blob: 7d9fe417445996ea6d759709c20952c35f6eb72b [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
114 %result = shl i32 %X, i8 3
115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
151 ; Declare the string constant as a global constant. 
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00" 
153
154 ; External declaration of the puts function 
155 declare i32 @puts(i8* nocapture) nounwind 
156
157 ; Definition of main function
158 define i32 @main() { ; i32()*  
159 ; Convert [13 x i8]* to i8 *... 
160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
162 ; Call puts function to write out the string to stdout. 
163 call i32 @puts(i8* %cast210)
164 ret i32 0 
165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
265 "one definition rule" — "ODR"). Such languages can use the
266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
468A variable may be defined as a global "constant," which indicates that
469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
472initialization cannot be marked "constant" as there is a store to the
473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
504An explicit alignment may be specified for a global, which must be a
505power of 2. If not present, or if the alignment is set to zero, the
506alignment of the global is set by the target to whatever it feels
507convenient. If an explicit alignment is specified, the global is forced
508to have exactly that alignment. Targets and optimizers are not allowed
509to over-align the global if the global has an assigned section. In this
510case, the extra alignment could be observable: for example, code could
511assume that the globals are densely packed in their section and try to
512iterate over them as an array, alignment padding would break this
513iteration.
514
515For example, the following defines a global in a numbered address space
516with an initializer, section, and alignment:
517
518.. code-block:: llvm
519
520 @G = addrspace(5) constant float 1.0, section "foo", align 4
521
522The following example defines a thread-local global with the
523``initialexec`` TLS model:
524
525.. code-block:: llvm
526
527 @G = thread_local(initialexec) global i32 0, align 4
528
529.. _functionstructure:
530
531Functions
532---------
533
534LLVM function definitions consist of the "``define``" keyword, an
535optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
536style <visibility>`, an optional :ref:`calling convention <callingconv>`,
537an optional ``unnamed_addr`` attribute, a return type, an optional
538:ref:`parameter attribute <paramattrs>` for the return type, a function
539name, a (possibly empty) argument list (each with optional :ref:`parameter
540attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
541an optional section, an optional alignment, an optional :ref:`garbage
542collector name <gc>`, an opening curly brace, a list of basic blocks,
543and a closing curly brace.
544
545LLVM function declarations consist of the "``declare``" keyword, an
546optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
547style <visibility>`, an optional :ref:`calling convention <callingconv>`,
548an optional ``unnamed_addr`` attribute, a return type, an optional
549:ref:`parameter attribute <paramattrs>` for the return type, a function
550name, a possibly empty list of arguments, an optional alignment, and an
551optional :ref:`garbage collector name <gc>`.
552
553A function definition contains a list of basic blocks, forming the CFG
554(Control Flow Graph) for the function. Each basic block may optionally
555start with a label (giving the basic block a symbol table entry),
556contains a list of instructions, and ends with a
557:ref:`terminator <terminators>` instruction (such as a branch or function
558return).
559
560The first basic block in a function is special in two ways: it is
561immediately executed on entrance to the function, and it is not allowed
562to have predecessor basic blocks (i.e. there can not be any branches to
563the entry block of a function). Because the block can have no
564predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
565
566LLVM allows an explicit section to be specified for functions. If the
567target supports it, it will emit functions to the section specified.
568
569An explicit alignment may be specified for a function. If not present,
570or if the alignment is set to zero, the alignment of the function is set
571by the target to whatever it feels convenient. If an explicit alignment
572is specified, the function is forced to have at least that much
573alignment. All alignments must be a power of 2.
574
575If the ``unnamed_addr`` attribute is given, the address is know to not
576be significant and two identical functions can be merged.
577
578Syntax::
579
580 define [linkage] [visibility]
581 [cconv] [ret attrs]
582 <ResultType> @<FunctionName> ([argument list])
583 [fn Attrs] [section "name"] [align N]
584 [gc] { ... }
585
586Aliases
587-------
588
589Aliases act as "second name" for the aliasee value (which can be either
590function, global variable, another alias or bitcast of global value).
591Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
592:ref:`visibility style <visibility>`.
593
594Syntax::
595
596 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
597
598.. _namedmetadatastructure:
599
600Named Metadata
601--------------
602
603Named metadata is a collection of metadata. :ref:`Metadata
604nodes <metadata>` (but not metadata strings) are the only valid
605operands for a named metadata.
606
607Syntax::
608
609 ; Some unnamed metadata nodes, which are referenced by the named metadata.
610 !0 = metadata !{metadata !"zero"}
611 !1 = metadata !{metadata !"one"}
612 !2 = metadata !{metadata !"two"}
613 ; A named metadata.
614 !name = !{!0, !1, !2}
615
616.. _paramattrs:
617
618Parameter Attributes
619--------------------
620
621The return type and each parameter of a function type may have a set of
622*parameter attributes* associated with them. Parameter attributes are
623used to communicate additional information about the result or
624parameters of a function. Parameter attributes are considered to be part
625of the function, not of the function type, so functions with different
626parameter attributes can have the same function type.
627
628Parameter attributes are simple keywords that follow the type specified.
629If multiple parameter attributes are needed, they are space separated.
630For example:
631
632.. code-block:: llvm
633
634 declare i32 @printf(i8* noalias nocapture, ...)
635 declare i32 @atoi(i8 zeroext)
636 declare signext i8 @returns_signed_char()
637
638Note that any attributes for the function result (``nounwind``,
639``readonly``) come immediately after the argument list.
640
641Currently, only the following parameter attributes are defined:
642
643``zeroext``
644 This indicates to the code generator that the parameter or return
645 value should be zero-extended to the extent required by the target's
646 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
647 the caller (for a parameter) or the callee (for a return value).
648``signext``
649 This indicates to the code generator that the parameter or return
650 value should be sign-extended to the extent required by the target's
651 ABI (which is usually 32-bits) by the caller (for a parameter) or
652 the callee (for a return value).
653``inreg``
654 This indicates that this parameter or return value should be treated
655 in a special target-dependent fashion during while emitting code for
656 a function call or return (usually, by putting it in a register as
657 opposed to memory, though some targets use it to distinguish between
658 two different kinds of registers). Use of this attribute is
659 target-specific.
660``byval``
661 This indicates that the pointer parameter should really be passed by
662 value to the function. The attribute implies that a hidden copy of
663 the pointee is made between the caller and the callee, so the callee
664 is unable to modify the value in the caller. This attribute is only
665 valid on LLVM pointer arguments. It is generally used to pass
666 structs and arrays by value, but is also valid on pointers to
667 scalars. The copy is considered to belong to the caller not the
668 callee (for example, ``readonly`` functions should not write to
669 ``byval`` parameters). This is not a valid attribute for return
670 values.
671
672 The byval attribute also supports specifying an alignment with the
673 align attribute. It indicates the alignment of the stack slot to
674 form and the known alignment of the pointer specified to the call
675 site. If the alignment is not specified, then the code generator
676 makes a target-specific assumption.
677
678``sret``
679 This indicates that the pointer parameter specifies the address of a
680 structure that is the return value of the function in the source
681 program. This pointer must be guaranteed by the caller to be valid:
682 loads and stores to the structure may be assumed by the callee to
683 not to trap and to be properly aligned. This may only be applied to
684 the first parameter. This is not a valid attribute for return
685 values.
686``noalias``
687 This indicates that pointer values `*based* <pointeraliasing>` on
688 the argument or return value do not alias pointer values which are
689 not *based* on it, ignoring certain "irrelevant" dependencies. For a
690 call to the parent function, dependencies between memory references
691 from before or after the call and from those during the call are
692 "irrelevant" to the ``noalias`` keyword for the arguments and return
693 value used in that call. The caller shares the responsibility with
694 the callee for ensuring that these requirements are met. For further
695 details, please see the discussion of the NoAlias response in `alias
696 analysis <AliasAnalysis.html#MustMayNo>`_.
697
698 Note that this definition of ``noalias`` is intentionally similar
699 to the definition of ``restrict`` in C99 for function arguments,
700 though it is slightly weaker.
701
702 For function return values, C99's ``restrict`` is not meaningful,
703 while LLVM's ``noalias`` is.
704``nocapture``
705 This indicates that the callee does not make any copies of the
706 pointer that outlive the callee itself. This is not a valid
707 attribute for return values.
708
709.. _nest:
710
711``nest``
712 This indicates that the pointer parameter can be excised using the
713 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
714 attribute for return values.
715
716.. _gc:
717
718Garbage Collector Names
719-----------------------
720
721Each function may specify a garbage collector name, which is simply a
722string:
723
724.. code-block:: llvm
725
726 define void @f() gc "name" { ... }
727
728The compiler declares the supported values of *name*. Specifying a
729collector which will cause the compiler to alter its output in order to
730support the named garbage collection algorithm.
731
732.. _fnattrs:
733
734Function Attributes
735-------------------
736
737Function attributes are set to communicate additional information about
738a function. Function attributes are considered to be part of the
739function, not of the function type, so functions with different function
740attributes can have the same function type.
741
742Function attributes are simple keywords that follow the type specified.
743If multiple attributes are needed, they are space separated. For
744example:
745
746.. code-block:: llvm
747
748 define void @f() noinline { ... }
749 define void @f() alwaysinline { ... }
750 define void @f() alwaysinline optsize { ... }
751 define void @f() optsize { ... }
752
753``address_safety``
754 This attribute indicates that the address safety analysis is enabled
755 for this function.
756``alignstack(<n>)``
757 This attribute indicates that, when emitting the prologue and
758 epilogue, the backend should forcibly align the stack pointer.
759 Specify the desired alignment, which must be a power of two, in
760 parentheses.
761``alwaysinline``
762 This attribute indicates that the inliner should attempt to inline
763 this function into callers whenever possible, ignoring any active
764 inlining size threshold for this caller.
765``nonlazybind``
766 This attribute suppresses lazy symbol binding for the function. This
767 may make calls to the function faster, at the cost of extra program
768 startup time if the function is not called during program startup.
769``inlinehint``
770 This attribute indicates that the source code contained a hint that
771 inlining this function is desirable (such as the "inline" keyword in
772 C/C++). It is just a hint; it imposes no requirements on the
773 inliner.
774``naked``
775 This attribute disables prologue / epilogue emission for the
776 function. This can have very system-specific consequences.
777``noimplicitfloat``
778 This attributes disables implicit floating point instructions.
779``noinline``
780 This attribute indicates that the inliner should never inline this
781 function in any situation. This attribute may not be used together
782 with the ``alwaysinline`` attribute.
783``noredzone``
784 This attribute indicates that the code generator should not use a
785 red zone, even if the target-specific ABI normally permits it.
786``noreturn``
787 This function attribute indicates that the function never returns
788 normally. This produces undefined behavior at runtime if the
789 function ever does dynamically return.
790``nounwind``
791 This function attribute indicates that the function never returns
792 with an unwind or exceptional control flow. If the function does
793 unwind, its runtime behavior is undefined.
794``optsize``
795 This attribute suggests that optimization passes and code generator
796 passes make choices that keep the code size of this function low,
797 and otherwise do optimizations specifically to reduce code size.
798``readnone``
799 This attribute indicates that the function computes its result (or
800 decides to unwind an exception) based strictly on its arguments,
801 without dereferencing any pointer arguments or otherwise accessing
802 any mutable state (e.g. memory, control registers, etc) visible to
803 caller functions. It does not write through any pointer arguments
804 (including ``byval`` arguments) and never changes any state visible
805 to callers. This means that it cannot unwind exceptions by calling
806 the ``C++`` exception throwing methods.
807``readonly``
808 This attribute indicates that the function does not write through
809 any pointer arguments (including ``byval`` arguments) or otherwise
810 modify any state (e.g. memory, control registers, etc) visible to
811 caller functions. It may dereference pointer arguments and read
812 state that may be set in the caller. A readonly function always
813 returns the same value (or unwinds an exception identically) when
814 called with the same set of arguments and global state. It cannot
815 unwind an exception by calling the ``C++`` exception throwing
816 methods.
817``returns_twice``
818 This attribute indicates that this function can return twice. The C
819 ``setjmp`` is an example of such a function. The compiler disables
820 some optimizations (like tail calls) in the caller of these
821 functions.
822``ssp``
823 This attribute indicates that the function should emit a stack
824 smashing protector. It is in the form of a "canary"—a random value
825 placed on the stack before the local variables that's checked upon
826 return from the function to see if it has been overwritten. A
827 heuristic is used to determine if a function needs stack protectors
828 or not.
829
830 If a function that has an ``ssp`` attribute is inlined into a
831 function that doesn't have an ``ssp`` attribute, then the resulting
832 function will have an ``ssp`` attribute.
833``sspreq``
834 This attribute indicates that the function should *always* emit a
835 stack smashing protector. This overrides the ``ssp`` function
836 attribute.
837
838 If a function that has an ``sspreq`` attribute is inlined into a
839 function that doesn't have an ``sspreq`` attribute or which has an
840 ``ssp`` attribute, then the resulting function will have an
841 ``sspreq`` attribute.
842``uwtable``
843 This attribute indicates that the ABI being targeted requires that
844 an unwind table entry be produce for this function even if we can
845 show that no exceptions passes by it. This is normally the case for
846 the ELF x86-64 abi, but it can be disabled for some compilation
847 units.
James Molloy4f6fb952012-12-20 16:04:27 +0000848``noduplicate``
849 This attribute indicates that calls to the function cannot be
850 duplicated. A call to a ``noduplicate`` function may be moved
851 within its parent function, but may not be duplicated within
852 its parent function.
853
854 A function containing a ``noduplicate`` call may still
855 be an inlining candidate, provided that the call is not
856 duplicated by inlining. That implies that the function has
857 internal linkage and only has one call site, so the original
858 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000859
860.. _moduleasm:
861
862Module-Level Inline Assembly
863----------------------------
864
865Modules may contain "module-level inline asm" blocks, which corresponds
866to the GCC "file scope inline asm" blocks. These blocks are internally
867concatenated by LLVM and treated as a single unit, but may be separated
868in the ``.ll`` file if desired. The syntax is very simple:
869
870.. code-block:: llvm
871
872 module asm "inline asm code goes here"
873 module asm "more can go here"
874
875The strings can contain any character by escaping non-printable
876characters. The escape sequence used is simply "\\xx" where "xx" is the
877two digit hex code for the number.
878
879The inline asm code is simply printed to the machine code .s file when
880assembly code is generated.
881
882Data Layout
883-----------
884
885A module may specify a target specific data layout string that specifies
886how data is to be laid out in memory. The syntax for the data layout is
887simply:
888
889.. code-block:: llvm
890
891 target datalayout = "layout specification"
892
893The *layout specification* consists of a list of specifications
894separated by the minus sign character ('-'). Each specification starts
895with a letter and may include other information after the letter to
896define some aspect of the data layout. The specifications accepted are
897as follows:
898
899``E``
900 Specifies that the target lays out data in big-endian form. That is,
901 the bits with the most significance have the lowest address
902 location.
903``e``
904 Specifies that the target lays out data in little-endian form. That
905 is, the bits with the least significance have the lowest address
906 location.
907``S<size>``
908 Specifies the natural alignment of the stack in bits. Alignment
909 promotion of stack variables is limited to the natural stack
910 alignment to avoid dynamic stack realignment. The stack alignment
911 must be a multiple of 8-bits. If omitted, the natural stack
912 alignment defaults to "unspecified", which does not prevent any
913 alignment promotions.
914``p[n]:<size>:<abi>:<pref>``
915 This specifies the *size* of a pointer and its ``<abi>`` and
916 ``<pref>``\erred alignments for address space ``n``. All sizes are in
917 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
918 preceding ``:`` should be omitted too. The address space, ``n`` is
919 optional, and if not specified, denotes the default address space 0.
920 The value of ``n`` must be in the range [1,2^23).
921``i<size>:<abi>:<pref>``
922 This specifies the alignment for an integer type of a given bit
923 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
924``v<size>:<abi>:<pref>``
925 This specifies the alignment for a vector type of a given bit
926 ``<size>``.
927``f<size>:<abi>:<pref>``
928 This specifies the alignment for a floating point type of a given bit
929 ``<size>``. Only values of ``<size>`` that are supported by the target
930 will work. 32 (float) and 64 (double) are supported on all targets; 80
931 or 128 (different flavors of long double) are also supported on some
932 targets.
933``a<size>:<abi>:<pref>``
934 This specifies the alignment for an aggregate type of a given bit
935 ``<size>``.
936``s<size>:<abi>:<pref>``
937 This specifies the alignment for a stack object of a given bit
938 ``<size>``.
939``n<size1>:<size2>:<size3>...``
940 This specifies a set of native integer widths for the target CPU in
941 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
942 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
943 this set are considered to support most general arithmetic operations
944 efficiently.
945
946When constructing the data layout for a given target, LLVM starts with a
947default set of specifications which are then (possibly) overridden by
948the specifications in the ``datalayout`` keyword. The default
949specifications are given in this list:
950
951- ``E`` - big endian
952- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
953- ``p1:32:32:32`` - 32-bit pointers with 32-bit alignment for address
954 space 1
955- ``p2:16:32:32`` - 16-bit pointers with 32-bit alignment for address
956 space 2
957- ``i1:8:8`` - i1 is 8-bit (byte) aligned
958- ``i8:8:8`` - i8 is 8-bit (byte) aligned
959- ``i16:16:16`` - i16 is 16-bit aligned
960- ``i32:32:32`` - i32 is 32-bit aligned
961- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
962 alignment of 64-bits
963- ``f32:32:32`` - float is 32-bit aligned
964- ``f64:64:64`` - double is 64-bit aligned
965- ``v64:64:64`` - 64-bit vector is 64-bit aligned
966- ``v128:128:128`` - 128-bit vector is 128-bit aligned
967- ``a0:0:1`` - aggregates are 8-bit aligned
968- ``s0:64:64`` - stack objects are 64-bit aligned
969
970When LLVM is determining the alignment for a given type, it uses the
971following rules:
972
973#. If the type sought is an exact match for one of the specifications,
974 that specification is used.
975#. If no match is found, and the type sought is an integer type, then
976 the smallest integer type that is larger than the bitwidth of the
977 sought type is used. If none of the specifications are larger than
978 the bitwidth then the largest integer type is used. For example,
979 given the default specifications above, the i7 type will use the
980 alignment of i8 (next largest) while both i65 and i256 will use the
981 alignment of i64 (largest specified).
982#. If no match is found, and the type sought is a vector type, then the
983 largest vector type that is smaller than the sought vector type will
984 be used as a fall back. This happens because <128 x double> can be
985 implemented in terms of 64 <2 x double>, for example.
986
987The function of the data layout string may not be what you expect.
988Notably, this is not a specification from the frontend of what alignment
989the code generator should use.
990
991Instead, if specified, the target data layout is required to match what
992the ultimate *code generator* expects. This string is used by the
993mid-level optimizers to improve code, and this only works if it matches
994what the ultimate code generator uses. If you would like to generate IR
995that does not embed this target-specific detail into the IR, then you
996don't have to specify the string. This will disable some optimizations
997that require precise layout information, but this also prevents those
998optimizations from introducing target specificity into the IR.
999
1000.. _pointeraliasing:
1001
1002Pointer Aliasing Rules
1003----------------------
1004
1005Any memory access must be done through a pointer value associated with
1006an address range of the memory access, otherwise the behavior is
1007undefined. Pointer values are associated with address ranges according
1008to the following rules:
1009
1010- A pointer value is associated with the addresses associated with any
1011 value it is *based* on.
1012- An address of a global variable is associated with the address range
1013 of the variable's storage.
1014- The result value of an allocation instruction is associated with the
1015 address range of the allocated storage.
1016- A null pointer in the default address-space is associated with no
1017 address.
1018- An integer constant other than zero or a pointer value returned from
1019 a function not defined within LLVM may be associated with address
1020 ranges allocated through mechanisms other than those provided by
1021 LLVM. Such ranges shall not overlap with any ranges of addresses
1022 allocated by mechanisms provided by LLVM.
1023
1024A pointer value is *based* on another pointer value according to the
1025following rules:
1026
1027- A pointer value formed from a ``getelementptr`` operation is *based*
1028 on the first operand of the ``getelementptr``.
1029- The result value of a ``bitcast`` is *based* on the operand of the
1030 ``bitcast``.
1031- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1032 values that contribute (directly or indirectly) to the computation of
1033 the pointer's value.
1034- The "*based* on" relationship is transitive.
1035
1036Note that this definition of *"based"* is intentionally similar to the
1037definition of *"based"* in C99, though it is slightly weaker.
1038
1039LLVM IR does not associate types with memory. The result type of a
1040``load`` merely indicates the size and alignment of the memory from
1041which to load, as well as the interpretation of the value. The first
1042operand type of a ``store`` similarly only indicates the size and
1043alignment of the store.
1044
1045Consequently, type-based alias analysis, aka TBAA, aka
1046``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1047:ref:`Metadata <metadata>` may be used to encode additional information
1048which specialized optimization passes may use to implement type-based
1049alias analysis.
1050
1051.. _volatile:
1052
1053Volatile Memory Accesses
1054------------------------
1055
1056Certain memory accesses, such as :ref:`load <i_load>`'s,
1057:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1058marked ``volatile``. The optimizers must not change the number of
1059volatile operations or change their order of execution relative to other
1060volatile operations. The optimizers *may* change the order of volatile
1061operations relative to non-volatile operations. This is not Java's
1062"volatile" and has no cross-thread synchronization behavior.
1063
1064.. _memmodel:
1065
1066Memory Model for Concurrent Operations
1067--------------------------------------
1068
1069The LLVM IR does not define any way to start parallel threads of
1070execution or to register signal handlers. Nonetheless, there are
1071platform-specific ways to create them, and we define LLVM IR's behavior
1072in their presence. This model is inspired by the C++0x memory model.
1073
1074For a more informal introduction to this model, see the :doc:`Atomics`.
1075
1076We define a *happens-before* partial order as the least partial order
1077that
1078
1079- Is a superset of single-thread program order, and
1080- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1081 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1082 techniques, like pthread locks, thread creation, thread joining,
1083 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1084 Constraints <ordering>`).
1085
1086Note that program order does not introduce *happens-before* edges
1087between a thread and signals executing inside that thread.
