blob: 3ef97998a2df77a535ca068bfb052e74746aebb5 [file] [log] [blame]
Lang Hames9b4b92b2015-02-17 05:40:42 +00001#include "llvm/Analysis/Passes.h"
2#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
3#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
4#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
5#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
6#include "llvm/ExecutionEngine/Orc/OrcTargetSupport.h"
7#include "llvm/IR/DataLayout.h"
8#include "llvm/IR/DerivedTypes.h"
9#include "llvm/IR/IRBuilder.h"
10#include "llvm/IR/LegacyPassManager.h"
11#include "llvm/IR/LLVMContext.h"
12#include "llvm/IR/Module.h"
13#include "llvm/IR/Verifier.h"
14#include "llvm/Support/TargetSelect.h"
15#include "llvm/Transforms/Scalar.h"
16#include <cctype>
17#include <iomanip>
18#include <iostream>
19#include <map>
20#include <sstream>
21#include <string>
22#include <vector>
23using namespace llvm;
24
25//===----------------------------------------------------------------------===//
26// Lexer
27//===----------------------------------------------------------------------===//
28
29// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
30// of these for known things.
31enum Token {
32 tok_eof = -1,
33
34 // commands
35 tok_def = -2, tok_extern = -3,
36
37 // primary
38 tok_identifier = -4, tok_number = -5,
39
40 // control
41 tok_if = -6, tok_then = -7, tok_else = -8,
42 tok_for = -9, tok_in = -10,
43
44 // operators
45 tok_binary = -11, tok_unary = -12,
46
47 // var definition
48 tok_var = -13
49};
50
51static std::string IdentifierStr; // Filled in if tok_identifier
52static double NumVal; // Filled in if tok_number
53
54/// gettok - Return the next token from standard input.
55static int gettok() {
56 static int LastChar = ' ';
57
58 // Skip any whitespace.
59 while (isspace(LastChar))
60 LastChar = getchar();
61
62 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
63 IdentifierStr = LastChar;
64 while (isalnum((LastChar = getchar())))
65 IdentifierStr += LastChar;
66
67 if (IdentifierStr == "def") return tok_def;
68 if (IdentifierStr == "extern") return tok_extern;
69 if (IdentifierStr == "if") return tok_if;
70 if (IdentifierStr == "then") return tok_then;
71 if (IdentifierStr == "else") return tok_else;
72 if (IdentifierStr == "for") return tok_for;
73 if (IdentifierStr == "in") return tok_in;
74 if (IdentifierStr == "binary") return tok_binary;
75 if (IdentifierStr == "unary") return tok_unary;
76 if (IdentifierStr == "var") return tok_var;
77 return tok_identifier;
78 }
79
80 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
81 std::string NumStr;
82 do {
83 NumStr += LastChar;
84 LastChar = getchar();
85 } while (isdigit(LastChar) || LastChar == '.');
86
87 NumVal = strtod(NumStr.c_str(), 0);
88 return tok_number;
89 }
90
91 if (LastChar == '#') {
92 // Comment until end of line.
93 do LastChar = getchar();
94 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
95
96 if (LastChar != EOF)
97 return gettok();
98 }
99
100 // Check for end of file. Don't eat the EOF.
101 if (LastChar == EOF)
102 return tok_eof;
103
104 // Otherwise, just return the character as its ascii value.
105 int ThisChar = LastChar;
106 LastChar = getchar();
107 return ThisChar;
108}
109
110//===----------------------------------------------------------------------===//
111// Abstract Syntax Tree (aka Parse Tree)
112//===----------------------------------------------------------------------===//
113
114class IRGenContext;
115
116/// ExprAST - Base class for all expression nodes.
117struct ExprAST {
118 virtual ~ExprAST() {}
119 virtual Value *IRGen(IRGenContext &C) const = 0;
120};
121
122/// NumberExprAST - Expression class for numeric literals like "1.0".
123struct NumberExprAST : public ExprAST {
124 NumberExprAST(double Val) : Val(Val) {}
125 Value *IRGen(IRGenContext &C) const override;
126
127 double Val;
128};
129
130/// VariableExprAST - Expression class for referencing a variable, like "a".
131struct VariableExprAST : public ExprAST {
132 VariableExprAST(std::string Name) : Name(std::move(Name)) {}
133 Value *IRGen(IRGenContext &C) const override;
134
135 std::string Name;
136};
137
138/// UnaryExprAST - Expression class for a unary operator.
139struct UnaryExprAST : public ExprAST {
140 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
141 : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
142
143 Value *IRGen(IRGenContext &C) const override;
144
145 char Opcode;
146 std::unique_ptr<ExprAST> Operand;
147};
148
149/// BinaryExprAST - Expression class for a binary operator.
150struct BinaryExprAST : public ExprAST {
151 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
152 std::unique_ptr<ExprAST> RHS)
153 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
154
155 Value *IRGen(IRGenContext &C) const override;
156
157 char Op;
158 std::unique_ptr<ExprAST> LHS, RHS;
159};
160
161/// CallExprAST - Expression class for function calls.
162struct CallExprAST : public ExprAST {
163 CallExprAST(std::string CalleeName,
164 std::vector<std::unique_ptr<ExprAST>> Args)
165 : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
166
167 Value *IRGen(IRGenContext &C) const override;
168
169 std::string CalleeName;
170 std::vector<std::unique_ptr<ExprAST>> Args;
171};
172
173/// IfExprAST - Expression class for if/then/else.
