *BI, |
| 882 | const CellMapType &Inputs, BranchTargetList &Targets, |
| 883 | bool &FallsThru) const { |
| 884 | // We need to evaluate one branch at a time. TII::AnalyzeBranch checks |
| 885 | // all the branches in a basic block at once, so we cannot use it. |
| 886 | unsigned Opc = BI->getOpcode(); |
| 887 | bool SimpleBranch = false; |
| 888 | bool Negated = false; |
| 889 | switch (Opc) { |
| 890 | case Hexagon::J2_jumpf: |
| 891 | case Hexagon::J2_jumpfnew: |
| 892 | case Hexagon::J2_jumpfnewpt: |
| 893 | Negated = true; |
| 894 | case Hexagon::J2_jumpt: |
| 895 | case Hexagon::J2_jumptnew: |
| 896 | case Hexagon::J2_jumptnewpt: |
| 897 | // Simple branch: if([!]Pn) jump ... |
| 898 | // i.e. Op0 = predicate, Op1 = branch target. |
| 899 | SimpleBranch = true; |
| 900 | break; |
| 901 | case Hexagon::J2_jump: |
| 902 | Targets.insert(BI->getOperand(0).getMBB()); |
| 903 | FallsThru = false; |
| 904 | return true; |
| 905 | default: |
| 906 | // If the branch is of unknown type, assume that all successors are |
| 907 | // executable. |
| 908 | return false; |
| 909 | } |
| 910 | |
| 911 | if (!SimpleBranch) |
| 912 | return false; |
| 913 | |
| 914 | // BI is a conditional branch if we got here. |
| 915 | RegisterRef PR = BI->getOperand(0); |
| 916 | RegisterCell PC = getCell(PR, Inputs); |
| 917 | const BT::BitValue &Test = PC[0]; |
| 918 | |
| 919 | // If the condition is neither true nor false, then it's unknown. |
| 920 | if (!Test.is(0) && !Test.is(1)) |
| 921 | return false; |
| 922 | |
| 923 | // "Test.is(!Negated)" means "branch condition is true". |
| 924 | if (!Test.is(!Negated)) { |
| 925 | // Condition known to be false. |
| 926 | FallsThru = true; |
| 927 | return true; |
| 928 | } |
| 929 | |
| 930 | Targets.insert(BI->getOperand(1).getMBB()); |
| 931 | FallsThru = false; |
| 932 | return true; |
| 933 | } |
| 934 | |
| 935 | |
| 936 | bool HexagonEvaluator::evaluateLoad(const MachineInstr *MI, |
| 937 | const CellMapType &Inputs, CellMapType &Outputs) const { |
| 938 | if (TII.isPredicated(MI)) |
| 939 | return false; |
| 940 | assert(MI->mayLoad() && "A load that mayn't?"); |
| 941 | unsigned Opc = MI->getOpcode(); |
| 942 | |
| 943 | uint16_t BitNum; |
| 944 | bool SignEx; |
| 945 | using namespace Hexagon; |
| 946 | |
| 947 | switch (Opc) { |
| 948 | default: |
| 949 | return false; |
| 950 | |
| 951 | #if 0 |
| 952 | // memb_fifo |
| 953 | case L2_loadalignb_pbr: |
| 954 | case L2_loadalignb_pcr: |
| 955 | case L2_loadalignb_pi: |
| 956 | // memh_fifo |
| 957 | case L2_loadalignh_pbr: |
| 958 | case L2_loadalignh_pcr: |
| 959 | case L2_loadalignh_pi: |
| 960 | // membh |
| 961 | case L2_loadbsw2_pbr: |
| 962 | case L2_loadbsw2_pci: |
| 963 | case L2_loadbsw2_pcr: |
| 964 | case L2_loadbsw2_pi: |
| 965 | case L2_loadbsw4_pbr: |
| 966 | case L2_loadbsw4_pci: |
| 967 | case L2_loadbsw4_pcr: |
| 968 | case L2_loadbsw4_pi: |
| 969 | // memubh |
| 970 | case L2_loadbzw2_pbr: |
| 971 | case L2_loadbzw2_pci: |
| 972 | case L2_loadbzw2_pcr: |
| 973 | case L2_loadbzw2_pi: |
| 974 | case L2_loadbzw4_pbr: |
| 975 | case L2_loadbzw4_pci: |
| 976 | case L2_loadbzw4_pcr: |
| 977 | case L2_loadbzw4_pi: |
| 978 | #endif |
| 979 | |
| 980 | case L2_loadrbgp: |