1088
1089Every (defined) read operation (load instructions, memcpy, atomic
1090loads/read-modify-writes, etc.) R reads a series of bytes written by
1091(defined) write operations (store instructions, atomic
1092stores/read-modify-writes, memcpy, etc.). For the purposes of this
1093section, initialized globals are considered to have a write of the
1094initializer which is atomic and happens before any other read or write
1095of the memory in question. For each byte of a read R, R\ :sub:`byte`
1096may see any write to the same byte, except:
1097
1098- If write\ :sub:`1` happens before write\ :sub:`2`, and
1099 write\ :sub:`2` happens before R\ :sub:`byte`, then
1100 R\ :sub:`byte` does not see write\ :sub:`1`.
1101- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1102 R\ :sub:`byte` does not see write\ :sub:`3`.
1103
1104Given that definition, R\ :sub:`byte` is defined as follows:
1105
1106- If R is volatile, the result is target-dependent. (Volatile is
1107 supposed to give guarantees which can support ``sig_atomic_t`` in
1108 C/C++, and may be used for accesses to addresses which do not behave
1109 like normal memory. It does not generally provide cross-thread
1110 synchronization.)
1111- Otherwise, if there is no write to the same byte that happens before
1112 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1113- Otherwise, if R\ :sub:`byte` may see exactly one write,
1114 R\ :sub:`byte` returns the value written by that write.
1115- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1116 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1117 Memory Ordering Constraints <ordering>` section for additional
1118 constraints on how the choice is made.
1119- Otherwise R\ :sub:`byte` returns ``undef``.
1120
1121R returns the value composed of the series of bytes it read. This
1122implies that some bytes within the value may be ``undef`` **without**
1123the entire value being ``undef``. Note that this only defines the
1124semantics of the operation; it doesn't mean that targets will emit more
1125than one instruction to read the series of bytes.
1126
1127Note that in cases where none of the atomic intrinsics are used, this
1128model places only one restriction on IR transformations on top of what
1129is required for single-threaded execution: introducing a store to a byte
1130which might not otherwise be stored is not allowed in general.
1131(Specifically, in the case where another thread might write to and read
1132from an address, introducing a store can change a load that may see
1133exactly one write into a load that may see multiple writes.)
1134
1135.. _ordering:
1136
1137Atomic Memory Ordering Constraints
1138----------------------------------
1139
1140Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1141:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1142:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1143an ordering parameter that determines which other atomic instructions on
1144the same address they *synchronize with*. These semantics are borrowed
1145from Java and C++0x, but are somewhat more colloquial. If these
1146descriptions aren't precise enough, check those specs (see spec
1147references in the :doc:`atomics guide <Atomics>`).
1148:ref:`fence <i_fence>` instructions treat these orderings somewhat
1149differently since they don't take an address. See that instruction's
1150documentation for details.
1151
1152For a simpler introduction to the ordering constraints, see the
1153:doc:`Atomics`.
1154
1155``unordered``
1156 The set of values that can be read is governed by the happens-before
1157 partial order. A value cannot be read unless some operation wrote
1158 it. This is intended to provide a guarantee strong enough to model
1159 Java's non-volatile shared variables. This ordering cannot be
1160 specified for read-modify-write operations; it is not strong enough
1161 to make them atomic in any interesting way.
1162``monotonic``
1163 In addition to the guarantees of ``unordered``, there is a single
1164 total order for modifications by ``monotonic`` operations on each
1165 address. All modification orders must be compatible with the
1166 happens-before order. There is no guarantee that the modification
1167 orders can be combined to a global total order for the whole program
1168 (and this often will not be possible). The read in an atomic
1169 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1170 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1171 order immediately before the value it writes. If one atomic read
1172 happens before another atomic read of the same address, the later
1173 read must see the same value or a later value in the address's
1174 modification order. This disallows reordering of ``monotonic`` (or
1175 stronger) operations on the same address. If an address is written
1176 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1177 read that address repeatedly, the other threads must eventually see
1178 the write. This corresponds to the C++0x/C1x
1179 ``memory_order_relaxed``.
1180``acquire``
1181 In addition to the guarantees of ``monotonic``, a
1182 *synchronizes-with* edge may be formed with a ``release`` operation.
1183 This is intended to model C++'s ``memory_order_acquire``.
1184``release``
1185 In addition to the guarantees of ``monotonic``, if this operation
1186 writes a value which is subsequently read by an ``acquire``
1187 operation, it *synchronizes-with* that operation. (This isn't a
1188 complete description; see the C++0x definition of a release
1189 sequence.) This corresponds to the C++0x/C1x
1190 ``memory_order_release``.
1191``acq_rel`` (acquire+release)
1192 Acts as both an ``acquire`` and ``release`` operation on its
1193 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1194``seq_cst`` (sequentially consistent)
1195 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1196 operation which only reads, ``release`` for an operation which only
1197 writes), there is a global total order on all
1198 sequentially-consistent operations on all addresses, which is
1199 consistent with the *happens-before* partial order and with the
1200 modification orders of all the affected addresses. Each
1201 sequentially-consistent read sees the last preceding write to the
1202 same address in this global order. This corresponds to the C++0x/C1x
1203 ``memory_order_seq_cst`` and Java volatile.
1204
1205.. _singlethread:
1206
1207If an atomic operation is marked ``singlethread``, it only *synchronizes
1208with* or participates in modification and seq\_cst total orderings with
1209other operations running in the same thread (for example, in signal
1210handlers).
1211
1212.. _fastmath:
1213
1214Fast-Math Flags
1215---------------
1216
1217LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1218:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1219:ref:`frem <i_frem>`) have the following flags that can set to enable
1220otherwise unsafe floating point operations
1221
1222``nnan``
1223 No NaNs - Allow optimizations to assume the arguments and result are not
1224 NaN. Such optimizations are required to retain defined behavior over
1225 NaNs, but the value of the result is undefined.
1226
1227``ninf``
1228 No Infs - Allow optimizations to assume the arguments and result are not
1229 +/-Inf. Such optimizations are required to retain defined behavior over
1230 +/-Inf, but the value of the result is undefined.
1231
1232``nsz``
1233 No Signed Zeros - Allow optimizations to treat the sign of a zero
1234 argument or result as insignificant.
1235
1236``arcp``
1237 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1238 argument rather than perform division.
1239
1240``fast``
1241 Fast - Allow algebraically equivalent transformations that may
1242 dramatically change results in floating point (e.g. reassociate). This
1243 flag implies all the others.
1244
1245.. _typesystem:
1246
1247Type System
1248===========
1249
1250The LLVM type system is one of the most important features of the
1251intermediate representation. Being typed enables a number of
1252optimizations to be performed on the intermediate representation
1253directly, without having to do extra analyses on the side before the
1254transformation. A strong type system makes it easier to read the
1255generated code and enables novel analyses and transformations that are
1256not feasible to perform on normal three address code representations.
1257
1258Type Classifications
1259--------------------
1260
1261The types fall into a few useful classifications:
1262
1263
1264.. list-table::
1265 :header-rows: 1
1266
1267 * - Classification
1268 - Types
1269
1270 * - :ref:`integer <t_integer>`
1271 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1272 ``i64``, ...
1273
1274 * - :ref:`floating point <t_floating>`
1275 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1276 ``ppc_fp128``
1277
1278
1279 * - first class
1280
1281 .. _t_firstclass:
1282
1283 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1284 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1285 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1286 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1287
1288 * - :ref:`primitive <t_primitive>`
1289 - :ref:`label <t_label>`,
1290 :ref:`void <t_void>`,
1291 :ref:`integer <t_integer>`,
1292 :ref:`floating point <t_floating>`,
1293 :ref:`x86mmx <t_x86mmx>`,
1294 :ref:`metadata <t_metadata>`.
1295
1296 * - :ref:`derived <t_derived>`
1297 - :ref:`array <t_array>`,
1298 :ref:`function <t_function>`,
1299 :ref:`pointer <t_pointer>`,
1300 :ref:`structure <t_struct>`,
1301 :ref:`vector <t_vector>`,
1302 :ref:`opaque <t_opaque>`.
1303
1304The :ref:`first class <t_firstclass>` types are perhaps the most important.
1305Values of these types are the only ones which can be produced by
1306instructions.
1307
1308.. _t_primitive:
1309
1310Primitive Types
1311---------------
1312
1313The primitive types are the fundamental building blocks of the LLVM
1314system.
1315
1316.. _t_integer:
1317
1318Integer Type
1319^^^^^^^^^^^^
1320
1321Overview:
1322"""""""""
1323
1324The integer type is a very simple type that simply specifies an
1325arbitrary bit width for the integer type desired. Any bit width from 1
1326bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1327
1328Syntax:
1329"""""""
1330
1331::
1332
1333 iN
1334
1335The number of bits the integer will occupy is specified by the ``N``
1336value.
1337
1338Examples:
1339"""""""""
1340
1341+----------------+------------------------------------------------+
1342| ``i1`` | a single-bit integer. |
1343+----------------+------------------------------------------------+
1344| ``i32`` | a 32-bit integer. |
1345+----------------+------------------------------------------------+
1346| ``i1942652`` | a really big integer of over 1 million bits. |
1347+----------------+------------------------------------------------+
1348
1349.. _t_floating:
1350
1351Floating Point Types
1352^^^^^^^^^^^^^^^^^^^^
1353
1354.. list-table::
1355 :header-rows: 1
1356
1357 * - Type
1358 - Description
1359
1360 * - ``half``
1361 - 16-bit floating point value
1362
1363 * - ``float``
1364 - 32-bit floating point value
1365
1366 * - ``double``
1367 - 64-bit floating point value
1368
1369 * - ``fp128``
1370 - 128-bit floating point value (112-bit mantissa)
1371
1372 * - ``x86_fp80``
1373 - 80-bit floating point value (X87)
1374
1375 * - ``ppc_fp128``
1376 - 128-bit floating point value (two 64-bits)
1377
1378.. _t_x86mmx:
1379
1380X86mmx Type
1381^^^^^^^^^^^
1382
1383Overview:
1384"""""""""
1385
1386The x86mmx type represents a value held in an MMX register on an x86
1387machine. The operations allowed on it are quite limited: parameters and
1388return values, load and store, and bitcast. User-specified MMX
1389instructions are represented as intrinsic or asm calls with arguments
1390and/or results of this type. There are no arrays, vectors or constants
1391of this type.
1392
1393Syntax:
1394"""""""
1395
1396::
1397
1398 x86mmx
1399
1400.. _t_void:
1401
1402Void Type
1403^^^^^^^^^
1404
1405Overview:
1406"""""""""
1407
1408The void type does not represent any value and has no size.
1409
1410Syntax:
1411"""""""
1412
1413::
1414
1415 void
1416
1417.. _t_label:
1418
1419Label Type
1420^^^^^^^^^^
1421
1422Overview:
1423"""""""""
1424
1425The label type represents code labels.
1426
1427Syntax:
1428"""""""
1429
1430::
1431
1432 label
1433
1434.. _t_metadata:
1435
1436Metadata Type
1437^^^^^^^^^^^^^
1438
1439Overview:
1440"""""""""
1441
1442The metadata type represents embedded metadata. No derived types may be
1443created from metadata except for :ref:`function <t_function>` arguments.
1444
1445Syntax:
1446"""""""
1447
1448::
1449
1450 metadata
1451
1452.. _t_derived:
1453
1454Derived Types
1455-------------
1456
1457The real power in LLVM comes from the derived types in the system. This
1458is what allows a programmer to represent arrays, functions, pointers,
1459and other useful types. Each of these types contain one or more element
1460types which may be a primitive type, or another derived type. For
1461example, it is possible to have a two dimensional array, using an array
1462as the element type of another array.
1463
1464.. _t_aggregate:
1465
1466Aggregate Types
1467^^^^^^^^^^^^^^^
1468
1469Aggregate Types are a subset of derived types that can contain multiple
1470member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1471aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1472aggregate types.
1473
1474.. _t_array:
1475
1476Array Type
1477^^^^^^^^^^
1478
1479Overview:
1480"""""""""
1481
1482The array type is a very simple derived type that arranges elements
1483sequentially in memory. The array type requires a size (number of
1484elements) and an underlying data type.
1485
1486Syntax:
1487"""""""
1488
1489::
1490
1491 [<# elements> x <elementtype>]
1492
1493The number of elements is a constant integer value; ``elementtype`` may
1494be any type with a size.
1495
1496Examples:
1497"""""""""
1498
1499+------------------+--------------------------------------+
1500| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1501+------------------+--------------------------------------+
1502| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1503+------------------+--------------------------------------+
1504| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1505+------------------+--------------------------------------+
1506
1507Here are some examples of multidimensional arrays:
1508
1509+-----------------------------+----------------------------------------------------------+
1510| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1511+-----------------------------+----------------------------------------------------------+
1512| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1513+-----------------------------+----------------------------------------------------------+
1514| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1515+-----------------------------+----------------------------------------------------------+
1516
1517There is no restriction on indexing beyond the end of the array implied
1518by a static type (though there are restrictions on indexing beyond the
1519bounds of an allocated object in some cases). This means that
1520single-dimension 'variable sized array' addressing can be implemented in
1521LLVM with a zero length array type. An implementation of 'pascal style
1522arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1523example.
1524
1525.. _t_function:
1526
1527Function Type
1528^^^^^^^^^^^^^
1529
1530Overview:
1531"""""""""
1532
1533The function type can be thought of as a function signature. It consists
1534of a return type and a list of formal parameter types. The return type
1535of a function type is a first class type or a void type.
1536
1537Syntax:
1538"""""""
1539
1540::
1541
1542 <returntype> (<parameter list>)
1543
1544...where '``<parameter list>``' is a comma-separated list of type
1545specifiers. Optionally, the parameter list may include a type ``...``,
1546which indicates that the function takes a variable number of arguments.
1547Variable argument functions can access their arguments with the
1548:ref:`variable argument handling intrinsic <int_varargs>` functions.
1549'``<returntype>``' is any type except :ref:`label <t_label>`.
1550
1551Examples:
1552"""""""""
1553
1554+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1555| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1556+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1557| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1558+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1559| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1560+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1561| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1562+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1563
1564.. _t_struct:
1565
1566Structure Type
1567^^^^^^^^^^^^^^
1568
1569Overview:
1570"""""""""
1571
1572The structure type is used to represent a collection of data members
1573together in memory. The elements of a structure may be any type that has
1574a size.
1575
1576Structures in memory are accessed using '``load``' and '``store``' by
1577getting a pointer to a field with the '``getelementptr``' instruction.
1578Structures in registers are accessed using the '``extractvalue``' and
1579'``insertvalue``' instructions.
1580
1581Structures may optionally be "packed" structures, which indicate that
1582the alignment of the struct is one byte, and that there is no padding
1583between the elements. In non-packed structs, padding between field types
1584is inserted as defined by the DataLayout string in the module, which is
1585required to match what the underlying code generator expects.
1586
1587Structures can either be "literal" or "identified". A literal structure
1588is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1589identified types are always defined at the top level with a name.
1590Literal types are uniqued by their contents and can never be recursive
1591or opaque since there is no way to write one. Identified types can be
1592recursive, can be opaqued, and are never uniqued.
1593
1594Syntax:
1595"""""""
1596
1597::
1598
1599 %T1 = type { <type list> } ; Identified normal struct type
1600 %T2 = type <{ <type list> }> ; Identified packed struct type
1601
1602Examples:
1603"""""""""
1604
1605+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1606| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1607+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1608| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
1609+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1610| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1611+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1612
1613.. _t_opaque:
1614
1615Opaque Structure Types
1616^^^^^^^^^^^^^^^^^^^^^^
1617
1618Overview:
1619"""""""""
1620
1621Opaque structure types are used to represent named structure types that
1622do not have a body specified. This corresponds (for example) to the C
1623notion of a forward declared structure.
1624
1625Syntax:
1626"""""""
1627
1628::
1629
1630 %X = type opaque
1631 %52 = type opaque
1632
1633Examples:
1634"""""""""
1635
1636+--------------+-------------------+
1637| ``opaque`` | An opaque type. |
1638+--------------+-------------------+
1639
1640.. _t_pointer:
1641
1642Pointer Type
1643^^^^^^^^^^^^
1644
1645Overview:
1646"""""""""
1647
1648The pointer type is used to specify memory locations. Pointers are
1649commonly used to reference objects in memory.
1650
1651Pointer types may have an optional address space attribute defining the
1652numbered address space where the pointed-to object resides. The default
1653address space is number zero. The semantics of non-zero address spaces
1654are target-specific.
1655
1656Note that LLVM does not permit pointers to void (``void*``) nor does it
1657permit pointers to labels (``label*``). Use ``i8*`` instead.
1658
1659Syntax:
1660"""""""
1661
1662::
1663
1664 <type> *
1665
1666Examples:
1667"""""""""
1668
1669+-------------------------+--------------------------------------------------------------------------------------------------------------+
1670| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1671+-------------------------+--------------------------------------------------------------------------------------------------------------+
1672| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1673+-------------------------+--------------------------------------------------------------------------------------------------------------+
1674| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1675+-------------------------+--------------------------------------------------------------------------------------------------------------+
1676
1677.. _t_vector:
1678
1679Vector Type
1680^^^^^^^^^^^
1681
1682Overview:
1683"""""""""
1684
1685A vector type is a simple derived type that represents a vector of
1686elements. Vector types are used when multiple primitive data are
1687operated in parallel using a single instruction (SIMD). A vector type
1688requires a size (number of elements) and an underlying primitive data
1689type. Vector types are considered :ref:`first class <t_firstclass>`.
1690
1691Syntax:
1692"""""""
1693
1694::
1695
1696 < <# elements> x <elementtype> >
1697
1698The number of elements is a constant integer value larger than 0;
1699elementtype may be any integer or floating point type, or a pointer to
1700these types. Vectors of size zero are not allowed.
1701
1702Examples:
1703"""""""""
1704
1705+-------------------+--------------------------------------------------+
1706| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1707+-------------------+--------------------------------------------------+
1708| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1709+-------------------+--------------------------------------------------+
1710| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1711+-------------------+--------------------------------------------------+
1712| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1713+-------------------+--------------------------------------------------+
1714
1715Constants
1716=========
1717
1718LLVM has several different basic types of constants. This section
1719describes them all and their syntax.
1720
1721Simple Constants
1722----------------
1723
1724**Boolean constants**
1725 The two strings '``true``' and '``false``' are both valid constants
1726 of the ``i1`` type.
1727**Integer constants**
1728 Standard integers (such as '4') are constants of the
1729 :ref:`integer <t_integer>` type. Negative numbers may be used with
1730 integer types.
1731**Floating point constants**
1732 Floating point constants use standard decimal notation (e.g.
1733 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1734 hexadecimal notation (see below). The assembler requires the exact
1735 decimal value of a floating-point constant. For example, the
1736 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1737 decimal in binary. Floating point constants must have a :ref:`floating
1738 point <t_floating>` type.
1739**Null pointer constants**
1740 The identifier '``null``' is recognized as a null pointer constant
1741 and must be of :ref:`pointer type <t_pointer>`.
1742
1743The one non-intuitive notation for constants is the hexadecimal form of
1744floating point constants. For example, the form
1745'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1746than) '``double 4.5e+15``'. The only time hexadecimal floating point
1747constants are required (and the only time that they are generated by the
1748disassembler) is when a floating point constant must be emitted but it
1749cannot be represented as a decimal floating point number in a reasonable
1750number of digits. For example, NaN's, infinities, and other special
1751values are represented in their IEEE hexadecimal format so that assembly
1752and disassembly do not cause any bits to change in the constants.
1753
1754When using the hexadecimal form, constants of types half, float, and
1755double are represented using the 16-digit form shown above (which
1756matches the IEEE754 representation for double); half and float values
1757must, however, be exactly representable as IEE754 half and single
1758precision, respectively. Hexadecimal format is always used for long
1759double, and there are three forms of long double. The 80-bit format used
1760by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1761128-bit format used by PowerPC (two adjacent doubles) is represented by
1762``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1763represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1764supported target uses this format. Long doubles will only work if they
1765match the long double format on your target. The IEEE 16-bit format
1766(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1767digits. All hexadecimal formats are big-endian (sign bit at the left).
1768
1769There are no constants of type x86mmx.
1770
1771Complex Constants
1772-----------------
1773
1774Complex constants are a (potentially recursive) combination of simple
1775constants and smaller complex constants.
1776
1777**Structure constants**
1778 Structure constants are represented with notation similar to
1779 structure type definitions (a comma separated list of elements,
1780 surrounded by braces (``{}``)). For example:
1781 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1782 "``@G = external global i32``". Structure constants must have
1783 :ref:`structure type <t_struct>`, and the number and types of elements
1784 must match those specified by the type.
1785**Array constants**
1786 Array constants are represented with notation similar to array type
1787 definitions (a comma separated list of elements, surrounded by
1788 square brackets (``[]``)). For example:
1789 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1790 :ref:`array type <t_array>`, and the number and types of elements must
1791 match those specified by the type.
1792**Vector constants**
1793 Vector constants are represented with notation similar to vector
1794 type definitions (a comma separated list of elements, surrounded by
1795 less-than/greater-than's (``<>``)). For example:
1796 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1797 must have :ref:`vector type <t_vector>`, and the number and types of
1798 elements must match those specified by the type.
1799**Zero initialization**
1800 The string '``zeroinitializer``' can be used to zero initialize a
1801 value to zero of *any* type, including scalar and
1802 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1803 having to print large zero initializers (e.g. for large arrays) and
1804 is always exactly equivalent to using explicit zero initializers.
1805**Metadata node**
1806 A metadata node is a structure-like constant with :ref:`metadata
1807 type <t_metadata>`. For example:
1808 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1809 constants that are meant to be interpreted as part of the
1810 instruction stream, metadata is a place to attach additional
1811 information such as debug info.
1812
1813Global Variable and Function Addresses
1814--------------------------------------
1815
1816The addresses of :ref:`global variables <globalvars>` and
1817:ref:`functions <functionstructure>` are always implicitly valid
1818(link-time) constants. These constants are explicitly referenced when
1819the :ref:`identifier for the global <identifiers>` is used and always have
1820:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1821file:
1822
1823.. code-block:: llvm
1824
1825 @X = global i32 17
1826 @Y = global i32 42
1827 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1828
1829.. _undefvalues:
1830
1831Undefined Values
1832----------------
1833
1834The string '``undef``' can be used anywhere a constant is expected, and
1835indicates that the user of the value may receive an unspecified
1836bit-pattern. Undefined values may be of any type (other than '``label``'
1837or '``void``') and be used anywhere a constant is permitted.