174struct IfExprAST : public ExprAST {
175 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
176 std::unique_ptr<ExprAST> Else)
177 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
178 Value *IRGen(IRGenContext &C) const override;
179
180 std::unique_ptr<ExprAST> Cond, Then, Else;
181};
182
183/// ForExprAST - Expression class for for/in.
184struct ForExprAST : public ExprAST {
185 ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
186 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
187 std::unique_ptr<ExprAST> Body)
188 : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
189 Step(std::move(Step)), Body(std::move(Body)) {}
190
191 Value *IRGen(IRGenContext &C) const override;
192
193 std::string VarName;
194 std::unique_ptr<ExprAST> Start, End, Step, Body;
195};
196
197/// VarExprAST - Expression class for var/in
198struct VarExprAST : public ExprAST {
199 typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
200 typedef std::vector<Binding> BindingList;
201
202 VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
203 : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
204
205 Value *IRGen(IRGenContext &C) const override;
206
207 BindingList VarBindings;
208 std::unique_ptr<ExprAST> Body;
209};
210
211/// PrototypeAST - This class represents the "prototype" for a function,
212/// which captures its argument names as well as if it is an operator.
213struct PrototypeAST {
214 PrototypeAST(std::string Name, std::vector<std::string> Args,
215 bool IsOperator = false, unsigned Precedence = 0)
216 : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
217 Precedence(Precedence) {}
218
219 Function *IRGen(IRGenContext &C) const;
220 void CreateArgumentAllocas(Function *F, IRGenContext &C);
221
222 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
223 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
224
225 char getOperatorName() const {
226 assert(isUnaryOp() || isBinaryOp());
227 return Name[Name.size()-1];
228 }
229
230 std::string Name;
231 std::vector<std::string> Args;
232 bool IsOperator;
233 unsigned Precedence; // Precedence if a binary op.
234};
235
236/// FunctionAST - This class represents a function definition itself.
237struct FunctionAST {
238 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
239 std::unique_ptr<ExprAST> Body)
240 : Proto(std::move(Proto)), Body(std::move(Body)) {}
241
242 Function *IRGen(IRGenContext &C) const;
243
244 std::unique_ptr<PrototypeAST> Proto;
245 std::unique_ptr<ExprAST> Body;
246};
247
248//===----------------------------------------------------------------------===//
249// Parser
250//===----------------------------------------------------------------------===//
251
252/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
253/// token the parser is looking at. getNextToken reads another token from the
254/// lexer and updates CurTok with its results.
255static int CurTok;
256static int getNextToken() {
257 return CurTok = gettok();
258}
259
260/// BinopPrecedence - This holds the precedence for each binary operator that is
261/// defined.
262static std::map<char, int> BinopPrecedence;
263
264/// GetTokPrecedence - Get the precedence of the pending binary operator token.
265static int GetTokPrecedence() {
266 if (!isascii(CurTok))
267 return -1;
268
269 // Make sure it's a declared binop.
270 int TokPrec = BinopPrecedence[CurTok];
271 if (TokPrec <= 0) return -1;
272 return TokPrec;
273}
274
275template <typename T>
276std::unique_ptr<T> ErrorU(const std::string &Str) {
277 std::cerr << "Error: " << Str << "\n";
278 return nullptr;
279}
280
281template <typename T>
282T* ErrorP(const std::string &Str) {
283 std::cerr << "Error: " << Str << "\n";
284 return nullptr;
285}
286
287static std::unique_ptr<ExprAST> ParseExpression();
288
289/// identifierexpr
290/// ::= identifier
291/// ::= identifier '(' expression* ')'
292static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
293 std::string IdName = IdentifierStr;
294
295 getNextToken(); // eat identifier.
296
297 if (CurTok != '(') // Simple variable ref.
298 return llvm::make_unique<VariableExprAST>(IdName);
299
300 // Call.
301 getNextToken(); // eat (
302 std::vector<std::unique_ptr<ExprAST>> Args;
303 if (CurTok != ')') {
304 while (1) {
305 auto Arg = ParseExpression();
306 if (!Arg) return nullptr;
307 Args.push_back(std::move(Arg));
308
309 if (CurTok == ')') break;
310
311 if (CurTok != ',')
312 return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
313 getNextToken();
314 }
315 }
316
317 // Eat the ')'.
318 getNextToken();
319
320 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
321}
322
323/// numberexpr ::= number
324static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
325 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
326 getNextToken(); // consume the number
327 return Result;
328}
329
330/// parenexpr ::= '(' expression ')'
331static std::unique_ptr<ExprAST> ParseParenExpr() {
332 getNextToken(); // eat (.
333 auto V = ParseExpression();
334 if (!V)
335 return nullptr;
336
337 if (CurTok != ')')
338 return ErrorU<ExprAST>("expected ')'");
339 getNextToken(); // eat ).
340 return V;
341}
342
343/// ifexpr ::= 'if' expression 'then' expression 'else' expression
344static std::unique_ptr<ExprAST> ParseIfExpr() {
345 getNextToken(); // eat the if.
346
347 // condition.
348 auto Cond = ParseExpression();
349 if (!Cond)
350 return nullptr;
351
352 if (CurTok != tok_then)
353 return ErrorU<ExprAST>("expected then");
354 getNextToken(); // eat the then
355
356 auto Then = ParseExpression();
357 if (!Then)
358 return nullptr;
359
360 if (CurTok != tok_else)
361 return ErrorU<ExprAST>("expected else");
362
363 getNextToken();
364
365 auto Else = ParseExpression();
366 if (!Else)
367 return nullptr;
368
369 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
370 std::move(Else));
371}
372
373/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
374static std::unique_ptr<ForExprAST> ParseForExpr() {
375 getNextToken(); // eat the for.