| 981 | case L2_loadrb_io: |
| 982 | case L2_loadrb_pbr: |
| 983 | case L2_loadrb_pci: |
| 984 | case L2_loadrb_pcr: |
| 985 | case L2_loadrb_pi: |
| 986 | case L4_loadrb_abs: |
| 987 | case L4_loadrb_ap: |
| 988 | case L4_loadrb_rr: |
| 989 | case L4_loadrb_ur: |
| 990 | BitNum = 8; |
| 991 | SignEx = true; |
| 992 | break; |
| 993 | |
| 994 | case L2_loadrubgp: |
| 995 | case L2_loadrub_io: |
| 996 | case L2_loadrub_pbr: |
| 997 | case L2_loadrub_pci: |
| 998 | case L2_loadrub_pcr: |
| 999 | case L2_loadrub_pi: |
| 1000 | case L4_loadrub_abs: |
| 1001 | case L4_loadrub_ap: |
| 1002 | case L4_loadrub_rr: |
| 1003 | case L4_loadrub_ur: |
| 1004 | BitNum = 8; |
| 1005 | SignEx = false; |
| 1006 | break; |
| 1007 | |
| 1008 | case L2_loadrhgp: |
| 1009 | case L2_loadrh_io: |
| 1010 | case L2_loadrh_pbr: |
| 1011 | case L2_loadrh_pci: |
| 1012 | case L2_loadrh_pcr: |
| 1013 | case L2_loadrh_pi: |
| 1014 | case L4_loadrh_abs: |
| 1015 | case L4_loadrh_ap: |
| 1016 | case L4_loadrh_rr: |
| 1017 | case L4_loadrh_ur: |
| 1018 | BitNum = 16; |
| 1019 | SignEx = true; |
| 1020 | break; |
| 1021 | |
| 1022 | case L2_loadruhgp: |
| 1023 | case L2_loadruh_io: |
| 1024 | case L2_loadruh_pbr: |
| 1025 | case L2_loadruh_pci: |
| 1026 | case L2_loadruh_pcr: |
| 1027 | case L2_loadruh_pi: |
| 1028 | case L4_loadruh_rr: |
| 1029 | case L4_loadruh_abs: |
| 1030 | case L4_loadruh_ap: |
| 1031 | case L4_loadruh_ur: |
| 1032 | BitNum = 16; |
| 1033 | SignEx = false; |
| 1034 | break; |
| 1035 | |
| 1036 | case L2_loadrigp: |
| 1037 | case L2_loadri_io: |
| 1038 | case L2_loadri_pbr: |
| 1039 | case L2_loadri_pci: |
| 1040 | case L2_loadri_pcr: |
| 1041 | case L2_loadri_pi: |
| 1042 | case L2_loadw_locked: |
| 1043 | case L4_loadri_abs: |
| 1044 | case L4_loadri_ap: |
| 1045 | case L4_loadri_rr: |
| 1046 | case L4_loadri_ur: |
| 1047 | case LDriw_pred: |
| 1048 | BitNum = 32; |
| 1049 | SignEx = true; |
| 1050 | break; |
| 1051 | |
| 1052 | case L2_loadrdgp: |
| 1053 | case L2_loadrd_io: |
| 1054 | case L2_loadrd_pbr: |
| 1055 | case L2_loadrd_pci: |
| 1056 | case L2_loadrd_pcr: |
| 1057 | case L2_loadrd_pi: |
| 1058 | case L4_loadd_locked: |
| 1059 | case L4_loadrd_abs: |
| 1060 | case L4_loadrd_ap: |
| 1061 | case L4_loadrd_rr: |
| 1062 | case L4_loadrd_ur: |
| 1063 | BitNum = 64; |
| 1064 | SignEx = true; |
| 1065 | break; |
| 1066 | } |
| 1067 | |
| 1068 | const MachineOperand &MD = MI->getOperand(0); |
| 1069 | assert(MD.isReg() && MD.isDef()); |
| 1070 | RegisterRef RD = MD; |
| 1071 | |
| 1072 | uint16_t W = getRegBitWidth(RD); |
| 1073 | assert(W >= BitNum && BitNum > 0); |
| 1074 | RegisterCell Res(W); |
| 1075 | |
| 1076 | for (uint16_t i = 0; i < BitNum; ++i) |
| 1077 | Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i)); |
| 1078 | |
| 1079 | if (SignEx) { |
| 1080 | const BT::BitValue &Sign = Res[BitNum-1]; |
| 1081 | for (uint16_t i = BitNum; i < W; ++i) |
| 1082 | Res[i] = BT::BitValue::ref(Sign); |
| 1083 | } else { |
| 1084 | for (uint16_t i = BitNum; i < W; ++i) |
| 1085 | Res[i] = BT::BitValue::Zero; |
| 1086 | } |
| 1087 | |
| 1088 | putCell(RD, Res, Outputs); |
| 1089 | return true; |
| 1090 | } |
| 1091 | |
| 1092 | |
| 1093 | bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr *MI, |