1838
1839Undefined values are useful because they indicate to the compiler that
1840the program is well defined no matter what value is used. This gives the
1841compiler more freedom to optimize. Here are some examples of
1842(potentially surprising) transformations that are valid (in pseudo IR):
1843
1844.. code-block:: llvm
1845
1846 %A = add %X, undef
1847 %B = sub %X, undef
1848 %C = xor %X, undef
1849 Safe:
1850 %A = undef
1851 %B = undef
1852 %C = undef
1853
1854This is safe because all of the output bits are affected by the undef
1855bits. Any output bit can have a zero or one depending on the input bits.
1856
1857.. code-block:: llvm
1858
1859 %A = or %X, undef
1860 %B = and %X, undef
1861 Safe:
1862 %A = -1
1863 %B = 0
1864 Unsafe:
1865 %A = undef
1866 %B = undef
1867
1868These logical operations have bits that are not always affected by the
1869input. For example, if ``%X`` has a zero bit, then the output of the
1870'``and``' operation will always be a zero for that bit, no matter what
1871the corresponding bit from the '``undef``' is. As such, it is unsafe to
1872optimize or assume that the result of the '``and``' is '``undef``'.
1873However, it is safe to assume that all bits of the '``undef``' could be
18740, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1875all the bits of the '``undef``' operand to the '``or``' could be set,
1876allowing the '``or``' to be folded to -1.
1877
1878.. code-block:: llvm
1879
1880 %A = select undef, %X, %Y
1881 %B = select undef, 42, %Y
1882 %C = select %X, %Y, undef
1883 Safe:
1884 %A = %X (or %Y)
1885 %B = 42 (or %Y)
1886 %C = %Y
1887 Unsafe:
1888 %A = undef
1889 %B = undef
1890 %C = undef
1891
1892This set of examples shows that undefined '``select``' (and conditional
1893branch) conditions can go *either way*, but they have to come from one
1894of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1895both known to have a clear low bit, then ``%A`` would have to have a
1896cleared low bit. However, in the ``%C`` example, the optimizer is
1897allowed to assume that the '``undef``' operand could be the same as
1898``%Y``, allowing the whole '``select``' to be eliminated.
1899
1900.. code-block:: llvm
1901
1902 %A = xor undef, undef
1903
1904 %B = undef
1905 %C = xor %B, %B
1906
1907 %D = undef
1908 %E = icmp lt %D, 4
1909 %F = icmp gte %D, 4
1910
1911 Safe:
1912 %A = undef
1913 %B = undef
1914 %C = undef
1915 %D = undef
1916 %E = undef
1917 %F = undef
1918
1919This example points out that two '``undef``' operands are not
1920necessarily the same. This can be surprising to people (and also matches
1921C semantics) where they assume that "``X^X``" is always zero, even if
1922``X`` is undefined. This isn't true for a number of reasons, but the
1923short answer is that an '``undef``' "variable" can arbitrarily change
1924its value over its "live range". This is true because the variable
1925doesn't actually *have a live range*. Instead, the value is logically
1926read from arbitrary registers that happen to be around when needed, so
1927the value is not necessarily consistent over time. In fact, ``%A`` and
1928``%C`` need to have the same semantics or the core LLVM "replace all
1929uses with" concept would not hold.
1930
1931.. code-block:: llvm
1932
1933 %A = fdiv undef, %X
1934 %B = fdiv %X, undef
1935 Safe:
1936 %A = undef
1937 b: unreachable
1938
1939These examples show the crucial difference between an *undefined value*
1940and *undefined behavior*. An undefined value (like '``undef``') is
1941allowed to have an arbitrary bit-pattern. This means that the ``%A``
1942operation can be constant folded to '``undef``', because the '``undef``'
1943could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
1944However, in the second example, we can make a more aggressive
1945assumption: because the ``undef`` is allowed to be an arbitrary value,
1946we are allowed to assume that it could be zero. Since a divide by zero
1947has *undefined behavior*, we are allowed to assume that the operation
1948does not execute at all. This allows us to delete the divide and all
1949code after it. Because the undefined operation "can't happen", the
1950optimizer can assume that it occurs in dead code.
1951
1952.. code-block:: llvm
1953
1954 a: store undef -> %X
1955 b: store %X -> undef
1956 Safe:
1957 a: <deleted>
1958 b: unreachable
1959
1960These examples reiterate the ``fdiv`` example: a store *of* an undefined
1961value can be assumed to not have any effect; we can assume that the
1962value is overwritten with bits that happen to match what was already
1963there. However, a store *to* an undefined location could clobber
1964arbitrary memory, therefore, it has undefined behavior.
1965
1966.. _poisonvalues:
1967
1968Poison Values
1969-------------
1970
1971Poison values are similar to :ref:`undef values <undefvalues>`, however
1972they also represent the fact that an instruction or constant expression
1973which cannot evoke side effects has nevertheless detected a condition
1974which results in undefined behavior.
1975
1976There is currently no way of representing a poison value in the IR; they
1977only exist when produced by operations such as :ref:`add <i_add>` with
1978the ``nsw`` flag.
1979
1980Poison value behavior is defined in terms of value *dependence*:
1981
1982- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
1983- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
1984 their dynamic predecessor basic block.
1985- Function arguments depend on the corresponding actual argument values
1986 in the dynamic callers of their functions.
1987- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
1988 instructions that dynamically transfer control back to them.
1989- :ref:`Invoke <i_invoke>` instructions depend on the
1990 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
1991 call instructions that dynamically transfer control back to them.
1992- Non-volatile loads and stores depend on the most recent stores to all
1993 of the referenced memory addresses, following the order in the IR
1994 (including loads and stores implied by intrinsics such as
1995 :ref:`@llvm.memcpy <int_memcpy>`.)
1996- An instruction with externally visible side effects depends on the
1997 most recent preceding instruction with externally visible side
1998 effects, following the order in the IR. (This includes :ref:`volatile
1999 operations <volatile>`.)
2000- An instruction *control-depends* on a :ref:`terminator
2001 instruction <terminators>` if the terminator instruction has
2002 multiple successors and the instruction is always executed when
2003 control transfers to one of the successors, and may not be executed
2004 when control is transferred to another.
2005- Additionally, an instruction also *control-depends* on a terminator
2006 instruction if the set of instructions it otherwise depends on would
2007 be different if the terminator had transferred control to a different
2008 successor.
2009- Dependence is transitive.
2010
2011Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2012with the additional affect that any instruction which has a *dependence*
2013on a poison value has undefined behavior.
2014
2015Here are some examples:
2016
2017.. code-block:: llvm
2018
2019 entry:
2020 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2021 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2022 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2023 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2024
2025 store i32 %poison, i32* @g ; Poison value stored to memory.
2026 %poison2 = load i32* @g ; Poison value loaded back from memory.
2027
2028 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2029
2030 %narrowaddr = bitcast i32* @g to i16*
2031 %wideaddr = bitcast i32* @g to i64*
2032 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2033 %poison4 = load i64* %wideaddr ; Returns a poison value.
2034
2035 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2036 br i1 %cmp, label %true, label %end ; Branch to either destination.
2037
2038 true:
2039 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2040 ; it has undefined behavior.
2041 br label %end
2042
2043 end:
2044 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2045 ; Both edges into this PHI are
2046 ; control-dependent on %cmp, so this
2047 ; always results in a poison value.
2048
2049 store volatile i32 0, i32* @g ; This would depend on the store in %true
2050 ; if %cmp is true, or the store in %entry
2051 ; otherwise, so this is undefined behavior.
2052
2053 br i1 %cmp, label %second_true, label %second_end
2054 ; The same branch again, but this time the
2055 ; true block doesn't have side effects.
2056
2057 second_true:
2058 ; No side effects!
2059 ret void
2060
2061 second_end:
2062 store volatile i32 0, i32* @g ; This time, the instruction always depends
2063 ; on the store in %end. Also, it is
2064 ; control-equivalent to %end, so this is
2065 ; well-defined (ignoring earlier undefined
2066 ; behavior in this example).
2067
2068.. _blockaddress:
2069
2070Addresses of Basic Blocks
2071-------------------------
2072
2073``blockaddress(@function, %block)``
2074
2075The '``blockaddress``' constant computes the address of the specified
2076basic block in the specified function, and always has an ``i8*`` type.
2077Taking the address of the entry block is illegal.
2078
2079This value only has defined behavior when used as an operand to the
2080':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2081against null. Pointer equality tests between labels addresses results in
2082undefined behavior — though, again, comparison against null is ok, and
2083no label is equal to the null pointer. This may be passed around as an
2084opaque pointer sized value as long as the bits are not inspected. This
2085allows ``ptrtoint`` and arithmetic to be performed on these values so
2086long as the original value is reconstituted before the ``indirectbr``
2087instruction.
2088
2089Finally, some targets may provide defined semantics when using the value
2090as the operand to an inline assembly, but that is target specific.
2091
2092Constant Expressions
2093--------------------
2094
2095Constant expressions are used to allow expressions involving other
2096constants to be used as constants. Constant expressions may be of any
2097:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2098that does not have side effects (e.g. load and call are not supported).
2099The following is the syntax for constant expressions:
2100
2101``trunc (CST to TYPE)``
2102 Truncate a constant to another type. The bit size of CST must be
2103 larger than the bit size of TYPE. Both types must be integers.
2104``zext (CST to TYPE)``
2105 Zero extend a constant to another type. The bit size of CST must be
2106 smaller than the bit size of TYPE. Both types must be integers.
2107``sext (CST to TYPE)``
2108 Sign extend a constant to another type. The bit size of CST must be
2109 smaller than the bit size of TYPE. Both types must be integers.
2110``fptrunc (CST to TYPE)``
2111 Truncate a floating point constant to another floating point type.
2112 The size of CST must be larger than the size of TYPE. Both types
2113 must be floating point.
2114``fpext (CST to TYPE)``
2115 Floating point extend a constant to another type. The size of CST
2116 must be smaller or equal to the size of TYPE. Both types must be
2117 floating point.
2118``fptoui (CST to TYPE)``
2119 Convert a floating point constant to the corresponding unsigned
2120 integer constant. TYPE must be a scalar or vector integer type. CST
2121 must be of scalar or vector floating point type. Both CST and TYPE
2122 must be scalars, or vectors of the same number of elements. If the
2123 value won't fit in the integer type, the results are undefined.
2124``fptosi (CST to TYPE)``
2125 Convert a floating point constant to the corresponding signed
2126 integer constant. TYPE must be a scalar or vector integer type. CST
2127 must be of scalar or vector floating point type. Both CST and TYPE
2128 must be scalars, or vectors of the same number of elements. If the
2129 value won't fit in the integer type, the results are undefined.
2130``uitofp (CST to TYPE)``
2131 Convert an unsigned integer constant to the corresponding floating
2132 point constant. TYPE must be a scalar or vector floating point type.
2133 CST must be of scalar or vector integer type. Both CST and TYPE must
2134 be scalars, or vectors of the same number of elements. If the value
2135 won't fit in the floating point type, the results are undefined.
2136``sitofp (CST to TYPE)``
2137 Convert a signed integer constant to the corresponding floating
2138 point constant. TYPE must be a scalar or vector floating point type.
2139 CST must be of scalar or vector integer type. Both CST and TYPE must
2140 be scalars, or vectors of the same number of elements. If the value
2141 won't fit in the floating point type, the results are undefined.
2142``ptrtoint (CST to TYPE)``
2143 Convert a pointer typed constant to the corresponding integer
2144 constant ``TYPE`` must be an integer type. ``CST`` must be of
2145 pointer type. The ``CST`` value is zero extended, truncated, or
2146 unchanged to make it fit in ``TYPE``.
2147``inttoptr (CST to TYPE)``
2148 Convert an integer constant to a pointer constant. TYPE must be a
2149 pointer type. CST must be of integer type. The CST value is zero
2150 extended, truncated, or unchanged to make it fit in a pointer size.
2151 This one is *really* dangerous!
2152``bitcast (CST to TYPE)``
2153 Convert a constant, CST, to another TYPE. The constraints of the
2154 operands are the same as those for the :ref:`bitcast
2155 instruction <i_bitcast>`.
2156``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2157 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2158 constants. As with the :ref:`getelementptr <i_getelementptr>`
2159 instruction, the index list may have zero or more indexes, which are
2160 required to make sense for the type of "CSTPTR".
2161``select (COND, VAL1, VAL2)``
2162 Perform the :ref:`select operation <i_select>` on constants.
2163``icmp COND (VAL1, VAL2)``
2164 Performs the :ref:`icmp operation <i_icmp>` on constants.
2165``fcmp COND (VAL1, VAL2)``
2166 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2167``extractelement (VAL, IDX)``
2168 Perform the :ref:`extractelement operation <i_extractelement>` on
2169 constants.
2170``insertelement (VAL, ELT, IDX)``
2171 Perform the :ref:`insertelement operation <i_insertelement>` on
2172 constants.
2173``shufflevector (VEC1, VEC2, IDXMASK)``
2174 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2175 constants.
2176``extractvalue (VAL, IDX0, IDX1, ...)``
2177 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2178 constants. The index list is interpreted in a similar manner as
2179 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2180 least one index value must be specified.
2181``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2182 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2183 The index list is interpreted in a similar manner as indices in a
2184 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2185 value must be specified.
2186``OPCODE (LHS, RHS)``
2187 Perform the specified operation of the LHS and RHS constants. OPCODE
2188 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2189 binary <bitwiseops>` operations. The constraints on operands are
2190 the same as those for the corresponding instruction (e.g. no bitwise
2191 operations on floating point values are allowed).
2192
2193Other Values
2194============
2195
2196Inline Assembler Expressions
2197----------------------------
2198
2199LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2200Inline Assembly <moduleasm>`) through the use of a special value. This
2201value represents the inline assembler as a string (containing the
2202instructions to emit), a list of operand constraints (stored as a
2203string), a flag that indicates whether or not the inline asm expression
2204has side effects, and a flag indicating whether the function containing
2205the asm needs to align its stack conservatively. An example inline
2206assembler expression is:
2207
2208.. code-block:: llvm
2209
2210 i32 (i32) asm "bswap $0", "=r,r"
2211
2212Inline assembler expressions may **only** be used as the callee operand
2213of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2214Thus, typically we have:
2215
2216.. code-block:: llvm
2217
2218 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2219
2220Inline asms with side effects not visible in the constraint list must be
2221marked as having side effects. This is done through the use of the
2222'``sideeffect``' keyword, like so:
2223
2224.. code-block:: llvm
2225
2226 call void asm sideeffect "eieio", ""()
2227
2228In some cases inline asms will contain code that will not work unless
2229the stack is aligned in some way, such as calls or SSE instructions on
2230x86, yet will not contain code that does that alignment within the asm.
2231The compiler should make conservative assumptions about what the asm
2232might contain and should generate its usual stack alignment code in the
2233prologue if the '``alignstack``' keyword is present:
2234
2235.. code-block:: llvm
2236
2237 call void asm alignstack "eieio", ""()
2238
2239Inline asms also support using non-standard assembly dialects. The
2240assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2241the inline asm is using the Intel dialect. Currently, ATT and Intel are
2242the only supported dialects. An example is:
2243
2244.. code-block:: llvm
2245
2246 call void asm inteldialect "eieio", ""()
2247
2248If multiple keywords appear the '``sideeffect``' keyword must come
2249first, the '``alignstack``' keyword second and the '``inteldialect``'
2250keyword last.
2251
2252Inline Asm Metadata
2253^^^^^^^^^^^^^^^^^^^
2254
2255The call instructions that wrap inline asm nodes may have a
2256"``!srcloc``" MDNode attached to it that contains a list of constant
2257integers. If present, the code generator will use the integer as the
2258location cookie value when report errors through the ``LLVMContext``
2259error reporting mechanisms. This allows a front-end to correlate backend
2260errors that occur with inline asm back to the source code that produced
2261it. For example:
2262
2263.. code-block:: llvm
2264
2265 call void asm sideeffect "something bad", ""(), !srcloc !42
2266 ...
2267 !42 = !{ i32 1234567 }
2268
2269It is up to the front-end to make sense of the magic numbers it places
2270in the IR. If the MDNode contains multiple constants, the code generator
2271will use the one that corresponds to the line of the asm that the error
2272occurs on.
2273
2274.. _metadata:
2275
2276Metadata Nodes and Metadata Strings
2277-----------------------------------
2278
2279LLVM IR allows metadata to be attached to instructions in the program
2280that can convey extra information about the code to the optimizers and
2281code generator. One example application of metadata is source-level
2282debug information. There are two metadata primitives: strings and nodes.
2283All metadata has the ``metadata`` type and is identified in syntax by a
2284preceding exclamation point ('``!``').
2285
2286A metadata string is a string surrounded by double quotes. It can
2287contain any character by escaping non-printable characters with
2288"``\xx``" where "``xx``" is the two digit hex code. For example:
2289"``!"test\00"``".
2290
2291Metadata nodes are represented with notation similar to structure
2292constants (a comma separated list of elements, surrounded by braces and
2293preceded by an exclamation point). Metadata nodes can have any values as
2294their operand. For example:
2295
2296.. code-block:: llvm
2297
2298 !{ metadata !"test\00", i32 10}
2299
2300A :ref:`named metadata <namedmetadatastructure>` is a collection of
2301metadata nodes, which can be looked up in the module symbol table. For
2302example:
2303
2304.. code-block:: llvm
2305
2306 !foo = metadata !{!4, !3}
2307
2308Metadata can be used as function arguments. Here ``llvm.dbg.value``
2309function is using two metadata arguments:
2310
2311.. code-block:: llvm
2312
2313 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2314
2315Metadata can be attached with an instruction. Here metadata ``!21`` is
2316attached to the ``add`` instruction using the ``!dbg`` identifier:
2317
2318.. code-block:: llvm
2319
2320 %indvar.next = add i64 %indvar, 1, !dbg !21
2321
2322More information about specific metadata nodes recognized by the
2323optimizers and code generator is found below.
2324
2325'``tbaa``' Metadata
2326^^^^^^^^^^^^^^^^^^^
2327
2328In LLVM IR, memory does not have types, so LLVM's own type system is not
2329suitable for doing TBAA. Instead, metadata is added to the IR to
2330describe a type system of a higher level language. This can be used to
2331implement typical C/C++ TBAA, but it can also be used to implement
2332custom alias analysis behavior for other languages.
2333
2334The current metadata format is very simple. TBAA metadata nodes have up
2335to three fields, e.g.:
2336
2337.. code-block:: llvm
2338
2339 !0 = metadata !{ metadata !"an example type tree" }
2340 !1 = metadata !{ metadata !"int", metadata !0 }
2341 !2 = metadata !{ metadata !"float", metadata !0 }
2342 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2343
2344The first field is an identity field. It can be any value, usually a
2345metadata string, which uniquely identifies the type. The most important
2346name in the tree is the name of the root node. Two trees with different
2347root node names are entirely disjoint, even if they have leaves with
2348common names.
2349
2350The second field identifies the type's parent node in the tree, or is
2351null or omitted for a root node. A type is considered to alias all of
2352its descendants and all of its ancestors in the tree. Also, a type is
2353considered to alias all types in other trees, so that bitcode produced
2354from multiple front-ends is handled conservatively.
2355
2356If the third field is present, it's an integer which if equal to 1
2357indicates that the type is "constant" (meaning
2358``pointsToConstantMemory`` should return true; see `other useful
2359AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2360
2361'``tbaa.struct``' Metadata
2362^^^^^^^^^^^^^^^^^^^^^^^^^^
2363
2364The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2365aggregate assignment operations in C and similar languages, however it
2366is defined to copy a contiguous region of memory, which is more than
2367strictly necessary for aggregate types which contain holes due to
2368padding. Also, it doesn't contain any TBAA information about the fields
2369of the aggregate.
2370
2371``!tbaa.struct`` metadata can describe which memory subregions in a
2372memcpy are padding and what the TBAA tags of the struct are.
2373
2374The current metadata format is very simple. ``!tbaa.struct`` metadata
2375nodes are a list of operands which are in conceptual groups of three.
2376For each group of three, the first operand gives the byte offset of a
2377field in bytes, the second gives its size in bytes, and the third gives
2378its tbaa tag. e.g.:
2379
2380.. code-block:: llvm
2381
2382 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2383
2384This describes a struct with two fields. The first is at offset 0 bytes
2385with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2386and has size 4 bytes and has tbaa tag !2.
2387
2388Note that the fields need not be contiguous. In this example, there is a
23894 byte gap between the two fields. This gap represents padding which
2390does not carry useful data and need not be preserved.
2391
2392'``fpmath``' Metadata
2393^^^^^^^^^^^^^^^^^^^^^
2394
2395``fpmath`` metadata may be attached to any instruction of floating point
2396type. It can be used to express the maximum acceptable error in the
2397result of that instruction, in ULPs, thus potentially allowing the
2398compiler to use a more efficient but less accurate method of computing
2399it. ULP is defined as follows:
2400
2401 If ``x`` is a real number that lies between two finite consecutive
2402 floating-point numbers ``a`` and ``b``, without being equal to one
2403 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2404 distance between the two non-equal finite floating-point numbers
2405 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2406
2407The metadata node shall consist of a single positive floating point
2408number representing the maximum relative error, for example:
2409
2410.. code-block:: llvm
2411
2412 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2413
2414'``range``' Metadata
2415^^^^^^^^^^^^^^^^^^^^
2416
2417``range`` metadata may be attached only to loads of integer types. It
2418expresses the possible ranges the loaded value is in. The ranges are
2419represented with a flattened list of integers. The loaded value is known
2420to be in the union of the ranges defined by each consecutive pair. Each
2421pair has the following properties:
2422
2423- The type must match the type loaded by the instruction.
2424- The pair ``a,b`` represents the range ``[a,b)``.
2425- Both ``a`` and ``b`` are constants.
2426- The range is allowed to wrap.
2427- The range should not represent the full or empty set. That is,
2428 ``a!=b``.
2429
2430In addition, the pairs must be in signed order of the lower bound and
2431they must be non-contiguous.
2432
2433Examples:
2434
2435.. code-block:: llvm
2436
2437 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2438 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2439 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2440 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2441 ...
2442 !0 = metadata !{ i8 0, i8 2 }
2443 !1 = metadata !{ i8 255, i8 2 }
2444 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2445 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2446
2447Module Flags Metadata
2448=====================
2449
2450Information about the module as a whole is difficult to convey to LLVM's
2451subsystems. The LLVM IR isn't sufficient to transmit this information.
2452The ``llvm.module.flags`` named metadata exists in order to facilitate
2453this. These flags are in the form of key / value pairs — much like a
2454dictionary — making it easy for any subsystem who cares about a flag to
2455look it up.