376
377 if (CurTok != tok_identifier)
378 return ErrorU<ForExprAST>("expected identifier after for");
379
380 std::string IdName = IdentifierStr;
381 getNextToken(); // eat identifier.
382
383 if (CurTok != '=')
384 return ErrorU<ForExprAST>("expected '=' after for");
385 getNextToken(); // eat '='.
386
387
388 auto Start = ParseExpression();
389 if (!Start)
390 return nullptr;
391 if (CurTok != ',')
392 return ErrorU<ForExprAST>("expected ',' after for start value");
393 getNextToken();
394
395 auto End = ParseExpression();
396 if (!End)
397 return nullptr;
398
399 // The step value is optional.
400 std::unique_ptr<ExprAST> Step;
401 if (CurTok == ',') {
402 getNextToken();
403 Step = ParseExpression();
404 if (!Step)
405 return nullptr;
406 }
407
408 if (CurTok != tok_in)
409 return ErrorU<ForExprAST>("expected 'in' after for");
410 getNextToken(); // eat 'in'.
411
412 auto Body = ParseExpression();
413 if (Body)
414 return nullptr;
415
416 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
417 std::move(Step), std::move(Body));
418}
419
420/// varexpr ::= 'var' identifier ('=' expression)?
421// (',' identifier ('=' expression)?)* 'in' expression
422static std::unique_ptr<VarExprAST> ParseVarExpr() {
423 getNextToken(); // eat the var.
424
425 VarExprAST::BindingList VarBindings;
426
427 // At least one variable name is required.
428 if (CurTok != tok_identifier)
429 return ErrorU<VarExprAST>("expected identifier after var");
430
431 while (1) {
432 std::string Name = IdentifierStr;
433 getNextToken(); // eat identifier.
434
435 // Read the optional initializer.
436 std::unique_ptr<ExprAST> Init;
437 if (CurTok == '=') {
438 getNextToken(); // eat the '='.
439
440 Init = ParseExpression();
441 if (!Init)
442 return nullptr;
443 }
444
445 VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
446
447 // End of var list, exit loop.
448 if (CurTok != ',') break;
449 getNextToken(); // eat the ','.
450
451 if (CurTok != tok_identifier)
452 return ErrorU<VarExprAST>("expected identifier list after var");
453 }
454
455 // At this point, we have to have 'in'.
456 if (CurTok != tok_in)
457 return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
458 getNextToken(); // eat 'in'.
459
460 auto Body = ParseExpression();
461 if (!Body)
462 return nullptr;
463
464 return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
465}
466
467/// primary
468/// ::= identifierexpr
469/// ::= numberexpr
470/// ::= parenexpr
471/// ::= ifexpr
472/// ::= forexpr
473/// ::= varexpr
474static std::unique_ptr<ExprAST> ParsePrimary() {
475 switch (CurTok) {
476 default: return ErrorU<ExprAST>("unknown token when expecting an expression");
477 case tok_identifier: return ParseIdentifierExpr();
478 case tok_number: return ParseNumberExpr();
479 case '(': return ParseParenExpr();
480 case tok_if: return ParseIfExpr();
481 case tok_for: return ParseForExpr();
482 case tok_var: return ParseVarExpr();
483 }
484}
485
486/// unary
487/// ::= primary
488/// ::= '!' unary
489static std::unique_ptr<ExprAST> ParseUnary() {
490 // If the current token is not an operator, it must be a primary expr.
491 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
492 return ParsePrimary();
493
494 // If this is a unary operator, read it.
495 int Opc = CurTok;
496 getNextToken();
497 if (auto Operand = ParseUnary())
498 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
499 return nullptr;
500}
501
502/// binoprhs
503/// ::= ('+' unary)*
504static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
505 std::unique_ptr<ExprAST> LHS) {
506 // If this is a binop, find its precedence.
507 while (1) {
508 int TokPrec = GetTokPrecedence();
509
510 // If this is a binop that binds at least as tightly as the current binop,
511 // consume it, otherwise we are done.
512 if (TokPrec < ExprPrec)
513 return LHS;
514
515 // Okay, we know this is a binop.
516 int BinOp = CurTok;
517 getNextToken(); // eat binop
518
519 // Parse the unary expression after the binary operator.
520 auto RHS = ParseUnary();
521 if (!RHS)
522 return nullptr;
523
524 // If BinOp binds less tightly with RHS than the operator after RHS, let
525 // the pending operator take RHS as its LHS.
526 int NextPrec = GetTokPrecedence();
527 if (TokPrec < NextPrec) {
528 RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
529 if (!RHS)
530 return nullptr;
531 }
532
533 // Merge LHS/RHS.
534 LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
535 }
536}
537
538/// expression
539/// ::= unary binoprhs
540///
541static std::unique_ptr<ExprAST> ParseExpression() {
542 auto LHS = ParseUnary();
543 if (!LHS)
544 return nullptr;
545
546 return ParseBinOpRHS(0, std::move(LHS));
547}
548
549/// prototype
550/// ::= id '(' id* ')'
551/// ::= binary LETTER number? (id, id)
552/// ::= unary LETTER (id)
553static std::unique_ptr<PrototypeAST> ParsePrototype() {
554 std::string FnName;
555
556 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
557 unsigned BinaryPrecedence = 30;
558
559 switch (CurTok) {
560 default:
561 return ErrorU<PrototypeAST>("Expected function name in prototype");
562 case tok_identifier:
563 FnName = IdentifierStr;
564 Kind = 0;
565 getNextToken();
566 break;
567 case tok_unary:
568 getNextToken();
569 if (!isascii(CurTok))
570 return ErrorU<PrototypeAST>("Expected unary operator");
571 FnName = "unary";
572 FnName += (char)CurTok;
573 Kind = 1;
574 getNextToken();
575 break;
576 case tok_binary:
577 getNextToken();
578 if (!isascii(CurTok))
579 return ErrorU<PrototypeAST>("Expected binary operator");
580 FnName = "binary";
581 FnName += (char)CurTok;
582 Kind = 2;
583 getNextToken();
584
585 // Read the precedence if present.