| 1094 | const CellMapType &Inputs, CellMapType &Outputs) const { |
| 1095 | // If MI defines a formal parameter, but is not a copy (loads are handled |
| 1096 | // in evaluateLoad), then it's not clear what to do. |
| 1097 | assert(MI->isCopy()); |
| 1098 | |
| 1099 | RegisterRef RD = MI->getOperand(0); |
| 1100 | RegisterRef RS = MI->getOperand(1); |
| 1101 | assert(RD.Sub == 0); |
| 1102 | if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg)) |
| 1103 | return false; |
| 1104 | RegExtMap::const_iterator F = VRX.find(RD.Reg); |
| 1105 | if (F == VRX.end()) |
| 1106 | return false; |
| 1107 | |
| 1108 | uint16_t EW = F->second.Width; |
| 1109 | // Store RD's cell into the map. This will associate the cell with a virtual |
| 1110 | // register, and make zero-/sign-extends possible (otherwise we would be ex- |
| 1111 | // tending "self" bit values, which will have no effect, since "self" values |
| 1112 | // cannot be references to anything). |
| 1113 | putCell(RD, getCell(RS, Inputs), Outputs); |
| 1114 | |
| 1115 | RegisterCell Res; |
| 1116 | // Read RD's cell from the outputs instead of RS's cell from the inputs: |
| 1117 | if (F->second.Type == ExtType::SExt) |
| 1118 | Res = eSXT(getCell(RD, Outputs), EW); |
| 1119 | else if (F->second.Type == ExtType::ZExt) |
| 1120 | Res = eZXT(getCell(RD, Outputs), EW); |
| 1121 | |
| 1122 | putCell(RD, Res, Outputs); |
| 1123 | return true; |
| 1124 | } |
| 1125 | |
| 1126 | |
| 1127 | unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const { |
| 1128 | using namespace Hexagon; |
| 1129 | bool Is64 = DoubleRegsRegClass.contains(PReg); |
| 1130 | assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg)); |
| 1131 | |
| 1132 | static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 }; |
| 1133 | static const unsigned Phys64[] = { D0, D1, D2 }; |
| 1134 | const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned); |
| 1135 | const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned); |
| 1136 | |
| 1137 | // Return the first parameter register of the required width. |
| 1138 | if (PReg == 0) |
| 1139 | return (Width <= 32) ? Phys32[0] : Phys64[0]; |
| 1140 | |
| 1141 | // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the |
| 1142 | // next register. |
| 1143 | unsigned Idx32 = 0, Idx64 = 0; |
| 1144 | if (!Is64) { |
| 1145 | while (Idx32 < Num32) { |
| 1146 | if (Phys32[Idx32] == PReg) |
| 1147 | break; |
| 1148 | Idx32++; |
| 1149 | } |
| 1150 | Idx64 = Idx32/2; |
| 1151 | } else { |
| 1152 | while (Idx64 < Num64) { |
| 1153 | if (Phys64[Idx64] == PReg) |
| 1154 | break; |
| 1155 | Idx64++; |
| 1156 | } |
| 1157 | Idx32 = Idx64*2+1; |
| 1158 | } |
| 1159 | |
| 1160 | if (Width <= 32) |
| 1161 | return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0; |
| 1162 | return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0; |
| 1163 | } |
| 1164 | |
| 1165 | |
| 1166 | unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const { |
| 1167 | typedef MachineRegisterInfo::livein_iterator iterator; |
| 1168 | for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) { |
| 1169 | if (I->first == PReg) |
| 1170 | return I->second; |
| 1171 | } |
| 1172 | return 0; |
| 1173 | } |