2456
2457The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2458Each triplet has the following form:
2459
2460- The first element is a *behavior* flag, which specifies the behavior
2461 when two (or more) modules are merged together, and it encounters two
2462 (or more) metadata with the same ID. The supported behaviors are
2463 described below.
2464- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002465 metadata. Each module may only have one flag entry for each unique ID (not
2466 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002467- The third element is the value of the flag.
2468
2469When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002470``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2471each unique metadata ID string, there will be exactly one entry in the merged
2472modules ``llvm.module.flags`` metadata table, and the value for that entry will
2473be determined by the merge behavior flag, as described below. The only exception
2474is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002475
2476The following behaviors are supported:
2477
2478.. list-table::
2479 :header-rows: 1
2480 :widths: 10 90
2481
2482 * - Value
2483 - Behavior
2484
2485 * - 1
2486 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002487 Emits an error if two values disagree, otherwise the resulting value
2488 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002489
2490 * - 2
2491 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002492 Emits a warning if two values disagree. The result value will be the
2493 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002494
2495 * - 3
2496 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002497 Adds a requirement that another module flag be present and have a
2498 specified value after linking is performed. The value must be a
2499 metadata pair, where the first element of the pair is the ID of the
2500 module flag to be restricted, and the second element of the pair is
2501 the value the module flag should be restricted to. This behavior can
2502 be used to restrict the allowable results (via triggering of an
2503 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002504
2505 * - 4
2506 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002507 Uses the specified value, regardless of the behavior or value of the
2508 other module. If both modules specify **Override**, but the values
2509 differ, an error will be emitted.
2510
2511It is an error for a particular unique flag ID to have multiple behaviors,
2512except in the case of **Require** (which adds restrictions on another metadata
2513value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002514
2515An example of module flags:
2516
2517.. code-block:: llvm
2518
2519 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2520 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2521 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2522 !3 = metadata !{ i32 3, metadata !"qux",
2523 metadata !{
2524 metadata !"foo", i32 1
2525 }
2526 }
2527 !llvm.module.flags = !{ !0, !1, !2, !3 }
2528
2529- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2530 if two or more ``!"foo"`` flags are seen is to emit an error if their
2531 values are not equal.
2532
2533- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2534 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002535 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002536
2537- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2538 behavior if two or more ``!"qux"`` flags are seen is to emit a
2539 warning if their values are not equal.
2540
2541- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2542
2543 ::
2544
2545 metadata !{ metadata !"foo", i32 1 }
2546
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002547 The behavior is to emit an error if the ``llvm.module.flags`` does not
2548 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2549 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002550
2551Objective-C Garbage Collection Module Flags Metadata
2552----------------------------------------------------
2553
2554On the Mach-O platform, Objective-C stores metadata about garbage
2555collection in a special section called "image info". The metadata
2556consists of a version number and a bitmask specifying what types of
2557garbage collection are supported (if any) by the file. If two or more
2558modules are linked together their garbage collection metadata needs to
2559be merged rather than appended together.
2560
2561The Objective-C garbage collection module flags metadata consists of the
2562following key-value pairs:
2563
2564.. list-table::
2565 :header-rows: 1
2566 :widths: 30 70
2567
2568 * - Key
2569 - Value
2570
2571 * - ``Objective-C Version``
2572 - **[Required]** — The Objective-C ABI version. Valid values are 1 and 2.
2573
2574 * - ``Objective-C Image Info Version``
2575 - **[Required]** — The version of the image info section. Currently
2576 always 0.
2577
2578 * - ``Objective-C Image Info Section``
2579 - **[Required]** — The section to place the metadata. Valid values are
2580 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2581 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2582 Objective-C ABI version 2.
2583
2584 * - ``Objective-C Garbage Collection``
2585 - **[Required]** — Specifies whether garbage collection is supported or
2586 not. Valid values are 0, for no garbage collection, and 2, for garbage
2587 collection supported.
2588
2589 * - ``Objective-C GC Only``
2590 - **[Optional]** — Specifies that only garbage collection is supported.
2591 If present, its value must be 6. This flag requires that the
2592 ``Objective-C Garbage Collection`` flag have the value 2.
2593
2594Some important flag interactions:
2595
2596- If a module with ``Objective-C Garbage Collection`` set to 0 is
2597 merged with a module with ``Objective-C Garbage Collection`` set to
2598 2, then the resulting module has the
2599 ``Objective-C Garbage Collection`` flag set to 0.
2600- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2601 merged with a module with ``Objective-C GC Only`` set to 6.
2602
2603Intrinsic Global Variables
2604==========================
2605
2606LLVM has a number of "magic" global variables that contain data that
2607affect code generation or other IR semantics. These are documented here.
2608All globals of this sort should have a section specified as
2609"``llvm.metadata``". This section and all globals that start with
2610"``llvm.``" are reserved for use by LLVM.
2611
2612The '``llvm.used``' Global Variable
2613-----------------------------------
2614
2615The ``@llvm.used`` global is an array with i8\* element type which has
2616:ref:`appending linkage <linkage_appending>`. This array contains a list of
2617pointers to global variables and functions which may optionally have a
2618pointer cast formed of bitcast or getelementptr. For example, a legal
2619use of it is:
2620
2621.. code-block:: llvm
2622
2623 @X = global i8 4
2624 @Y = global i32 123
2625
2626 @llvm.used = appending global [2 x i8*] [
2627 i8* @X,
2628 i8* bitcast (i32* @Y to i8*)
2629 ], section "llvm.metadata"
2630
2631If a global variable appears in the ``@llvm.used`` list, then the
2632compiler, assembler, and linker are required to treat the symbol as if
2633there is a reference to the global that it cannot see. For example, if a
2634variable has internal linkage and no references other than that from the
2635``@llvm.used`` list, it cannot be deleted. This is commonly used to
2636represent references from inline asms and other things the compiler
2637cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2638
2639On some targets, the code generator must emit a directive to the
2640assembler or object file to prevent the assembler and linker from
2641molesting the symbol.
2642
2643The '``llvm.compiler.used``' Global Variable
2644--------------------------------------------
2645
2646The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2647directive, except that it only prevents the compiler from touching the
2648symbol. On targets that support it, this allows an intelligent linker to
2649optimize references to the symbol without being impeded as it would be
2650by ``@llvm.used``.
2651
2652This is a rare construct that should only be used in rare circumstances,
2653and should not be exposed to source languages.
2654
2655The '``llvm.global_ctors``' Global Variable
2656-------------------------------------------
2657
2658.. code-block:: llvm
2659
2660 %0 = type { i32, void ()* }
2661 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2662
2663The ``@llvm.global_ctors`` array contains a list of constructor
2664functions and associated priorities. The functions referenced by this
2665array will be called in ascending order of priority (i.e. lowest first)
2666when the module is loaded. The order of functions with the same priority
2667is not defined.
2668
2669The '``llvm.global_dtors``' Global Variable
2670-------------------------------------------
2671
2672.. code-block:: llvm
2673
2674 %0 = type { i32, void ()* }
2675 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2676
2677The ``@llvm.global_dtors`` array contains a list of destructor functions
2678and associated priorities. The functions referenced by this array will
2679be called in descending order of priority (i.e. highest first) when the
2680module is loaded. The order of functions with the same priority is not
2681defined.
2682
2683Instruction Reference
2684=====================
2685
2686The LLVM instruction set consists of several different classifications
2687of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2688instructions <binaryops>`, :ref:`bitwise binary
2689instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2690:ref:`other instructions <otherops>`.
2691
2692.. _terminators:
2693
2694Terminator Instructions
2695-----------------------
2696
2697As mentioned :ref:`previously <functionstructure>`, every basic block in a
2698program ends with a "Terminator" instruction, which indicates which
2699block should be executed after the current block is finished. These
2700terminator instructions typically yield a '``void``' value: they produce
2701control flow, not values (the one exception being the
2702':ref:`invoke <i_invoke>`' instruction).
2703
2704The terminator instructions are: ':ref:`ret <i_ret>`',
2705':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2706':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2707':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2708
2709.. _i_ret:
2710
2711'``ret``' Instruction
2712^^^^^^^^^^^^^^^^^^^^^
2713
2714Syntax:
2715"""""""
2716
2717::
2718
2719 ret <type> <value> ; Return a value from a non-void function
2720 ret void ; Return from void function
2721
2722Overview:
2723"""""""""
2724
2725The '``ret``' instruction is used to return control flow (and optionally
2726a value) from a function back to the caller.
2727
2728There are two forms of the '``ret``' instruction: one that returns a
2729value and then causes control flow, and one that just causes control
2730flow to occur.
2731
2732Arguments:
2733""""""""""
2734
2735The '``ret``' instruction optionally accepts a single argument, the
2736return value. The type of the return value must be a ':ref:`first
2737class <t_firstclass>`' type.
2738
2739A function is not :ref:`well formed <wellformed>` if it it has a non-void
2740return type and contains a '``ret``' instruction with no return value or
2741a return value with a type that does not match its type, or if it has a
2742void return type and contains a '``ret``' instruction with a return
2743value.
2744
2745Semantics:
2746""""""""""
2747
2748When the '``ret``' instruction is executed, control flow returns back to
2749the calling function's context. If the caller is a
2750":ref:`call <i_call>`" instruction, execution continues at the
2751instruction after the call. If the caller was an
2752":ref:`invoke <i_invoke>`" instruction, execution continues at the
2753beginning of the "normal" destination block. If the instruction returns
2754a value, that value shall set the call or invoke instruction's return
2755value.
2756
2757Example:
2758""""""""
2759
2760.. code-block:: llvm
2761
2762 ret i32 5 ; Return an integer value of 5
2763 ret void ; Return from a void function
2764 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2765
2766.. _i_br:
2767
2768'``br``' Instruction
2769^^^^^^^^^^^^^^^^^^^^
2770
2771Syntax:
2772"""""""
2773
2774::
2775
2776 br i1 <cond>, label <iftrue>, label <iffalse>
2777 br label <dest> ; Unconditional branch
2778
2779Overview:
2780"""""""""
2781
2782The '``br``' instruction is used to cause control flow to transfer to a
2783different basic block in the current function. There are two forms of
2784this instruction, corresponding to a conditional branch and an
2785unconditional branch.
2786
2787Arguments:
2788""""""""""
2789
2790The conditional branch form of the '``br``' instruction takes a single
2791'``i1``' value and two '``label``' values. The unconditional form of the
2792'``br``' instruction takes a single '``label``' value as a target.
2793
2794Semantics:
2795""""""""""
2796
2797Upon execution of a conditional '``br``' instruction, the '``i1``'
2798argument is evaluated. If the value is ``true``, control flows to the
2799'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2800to the '``iffalse``' ``label`` argument.
2801
2802Example:
2803""""""""
2804
2805.. code-block:: llvm
2806
2807 Test:
2808 %cond = icmp eq i32 %a, %b
2809 br i1 %cond, label %IfEqual, label %IfUnequal
2810 IfEqual:
2811 ret i32 1
2812 IfUnequal:
2813 ret i32 0
2814
2815.. _i_switch:
2816
2817'``switch``' Instruction
2818^^^^^^^^^^^^^^^^^^^^^^^^
2819
2820Syntax:
2821"""""""
2822
2823::
2824
2825 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2826
2827Overview:
2828"""""""""
2829
2830The '``switch``' instruction is used to transfer control flow to one of
2831several different places. It is a generalization of the '``br``'
2832instruction, allowing a branch to occur to one of many possible
2833destinations.
2834
2835Arguments:
2836""""""""""
2837
2838The '``switch``' instruction uses three parameters: an integer
2839comparison value '``value``', a default '``label``' destination, and an
2840array of pairs of comparison value constants and '``label``'s. The table
2841is not allowed to contain duplicate constant entries.
2842
2843Semantics:
2844""""""""""
2845
2846The ``switch`` instruction specifies a table of values and destinations.
2847When the '``switch``' instruction is executed, this table is searched
2848for the given value. If the value is found, control flow is transferred
2849to the corresponding destination; otherwise, control flow is transferred
2850to the default destination.
2851
2852Implementation:
2853"""""""""""""""
2854
2855Depending on properties of the target machine and the particular
2856``switch`` instruction, this instruction may be code generated in
2857different ways. For example, it could be generated as a series of
2858chained conditional branches or with a lookup table.
2859
2860Example:
2861""""""""
2862
2863.. code-block:: llvm
2864
2865 ; Emulate a conditional br instruction
2866 %Val = zext i1 %value to i32
2867 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2868
2869 ; Emulate an unconditional br instruction
2870 switch i32 0, label %dest [ ]
2871
2872 ; Implement a jump table:
2873 switch i32 %val, label %otherwise [ i32 0, label %onzero
2874 i32 1, label %onone
2875 i32 2, label %ontwo ]
2876
2877.. _i_indirectbr:
2878
2879'``indirectbr``' Instruction
2880^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2881
2882Syntax:
2883"""""""
2884
2885::
2886
2887 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
2888
2889Overview:
2890"""""""""
2891
2892The '``indirectbr``' instruction implements an indirect branch to a
2893label within the current function, whose address is specified by
2894"``address``". Address must be derived from a
2895:ref:`blockaddress <blockaddress>` constant.
2896
2897Arguments:
2898""""""""""
2899
2900The '``address``' argument is the address of the label to jump to. The
2901rest of the arguments indicate the full set of possible destinations
2902that the address may point to. Blocks are allowed to occur multiple
2903times in the destination list, though this isn't particularly useful.
2904
2905This destination list is required so that dataflow analysis has an
2906accurate understanding of the CFG.
2907
2908Semantics:
2909""""""""""
2910
2911Control transfers to the block specified in the address argument. All
2912possible destination blocks must be listed in the label list, otherwise
2913this instruction has undefined behavior. This implies that jumps to
2914labels defined in other functions have undefined behavior as well.
2915
2916Implementation:
2917"""""""""""""""
2918
2919This is typically implemented with a jump through a register.
2920
2921Example:
2922""""""""
2923
2924.. code-block:: llvm
2925
2926 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
2927
2928.. _i_invoke:
2929
2930'``invoke``' Instruction
2931^^^^^^^^^^^^^^^^^^^^^^^^
2932
2933Syntax:
2934"""""""
2935
2936::
2937
2938 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
2939 to label <normal label> unwind label <exception label>
2940
2941Overview:
2942"""""""""
2943
2944The '``invoke``' instruction causes control to transfer to a specified
2945function, with the possibility of control flow transfer to either the
2946'``normal``' label or the '``exception``' label. If the callee function
2947returns with the "``ret``" instruction, control flow will return to the
2948"normal" label. If the callee (or any indirect callees) returns via the
2949":ref:`resume <i_resume>`" instruction or other exception handling
2950mechanism, control is interrupted and continued at the dynamically
2951nearest "exception" label.
2952
2953The '``exception``' label is a `landing
2954pad <ExceptionHandling.html#overview>`_ for the exception. As such,
2955'``exception``' label is required to have the
2956":ref:`landingpad <i_landingpad>`" instruction, which contains the
2957information about the behavior of the program after unwinding happens,
2958as its first non-PHI instruction. The restrictions on the
2959"``landingpad``" instruction's tightly couples it to the "``invoke``"
2960instruction, so that the important information contained within the
2961"``landingpad``" instruction can't be lost through normal code motion.
2962
2963Arguments:
2964""""""""""
2965
2966This instruction requires several arguments:
2967
2968#. The optional "cconv" marker indicates which :ref:`calling
2969 convention <callingconv>` the call should use. If none is
2970 specified, the call defaults to using C calling conventions.
2971#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
2972 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
2973 are valid here.
2974#. '``ptr to function ty``': shall be the signature of the pointer to
2975 function value being invoked. In most cases, this is a direct
2976 function invocation, but indirect ``invoke``'s are just as possible,
2977 branching off an arbitrary pointer to function value.
2978#. '``function ptr val``': An LLVM value containing a pointer to a
2979 function to be invoked.
2980#. '``function args``': argument list whose types match the function
2981 signature argument types and parameter attributes. All arguments must
2982 be of :ref:`first class <t_firstclass>` type. If the function signature
2983 indicates the function accepts a variable number of arguments, the
2984 extra arguments can be specified.
2985#. '``normal label``': the label reached when the called function
2986 executes a '``ret``' instruction.
2987#. '``exception label``': the label reached when a callee returns via
2988 the :ref:`resume <i_resume>` instruction or other exception handling
2989 mechanism.
2990#. The optional :ref:`function attributes <fnattrs>` list. Only
2991 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
2992 attributes are valid here.
2993
2994Semantics:
2995""""""""""
2996
2997This instruction is designed to operate as a standard '``call``'
2998instruction in most regards. The primary difference is that it
2999establishes an association with a label, which is used by the runtime
3000library to unwind the stack.
3001
3002This instruction is used in languages with destructors to ensure that
3003proper cleanup is performed in the case of either a ``longjmp`` or a
3004thrown exception. Additionally, this is important for implementation of
3005'``catch``' clauses in high-level languages that support them.
3006
3007For the purposes of the SSA form, the definition of the value returned
3008by the '``invoke``' instruction is deemed to occur on the edge from the
3009current block to the "normal" label. If the callee unwinds then no
3010return value is available.
3011
3012Example:
3013""""""""
3014
3015.. code-block:: llvm
3016
3017 %retval = invoke i32 @Test(i32 15) to label %Continue
3018 unwind label %TestCleanup ; {i32}:retval set
3019 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3020 unwind label %TestCleanup ; {i32}:retval set
3021
3022.. _i_resume:
3023
3024'``resume``' Instruction
3025^^^^^^^^^^^^^^^^^^^^^^^^
3026
3027Syntax:
3028"""""""
3029
3030::
3031
3032 resume <type> <value>
3033
3034Overview:
3035"""""""""
3036
3037The '``resume``' instruction is a terminator instruction that has no
3038successors.
3039
3040Arguments:
3041""""""""""
3042
3043The '``resume``' instruction requires one argument, which must have the
3044same type as the result of any '``landingpad``' instruction in the same
3045function.
3046
3047Semantics:
3048""""""""""
3049
3050The '``resume``' instruction resumes propagation of an existing
3051(in-flight) exception whose unwinding was interrupted with a
3052:ref:`landingpad <i_landingpad>` instruction.
3053
3054Example:
3055""""""""
3056
3057.. code-block:: llvm
3058
3059 resume { i8*, i32 } %exn
3060
3061.. _i_unreachable:
3062
3063'``unreachable``' Instruction
3064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3065
3066Syntax:
3067"""""""
3068
3069::
3070
3071 unreachable
3072
3073Overview:
3074"""""""""
3075
3076The '``unreachable``' instruction has no defined semantics. This
3077instruction is used to inform the optimizer that a particular portion of
3078the code is not reachable. This can be used to indicate that the code
3079after a no-return function cannot be reached, and other facts.
3080
3081Semantics:
3082""""""""""
3083
3084The '``unreachable``' instruction has no defined semantics.
3085
3086.. _binaryops:
3087
3088Binary Operations
3089-----------------
3090
3091Binary operators are used to do most of the computation in a program.
3092They require two operands of the same type, execute an operation on
3093them, and produce a single value. The operands might represent multiple
3094data, as is the case with the :ref:`vector <t_vector>` data type. The
3095result value has the same type as its operands.
3096
3097There are several different binary operators:
3098
3099.. _i_add:
3100
3101'``add``' Instruction
3102^^^^^^^^^^^^^^^^^^^^^
3103
3104Syntax:
3105"""""""
3106
3107::
3108
3109 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3110 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3111 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3112 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3113
3114Overview:
3115"""""""""
3116
3117The '``add``' instruction returns the sum of its two operands.
3118
3119Arguments:
3120""""""""""
3121
3122The two arguments to the '``add``' instruction must be
3123:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3124arguments must have identical types.
3125
3126Semantics:
3127""""""""""
3128
3129The value produced is the integer sum of the two operands.
3130
3131If the sum has unsigned overflow, the result returned is the
3132mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3133the result.
3134
3135Because LLVM integers use a two's complement representation, this
3136instruction is appropriate for both signed and unsigned integers.
3137
3138``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3139respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3140result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3141unsigned and/or signed overflow, respectively, occurs.
3142
3143Example:
3144""""""""
3145
3146.. code-block:: llvm
3147
3148 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3149
3150.. _i_fadd:
3151
3152'``fadd``' Instruction
3153^^^^^^^^^^^^^^^^^^^^^^
3154
3155Syntax:
3156"""""""
3157
3158::
3159
3160 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3161
3162Overview:
3163"""""""""
3164
3165The '``fadd``' instruction returns the sum of its two operands.
3166
3167Arguments:
3168""""""""""
3169
3170The two arguments to the '``fadd``' instruction must be :ref:`floating
3171point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3172Both arguments must have identical types.
3173
3174Semantics:
3175""""""""""
3176
3177The value produced is the floating point sum of the two operands. This
3178instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3179which are optimization hints to enable otherwise unsafe floating point
3180optimizations:
3181
3182Example:
3183""""""""
3184
3185.. code-block:: llvm
3186
3187 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3188
3189'``sub``' Instruction
3190^^^^^^^^^^^^^^^^^^^^^
3191
3192Syntax:
3193"""""""
3194
3195::
3196
3197 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3198 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3199 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3200 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3201
3202Overview:
3203"""""""""
3204
3205The '``sub``' instruction returns the difference of its two operands.
3206
3207Note that the '``sub``' instruction is used to represent the '``neg``'
3208instruction present in most other intermediate representations.
3209
3210Arguments:
3211""""""""""
3212
3213The two arguments to the '``sub``' instruction must be
3214:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3215arguments must have identical types.
3216
3217Semantics:
3218""""""""""
3219
3220The value produced is the integer difference of the two operands.
3221
3222If the difference has unsigned overflow, the result returned is the
3223mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3224the result.
3225
3226Because LLVM integers use a two's complement representation, this
3227instruction is appropriate for both signed and unsigned integers.
3228
3229``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3230respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3231result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3232unsigned and/or signed overflow, respectively, occurs.
3233
3234Example:
3235""""""""
3236
3237.. code-block:: llvm
3238
3239 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3240 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3241
3242.. _i_fsub:
3243
3244'``fsub``' Instruction
3245^^^^^^^^^^^^^^^^^^^^^^
3246
3247Syntax:
3248"""""""
3249
3250::
3251
3252 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3253
3254Overview:
3255"""""""""
3256
3257The '``fsub``' instruction returns the difference of its two operands.
3258
3259Note that the '``fsub``' instruction is used to represent the '``fneg``'
3260instruction present in most other intermediate representations.