586 if (CurTok == tok_number) {
587 if (NumVal < 1 || NumVal > 100)
588 return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
589 BinaryPrecedence = (unsigned)NumVal;
590 getNextToken();
591 }
592 break;
593 }
594
595 if (CurTok != '(')
596 return ErrorU<PrototypeAST>("Expected '(' in prototype");
597
598 std::vector<std::string> ArgNames;
599 while (getNextToken() == tok_identifier)
600 ArgNames.push_back(IdentifierStr);
601 if (CurTok != ')')
602 return ErrorU<PrototypeAST>("Expected ')' in prototype");
603
604 // success.
605 getNextToken(); // eat ')'.
606
607 // Verify right number of names for operator.
608 if (Kind && ArgNames.size() != Kind)
609 return ErrorU<PrototypeAST>("Invalid number of operands for operator");
610
611 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
612 BinaryPrecedence);
613}
614
615/// definition ::= 'def' prototype expression
616static std::unique_ptr<FunctionAST> ParseDefinition() {
617 getNextToken(); // eat def.
618 auto Proto = ParsePrototype();
619 if (!Proto)
620 return nullptr;
621
622 if (auto Body = ParseExpression())
623 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
624 return nullptr;
625}
626
627/// toplevelexpr ::= expression
628static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
629 if (auto E = ParseExpression()) {
630 // Make an anonymous proto.
631 auto Proto =
632 llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
633 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
634 }
635 return nullptr;
636}
637
638/// external ::= 'extern' prototype
639static std::unique_ptr<PrototypeAST> ParseExtern() {
640 getNextToken(); // eat extern.
641 return ParsePrototype();
642}
643
644//===----------------------------------------------------------------------===//
645// Code Generation
646//===----------------------------------------------------------------------===//
647
648// FIXME: Obviously we can do better than this
649std::string GenerateUniqueName(const std::string &Root) {
650 static int i = 0;
651 std::ostringstream NameStream;
652 NameStream << Root << ++i;
653 return NameStream.str();
654}
655
656std::string MakeLegalFunctionName(std::string Name)
657{
658 std::string NewName;
659 assert(!Name.empty() && "Base name must not be empty");
660
661 // Start with what we have
662 NewName = Name;
663
664 // Look for a numberic first character
665 if (NewName.find_first_of("0123456789") == 0) {
666 NewName.insert(0, 1, 'n');
667 }
668
669 // Replace illegal characters with their ASCII equivalent
670 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
671 size_t pos;
672 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
673 std::ostringstream NumStream;
674 NumStream << (int)NewName.at(pos);
675 NewName = NewName.replace(pos, 1, NumStream.str());
676 }
677
678 return NewName;
679}
680
681class SessionContext {
682public:
683 SessionContext(LLVMContext &C) : Context(C) {}
684 LLVMContext& getLLVMContext() const { return Context; }
685 void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
686 PrototypeAST* getPrototypeAST(const std::string &Name);
687 std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs;
688private:
689 typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
690 LLVMContext &Context;
691 PrototypeMap Prototypes;
692};
693
694void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
695 Prototypes[P->Name] = std::move(P);
696}
697
698PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
699 PrototypeMap::iterator I = Prototypes.find(Name);
700 if (I != Prototypes.end())
701 return I->second.get();
702 return nullptr;
703}
704
705class IRGenContext {
706public:
707
708 IRGenContext(SessionContext &S)
709 : Session(S),
710 M(new Module(GenerateUniqueName("jit_module_"),
711 Session.getLLVMContext())),
712 Builder(Session.getLLVMContext()) {}
713
714 SessionContext& getSession() { return Session; }
715 Module& getM() const { return *M; }
716 std::unique_ptr<Module> takeM() { return std::move(M); }
717 IRBuilder<>& getBuilder() { return Builder; }
718 LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
719 Function* getPrototype(const std::string &Name);
720
721 std::map<std::string, AllocaInst*> NamedValues;
722private:
723 SessionContext &Session;
724 std::unique_ptr<Module> M;
725 IRBuilder<> Builder;
726};
727
728Function* IRGenContext::getPrototype(const std::string &Name) {
729 if (Function *ExistingProto = M->getFunction(Name))
730 return ExistingProto;
731 if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
732 return ProtoAST->IRGen(*this);
733 return nullptr;
734}
735
736/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
737/// the function. This is used for mutable variables etc.
738static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
739 const std::string &VarName) {
740 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
741 TheFunction->getEntryBlock().begin());
742 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
743 VarName.c_str());
744}
745
746Value *NumberExprAST::IRGen(IRGenContext &C) const {
747 return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
748}
749
750Value *VariableExprAST::IRGen(IRGenContext &C) const {
751 // Look this variable up in the function.
752 Value *V = C.NamedValues[Name];
753
754 if (V == 0)
755 return ErrorP<Value>("Unknown variable name '" + Name + "'");
756
757 // Load the value.
758 return C.getBuilder().CreateLoad(V, Name.c_str());
759}
760
761Value *UnaryExprAST::IRGen(IRGenContext &C) const {
762 if (Value *OperandV = Operand->IRGen(C)) {
763 std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
764 if (Function *F = C.getPrototype(FnName))
765 return C.getBuilder().CreateCall(F, OperandV, "unop");
766 return ErrorP<Value>("Unknown unary operator");
767 }
768
769 // Could not codegen operand - return null.
770 return nullptr;
771}
772
773Value *BinaryExprAST::IRGen(IRGenContext &C) const {
774 // Special case '=' because we don't want to emit the LHS as an expression.
775 if (Op == '=') {
776 // Assignment requires the LHS to be an identifier.
777 auto LHSVar = static_cast<VariableExprAST&>(*LHS);
778 // Codegen the RHS.
779 Value *Val = RHS->IRGen(C);
780 if (!Val) return nullptr;
781
782 // Look up the name.
783 if (auto Variable = C.NamedValues[LHSVar.Name]) {
784 C.getBuilder().CreateStore(Val, Variable);
785 return Val;
786 }
787 return ErrorP<Value>("Unknown variable name");
788 }
789
790 Value *L = LHS->IRGen(C);
791 Value *R = RHS->IRGen(C);
792 if (!L || !R) return nullptr;
793
794 switch (Op) {
795 case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
796 case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
797 case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
798 case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
799 case '<':
800 L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
801 // Convert bool 0/1 to double 0.0 or 1.0
802 return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
803 "booltmp");
804 default: break;
805 }
806
807 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
808 // a call to it.
809 std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
810 if (Function *F = C.getPrototype(FnName)) {
811 Value *Ops[] = { L, R };
812 return C.getBuilder().CreateCall(F, Ops, "binop");
813 }
814
815 return ErrorP<Value>("Unknown binary operator");
816}
817
818Value *CallExprAST::IRGen(IRGenContext &C) const {
819 // Look up the name in the global module table.
820 if (auto CalleeF = C.getPrototype(CalleeName)) {
821 // If argument mismatch error.
822 if (CalleeF->arg_size() != Args.size())
823 return ErrorP<Value>("Incorrect # arguments passed");
824
825 std::vector<Value*> ArgsV;
826 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
827 ArgsV.push_back(Args[i]->IRGen(C));
828 if (!ArgsV.back()) return nullptr;
829 }
830
831 return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
832 }
833
834 return ErrorP<Value>("Unknown function referenced");
835}
836
837Value *IfExprAST::IRGen(IRGenContext &C) const {
838 Value *CondV = Cond->IRGen(C);
839 if (!CondV) return nullptr;
840
841 // Convert condition to a bool by comparing equal to 0.0.
842 ConstantFP *FPZero =
843 ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
844 CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
845
846 Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
847
848 // Create blocks for the then and else cases. Insert the 'then' block at the
849 // end of the function.
850 BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
851 BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
852 BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
853
854 C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
855
856 // Emit then value.
857 C.getBuilder().SetInsertPoint(ThenBB);
858
859 Value *ThenV = Then->IRGen(C);
860 if (!ThenV) return nullptr;
861
862 C.getBuilder().CreateBr(MergeBB);
863 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
864 ThenBB = C.getBuilder().GetInsertBlock();
865
866 // Emit else block.
867 TheFunction->getBasicBlockList().push_back(ElseBB);
868 C.getBuilder().SetInsertPoint(ElseBB);
869
870 Value *ElseV = Else->IRGen(C);
871 if (!ElseV) return nullptr;
872
873 C.getBuilder().CreateBr(MergeBB);
874 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
875 ElseBB = C.getBuilder().GetInsertBlock();
876
877 // Emit merge block.
878 TheFunction->getBasicBlockList().push_back(MergeBB);
879 C.getBuilder().SetInsertPoint(MergeBB);
880 PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
881 "iftmp");
882
883 PN->addIncoming(ThenV, ThenBB);
884 PN->addIncoming(ElseV, ElseBB);
885 return PN;
886}
887
888Value *ForExprAST::IRGen(IRGenContext &C) const {
889 // Output this as:
890 // var = alloca double
891 // ...
892 // start = startexpr
893 // store start -> var
894 // goto loop
895 // loop:
896 // ...
897 // bodyexpr
898 // ...
899 // loopend:
900 // step = stepexpr
901 // endcond = endexpr
902 //
903 // curvar = load var
904 // nextvar = curvar + step
905 // store nextvar -> var
906 // br endcond, loop, endloop
907 // outloop:
908
909 Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
910
911 // Create an alloca for the variable in the entry block.
912 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
913
914 // Emit the start code first, without 'variable' in scope.
915 Value *StartVal = Start->IRGen(C);
916 if (!StartVal) return nullptr;
917
918 // Store the value into the alloca.
919 C.getBuilder().CreateStore(StartVal, Alloca);
920
921 // Make the new basic block for the loop header, inserting after current
922 // block.
923 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
924
925 // Insert an explicit fall through from the current block to the LoopBB.
926 C.getBuilder().CreateBr(LoopBB);
927
928 // Start insertion in LoopBB.
929 C.getBuilder().SetInsertPoint(LoopBB);
930
931 // Within the loop, the variable is defined equal to the PHI node. If it
932 // shadows an existing variable, we have to restore it, so save it now.
933 AllocaInst *OldVal = C.NamedValues[VarName];
934 C.NamedValues[VarName] = Alloca;
935
936 // Emit the body of the loop. This, like any other expr, can change the
937 // current BB. Note that we ignore the value computed by the body, but don't
938 // allow an error.
939 if (!Body->IRGen(C))
940 return nullptr;
941
942 // Emit the step value.