3261
3262Arguments:
3263""""""""""
3264
3265The two arguments to the '``fsub``' instruction must be :ref:`floating
3266point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3267Both arguments must have identical types.
3268
3269Semantics:
3270""""""""""
3271
3272The value produced is the floating point difference of the two operands.
3273This instruction can also take any number of :ref:`fast-math
3274flags <fastmath>`, which are optimization hints to enable otherwise
3275unsafe floating point optimizations:
3276
3277Example:
3278""""""""
3279
3280.. code-block:: llvm
3281
3282 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3283 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3284
3285'``mul``' Instruction
3286^^^^^^^^^^^^^^^^^^^^^
3287
3288Syntax:
3289"""""""
3290
3291::
3292
3293 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3294 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3295 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3296 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3297
3298Overview:
3299"""""""""
3300
3301The '``mul``' instruction returns the product of its two operands.
3302
3303Arguments:
3304""""""""""
3305
3306The two arguments to the '``mul``' instruction must be
3307:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3308arguments must have identical types.
3309
3310Semantics:
3311""""""""""
3312
3313The value produced is the integer product of the two operands.
3314
3315If the result of the multiplication has unsigned overflow, the result
3316returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3317bit width of the result.
3318
3319Because LLVM integers use a two's complement representation, and the
3320result is the same width as the operands, this instruction returns the
3321correct result for both signed and unsigned integers. If a full product
3322(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3323sign-extended or zero-extended as appropriate to the width of the full
3324product.
3325
3326``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3327respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3328result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3329unsigned and/or signed overflow, respectively, occurs.
3330
3331Example:
3332""""""""
3333
3334.. code-block:: llvm
3335
3336 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3337
3338.. _i_fmul:
3339
3340'``fmul``' Instruction
3341^^^^^^^^^^^^^^^^^^^^^^
3342
3343Syntax:
3344"""""""
3345
3346::
3347
3348 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3349
3350Overview:
3351"""""""""
3352
3353The '``fmul``' instruction returns the product of its two operands.
3354
3355Arguments:
3356""""""""""
3357
3358The two arguments to the '``fmul``' instruction must be :ref:`floating
3359point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3360Both arguments must have identical types.
3361
3362Semantics:
3363""""""""""
3364
3365The value produced is the floating point product of the two operands.
3366This instruction can also take any number of :ref:`fast-math
3367flags <fastmath>`, which are optimization hints to enable otherwise
3368unsafe floating point optimizations:
3369
3370Example:
3371""""""""
3372
3373.. code-block:: llvm
3374
3375 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3376
3377'``udiv``' Instruction
3378^^^^^^^^^^^^^^^^^^^^^^
3379
3380Syntax:
3381"""""""
3382
3383::
3384
3385 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3386 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3387
3388Overview:
3389"""""""""
3390
3391The '``udiv``' instruction returns the quotient of its two operands.
3392
3393Arguments:
3394""""""""""
3395
3396The two arguments to the '``udiv``' instruction must be
3397:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3398arguments must have identical types.
3399
3400Semantics:
3401""""""""""
3402
3403The value produced is the unsigned integer quotient of the two operands.
3404
3405Note that unsigned integer division and signed integer division are
3406distinct operations; for signed integer division, use '``sdiv``'.
3407
3408Division by zero leads to undefined behavior.
3409
3410If the ``exact`` keyword is present, the result value of the ``udiv`` is
3411a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3412such, "((a udiv exact b) mul b) == a").
3413
3414Example:
3415""""""""
3416
3417.. code-block:: llvm
3418
3419 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3420
3421'``sdiv``' Instruction
3422^^^^^^^^^^^^^^^^^^^^^^
3423
3424Syntax:
3425"""""""
3426
3427::
3428
3429 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3430 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3431
3432Overview:
3433"""""""""
3434
3435The '``sdiv``' instruction returns the quotient of its two operands.
3436
3437Arguments:
3438""""""""""
3439
3440The two arguments to the '``sdiv``' instruction must be
3441:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3442arguments must have identical types.
3443
3444Semantics:
3445""""""""""
3446
3447The value produced is the signed integer quotient of the two operands
3448rounded towards zero.
3449
3450Note that signed integer division and unsigned integer division are
3451distinct operations; for unsigned integer division, use '``udiv``'.
3452
3453Division by zero leads to undefined behavior. Overflow also leads to
3454undefined behavior; this is a rare case, but can occur, for example, by
3455doing a 32-bit division of -2147483648 by -1.
3456
3457If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3458a :ref:`poison value <poisonvalues>` if the result would be rounded.
3459
3460Example:
3461""""""""
3462
3463.. code-block:: llvm
3464
3465 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3466
3467.. _i_fdiv:
3468
3469'``fdiv``' Instruction
3470^^^^^^^^^^^^^^^^^^^^^^
3471
3472Syntax:
3473"""""""
3474
3475::
3476
3477 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3478
3479Overview:
3480"""""""""
3481
3482The '``fdiv``' instruction returns the quotient of its two operands.
3483
3484Arguments:
3485""""""""""
3486
3487The two arguments to the '``fdiv``' instruction must be :ref:`floating
3488point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3489Both arguments must have identical types.
3490
3491Semantics:
3492""""""""""
3493
3494The value produced is the floating point quotient of the two operands.
3495This instruction can also take any number of :ref:`fast-math
3496flags <fastmath>`, which are optimization hints to enable otherwise
3497unsafe floating point optimizations:
3498
3499Example:
3500""""""""
3501
3502.. code-block:: llvm
3503
3504 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3505
3506'``urem``' Instruction
3507^^^^^^^^^^^^^^^^^^^^^^
3508
3509Syntax:
3510"""""""
3511
3512::
3513
3514 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3515
3516Overview:
3517"""""""""
3518
3519The '``urem``' instruction returns the remainder from the unsigned
3520division of its two arguments.
3521
3522Arguments:
3523""""""""""
3524
3525The two arguments to the '``urem``' instruction must be
3526:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3527arguments must have identical types.
3528
3529Semantics:
3530""""""""""
3531
3532This instruction returns the unsigned integer *remainder* of a division.
3533This instruction always performs an unsigned division to get the
3534remainder.
3535
3536Note that unsigned integer remainder and signed integer remainder are
3537distinct operations; for signed integer remainder, use '``srem``'.
3538
3539Taking the remainder of a division by zero leads to undefined behavior.
3540
3541Example:
3542""""""""
3543
3544.. code-block:: llvm
3545
3546 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3547
3548'``srem``' Instruction
3549^^^^^^^^^^^^^^^^^^^^^^
3550
3551Syntax:
3552"""""""
3553
3554::
3555
3556 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3557
3558Overview:
3559"""""""""
3560
3561The '``srem``' instruction returns the remainder from the signed
3562division of its two operands. This instruction can also take
3563:ref:`vector <t_vector>` versions of the values in which case the elements
3564must be integers.
3565
3566Arguments:
3567""""""""""
3568
3569The two arguments to the '``srem``' instruction must be
3570:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3571arguments must have identical types.
3572
3573Semantics:
3574""""""""""
3575
3576This instruction returns the *remainder* of a division (where the result
3577is either zero or has the same sign as the dividend, ``op1``), not the
3578*modulo* operator (where the result is either zero or has the same sign
3579as the divisor, ``op2``) of a value. For more information about the
3580difference, see `The Math
3581Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3582table of how this is implemented in various languages, please see
3583`Wikipedia: modulo
3584operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3585
3586Note that signed integer remainder and unsigned integer remainder are
3587distinct operations; for unsigned integer remainder, use '``urem``'.
3588
3589Taking the remainder of a division by zero leads to undefined behavior.
3590Overflow also leads to undefined behavior; this is a rare case, but can
3591occur, for example, by taking the remainder of a 32-bit division of
3592-2147483648 by -1. (The remainder doesn't actually overflow, but this
3593rule lets srem be implemented using instructions that return both the
3594result of the division and the remainder.)
3595
3596Example:
3597""""""""
3598
3599.. code-block:: llvm
3600
3601 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3602
3603.. _i_frem:
3604
3605'``frem``' Instruction
3606^^^^^^^^^^^^^^^^^^^^^^
3607
3608Syntax:
3609"""""""
3610
3611::
3612
3613 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3614
3615Overview:
3616"""""""""
3617
3618The '``frem``' instruction returns the remainder from the division of
3619its two operands.
3620
3621Arguments:
3622""""""""""
3623
3624The two arguments to the '``frem``' instruction must be :ref:`floating
3625point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3626Both arguments must have identical types.
3627
3628Semantics:
3629""""""""""
3630
3631This instruction returns the *remainder* of a division. The remainder
3632has the same sign as the dividend. This instruction can also take any
3633number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3634to enable otherwise unsafe floating point optimizations:
3635
3636Example:
3637""""""""
3638
3639.. code-block:: llvm
3640
3641 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3642
3643.. _bitwiseops:
3644
3645Bitwise Binary Operations
3646-------------------------
3647
3648Bitwise binary operators are used to do various forms of bit-twiddling
3649in a program. They are generally very efficient instructions and can
3650commonly be strength reduced from other instructions. They require two
3651operands of the same type, execute an operation on them, and produce a
3652single value. The resulting value is the same type as its operands.
3653
3654'``shl``' Instruction
3655^^^^^^^^^^^^^^^^^^^^^
3656
3657Syntax:
3658"""""""
3659
3660::
3661
3662 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3663 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3664 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3665 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3666
3667Overview:
3668"""""""""
3669
3670The '``shl``' instruction returns the first operand shifted to the left
3671a specified number of bits.
3672
3673Arguments:
3674""""""""""
3675
3676Both arguments to the '``shl``' instruction must be the same
3677:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3678'``op2``' is treated as an unsigned value.
3679
3680Semantics:
3681""""""""""
3682
3683The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3684where ``n`` is the width of the result. If ``op2`` is (statically or
3685dynamically) negative or equal to or larger than the number of bits in
3686``op1``, the result is undefined. If the arguments are vectors, each
3687vector element of ``op1`` is shifted by the corresponding shift amount
3688in ``op2``.
3689
3690If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3691value <poisonvalues>` if it shifts out any non-zero bits. If the
3692``nsw`` keyword is present, then the shift produces a :ref:`poison
3693value <poisonvalues>` if it shifts out any bits that disagree with the
3694resultant sign bit. As such, NUW/NSW have the same semantics as they
3695would if the shift were expressed as a mul instruction with the same
3696nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3697
3698Example:
3699""""""""
3700
3701.. code-block:: llvm
3702
3703 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3704 <result> = shl i32 4, 2 ; yields {i32}: 16
3705 <result> = shl i32 1, 10 ; yields {i32}: 1024
3706 <result> = shl i32 1, 32 ; undefined
3707 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3708
3709'``lshr``' Instruction
3710^^^^^^^^^^^^^^^^^^^^^^
3711
3712Syntax:
3713"""""""
3714
3715::
3716
3717 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3718 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3719
3720Overview:
3721"""""""""
3722
3723The '``lshr``' instruction (logical shift right) returns the first
3724operand shifted to the right a specified number of bits with zero fill.
3725
3726Arguments:
3727""""""""""
3728
3729Both arguments to the '``lshr``' instruction must be the same
3730:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3731'``op2``' is treated as an unsigned value.
3732
3733Semantics:
3734""""""""""
3735
3736This instruction always performs a logical shift right operation. The
3737most significant bits of the result will be filled with zero bits after
3738the shift. If ``op2`` is (statically or dynamically) equal to or larger
3739than the number of bits in ``op1``, the result is undefined. If the
3740arguments are vectors, each vector element of ``op1`` is shifted by the
3741corresponding shift amount in ``op2``.
3742
3743If the ``exact`` keyword is present, the result value of the ``lshr`` is
3744a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3745non-zero.
3746
3747Example:
3748""""""""
3749
3750.. code-block:: llvm
3751
3752 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3753 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3754 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3755 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3756 <result> = lshr i32 1, 32 ; undefined
3757 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3758
3759'``ashr``' Instruction
3760^^^^^^^^^^^^^^^^^^^^^^
3761
3762Syntax:
3763"""""""
3764
3765::
3766
3767 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3768 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3769
3770Overview:
3771"""""""""
3772
3773The '``ashr``' instruction (arithmetic shift right) returns the first
3774operand shifted to the right a specified number of bits with sign
3775extension.
3776
3777Arguments:
3778""""""""""
3779
3780Both arguments to the '``ashr``' instruction must be the same
3781:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3782'``op2``' is treated as an unsigned value.
3783
3784Semantics:
3785""""""""""
3786
3787This instruction always performs an arithmetic shift right operation,
3788The most significant bits of the result will be filled with the sign bit
3789of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3790than the number of bits in ``op1``, the result is undefined. If the
3791arguments are vectors, each vector element of ``op1`` is shifted by the
3792corresponding shift amount in ``op2``.
3793
3794If the ``exact`` keyword is present, the result value of the ``ashr`` is
3795a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3796non-zero.
3797
3798Example:
3799""""""""
3800
3801.. code-block:: llvm
3802
3803 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3804 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3805 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3806 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3807 <result> = ashr i32 1, 32 ; undefined
3808 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3809
3810'``and``' Instruction
3811^^^^^^^^^^^^^^^^^^^^^
3812
3813Syntax:
3814"""""""
3815
3816::
3817
3818 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3819
3820Overview:
3821"""""""""
3822
3823The '``and``' instruction returns the bitwise logical and of its two
3824operands.
3825
3826Arguments:
3827""""""""""
3828
3829The two arguments to the '``and``' instruction must be
3830:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3831arguments must have identical types.
3832
3833Semantics:
3834""""""""""
3835
3836The truth table used for the '``and``' instruction is:
3837
3838+-----+-----+-----+
3839| In0 | In1 | Out |
3840+-----+-----+-----+
3841| 0 | 0 | 0 |
3842+-----+-----+-----+
3843| 0 | 1 | 0 |
3844+-----+-----+-----+
3845| 1 | 0 | 0 |
3846+-----+-----+-----+
3847| 1 | 1 | 1 |
3848+-----+-----+-----+
3849
3850Example:
3851""""""""
3852
3853.. code-block:: llvm
3854
3855 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3856 <result> = and i32 15, 40 ; yields {i32}:result = 8
3857 <result> = and i32 4, 8 ; yields {i32}:result = 0
3858
3859'``or``' Instruction
3860^^^^^^^^^^^^^^^^^^^^
3861
3862Syntax:
3863"""""""
3864
3865::
3866
3867 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3868
3869Overview:
3870"""""""""
3871
3872The '``or``' instruction returns the bitwise logical inclusive or of its
3873two operands.
3874
3875Arguments:
3876""""""""""
3877
3878The two arguments to the '``or``' instruction must be
3879:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3880arguments must have identical types.
3881
3882Semantics:
3883""""""""""
3884
3885The truth table used for the '``or``' instruction is:
3886
3887+-----+-----+-----+
3888| In0 | In1 | Out |
3889+-----+-----+-----+
3890| 0 | 0 | 0 |
3891+-----+-----+-----+
3892| 0 | 1 | 1 |
3893+-----+-----+-----+
3894| 1 | 0 | 1 |
3895+-----+-----+-----+
3896| 1 | 1 | 1 |
3897+-----+-----+-----+
3898
3899Example:
3900""""""""
3901
3902::
3903
3904 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
3905 <result> = or i32 15, 40 ; yields {i32}:result = 47
3906 <result> = or i32 4, 8 ; yields {i32}:result = 12
3907
3908'``xor``' Instruction
3909^^^^^^^^^^^^^^^^^^^^^
3910
3911Syntax:
3912"""""""
3913
3914::
3915
3916 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
3917
3918Overview:
3919"""""""""
3920
3921The '``xor``' instruction returns the bitwise logical exclusive or of
3922its two operands. The ``xor`` is used to implement the "one's
3923complement" operation, which is the "~" operator in C.
3924
3925Arguments:
3926""""""""""
3927
3928The two arguments to the '``xor``' instruction must be
3929:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3930arguments must have identical types.
3931
3932Semantics:
3933""""""""""
3934
3935The truth table used for the '``xor``' instruction is:
3936
3937+-----+-----+-----+
3938| In0 | In1 | Out |
3939+-----+-----+-----+
3940| 0 | 0 | 0 |
3941+-----+-----+-----+
3942| 0 | 1 | 1 |
3943+-----+-----+-----+
3944| 1 | 0 | 1 |
3945+-----+-----+-----+
3946| 1 | 1 | 0 |
3947+-----+-----+-----+
3948
3949Example:
3950""""""""
3951
3952.. code-block:: llvm
3953
3954 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
3955 <result> = xor i32 15, 40 ; yields {i32}:result = 39
3956 <result> = xor i32 4, 8 ; yields {i32}:result = 12
3957 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
3958
3959Vector Operations
3960-----------------
3961
3962LLVM supports several instructions to represent vector operations in a
3963target-independent manner. These instructions cover the element-access
3964and vector-specific operations needed to process vectors effectively.
3965While LLVM does directly support these vector operations, many
3966sophisticated algorithms will want to use target-specific intrinsics to
3967take full advantage of a specific target.
3968
3969.. _i_extractelement:
3970
3971'``extractelement``' Instruction
3972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3973
3974Syntax:
3975"""""""
3976
3977::
3978
3979 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
3980
3981Overview:
3982"""""""""
3983
3984The '``extractelement``' instruction extracts a single scalar element
3985from a vector at a specified index.
3986
3987Arguments:
3988""""""""""
3989
3990The first operand of an '``extractelement``' instruction is a value of
3991:ref:`vector <t_vector>` type. The second operand is an index indicating
3992the position from which to extract the element. The index may be a
3993variable.
3994
3995Semantics:
3996""""""""""
3997
3998The result is a scalar of the same type as the element type of ``val``.
3999Its value is the value at position ``idx`` of ``val``. If ``idx``
4000exceeds the length of ``val``, the results are undefined.
4001
4002Example:
4003""""""""
4004
4005.. code-block:: llvm
4006
4007 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4008
4009.. _i_insertelement:
4010
4011'``insertelement``' Instruction
4012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4013
4014Syntax:
4015"""""""
4016
4017::
4018
4019 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4020
4021Overview:
4022"""""""""
4023
4024The '``insertelement``' instruction inserts a scalar element into a
4025vector at a specified index.
4026
4027Arguments:
4028""""""""""
4029
4030The first operand of an '``insertelement``' instruction is a value of
4031:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4032type must equal the element type of the first operand. The third operand
4033is an index indicating the position at which to insert the value. The
4034index may be a variable.
4035
4036Semantics:
4037""""""""""
4038
4039The result is a vector of the same type as ``val``. Its element values
4040are those of ``val`` except at position ``idx``, where it gets the value
4041``elt``. If ``idx`` exceeds the length of ``val``, the results are
4042undefined.
4043
4044Example:
4045""""""""
4046
4047.. code-block:: llvm
4048
4049 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4050
4051.. _i_shufflevector:
4052
4053'``shufflevector``' Instruction
4054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4055
4056Syntax:
4057"""""""
4058
4059::
4060
4061 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4062
4063Overview:
4064"""""""""
4065
4066The '``shufflevector``' instruction constructs a permutation of elements
4067from two input vectors, returning a vector with the same element type as
4068the input and length that is the same as the shuffle mask.
4069
4070Arguments:
4071""""""""""
4072
4073The first two operands of a '``shufflevector``' instruction are vectors
4074with the same type. The third argument is a shuffle mask whose element
4075type is always 'i32'. The result of the instruction is a vector whose
4076length is the same as the shuffle mask and whose element type is the
4077same as the element type of the first two operands.
4078
4079The shuffle mask operand is required to be a constant vector with either
4080constant integer or undef values.
4081
4082Semantics:
4083""""""""""
4084
4085The elements of the two input vectors are numbered from left to right
4086across both of the vectors. The shuffle mask operand specifies, for each
4087element of the result vector, which element of the two input vectors the
4088result element gets. The element selector may be undef (meaning "don't
4089care") and the second operand may be undef if performing a shuffle from
4090only one vector.
4091
4092Example:
4093""""""""
4094
4095.. code-block:: llvm
4096
4097 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4098 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4099 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4100 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4101 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4102 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4103 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4104 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4105
4106Aggregate Operations
4107--------------------
4108
4109LLVM supports several instructions for working with
4110:ref:`aggregate <t_aggregate>` values.
4111
4112.. _i_extractvalue:
4113
4114'``extractvalue``' Instruction
4115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4116
4117Syntax:
4118"""""""
4119
4120::
4121
4122 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4123
4124Overview:
4125"""""""""
4126
4127The '``extractvalue``' instruction extracts the value of a member field
4128from an :ref:`aggregate <t_aggregate>` value.
4129
4130Arguments:
4131""""""""""
4132
4133The first operand of an '``extractvalue``' instruction is a value of
4134:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4135constant indices to specify which value to extract in a similar manner
4136as indices in a '``getelementptr``' instruction.
4137
4138The major differences to ``getelementptr`` indexing are:
4139
4140- Since the value being indexed is not a pointer, the first index is
4141 omitted and assumed to be zero.
4142- At least one index must be specified.
4143- Not only struct indices but also array indices must be in bounds.
4144
4145Semantics:
4146""""""""""
4147
4148The result is the value at the position in the aggregate specified by
4149the index operands.
4150
4151Example:
4152""""""""
4153
4154.. code-block:: llvm
4155
4156 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4157
4158.. _i_insertvalue:
4159
4160'``insertvalue``' Instruction
4161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4162
4163Syntax:
4164"""""""
4165
4166::
4167
4168 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4169
4170Overview:
4171"""""""""
4172
4173The '``insertvalue``' instruction inserts a value into a member field in
4174an :ref:`aggregate <t_aggregate>` value.
4175
4176Arguments:
4177""""""""""
4178
4179The first operand of an '``insertvalue``' instruction is a value of
4180:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4181a first-class value to insert. The following operands are constant
4182indices indicating the position at which to insert the value in a
4183similar manner as indices in a '``extractvalue``' instruction. The value
4184to insert must have the same type as the value identified by the
4185indices.
4186
4187Semantics:
4188""""""""""
4189
4190The result is an aggregate of the same type as ``val``. Its value is
4191that of ``val`` except that the value at the position specified by the
4192indices is that of ``elt``.
4193
4194Example:
4195""""""""
4196
4197.. code-block:: llvm
4198
4199 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4200 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4201 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4202
4203.. _memoryops:
4204
4205Memory Access and Addressing Operations
4206---------------------------------------
4207
4208A key design point of an SSA-based representation is how it represents
4209memory. In LLVM, no memory locations are in SSA form, which makes things
4210very simple. This section describes how to read, write, and allocate
4211memory in LLVM.