943 Value *StepVal;
944 if (Step) {
945 StepVal = Step->IRGen(C);
946 if (!StepVal) return nullptr;
947 } else {
948 // If not specified, use 1.0.
949 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
950 }
951
952 // Compute the end condition.
953 Value *EndCond = End->IRGen(C);
954 if (EndCond == 0) return EndCond;
955
956 // Reload, increment, and restore the alloca. This handles the case where
957 // the body of the loop mutates the variable.
958 Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
959 Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
960 C.getBuilder().CreateStore(NextVar, Alloca);
961
962 // Convert condition to a bool by comparing equal to 0.0.
963 EndCond = C.getBuilder().CreateFCmpONE(EndCond,
964 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
965 "loopcond");
966
967 // Create the "after loop" block and insert it.
968 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
969
970 // Insert the conditional branch into the end of LoopEndBB.
971 C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
972
973 // Any new code will be inserted in AfterBB.
974 C.getBuilder().SetInsertPoint(AfterBB);
975
976 // Restore the unshadowed variable.
977 if (OldVal)
978 C.NamedValues[VarName] = OldVal;
979 else
980 C.NamedValues.erase(VarName);
981
982
983 // for expr always returns 0.0.
984 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
985}
986
987Value *VarExprAST::IRGen(IRGenContext &C) const {
988 std::vector<AllocaInst *> OldBindings;
989
990 Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
991
992 // Register all variables and emit their initializer.
993 for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
994 auto &VarName = VarBindings[i].first;
995 auto &Init = VarBindings[i].second;
996
997 // Emit the initializer before adding the variable to scope, this prevents
998 // the initializer from referencing the variable itself, and permits stuff
999 // like this:
1000 // var a = 1 in
1001 // var a = a in ... # refers to outer 'a'.
1002 Value *InitVal;
1003 if (Init) {
1004 InitVal = Init->IRGen(C);
1005 if (!InitVal) return nullptr;
1006 } else // If not specified, use 0.0.
1007 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1008
1009 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1010 C.getBuilder().CreateStore(InitVal, Alloca);
1011
1012 // Remember the old variable binding so that we can restore the binding when
1013 // we unrecurse.
1014 OldBindings.push_back(C.NamedValues[VarName]);
1015
1016 // Remember this binding.
1017 C.NamedValues[VarName] = Alloca;
1018 }
1019
1020 // Codegen the body, now that all vars are in scope.
1021 Value *BodyVal = Body->IRGen(C);
1022 if (!BodyVal) return nullptr;
1023
1024 // Pop all our variables from scope.
1025 for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
1026 C.NamedValues[VarBindings[i].first] = OldBindings[i];
1027
1028 // Return the body computation.
1029 return BodyVal;
1030}
1031
1032Function *PrototypeAST::IRGen(IRGenContext &C) const {
1033 std::string FnName = MakeLegalFunctionName(Name);
1034
1035 // Make the function type: double(double,double) etc.
1036 std::vector<Type*> Doubles(Args.size(),
1037 Type::getDoubleTy(getGlobalContext()));
1038 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1039 Doubles, false);
1040 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
1041 &C.getM());
1042
1043 // If F conflicted, there was already something named 'FnName'. If it has a
1044 // body, don't allow redefinition or reextern.
1045 if (F->getName() != FnName) {
1046 // Delete the one we just made and get the existing one.
1047 F->eraseFromParent();
1048 F = C.getM().getFunction(Name);
1049
1050 // If F already has a body, reject this.
1051 if (!F->empty()) {
1052 ErrorP<Function>("redefinition of function");
1053 return nullptr;
1054 }
1055
1056 // If F took a different number of args, reject.
1057 if (F->arg_size() != Args.size()) {
1058 ErrorP<Function>("redefinition of function with different # args");
1059 return nullptr;
1060 }
1061 }
1062
1063 // Set names for all arguments.
1064 unsigned Idx = 0;
1065 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1066 ++AI, ++Idx)
1067 AI->setName(Args[Idx]);
1068
1069 return F;
1070}
1071
1072/// CreateArgumentAllocas - Create an alloca for each argument and register the
1073/// argument in the symbol table so that references to it will succeed.
1074void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
1075 Function::arg_iterator AI = F->arg_begin();
1076 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1077 // Create an alloca for this variable.
1078 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1079
1080 // Store the initial value into the alloca.
1081 C.getBuilder().CreateStore(AI, Alloca);
1082
1083 // Add arguments to variable symbol table.
1084 C.NamedValues[Args[Idx]] = Alloca;
1085 }
1086}
1087
1088Function *FunctionAST::IRGen(IRGenContext &C) const {
1089 C.NamedValues.clear();
1090
1091 Function *TheFunction = Proto->IRGen(C);
1092 if (!TheFunction)
1093 return nullptr;
1094
1095 // If this is an operator, install it.
1096 if (Proto->isBinaryOp())
1097 BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
1098
1099 // Create a new basic block to start insertion into.
1100 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1101 C.getBuilder().SetInsertPoint(BB);
1102
1103 // Add all arguments to the symbol table and create their allocas.
1104 Proto->CreateArgumentAllocas(TheFunction, C);
1105
1106 if (Value *RetVal = Body->IRGen(C)) {
1107 // Finish off the function.
1108 C.getBuilder().CreateRet(RetVal);
1109
1110 // Validate the generated code, checking for consistency.
1111 verifyFunction(*TheFunction);
1112
1113 return TheFunction;
1114 }
1115
1116 // Error reading body, remove function.