4212
4213.. _i_alloca:
4214
4215'``alloca``' Instruction
4216^^^^^^^^^^^^^^^^^^^^^^^^
4217
4218Syntax:
4219"""""""
4220
4221::
4222
4223 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4224
4225Overview:
4226"""""""""
4227
4228The '``alloca``' instruction allocates memory on the stack frame of the
4229currently executing function, to be automatically released when this
4230function returns to its caller. The object is always allocated in the
4231generic address space (address space zero).
4232
4233Arguments:
4234""""""""""
4235
4236The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4237bytes of memory on the runtime stack, returning a pointer of the
4238appropriate type to the program. If "NumElements" is specified, it is
4239the number of elements allocated, otherwise "NumElements" is defaulted
4240to be one. If a constant alignment is specified, the value result of the
4241allocation is guaranteed to be aligned to at least that boundary. If not
4242specified, or if zero, the target can choose to align the allocation on
4243any convenient boundary compatible with the type.
4244
4245'``type``' may be any sized type.
4246
4247Semantics:
4248""""""""""
4249
4250Memory is allocated; a pointer is returned. The operation is undefined
4251if there is insufficient stack space for the allocation. '``alloca``'d
4252memory is automatically released when the function returns. The
4253'``alloca``' instruction is commonly used to represent automatic
4254variables that must have an address available. When the function returns
4255(either with the ``ret`` or ``resume`` instructions), the memory is
4256reclaimed. Allocating zero bytes is legal, but the result is undefined.
4257The order in which memory is allocated (ie., which way the stack grows)
4258is not specified.
4259
4260Example:
4261""""""""
4262
4263.. code-block:: llvm
4264
4265 %ptr = alloca i32 ; yields {i32*}:ptr
4266 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4267 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4268 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4269
4270.. _i_load:
4271
4272'``load``' Instruction
4273^^^^^^^^^^^^^^^^^^^^^^
4274
4275Syntax:
4276"""""""
4277
4278::
4279
4280 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4281 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4282 !<index> = !{ i32 1 }
4283
4284Overview:
4285"""""""""
4286
4287The '``load``' instruction is used to read from memory.
4288
4289Arguments:
4290""""""""""
4291
4292The argument to the '``load``' instruction specifies the memory address
4293from which to load. The pointer must point to a :ref:`first
4294class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4295then the optimizer is not allowed to modify the number or order of
4296execution of this ``load`` with other :ref:`volatile
4297operations <volatile>`.
4298
4299If the ``load`` is marked as ``atomic``, it takes an extra
4300:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4301``release`` and ``acq_rel`` orderings are not valid on ``load``
4302instructions. Atomic loads produce :ref:`defined <memmodel>` results
4303when they may see multiple atomic stores. The type of the pointee must
4304be an integer type whose bit width is a power of two greater than or
4305equal to eight and less than or equal to a target-specific size limit.
4306``align`` must be explicitly specified on atomic loads, and the load has
4307undefined behavior if the alignment is not set to a value which is at
4308least the size in bytes of the pointee. ``!nontemporal`` does not have
4309any defined semantics for atomic loads.
4310
4311The optional constant ``align`` argument specifies the alignment of the
4312operation (that is, the alignment of the memory address). A value of 0
4313or an omitted ``align`` argument means that the operation has the abi
4314alignment for the target. It is the responsibility of the code emitter
4315to ensure that the alignment information is correct. Overestimating the
4316alignment results in undefined behavior. Underestimating the alignment
4317may produce less efficient code. An alignment of 1 is always safe.
4318
4319The optional ``!nontemporal`` metadata must reference a single
4320metatadata name <index> corresponding to a metadata node with one
4321``i32`` entry of value 1. The existence of the ``!nontemporal``
4322metatadata on the instruction tells the optimizer and code generator
4323that this load is not expected to be reused in the cache. The code
4324generator may select special instructions to save cache bandwidth, such
4325as the ``MOVNT`` instruction on x86.
4326
4327The optional ``!invariant.load`` metadata must reference a single
4328metatadata name <index> corresponding to a metadata node with no
4329entries. The existence of the ``!invariant.load`` metatadata on the
4330instruction tells the optimizer and code generator that this load
4331address points to memory which does not change value during program
4332execution. The optimizer may then move this load around, for example, by
4333hoisting it out of loops using loop invariant code motion.
4334
4335Semantics:
4336""""""""""
4337
4338The location of memory pointed to is loaded. If the value being loaded
4339is of scalar type then the number of bytes read does not exceed the
4340minimum number of bytes needed to hold all bits of the type. For
4341example, loading an ``i24`` reads at most three bytes. When loading a
4342value of a type like ``i20`` with a size that is not an integral number
4343of bytes, the result is undefined if the value was not originally
4344written using a store of the same type.
4345
4346Examples:
4347"""""""""
4348
4349.. code-block:: llvm
4350
4351 %ptr = alloca i32 ; yields {i32*}:ptr
4352 store i32 3, i32* %ptr ; yields {void}
4353 %val = load i32* %ptr ; yields {i32}:val = i32 3
4354
4355.. _i_store:
4356
4357'``store``' Instruction
4358^^^^^^^^^^^^^^^^^^^^^^^
4359
4360Syntax:
4361"""""""
4362
4363::
4364
4365 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4366 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4367
4368Overview:
4369"""""""""
4370
4371The '``store``' instruction is used to write to memory.
4372
4373Arguments:
4374""""""""""
4375
4376There are two arguments to the '``store``' instruction: a value to store
4377and an address at which to store it. The type of the '``<pointer>``'
4378operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4379the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4380then the optimizer is not allowed to modify the number or order of
4381execution of this ``store`` with other :ref:`volatile
4382operations <volatile>`.
4383
4384If the ``store`` is marked as ``atomic``, it takes an extra
4385:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4386``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4387instructions. Atomic loads produce :ref:`defined <memmodel>` results
4388when they may see multiple atomic stores. The type of the pointee must
4389be an integer type whose bit width is a power of two greater than or
4390equal to eight and less than or equal to a target-specific size limit.
4391``align`` must be explicitly specified on atomic stores, and the store
4392has undefined behavior if the alignment is not set to a value which is
4393at least the size in bytes of the pointee. ``!nontemporal`` does not
4394have any defined semantics for atomic stores.
4395
4396The optional constant "align" argument specifies the alignment of the
4397operation (that is, the alignment of the memory address). A value of 0
4398or an omitted "align" argument means that the operation has the abi
4399alignment for the target. It is the responsibility of the code emitter
4400to ensure that the alignment information is correct. Overestimating the
4401alignment results in an undefined behavior. Underestimating the
4402alignment may produce less efficient code. An alignment of 1 is always
4403safe.
4404
4405The optional !nontemporal metadata must reference a single metatadata
4406name <index> corresponding to a metadata node with one i32 entry of
4407value 1. The existence of the !nontemporal metatadata on the instruction
4408tells the optimizer and code generator that this load is not expected to
4409be reused in the cache. The code generator may select special
4410instructions to save cache bandwidth, such as the MOVNT instruction on
4411x86.
4412
4413Semantics:
4414""""""""""
4415
4416The contents of memory are updated to contain '``<value>``' at the
4417location specified by the '``<pointer>``' operand. If '``<value>``' is
4418of scalar type then the number of bytes written does not exceed the
4419minimum number of bytes needed to hold all bits of the type. For
4420example, storing an ``i24`` writes at most three bytes. When writing a
4421value of a type like ``i20`` with a size that is not an integral number
4422of bytes, it is unspecified what happens to the extra bits that do not
4423belong to the type, but they will typically be overwritten.
4424
4425Example:
4426""""""""
4427
4428.. code-block:: llvm
4429
4430 %ptr = alloca i32 ; yields {i32*}:ptr
4431 store i32 3, i32* %ptr ; yields {void}
4432 %val = load i32* %ptr ; yields {i32}:val = i32 3
4433
4434.. _i_fence:
4435
4436'``fence``' Instruction
4437^^^^^^^^^^^^^^^^^^^^^^^
4438
4439Syntax:
4440"""""""
4441
4442::
4443
4444 fence [singlethread] <ordering> ; yields {void}
4445
4446Overview:
4447"""""""""
4448
4449The '``fence``' instruction is used to introduce happens-before edges
4450between operations.
4451
4452Arguments:
4453""""""""""
4454
4455'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4456defines what *synchronizes-with* edges they add. They can only be given
4457``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4458
4459Semantics:
4460""""""""""
4461
4462A fence A which has (at least) ``release`` ordering semantics
4463*synchronizes with* a fence B with (at least) ``acquire`` ordering
4464semantics if and only if there exist atomic operations X and Y, both
4465operating on some atomic object M, such that A is sequenced before X, X
4466modifies M (either directly or through some side effect of a sequence
4467headed by X), Y is sequenced before B, and Y observes M. This provides a
4468*happens-before* dependency between A and B. Rather than an explicit
4469``fence``, one (but not both) of the atomic operations X or Y might
4470provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4471still *synchronize-with* the explicit ``fence`` and establish the
4472*happens-before* edge.
4473
4474A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4475``acquire`` and ``release`` semantics specified above, participates in
4476the global program order of other ``seq_cst`` operations and/or fences.
4477
4478The optional ":ref:`singlethread <singlethread>`" argument specifies
4479that the fence only synchronizes with other fences in the same thread.
4480(This is useful for interacting with signal handlers.)
4481
4482Example:
4483""""""""
4484
4485.. code-block:: llvm
4486
4487 fence acquire ; yields {void}
4488 fence singlethread seq_cst ; yields {void}
4489
4490.. _i_cmpxchg:
4491
4492'``cmpxchg``' Instruction
4493^^^^^^^^^^^^^^^^^^^^^^^^^
4494
4495Syntax:
4496"""""""
4497
4498::
4499
4500 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4501
4502Overview:
4503"""""""""
4504
4505The '``cmpxchg``' instruction is used to atomically modify memory. It
4506loads a value in memory and compares it to a given value. If they are
4507equal, it stores a new value into the memory.
4508
4509Arguments:
4510""""""""""
4511
4512There are three arguments to the '``cmpxchg``' instruction: an address
4513to operate on, a value to compare to the value currently be at that
4514address, and a new value to place at that address if the compared values
4515are equal. The type of '<cmp>' must be an integer type whose bit width
4516is a power of two greater than or equal to eight and less than or equal
4517to a target-specific size limit. '<cmp>' and '<new>' must have the same
4518type, and the type of '<pointer>' must be a pointer to that type. If the
4519``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4520to modify the number or order of execution of this ``cmpxchg`` with
4521other :ref:`volatile operations <volatile>`.
4522
4523The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4524synchronizes with other atomic operations.
4525
4526The optional "``singlethread``" argument declares that the ``cmpxchg``
4527is only atomic with respect to code (usually signal handlers) running in
4528the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4529respect to all other code in the system.
4530
4531The pointer passed into cmpxchg must have alignment greater than or
4532equal to the size in memory of the operand.
4533
4534Semantics:
4535""""""""""
4536
4537The contents of memory at the location specified by the '``<pointer>``'
4538operand is read and compared to '``<cmp>``'; if the read value is the
4539equal, '``<new>``' is written. The original value at the location is
4540returned.
4541
4542A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4543of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4544atomic load with an ordering parameter determined by dropping any
4545``release`` part of the ``cmpxchg``'s ordering.
4546
4547Example:
4548""""""""
4549
4550.. code-block:: llvm
4551
4552 entry:
4553 %orig = atomic load i32* %ptr unordered ; yields {i32}
4554 br label %loop
4555
4556 loop:
4557 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4558 %squared = mul i32 %cmp, %cmp
4559 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4560 %success = icmp eq i32 %cmp, %old
4561 br i1 %success, label %done, label %loop
4562
4563 done:
4564 ...
4565
4566.. _i_atomicrmw:
4567
4568'``atomicrmw``' Instruction
4569^^^^^^^^^^^^^^^^^^^^^^^^^^^
4570
4571Syntax:
4572"""""""
4573
4574::
4575
4576 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4577
4578Overview:
4579"""""""""
4580
4581The '``atomicrmw``' instruction is used to atomically modify memory.
4582
4583Arguments:
4584""""""""""
4585
4586There are three arguments to the '``atomicrmw``' instruction: an
4587operation to apply, an address whose value to modify, an argument to the
4588operation. The operation must be one of the following keywords:
4589
4590- xchg
4591- add
4592- sub
4593- and
4594- nand
4595- or
4596- xor
4597- max
4598- min
4599- umax
4600- umin
4601
4602The type of '<value>' must be an integer type whose bit width is a power
4603of two greater than or equal to eight and less than or equal to a
4604target-specific size limit. The type of the '``<pointer>``' operand must
4605be a pointer to that type. If the ``atomicrmw`` is marked as
4606``volatile``, then the optimizer is not allowed to modify the number or
4607order of execution of this ``atomicrmw`` with other :ref:`volatile
4608operations <volatile>`.
4609
4610Semantics:
4611""""""""""
4612
4613The contents of memory at the location specified by the '``<pointer>``'
4614operand are atomically read, modified, and written back. The original
4615value at the location is returned. The modification is specified by the
4616operation argument:
4617
4618- xchg: ``*ptr = val``
4619- add: ``*ptr = *ptr + val``
4620- sub: ``*ptr = *ptr - val``
4621- and: ``*ptr = *ptr & val``
4622- nand: ``*ptr = ~(*ptr & val)``
4623- or: ``*ptr = *ptr | val``
4624- xor: ``*ptr = *ptr ^ val``
4625- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4626- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4627- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4628 comparison)
4629- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4630 comparison)
4631
4632Example:
4633""""""""
4634
4635.. code-block:: llvm
4636
4637 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4638
4639.. _i_getelementptr:
4640
4641'``getelementptr``' Instruction
4642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4643
4644Syntax:
4645"""""""
4646
4647::
4648
4649 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4650 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4651 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4652
4653Overview:
4654"""""""""
4655
4656The '``getelementptr``' instruction is used to get the address of a
4657subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4658address calculation only and does not access memory.
4659
4660Arguments:
4661""""""""""
4662
4663The first argument is always a pointer or a vector of pointers, and
4664forms the basis of the calculation. The remaining arguments are indices
4665that indicate which of the elements of the aggregate object are indexed.
4666The interpretation of each index is dependent on the type being indexed
4667into. The first index always indexes the pointer value given as the
4668first argument, the second index indexes a value of the type pointed to
4669(not necessarily the value directly pointed to, since the first index
4670can be non-zero), etc. The first type indexed into must be a pointer
4671value, subsequent types can be arrays, vectors, and structs. Note that
4672subsequent types being indexed into can never be pointers, since that
4673would require loading the pointer before continuing calculation.
4674
4675The type of each index argument depends on the type it is indexing into.
4676When indexing into a (optionally packed) structure, only ``i32`` integer
4677**constants** are allowed (when using a vector of indices they must all
4678be the **same** ``i32`` integer constant). When indexing into an array,
4679pointer or vector, integers of any width are allowed, and they are not
4680required to be constant. These integers are treated as signed values
4681where relevant.
4682
4683For example, let's consider a C code fragment and how it gets compiled
4684to LLVM:
4685
4686.. code-block:: c
4687
4688 struct RT {
4689 char A;
4690 int B[10][20];
4691 char C;
4692 };
4693 struct ST {
4694 int X;
4695 double Y;
4696 struct RT Z;
4697 };
4698
4699 int *foo(struct ST *s) {
4700 return &s[1].Z.B[5][13];
4701 }
4702
4703The LLVM code generated by Clang is:
4704
4705.. code-block:: llvm
4706
4707 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4708 %struct.ST = type { i32, double, %struct.RT }
4709
4710 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4711 entry:
4712 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4713 ret i32* %arrayidx
4714 }
4715
4716Semantics:
4717""""""""""
4718
4719In the example above, the first index is indexing into the
4720'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4721= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4722indexes into the third element of the structure, yielding a
4723'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4724structure. The third index indexes into the second element of the
4725structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4726dimensions of the array are subscripted into, yielding an '``i32``'
4727type. The '``getelementptr``' instruction returns a pointer to this
4728element, thus computing a value of '``i32*``' type.
4729
4730Note that it is perfectly legal to index partially through a structure,
4731returning a pointer to an inner element. Because of this, the LLVM code
4732for the given testcase is equivalent to:
4733
4734.. code-block:: llvm
4735
4736 define i32* @foo(%struct.ST* %s) {
4737 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4738 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4739 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4740 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4741 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4742 ret i32* %t5
4743 }
4744
4745If the ``inbounds`` keyword is present, the result value of the
4746``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4747pointer is not an *in bounds* address of an allocated object, or if any
4748of the addresses that would be formed by successive addition of the
4749offsets implied by the indices to the base address with infinitely
4750precise signed arithmetic are not an *in bounds* address of that
4751allocated object. The *in bounds* addresses for an allocated object are
4752all the addresses that point into the object, plus the address one byte
4753past the end. In cases where the base is a vector of pointers the
4754``inbounds`` keyword applies to each of the computations element-wise.
4755
4756If the ``inbounds`` keyword is not present, the offsets are added to the
4757base address with silently-wrapping two's complement arithmetic. If the
4758offsets have a different width from the pointer, they are sign-extended
4759or truncated to the width of the pointer. The result value of the
4760``getelementptr`` may be outside the object pointed to by the base
4761pointer. The result value may not necessarily be used to access memory
4762though, even if it happens to point into allocated storage. See the
4763:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4764information.
4765
4766The getelementptr instruction is often confusing. For some more insight
4767into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4768
4769Example:
4770""""""""
4771
4772.. code-block:: llvm
4773
4774 ; yields [12 x i8]*:aptr
4775 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4776 ; yields i8*:vptr
4777 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4778 ; yields i8*:eptr
4779 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4780 ; yields i32*:iptr
4781 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4782
4783In cases where the pointer argument is a vector of pointers, each index
4784must be a vector with the same number of elements. For example:
4785
4786.. code-block:: llvm
4787
4788 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4789
4790Conversion Operations
4791---------------------
4792
4793The instructions in this category are the conversion instructions
4794(casting) which all take a single operand and a type. They perform
4795various bit conversions on the operand.
4796
4797'``trunc .. to``' Instruction
4798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4799
4800Syntax:
4801"""""""
4802
4803::
4804
4805 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4806
4807Overview:
4808"""""""""
4809
4810The '``trunc``' instruction truncates its operand to the type ``ty2``.
4811
4812Arguments:
4813""""""""""
4814
4815The '``trunc``' instruction takes a value to trunc, and a type to trunc
4816it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4817of the same number of integers. The bit size of the ``value`` must be
4818larger than the bit size of the destination type, ``ty2``. Equal sized
4819types are not allowed.
4820
4821Semantics:
4822""""""""""
4823
4824The '``trunc``' instruction truncates the high order bits in ``value``
4825and converts the remaining bits to ``ty2``. Since the source size must
4826be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4827It will always truncate bits.
4828
4829Example:
4830""""""""
4831
4832.. code-block:: llvm
4833
4834 %X = trunc i32 257 to i8 ; yields i8:1
4835 %Y = trunc i32 123 to i1 ; yields i1:true
4836 %Z = trunc i32 122 to i1 ; yields i1:false
4837 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4838
4839'``zext .. to``' Instruction
4840^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4841
4842Syntax:
4843"""""""
4844
4845::
4846
4847 <result> = zext <ty> <value> to <ty2> ; yields ty2
4848
4849Overview:
4850"""""""""
4851
4852The '``zext``' instruction zero extends its operand to type ``ty2``.
4853
4854Arguments:
4855""""""""""
4856
4857The '``zext``' instruction takes a value to cast, and a type to cast it
4858to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4859the same number of integers. The bit size of the ``value`` must be
4860smaller than the bit size of the destination type, ``ty2``.
4861
4862Semantics:
4863""""""""""
4864
4865The ``zext`` fills the high order bits of the ``value`` with zero bits
4866until it reaches the size of the destination type, ``ty2``.
4867
4868When zero extending from i1, the result will always be either 0 or 1.
4869
4870Example:
4871""""""""
4872
4873.. code-block:: llvm
4874
4875 %X = zext i32 257 to i64 ; yields i64:257
4876 %Y = zext i1 true to i32 ; yields i32:1
4877 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4878
4879'``sext .. to``' Instruction
4880^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4881
4882Syntax:
4883"""""""
4884
4885::
4886
4887 <result> = sext <ty> <value> to <ty2> ; yields ty2
4888
4889Overview:
4890"""""""""
4891
4892The '``sext``' sign extends ``value`` to the type ``ty2``.
4893
4894Arguments:
4895""""""""""
4896
4897The '``sext``' instruction takes a value to cast, and a type to cast it
4898to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4899the same number of integers. The bit size of the ``value`` must be
4900smaller than the bit size of the destination type, ``ty2``.
4901
4902Semantics:
4903""""""""""
4904
4905The '``sext``' instruction performs a sign extension by copying the sign
4906bit (highest order bit) of the ``value`` until it reaches the bit size
4907of the type ``ty2``.
4908
4909When sign extending from i1, the extension always results in -1 or 0.
4910
4911Example:
4912""""""""
4913
4914.. code-block:: llvm
4915
4916 %X = sext i8 -1 to i16 ; yields i16 :65535
4917 %Y = sext i1 true to i32 ; yields i32:-1
4918 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4919
4920'``fptrunc .. to``' Instruction
4921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4922
4923Syntax:
4924"""""""
4925
4926::
4927
4928 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
4929
4930Overview:
4931"""""""""
4932
4933The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
4934
4935Arguments:
4936""""""""""
4937
4938The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
4939value to cast and a :ref:`floating point <t_floating>` type to cast it to.
4940The size of ``value`` must be larger than the size of ``ty2``. This
4941implies that ``fptrunc`` cannot be used to make a *no-op cast*.
4942
4943Semantics:
4944""""""""""
4945
4946The '``fptrunc``' instruction truncates a ``value`` from a larger
4947:ref:`floating point <t_floating>` type to a smaller :ref:`floating
4948point <t_floating>` type. If the value cannot fit within the
4949destination type, ``ty2``, then the results are undefined.
4950
4951Example:
4952""""""""
4953
4954.. code-block:: llvm
4955
4956 %X = fptrunc double 123.0 to float ; yields float:123.0
4957 %Y = fptrunc double 1.0E+300 to float ; yields undefined
4958
4959'``fpext .. to``' Instruction
4960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4961
4962Syntax:
4963"""""""
4964
4965::
4966
4967 <result> = fpext <ty> <value> to <ty2> ; yields ty2
4968
4969Overview:
4970"""""""""
4971
4972The '``fpext``' extends a floating point ``value`` to a larger floating
4973point value.
4974
4975Arguments:
4976""""""""""
4977
4978The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
4979``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
4980to. The source type must be smaller than the destination type.
4981
4982Semantics:
4983""""""""""
4984
4985The '``fpext``' instruction extends the ``value`` from a smaller
4986:ref:`floating point <t_floating>` type to a larger :ref:`floating
4987point <t_floating>` type. The ``fpext`` cannot be used to make a
4988*no-op cast* because it always changes bits. Use ``bitcast`` to make a
4989*no-op cast* for a floating point cast.
4990
4991Example:
4992""""""""
4993
4994.. code-block:: llvm
4995
4996 %X = fpext float 3.125 to double ; yields double:3.125000e+00
4997 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
4998
4999'``fptoui .. to``' Instruction
5000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5001
5002Syntax:
5003"""""""
5004
5005::
5006
5007 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5008
5009Overview:
5010"""""""""
5011
5012The '``fptoui``' converts a floating point ``value`` to its unsigned
5013integer equivalent of type ``ty2``.
5014
5015Arguments:
5016""""""""""
5017
5018The '``fptoui``' instruction takes a value to cast, which must be a
5019scalar or vector :ref:`floating point <t_floating>` value, and a type to
5020cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5021``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5022type with the same number of elements as ``ty``
5023
5024Semantics:
5025""""""""""
5026
5027The '``fptoui``' instruction converts its :ref:`floating
5028point <t_floating>` operand into the nearest (rounding towards zero)
5029unsigned integer value. If the value cannot fit in ``ty2``, the results
5030are undefined.
5031
5032Example:
5033""""""""
5034
5035.. code-block:: llvm
5036
5037 %X = fptoui double 123.0 to i32 ; yields i32:123
5038 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5039 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5040
5041'``fptosi .. to``' Instruction
5042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5043
5044Syntax:
5045"""""""
5046
5047::
5048
5049 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5050
5051Overview:
5052"""""""""
5053
5054The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5055``value`` to type ``ty2``.
5056
5057Arguments:
5058""""""""""
5059
5060The '``fptosi``' instruction takes a value to cast, which must be a
5061scalar or vector :ref:`floating point <t_floating>` value, and a type to
5062cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5063``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5064type with the same number of elements as ``ty``
5065
5066Semantics:
5067""""""""""
5068
5069The '``fptosi``' instruction converts its :ref:`floating
5070point <t_floating>` operand into the nearest (rounding towards zero)
5071signed integer value. If the value cannot fit in ``ty2``, the results
5072are undefined.
5073
5074Example:
5075""""""""
5076
5077.. code-block:: llvm
5078
5079 %X = fptosi double -123.0 to i32 ; yields i32:-123
5080 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5081 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5082
5083'``uitofp .. to``' Instruction
5084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5085
5086Syntax:
5087"""""""
5088
5089::
5090
5091 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5092
5093Overview:
5094"""""""""
5095
5096The '``uitofp``' instruction regards ``value`` as an unsigned integer
5097and converts that value to the ``ty2`` type.
5098
5099Arguments:
5100""""""""""
5101
5102The '``uitofp``' instruction takes a value to cast, which must be a
5103scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5104``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5105``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5106type with the same number of elements as ``ty``
5107
5108Semantics:
5109""""""""""
5110
5111The '``uitofp``' instruction interprets its operand as an unsigned
5112integer quantity and converts it to the corresponding floating point
5113value. If the value cannot fit in the floating point value, the results
5114are undefined.
5115
5116Example:
5117""""""""
5118
5119.. code-block:: llvm
5120
5121 %X = uitofp i32 257 to float ; yields float:257.0
5122 %Y = uitofp i8 -1 to double ; yields double:255.0
5123
5124'``sitofp .. to``' Instruction
5125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5126
5127Syntax:
5128"""""""
5129
5130::
5131
5132 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5133
5134Overview:
5135"""""""""
5136
5137The '``sitofp``' instruction regards ``value`` as a signed integer and
5138converts that value to the ``ty2`` type.
5139
5140Arguments:
5141""""""""""
5142
5143The '``sitofp``' instruction takes a value to cast, which must be a
5144scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5145``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5146``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5147type with the same number of elements as ``ty``
5148
5149Semantics:
5150""""""""""
5151
5152The '``sitofp``' instruction interprets its operand as a signed integer
5153quantity and converts it to the corresponding floating point value. If
5154the value cannot fit in the floating point value, the results are
5155undefined.
5156
5157Example:
5158""""""""
5159
5160.. code-block:: llvm
5161
5162 %X = sitofp i32 257 to float ; yields float:257.0
5163 %Y = sitofp i8 -1 to double ; yields double:-1.0
5164
5165.. _i_ptrtoint:
5166
5167'``ptrtoint .. to``' Instruction
5168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5169
5170Syntax:
5171"""""""
5172
5173::
5174
5175 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5176
5177Overview:
5178"""""""""
5179
5180The '``ptrtoint``' instruction converts the pointer or a vector of
5181pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5182
5183Arguments:
5184""""""""""
5185
5186The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5187a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5188type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5189a vector of integers type.
5190
5191Semantics:
5192""""""""""
5193
5194The '``ptrtoint``' instruction converts ``value`` to integer type
5195``ty2`` by interpreting the pointer value as an integer and either
5196truncating or zero extending that value to the size of the integer type.
5197If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5198``value`` is larger than ``ty2`` then a truncation is done. If they are
5199the same size, then nothing is done (*no-op cast*) other than a type
5200change.
5201
5202Example:
5203""""""""
5204
5205.. code-block:: llvm
5206
5207 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5208 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5209 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5210
5211.. _i_inttoptr:
5212
5213'``inttoptr .. to``' Instruction
5214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5215
5216Syntax:
5217"""""""
5218
5219::
5220
5221 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5222
5223Overview:
5224"""""""""
5225
5226The '``inttoptr``' instruction converts an integer ``value`` to a
5227pointer type, ``ty2``.
5228
5229Arguments:
5230""""""""""
5231
5232The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5233cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5234type.
5235
5236Semantics:
5237""""""""""
5238
5239The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5240applying either a zero extension or a truncation depending on the size
5241of the integer ``value``. If ``value`` is larger than the size of a
5242pointer then a truncation is done. If ``value`` is smaller than the size
5243of a pointer then a zero extension is done. If they are the same size,
5244nothing is done (*no-op cast*).
5245
5246Example:
5247""""""""
5248
5249.. code-block:: llvm
5250
5251 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5252 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5253 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5254 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5255
5256.. _i_bitcast:
5257
5258'``bitcast .. to``' Instruction
5259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5260
5261Syntax:
5262"""""""
5263
5264::
5265
5266 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5267
5268Overview:
5269"""""""""
5270
5271The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5272changing any bits.
5273
5274Arguments:
5275""""""""""
5276
5277The '``bitcast``' instruction takes a value to cast, which must be a
5278non-aggregate first class value, and a type to cast it to, which must
5279also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5280sizes of ``value`` and the destination type, ``ty2``, must be identical.
5281If the source type is a pointer, the destination type must also be a
5282pointer. This instruction supports bitwise conversion of vectors to
5283integers and to vectors of other types (as long as they have the same
5284size).
5285
5286Semantics:
5287""""""""""
5288
5289The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5290always a *no-op cast* because no bits change with this conversion. The
5291conversion is done as if the ``value`` had been stored to memory and
5292read back as type ``ty2``. Pointer (or vector of pointers) types may
5293only be converted to other pointer (or vector of pointers) types with
5294this instruction. To convert pointers to other types, use the
5295:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5296first.
5297
5298Example:
5299""""""""
5300
5301.. code-block:: llvm
5302
5303 %X = bitcast i8 255 to i8 ; yields i8 :-1
5304 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5305 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5306 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5307
5308.. _otherops:
5309
5310Other Operations
5311----------------
5312
5313The instructions in this category are the "miscellaneous" instructions,
5314which defy better classification.
5315
5316.. _i_icmp:
5317
5318'``icmp``' Instruction
5319^^^^^^^^^^^^^^^^^^^^^^
5320
5321Syntax:
5322"""""""
5323
5324::
5325
5326 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5327
5328Overview:
5329"""""""""
5330
5331The '``icmp``' instruction returns a boolean value or a vector of
5332boolean values based on comparison of its two integer, integer vector,
5333pointer, or pointer vector operands.
5334
5335Arguments:
5336""""""""""
5337
5338The '``icmp``' instruction takes three operands. The first operand is
5339the condition code indicating the kind of comparison to perform. It is
5340not a value, just a keyword. The possible condition code are:
5341
5342#. ``eq``: equal
5343#. ``ne``: not equal
5344#. ``ugt``: unsigned greater than
5345#. ``uge``: unsigned greater or equal
5346#. ``ult``: unsigned less than
5347#. ``ule``: unsigned less or equal
5348#. ``sgt``: signed greater than
5349#. ``sge``: signed greater or equal
5350#. ``slt``: signed less than
5351#. ``sle``: signed less or equal
5352
5353The remaining two arguments must be :ref:`integer <t_integer>` or
5354:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5355must also be identical types.
5356
5357Semantics:
5358""""""""""
5359
5360The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5361code given as ``cond``. The comparison performed always yields either an
5362:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5363
5364#. ``eq``: yields ``true`` if the operands are equal, ``false``
5365 otherwise. No sign interpretation is necessary or performed.
5366#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5367 otherwise. No sign interpretation is necessary or performed.
5368#. ``ugt``: interprets the operands as unsigned values and yields
5369 ``true`` if ``op1`` is greater than ``op2``.
5370#. ``uge``: interprets the operands as unsigned values and yields
5371 ``true`` if ``op1`` is greater than or equal to ``op2``.
5372#. ``ult``: interprets the operands as unsigned values and yields
5373 ``true`` if ``op1`` is less than ``op2``.
5374#. ``ule``: interprets the operands as unsigned values and yields
5375 ``true`` if ``op1`` is less than or equal to ``op2``.
5376#. ``sgt``: interprets the operands as signed values and yields ``true``
5377 if ``op1`` is greater than ``op2``.
5378#. ``sge``: interprets the operands as signed values and yields ``true``
5379 if ``op1`` is greater than or equal to ``op2``.
5380#. ``slt``: interprets the operands as signed values and yields ``true``
5381 if ``op1`` is less than ``op2``.
5382#. ``sle``: interprets the operands as signed values and yields ``true``
5383 if ``op1`` is less than or equal to ``op2``.
5384
5385If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5386are compared as if they were integers.
5387
5388If the operands are integer vectors, then they are compared element by
5389element. The result is an ``i1`` vector with the same number of elements
5390as the values being compared. Otherwise, the result is an ``i1``.
5391
5392Example:
5393""""""""
5394
5395.. code-block:: llvm
5396
5397 <result> = icmp eq i32 4, 5 ; yields: result=false
5398 <result> = icmp ne float* %X, %X ; yields: result=false
5399 <result> = icmp ult i16 4, 5 ; yields: result=true
5400 <result> = icmp sgt i16 4, 5 ; yields: result=false
5401 <result> = icmp ule i16 -4, 5 ; yields: result=false
5402 <result> = icmp sge i16 4, 5 ; yields: result=false
5403
5404Note that the code generator does not yet support vector types with the
5405``icmp`` instruction.
5406
5407.. _i_fcmp:
5408
5409'``fcmp``' Instruction
5410^^^^^^^^^^^^^^^^^^^^^^
5411
5412Syntax:
5413"""""""
5414
5415::
5416
5417 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5418
5419Overview:
5420"""""""""
5421
5422The '``fcmp``' instruction returns a boolean value or vector of boolean
5423values based on comparison of its operands.
5424
5425If the operands are floating point scalars, then the result type is a
5426boolean (:ref:`i1 <t_integer>`).
5427
5428If the operands are floating point vectors, then the result type is a
5429vector of boolean with the same number of elements as the operands being
5430compared.
5431
5432Arguments:
5433""""""""""
5434
5435The '``fcmp``' instruction takes three operands. The first operand is
5436the condition code indicating the kind of comparison to perform. It is
5437not a value, just a keyword. The possible condition code are:
5438
5439#. ``false``: no comparison, always returns false
5440#. ``oeq``: ordered and equal
5441#. ``ogt``: ordered and greater than
5442#. ``oge``: ordered and greater than or equal
5443#. ``olt``: ordered and less than
5444#. ``ole``: ordered and less than or equal
5445#. ``one``: ordered and not equal
5446#. ``ord``: ordered (no nans)
5447#. ``ueq``: unordered or equal
5448#. ``ugt``: unordered or greater than
5449#. ``uge``: unordered or greater than or equal
5450#. ``ult``: unordered or less than
5451#. ``ule``: unordered or less than or equal
5452#. ``une``: unordered or not equal
5453#. ``uno``: unordered (either nans)
5454#. ``true``: no comparison, always returns true
5455
5456*Ordered* means that neither operand is a QNAN while *unordered* means
5457that either operand may be a QNAN.
5458
5459Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5460point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5461type. They must have identical types.
5462
5463Semantics:
5464""""""""""
5465
5466The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5467condition code given as ``cond``. If the operands are vectors, then the
5468vectors are compared element by element. Each comparison performed
5469always yields an :ref:`i1 <t_integer>` result, as follows:
5470
5471#. ``false``: always yields ``false``, regardless of operands.
5472#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5473 is equal to ``op2``.
5474#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5475 is greater than ``op2``.
5476#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5477 is greater than or equal to ``op2``.
5478#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5479 is less than ``op2``.
5480#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5481 is less than or equal to ``op2``.
5482#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5483 is not equal to ``op2``.
5484#. ``ord``: yields ``true`` if both operands are not a QNAN.
5485#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5486 equal to ``op2``.
5487#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5488 greater than ``op2``.
5489#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5490 greater than or equal to ``op2``.
5491#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5492 less than ``op2``.
5493#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5494 less than or equal to ``op2``.
5495#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5496 not equal to ``op2``.
5497#. ``uno``: yields ``true`` if either operand is a QNAN.
5498#. ``true``: always yields ``true``, regardless of operands.
5499
5500Example:
5501""""""""
5502
5503.. code-block:: llvm
5504
5505 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5506 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5507 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5508 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5509
5510Note that the code generator does not yet support vector types with the
5511``fcmp`` instruction.
5512
5513.. _i_phi:
5514
5515'``phi``' Instruction
5516^^^^^^^^^^^^^^^^^^^^^
5517
5518Syntax:
5519"""""""
5520
5521::
5522
5523 <result> = phi <ty> [ <val0>, <label0>], ...
5524
5525Overview:
5526"""""""""
5527
5528The '``phi``' instruction is used to implement the φ node in the SSA
5529graph representing the function.
5530
5531Arguments:
5532""""""""""
5533
5534The type of the incoming values is specified with the first type field.
5535After this, the '``phi``' instruction takes a list of pairs as
5536arguments, with one pair for each predecessor basic block of the current
5537block. Only values of :ref:`first class <t_firstclass>` type may be used as
5538the value arguments to the PHI node. Only labels may be used as the
5539label arguments.
5540
5541There must be no non-phi instructions between the start of a basic block
5542and the PHI instructions: i.e. PHI instructions must be first in a basic
5543block.
5544
5545For the purposes of the SSA form, the use of each incoming value is
5546deemed to occur on the edge from the corresponding predecessor block to
5547the current block (but after any definition of an '``invoke``'
5548instruction's return value on the same edge).
5549
5550Semantics:
5551""""""""""
5552
5553At runtime, the '``phi``' instruction logically takes on the value
5554specified by the pair corresponding to the predecessor basic block that
5555executed just prior to the current block.
5556
5557Example:
5558""""""""
5559
5560.. code-block:: llvm
5561
5562 Loop: ; Infinite loop that counts from 0 on up...
5563 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5564 %nextindvar = add i32 %indvar, 1
5565 br label %Loop
5566
5567.. _i_select:
5568
5569'``select``' Instruction
5570^^^^^^^^^^^^^^^^^^^^^^^^
5571
5572Syntax:
5573"""""""
5574
5575::
5576
5577 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5578
5579 selty is either i1 or {<N x i1>}
5580
5581Overview:
5582"""""""""
5583
5584The '``select``' instruction is used to choose one value based on a
5585condition, without branching.
5586
5587Arguments:
5588""""""""""
5589
5590The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5591values indicating the condition, and two values of the same :ref:`first
5592class <t_firstclass>` type. If the val1/val2 are vectors and the
5593condition is a scalar, then entire vectors are selected, not individual
5594elements.
5595
5596Semantics:
5597""""""""""
5598
5599If the condition is an i1 and it evaluates to 1, the instruction returns
5600the first value argument; otherwise, it returns the second value
5601argument.
5602
5603If the condition is a vector of i1, then the value arguments must be
5604vectors of the same size, and the selection is done element by element.
5605
5606Example:
5607""""""""
5608
5609.. code-block:: llvm
5610
5611 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5612
5613.. _i_call:
5614
5615'``call``' Instruction
5616^^^^^^^^^^^^^^^^^^^^^^
5617
5618Syntax:
5619"""""""
5620
5621::
5622
5623 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5624
5625Overview:
5626"""""""""
5627
5628The '``call``' instruction represents a simple function call.
5629
5630Arguments:
5631""""""""""
5632
5633This instruction requires several arguments:
5634
5635#. The optional "tail" marker indicates that the callee function does
5636 not access any allocas or varargs in the caller. Note that calls may
5637 be marked "tail" even if they do not occur before a
5638 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5639 function call is eligible for tail call optimization, but `might not
5640 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5641 The code generator may optimize calls marked "tail" with either 1)
5642 automatic `sibling call
5643 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5644 callee have matching signatures, or 2) forced tail call optimization
5645 when the following extra requirements are met:
5646
5647 - Caller and callee both have the calling convention ``fastcc``.
5648 - The call is in tail position (ret immediately follows call and ret
5649 uses value of call or is void).
5650 - Option ``-tailcallopt`` is enabled, or
5651 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5652 - `Platform specific constraints are
5653 met. <CodeGenerator.html#tailcallopt>`_
5654
5655#. The optional "cconv" marker indicates which :ref:`calling
5656 convention <callingconv>` the call should use. If none is
5657 specified, the call defaults to using C calling conventions. The
5658 calling convention of the call must match the calling convention of
5659 the target function, or else the behavior is undefined.
5660#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5661 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5662 are valid here.
5663#. '``ty``': the type of the call instruction itself which is also the
5664 type of the return value. Functions that return no value are marked
5665 ``void``.
5666#. '``fnty``': shall be the signature of the pointer to function value
5667 being invoked. The argument types must match the types implied by
5668 this signature. This type can be omitted if the function is not
5669 varargs and if the function type does not return a pointer to a
5670 function.
5671#. '``fnptrval``': An LLVM value containing a pointer to a function to
5672 be invoked. In most cases, this is a direct function invocation, but
5673 indirect ``call``'s are just as possible, calling an arbitrary pointer
5674 to function value.
5675#. '``function args``': argument list whose types match the function
5676 signature argument types and parameter attributes. All arguments must
5677 be of :ref:`first class <t_firstclass>` type. If the function signature
5678 indicates the function accepts a variable number of arguments, the
5679 extra arguments can be specified.
5680#. The optional :ref:`function attributes <fnattrs>` list. Only
5681 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5682 attributes are valid here.
5683
5684Semantics:
5685""""""""""
5686
5687The '``call``' instruction is used to cause control flow to transfer to
5688a specified function, with its incoming arguments bound to the specified
5689values. Upon a '``ret``' instruction in the called function, control
5690flow continues with the instruction after the function call, and the
5691return value of the function is bound to the result argument.
5692
5693Example:
5694""""""""
5695
5696.. code-block:: llvm
5697
5698 %retval = call i32 @test(i32 %argc)
5699 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5700 %X = tail call i32 @foo() ; yields i32
5701 %Y = tail call fastcc i32 @foo() ; yields i32
5702 call void %foo(i8 97 signext)
5703
5704 %struct.A = type { i32, i8 }
5705 %r = call %struct.A @foo() ; yields { 32, i8 }
5706 %gr = extractvalue %struct.A %r, 0 ; yields i32
5707 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5708 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5709 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5710
5711llvm treats calls to some functions with names and arguments that match
5712the standard C99 library as being the C99 library functions, and may
5713perform optimizations or generate code for them under that assumption.
5714This is something we'd like to change in the future to provide better
5715support for freestanding environments and non-C-based languages.
5716
5717.. _i_va_arg:
5718
5719'``va_arg``' Instruction
5720^^^^^^^^^^^^^^^^^^^^^^^^
5721
5722Syntax:
5723"""""""
5724
5725::
5726
5727 <resultval> = va_arg <va_list*> <arglist>, <argty>
5728
5729Overview:
5730"""""""""
5731
5732The '``va_arg``' instruction is used to access arguments passed through
5733the "variable argument" area of a function call. It is used to implement
5734the ``va_arg`` macro in C.
5735
5736Arguments:
5737""""""""""
5738
5739This instruction takes a ``va_list*`` value and the type of the
5740argument. It returns a value of the specified argument type and
5741increments the ``va_list`` to point to the next argument. The actual
5742type of ``va_list`` is target specific.
5743
5744Semantics:
5745""""""""""
5746
5747The '``va_arg``' instruction loads an argument of the specified type
5748from the specified ``va_list`` and causes the ``va_list`` to point to
5749the next argument. For more information, see the variable argument
5750handling :ref:`Intrinsic Functions <int_varargs>`.
5751
5752It is legal for this instruction to be called in a function which does
5753not take a variable number of arguments, for example, the ``vfprintf``
5754function.
5755
5756``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5757function <intrinsics>` because it takes a type as an argument.
5758
5759Example:
5760""""""""
5761
5762See the :ref:`variable argument processing <int_varargs>` section.
5763
5764Note that the code generator does not yet fully support va\_arg on many
5765targets. Also, it does not currently support va\_arg with aggregate
5766types on any target.
5767
5768.. _i_landingpad:
5769
5770'``landingpad``' Instruction
5771^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5772
5773Syntax:
5774"""""""
5775
5776::
5777
5778 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5779 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5780
5781 <clause> := catch <type> <value>
5782 <clause> := filter <array constant type> <array constant>
5783
5784Overview:
5785"""""""""
5786
5787The '``landingpad``' instruction is used by `LLVM's exception handling
5788system <ExceptionHandling.html#overview>`_ to specify that a basic block
5789is a landing pad — one where the exception lands, and corresponds to the
5790code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5791defines values supplied by the personality function (``pers_fn``) upon
5792re-entry to the function. The ``resultval`` has the type ``resultty``.