1117 TheFunction->eraseFromParent();
1118
1119 if (Proto->isBinaryOp())
1120 BinopPrecedence.erase(Proto->getOperatorName());
1121 return nullptr;
1122}
1123
1124//===----------------------------------------------------------------------===//
1125// Top-Level parsing and JIT Driver
1126//===----------------------------------------------------------------------===//
1127
1128static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
1129 const FunctionAST &F) {
1130 IRGenContext C(S);
1131 auto LF = F.IRGen(C);
1132 if (!LF)
1133 return nullptr;
1134#ifndef MINIMAL_STDERR_OUTPUT
1135 fprintf(stderr, "Read function definition:");
1136 LF->dump();
1137#endif
1138 return C.takeM();
1139}
1140
1141
1142static void EarthShatteringKaboom() {
1143 fprintf(stderr, "Earth shattering kaboom.");
1144 exit(1);
1145}
1146
1147class KaleidoscopeJIT {
1148public:
1149 typedef ObjectLinkingLayer<> ObjLayerT;
1150 typedef IRCompileLayer<ObjLayerT> CompileLayerT;
1151 typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
1152
1153 typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
1154
1155 std::string Mangle(const std::string &Name) {
1156 std::string MangledName;
1157 {
1158 raw_string_ostream MangledNameStream(MangledName);
1159 Mang.getNameWithPrefix(MangledNameStream, Name);
1160 }
1161 return MangledName;
1162 }
1163
1164 KaleidoscopeJIT(SessionContext &Session)
1165 : TM(EngineBuilder().selectTarget()),
1166 Mang(TM->getDataLayout()), Session(Session),
1167 ObjectLayer(
1168 [](){ return llvm::make_unique<SectionMemoryManager>(); }),
1169 CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
1170 LazyEmitLayer(CompileLayer),
1171 CompileCallbacks(LazyEmitLayer, Session.getLLVMContext(),
1172 reinterpret_cast<uintptr_t>(EarthShatteringKaboom),
1173 64) {}
1174
1175 ModuleHandleT addModule(std::unique_ptr<Module> M) {
1176 if (!M->getDataLayout())
1177 M->setDataLayout(TM->getDataLayout());
1178
1179 // The LazyEmitLayer takes lists of modules, rather than single modules, so
1180 // we'll just build a single-element list.
1181 std::vector<std::unique_ptr<Module>> S;
1182 S.push_back(std::move(M));
1183
1184 // We need a memory manager to allocate memory and resolve symbols for this
1185 // new module. Create one that resolves symbols by looking back into the JIT.
1186 auto MM = createLookasideRTDyldMM<SectionMemoryManager>(
1187 [&](const std::string &Name) -> uint64_t {
1188 // First try to find 'Name' within the JIT.
1189 if (auto Symbol = findMangledSymbol(Name))
1190 return Symbol.getAddress();
1191
1192 // If we don't find 'Name' in the JIT, see if we have some AST
1193 // for it.
1194 auto DefI = Session.FunctionDefs.find(Name);
1195 if (DefI == Session.FunctionDefs.end())
1196 return 0;
1197
1198 // We have AST for 'Name'. IRGen it, add it to the JIT, and
1199 // return the address for it.
1200 // FIXME: What happens if IRGen fails?
1201 addModule(IRGen(Session, *DefI->second));
1202
1203 // Remove the function definition's AST now that we've
1204 // finished with it.
1205 Session.FunctionDefs.erase(DefI);
1206
1207 return findMangledSymbol(Name).getAddress();
1208 },
1209 [](const std::string &S) { return 0; } );
1210
1211 return LazyEmitLayer.addModuleSet(std::move(S), std::move(MM));
1212 }
1213
1214 void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
1215
1216 JITSymbol findMangledSymbol(const std::string &Name) {
1217 return LazyEmitLayer.findSymbol(Name, true);
1218 }
1219
1220 JITSymbol findSymbol(const std::string &Name) {
1221 return findMangledSymbol(Mangle(Name));
1222 }
1223
1224 JITSymbol findMangledSymbolIn(LazyEmitLayerT::ModuleSetHandleT H,
1225 const std::string &Name) {
1226 return LazyEmitLayer.findSymbolIn(H, Name, true);
1227 }
1228
1229 JITSymbol findSymbolIn(LazyEmitLayerT::ModuleSetHandleT H,
1230 const std::string &Name) {
1231 return findMangledSymbolIn(H, Mangle(Name));
1232 }
1233
1234 void addFunctionDefinition(std::unique_ptr<FunctionAST> FnAST) {
1235 // Step 1) IRGen a prototype for this function:
1236 IRGenContext C(Session);
1237 Function *F = FnAST->Proto->IRGen(C);
1238 C.getM().setDataLayout(TM->getDataLayout());
1239
1240 // Step 2) Create a compile callback that will be used to compile this
1241 // function when it is first called.
1242 auto CallbackInfo =
1243 CompileCallbacks.getCompileCallback(*F->getFunctionType());
1244
1245 // Step 3) Create a stub that will indirectly call the body of this
Lang Hames9cebeb62015-02-17 05:53:28 +00001246 // function once it is compiled. Initially, set the function
1247 // pointer for the indirection to point at the compile callback.
Lang Hames9b4b92b2015-02-17 05:40:42 +00001248 std::string BodyPtrName = (F->getName() + "$address").str();
1249 GlobalVariable *FunctionBodyPointer =
1250 createImplPointer(*F, BodyPtrName, CallbackInfo.getAddress());
1251 makeStub(*F, *FunctionBodyPointer);
1252
Lang Hames9cebeb62015-02-17 05:53:28 +00001253 // Step 4) Add the module containing the stub to the JIT.
Lang Hames9b4b92b2015-02-17 05:40:42 +00001254 auto H = addModule(C.takeM());
1255
Lang Hames9cebeb62015-02-17 05:53:28 +00001256 // Step 5) Set the compile and update actions for the callback. The compile
Lang Hames9b4b92b2015-02-17 05:40:42 +00001257 // action will IRGen and Codegen the function. The update action
1258 // will update FunctionBodyPointer to point at the newly compiled
1259 // function pointer.
1260 //
1261 // FIXME: Use generalized capture for FnAST when we get C++14 support.
1262 FunctionAST *FnASTPtr = FnAST.release();
1263 CallbackInfo.setCompileAction([this,FnASTPtr](){
1264 std::unique_ptr<FunctionAST> Fn(FnASTPtr);
1265 auto H = addModule(IRGen(Session, *Fn));
1266 return findSymbolIn(H, Fn->Proto->Name).getAddress();
1267 });
1268 CallbackInfo.setUpdateAction(
Lang Hames2448f482015-02-18 23:07:13 +00001269 CompileCallbacks.getLocalFPUpdater(H, Mangle(BodyPtrName)));
Lang Hames9b4b92b2015-02-17 05:40:42 +00001270 }
1271
1272private:
1273
1274 std::unique_ptr<TargetMachine> TM;
1275 Mangler Mang;
1276 SessionContext &Session;
1277
1278 ObjLayerT ObjectLayer;
1279 CompileLayerT CompileLayer;
1280 LazyEmitLayerT LazyEmitLayer;
1281
1282 JITCompileCallbackManager<LazyEmitLayerT, OrcX86_64> CompileCallbacks;
1283};
1284
1285static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
1286 if (auto F = ParseDefinition()) {
1287 S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
1288 J.addFunctionDefinition(std::move(F));
1289 } else {
1290 // Skip token for error recovery.
1291 getNextToken();
1292 }
1293}
1294
1295static void HandleExtern(SessionContext &S) {
1296 if (auto P = ParseExtern())
1297 S.addPrototypeAST(std::move(P));
1298 else {
1299 // Skip token for error recovery.
1300 getNextToken();
1301 }
1302}
1303
1304static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
1305 // Evaluate a top-level expression into an anonymous function.
1306 if (auto F = ParseTopLevelExpr()) {
1307 IRGenContext C(S);
1308 if (auto ExprFunc = F->IRGen(C)) {
1309#ifndef MINIMAL_STDERR_OUTPUT
1310 std::cerr << "Expression function:\n";
1311 ExprFunc->dump();
1312#endif
1313 // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
1314 // this module as soon as we've executed Function ExprFunc.
1315 auto H = J.addModule(C.takeM());
1316
1317 // Get the address of the JIT'd function in memory.
1318 auto ExprSymbol = J.findSymbol("__anon_expr");
1319
1320 // Cast it to the right type (takes no arguments, returns a double) so we
1321 // can call it as a native function.
1322 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1323#ifdef MINIMAL_STDERR_OUTPUT
1324 FP();
1325#else
1326 std::cerr << "Evaluated to " << FP() << "\n";
1327#endif
1328
1329 // Remove the function.
1330 J.removeModule(H);
1331 }
1332 } else {
1333 // Skip token for error recovery.
1334 getNextToken();
1335 }
1336}
1337
1338/// top ::= definition | external | expression | ';'
1339static void MainLoop() {
1340 SessionContext S(getGlobalContext());
1341 KaleidoscopeJIT J(S);
1342
1343 while (1) {
1344 switch (CurTok) {
1345 case tok_eof: return;
1346 case ';': getNextToken(); continue; // ignore top-level semicolons.
1347 case tok_def: HandleDefinition(S, J); break;
1348 case tok_extern: HandleExtern(S); break;
1349 default: HandleTopLevelExpression(S, J); break;
1350 }
1351#ifndef MINIMAL_STDERR_OUTPUT
1352 std::cerr << "ready> ";
1353#endif
1354 }
1355}
1356
1357//===----------------------------------------------------------------------===//
1358// "Library" functions that can be "extern'd" from user code.
1359//===----------------------------------------------------------------------===//
1360
1361/// putchard - putchar that takes a double and returns 0.
1362extern "C"
1363double putchard(double X) {
1364 putchar((char)X);
1365 return 0;
1366}
1367
1368/// printd - printf that takes a double prints it as "%f\n", returning 0.
1369extern "C"
1370double printd(double X) {
1371 printf("%f", X);
1372 return 0;
1373}
1374
1375extern "C"
1376double printlf() {
1377 printf("\n");
1378 return 0;
1379}
1380
1381//===----------------------------------------------------------------------===//
1382// Main driver code.
1383//===----------------------------------------------------------------------===//
1384
1385int main() {
1386 InitializeNativeTarget();
1387 InitializeNativeTargetAsmPrinter();
1388 InitializeNativeTargetAsmParser();
1389
1390 // Install standard binary operators.
1391 // 1 is lowest precedence.
1392 BinopPrecedence['='] = 2;
1393 BinopPrecedence['<'] = 10;
1394 BinopPrecedence['+'] = 20;
1395 BinopPrecedence['-'] = 20;
1396 BinopPrecedence['/'] = 40;
1397 BinopPrecedence['*'] = 40; // highest.
1398
1399 // Prime the first token.
1400#ifndef MINIMAL_STDERR_OUTPUT
1401 std::cerr << "ready> ";
1402#endif
1403 getNextToken();
1404
1405 std::cerr << std::fixed;
1406
1407 // Run the main "interpreter loop" now.
1408 MainLoop();
1409
1410 return 0;
1411}
1412