5793
5794Arguments:
5795""""""""""
5796
5797This instruction takes a ``pers_fn`` value. This is the personality
5798function associated with the unwinding mechanism. The optional
5799``cleanup`` flag indicates that the landing pad block is a cleanup.
5800
5801A ``clause`` begins with the clause type — ``catch`` or ``filter`` — and
5802contains the global variable representing the "type" that may be caught
5803or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5804clause takes an array constant as its argument. Use
5805"``[0 x i8**] undef``" for a filter which cannot throw. The
5806'``landingpad``' instruction must contain *at least* one ``clause`` or
5807the ``cleanup`` flag.
5808
5809Semantics:
5810""""""""""
5811
5812The '``landingpad``' instruction defines the values which are set by the
5813personality function (``pers_fn``) upon re-entry to the function, and
5814therefore the "result type" of the ``landingpad`` instruction. As with
5815calling conventions, how the personality function results are
5816represented in LLVM IR is target specific.
5817
5818The clauses are applied in order from top to bottom. If two
5819``landingpad`` instructions are merged together through inlining, the
5820clauses from the calling function are appended to the list of clauses.
5821When the call stack is being unwound due to an exception being thrown,
5822the exception is compared against each ``clause`` in turn. If it doesn't
5823match any of the clauses, and the ``cleanup`` flag is not set, then
5824unwinding continues further up the call stack.
5825
5826The ``landingpad`` instruction has several restrictions:
5827
5828- A landing pad block is a basic block which is the unwind destination
5829 of an '``invoke``' instruction.
5830- A landing pad block must have a '``landingpad``' instruction as its
5831 first non-PHI instruction.
5832- There can be only one '``landingpad``' instruction within the landing
5833 pad block.
5834- A basic block that is not a landing pad block may not include a
5835 '``landingpad``' instruction.
5836- All '``landingpad``' instructions in a function must have the same
5837 personality function.
5838
5839Example:
5840""""""""
5841
5842.. code-block:: llvm
5843
5844 ;; A landing pad which can catch an integer.
5845 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5846 catch i8** @_ZTIi
5847 ;; A landing pad that is a cleanup.
5848 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5849 cleanup
5850 ;; A landing pad which can catch an integer and can only throw a double.
5851 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5852 catch i8** @_ZTIi
5853 filter [1 x i8**] [@_ZTId]
5854
5855.. _intrinsics:
5856
5857Intrinsic Functions
5858===================
5859
5860LLVM supports the notion of an "intrinsic function". These functions
5861have well known names and semantics and are required to follow certain
5862restrictions. Overall, these intrinsics represent an extension mechanism
5863for the LLVM language that does not require changing all of the
5864transformations in LLVM when adding to the language (or the bitcode
5865reader/writer, the parser, etc...).
5866
5867Intrinsic function names must all start with an "``llvm.``" prefix. This
5868prefix is reserved in LLVM for intrinsic names; thus, function names may
5869not begin with this prefix. Intrinsic functions must always be external
5870functions: you cannot define the body of intrinsic functions. Intrinsic
5871functions may only be used in call or invoke instructions: it is illegal
5872to take the address of an intrinsic function. Additionally, because
5873intrinsic functions are part of the LLVM language, it is required if any
5874are added that they be documented here.
5875
5876Some intrinsic functions can be overloaded, i.e., the intrinsic
5877represents a family of functions that perform the same operation but on
5878different data types. Because LLVM can represent over 8 million
5879different integer types, overloading is used commonly to allow an
5880intrinsic function to operate on any integer type. One or more of the
5881argument types or the result type can be overloaded to accept any
5882integer type. Argument types may also be defined as exactly matching a
5883previous argument's type or the result type. This allows an intrinsic
5884function which accepts multiple arguments, but needs all of them to be
5885of the same type, to only be overloaded with respect to a single
5886argument or the result.
5887
5888Overloaded intrinsics will have the names of its overloaded argument
5889types encoded into its function name, each preceded by a period. Only
5890those types which are overloaded result in a name suffix. Arguments
5891whose type is matched against another type do not. For example, the
5892``llvm.ctpop`` function can take an integer of any width and returns an
5893integer of exactly the same integer width. This leads to a family of
5894functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
5895``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
5896overloaded, and only one type suffix is required. Because the argument's
5897type is matched against the return type, it does not require its own
5898name suffix.
5899
5900To learn how to add an intrinsic function, please see the `Extending
5901LLVM Guide <ExtendingLLVM.html>`_.
5902
5903.. _int_varargs:
5904
5905Variable Argument Handling Intrinsics
5906-------------------------------------
5907
5908Variable argument support is defined in LLVM with the
5909:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
5910functions. These functions are related to the similarly named macros
5911defined in the ``<stdarg.h>`` header file.
5912
5913All of these functions operate on arguments that use a target-specific
5914value type "``va_list``". The LLVM assembly language reference manual
5915does not define what this type is, so all transformations should be
5916prepared to handle these functions regardless of the type used.
5917
5918This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
5919variable argument handling intrinsic functions are used.
5920
5921.. code-block:: llvm
5922
5923 define i32 @test(i32 %X, ...) {
5924 ; Initialize variable argument processing
5925 %ap = alloca i8*
5926 %ap2 = bitcast i8** %ap to i8*
5927 call void @llvm.va_start(i8* %ap2)
5928
5929 ; Read a single integer argument
5930 %tmp = va_arg i8** %ap, i32
5931
5932 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5933 %aq = alloca i8*
5934 %aq2 = bitcast i8** %aq to i8*
5935 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5936 call void @llvm.va_end(i8* %aq2)
5937
5938 ; Stop processing of arguments.
5939 call void @llvm.va_end(i8* %ap2)
5940 ret i32 %tmp
5941 }
5942
5943 declare void @llvm.va_start(i8*)
5944 declare void @llvm.va_copy(i8*, i8*)
5945 declare void @llvm.va_end(i8*)
5946
5947.. _int_va_start:
5948
5949'``llvm.va_start``' Intrinsic
5950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5951
5952Syntax:
5953"""""""
5954
5955::
5956
5957 declare void %llvm.va_start(i8* <arglist>)
5958
5959Overview:
5960"""""""""
5961
5962The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
5963subsequent use by ``va_arg``.
5964
5965Arguments:
5966""""""""""
5967
5968The argument is a pointer to a ``va_list`` element to initialize.
5969
5970Semantics:
5971""""""""""
5972
5973The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
5974available in C. In a target-dependent way, it initializes the
5975``va_list`` element to which the argument points, so that the next call
5976to ``va_arg`` will produce the first variable argument passed to the
5977function. Unlike the C ``va_start`` macro, this intrinsic does not need
5978to know the last argument of the function as the compiler can figure
5979that out.
5980
5981'``llvm.va_end``' Intrinsic
5982^^^^^^^^^^^^^^^^^^^^^^^^^^^
5983
5984Syntax:
5985"""""""
5986
5987::
5988
5989 declare void @llvm.va_end(i8* <arglist>)
5990
5991Overview:
5992"""""""""
5993
5994The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
5995initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
5996
5997Arguments:
5998""""""""""
5999
6000The argument is a pointer to a ``va_list`` to destroy.
6001
6002Semantics:
6003""""""""""
6004
6005The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6006available in C. In a target-dependent way, it destroys the ``va_list``
6007element to which the argument points. Calls to
6008:ref:`llvm.va_start <int_va_start>` and
6009:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6010``llvm.va_end``.
6011
6012.. _int_va_copy:
6013
6014'``llvm.va_copy``' Intrinsic
6015^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6016
6017Syntax:
6018"""""""
6019
6020::
6021
6022 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6023
6024Overview:
6025"""""""""
6026
6027The '``llvm.va_copy``' intrinsic copies the current argument position
6028from the source argument list to the destination argument list.
6029
6030Arguments:
6031""""""""""
6032
6033The first argument is a pointer to a ``va_list`` element to initialize.
6034The second argument is a pointer to a ``va_list`` element to copy from.
6035
6036Semantics:
6037""""""""""
6038
6039The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6040available in C. In a target-dependent way, it copies the source
6041``va_list`` element into the destination ``va_list`` element. This
6042intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6043arbitrarily complex and require, for example, memory allocation.
6044
6045Accurate Garbage Collection Intrinsics
6046--------------------------------------
6047
6048LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6049(GC) requires the implementation and generation of these intrinsics.
6050These intrinsics allow identification of :ref:`GC roots on the
6051stack <int_gcroot>`, as well as garbage collector implementations that
6052require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6053Front-ends for type-safe garbage collected languages should generate
6054these intrinsics to make use of the LLVM garbage collectors. For more
6055details, see `Accurate Garbage Collection with
6056LLVM <GarbageCollection.html>`_.
6057
6058The garbage collection intrinsics only operate on objects in the generic
6059address space (address space zero).
6060
6061.. _int_gcroot:
6062
6063'``llvm.gcroot``' Intrinsic
6064^^^^^^^^^^^^^^^^^^^^^^^^^^^
6065
6066Syntax:
6067"""""""
6068
6069::
6070
6071 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6072
6073Overview:
6074"""""""""
6075
6076The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6077the code generator, and allows some metadata to be associated with it.
6078
6079Arguments:
6080""""""""""
6081
6082The first argument specifies the address of a stack object that contains
6083the root pointer. The second pointer (which must be either a constant or
6084a global value address) contains the meta-data to be associated with the
6085root.
6086
6087Semantics:
6088""""""""""
6089
6090At runtime, a call to this intrinsic stores a null pointer into the
6091"ptrloc" location. At compile-time, the code generator generates
6092information to allow the runtime to find the pointer at GC safe points.
6093The '``llvm.gcroot``' intrinsic may only be used in a function which
6094:ref:`specifies a GC algorithm <gc>`.
6095
6096.. _int_gcread:
6097
6098'``llvm.gcread``' Intrinsic
6099^^^^^^^^^^^^^^^^^^^^^^^^^^^
6100
6101Syntax:
6102"""""""
6103
6104::
6105
6106 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6107
6108Overview:
6109"""""""""
6110
6111The '``llvm.gcread``' intrinsic identifies reads of references from heap
6112locations, allowing garbage collector implementations that require read
6113barriers.
6114
6115Arguments:
6116""""""""""
6117
6118The second argument is the address to read from, which should be an
6119address allocated from the garbage collector. The first object is a
6120pointer to the start of the referenced object, if needed by the language
6121runtime (otherwise null).
6122
6123Semantics:
6124""""""""""
6125
6126The '``llvm.gcread``' intrinsic has the same semantics as a load
6127instruction, but may be replaced with substantially more complex code by
6128the garbage collector runtime, as needed. The '``llvm.gcread``'
6129intrinsic may only be used in a function which :ref:`specifies a GC
6130algorithm <gc>`.
6131
6132.. _int_gcwrite:
6133
6134'``llvm.gcwrite``' Intrinsic
6135^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6136
6137Syntax:
6138"""""""
6139
6140::
6141
6142 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6143
6144Overview:
6145"""""""""
6146
6147The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6148locations, allowing garbage collector implementations that require write
6149barriers (such as generational or reference counting collectors).
6150
6151Arguments:
6152""""""""""
6153
6154The first argument is the reference to store, the second is the start of
6155the object to store it to, and the third is the address of the field of
6156Obj to store to. If the runtime does not require a pointer to the
6157object, Obj may be null.
6158
6159Semantics:
6160""""""""""
6161
6162The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6163instruction, but may be replaced with substantially more complex code by
6164the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6165intrinsic may only be used in a function which :ref:`specifies a GC
6166algorithm <gc>`.
6167
6168Code Generator Intrinsics
6169-------------------------
6170
6171These intrinsics are provided by LLVM to expose special features that
6172may only be implemented with code generator support.
6173
6174'``llvm.returnaddress``' Intrinsic
6175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6176
6177Syntax:
6178"""""""
6179
6180::
6181
6182 declare i8 *@llvm.returnaddress(i32 <level>)
6183
6184Overview:
6185"""""""""
6186
6187The '``llvm.returnaddress``' intrinsic attempts to compute a
6188target-specific value indicating the return address of the current
6189function or one of its callers.
6190
6191Arguments:
6192""""""""""
6193
6194The argument to this intrinsic indicates which function to return the
6195address for. Zero indicates the calling function, one indicates its
6196caller, etc. The argument is **required** to be a constant integer
6197value.
6198
6199Semantics:
6200""""""""""
6201
6202The '``llvm.returnaddress``' intrinsic either returns a pointer
6203indicating the return address of the specified call frame, or zero if it
6204cannot be identified. The value returned by this intrinsic is likely to
6205be incorrect or 0 for arguments other than zero, so it should only be
6206used for debugging purposes.
6207
6208Note that calling this intrinsic does not prevent function inlining or
6209other aggressive transformations, so the value returned may not be that
6210of the obvious source-language caller.
6211
6212'``llvm.frameaddress``' Intrinsic
6213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6214
6215Syntax:
6216"""""""
6217
6218::
6219
6220 declare i8* @llvm.frameaddress(i32 <level>)
6221
6222Overview:
6223"""""""""
6224
6225The '``llvm.frameaddress``' intrinsic attempts to return the
6226target-specific frame pointer value for the specified stack frame.
6227
6228Arguments:
6229""""""""""
6230
6231The argument to this intrinsic indicates which function to return the
6232frame pointer for. Zero indicates the calling function, one indicates
6233its caller, etc. The argument is **required** to be a constant integer
6234value.
6235
6236Semantics:
6237""""""""""
6238
6239The '``llvm.frameaddress``' intrinsic either returns a pointer
6240indicating the frame address of the specified call frame, or zero if it
6241cannot be identified. The value returned by this intrinsic is likely to
6242be incorrect or 0 for arguments other than zero, so it should only be
6243used for debugging purposes.
6244
6245Note that calling this intrinsic does not prevent function inlining or
6246other aggressive transformations, so the value returned may not be that
6247of the obvious source-language caller.
6248
6249.. _int_stacksave:
6250
6251'``llvm.stacksave``' Intrinsic
6252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6253
6254Syntax:
6255"""""""
6256
6257::
6258
6259 declare i8* @llvm.stacksave()
6260
6261Overview:
6262"""""""""
6263
6264The '``llvm.stacksave``' intrinsic is used to remember the current state
6265of the function stack, for use with
6266:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6267implementing language features like scoped automatic variable sized
6268arrays in C99.
6269
6270Semantics:
6271""""""""""
6272
6273This intrinsic returns a opaque pointer value that can be passed to
6274:ref:`llvm.stackrestore <int_stackrestore>`. When an
6275``llvm.stackrestore`` intrinsic is executed with a value saved from
6276``llvm.stacksave``, it effectively restores the state of the stack to
6277the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6278practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6279were allocated after the ``llvm.stacksave`` was executed.
6280
6281.. _int_stackrestore:
6282
6283'``llvm.stackrestore``' Intrinsic
6284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6285
6286Syntax:
6287"""""""
6288
6289::
6290
6291 declare void @llvm.stackrestore(i8* %ptr)
6292
6293Overview:
6294"""""""""
6295
6296The '``llvm.stackrestore``' intrinsic is used to restore the state of
6297the function stack to the state it was in when the corresponding
6298:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6299useful for implementing language features like scoped automatic variable
6300sized arrays in C99.
6301
6302Semantics:
6303""""""""""
6304
6305See the description for :ref:`llvm.stacksave <int_stacksave>`.
6306
6307'``llvm.prefetch``' Intrinsic
6308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6309
6310Syntax:
6311"""""""
6312
6313::
6314
6315 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6316
6317Overview:
6318"""""""""
6319
6320The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6321insert a prefetch instruction if supported; otherwise, it is a noop.
6322Prefetches have no effect on the behavior of the program but can change
6323its performance characteristics.
6324
6325Arguments:
6326""""""""""
6327
6328``address`` is the address to be prefetched, ``rw`` is the specifier
6329determining if the fetch should be for a read (0) or write (1), and
6330``locality`` is a temporal locality specifier ranging from (0) - no
6331locality, to (3) - extremely local keep in cache. The ``cache type``
6332specifies whether the prefetch is performed on the data (1) or
6333instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6334arguments must be constant integers.
6335
6336Semantics:
6337""""""""""
6338
6339This intrinsic does not modify the behavior of the program. In
6340particular, prefetches cannot trap and do not produce a value. On
6341targets that support this intrinsic, the prefetch can provide hints to
6342the processor cache for better performance.
6343
6344'``llvm.pcmarker``' Intrinsic
6345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6346
6347Syntax:
6348"""""""
6349
6350::
6351
6352 declare void @llvm.pcmarker(i32 <id>)
6353
6354Overview:
6355"""""""""
6356
6357The '``llvm.pcmarker``' intrinsic is a method to export a Program
6358Counter (PC) in a region of code to simulators and other tools. The
6359method is target specific, but it is expected that the marker will use
6360exported symbols to transmit the PC of the marker. The marker makes no
6361guarantees that it will remain with any specific instruction after
6362optimizations. It is possible that the presence of a marker will inhibit
6363optimizations. The intended use is to be inserted after optimizations to
6364allow correlations of simulation runs.
6365
6366Arguments:
6367""""""""""
6368
6369``id`` is a numerical id identifying the marker.
6370
6371Semantics:
6372""""""""""
6373
6374This intrinsic does not modify the behavior of the program. Backends
6375that do not support this intrinsic may ignore it.
6376
6377'``llvm.readcyclecounter``' Intrinsic
6378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6379
6380Syntax:
6381"""""""
6382
6383::
6384
6385 declare i64 @llvm.readcyclecounter()
6386
6387Overview:
6388"""""""""
6389
6390The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6391counter register (or similar low latency, high accuracy clocks) on those
6392targets that support it. On X86, it should map to RDTSC. On Alpha, it
6393should map to RPCC. As the backing counters overflow quickly (on the
6394order of 9 seconds on alpha), this should only be used for small
6395timings.
6396
6397Semantics:
6398""""""""""
6399
6400When directly supported, reading the cycle counter should not modify any
6401memory. Implementations are allowed to either return a application
6402specific value or a system wide value. On backends without support, this
6403is lowered to a constant 0.
6404
6405Standard C Library Intrinsics
6406-----------------------------
6407
6408LLVM provides intrinsics for a few important standard C library
6409functions. These intrinsics allow source-language front-ends to pass
6410information about the alignment of the pointer arguments to the code
6411generator, providing opportunity for more efficient code generation.
6412
6413.. _int_memcpy:
6414
6415'``llvm.memcpy``' Intrinsic
6416^^^^^^^^^^^^^^^^^^^^^^^^^^^
6417
6418Syntax:
6419"""""""
6420
6421This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6422integer bit width and for different address spaces. Not all targets
6423support all bit widths however.
6424
6425::
6426
6427 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6428 i32 <len>, i32 <align>, i1 <isvolatile>)
6429 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6430 i64 <len>, i32 <align>, i1 <isvolatile>)
6431
6432Overview:
6433"""""""""
6434
6435The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6436source location to the destination location.
6437
6438Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6439intrinsics do not return a value, takes extra alignment/isvolatile
6440arguments and the pointers can be in specified address spaces.
6441
6442Arguments:
6443""""""""""
6444
6445The first argument is a pointer to the destination, the second is a
6446pointer to the source. The third argument is an integer argument
6447specifying the number of bytes to copy, the fourth argument is the
6448alignment of the source and destination locations, and the fifth is a
6449boolean indicating a volatile access.
6450
6451If the call to this intrinsic has an alignment value that is not 0 or 1,
6452then the caller guarantees that both the source and destination pointers
6453are aligned to that boundary.
6454
6455If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6456a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6457very cleanly specified and it is unwise to depend on it.
6458
6459Semantics:
6460""""""""""
6461
6462The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6463source location to the destination location, which are not allowed to
6464overlap. It copies "len" bytes of memory over. If the argument is known
6465to be aligned to some boundary, this can be specified as the fourth
6466argument, otherwise it should be set to 0 or 1.
6467
6468'``llvm.memmove``' Intrinsic
6469^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6470
6471Syntax:
6472"""""""
6473
6474This is an overloaded intrinsic. You can use llvm.memmove on any integer
6475bit width and for different address space. Not all targets support all
6476bit widths however.
6477
6478::
6479
6480 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6481 i32 <len>, i32 <align>, i1 <isvolatile>)
6482 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6483 i64 <len>, i32 <align>, i1 <isvolatile>)
6484
6485Overview:
6486"""""""""
6487
6488The '``llvm.memmove.*``' intrinsics move a block of memory from the
6489source location to the destination location. It is similar to the
6490'``llvm.memcpy``' intrinsic but allows the two memory locations to
6491overlap.
6492
6493Note that, unlike the standard libc function, the ``llvm.memmove.*``
6494intrinsics do not return a value, takes extra alignment/isvolatile
6495arguments and the pointers can be in specified address spaces.
6496
6497Arguments:
6498""""""""""
6499
6500The first argument is a pointer to the destination, the second is a
6501pointer to the source. The third argument is an integer argument
6502specifying the number of bytes to copy, the fourth argument is the
6503alignment of the source and destination locations, and the fifth is a
6504boolean indicating a volatile access.
6505
6506If the call to this intrinsic has an alignment value that is not 0 or 1,
6507then the caller guarantees that the source and destination pointers are
6508aligned to that boundary.
6509
6510If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6511is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6512not very cleanly specified and it is unwise to depend on it.
6513
6514Semantics:
6515""""""""""
6516
6517The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6518source location to the destination location, which may overlap. It
6519copies "len" bytes of memory over. If the argument is known to be
6520aligned to some boundary, this can be specified as the fourth argument,
6521otherwise it should be set to 0 or 1.
6522
6523'``llvm.memset.*``' Intrinsics
6524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6525
6526Syntax:
6527"""""""
6528
6529This is an overloaded intrinsic. You can use llvm.memset on any integer
6530bit width and for different address spaces. However, not all targets
6531support all bit widths.
6532
6533::
6534
6535 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6536 i32 <len>, i32 <align>, i1 <isvolatile>)
6537 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6538 i64 <len>, i32 <align>, i1 <isvolatile>)
6539
6540Overview:
6541"""""""""
6542
6543The '``llvm.memset.*``' intrinsics fill a block of memory with a
6544particular byte value.
6545
6546Note that, unlike the standard libc function, the ``llvm.memset``
6547intrinsic does not return a value and takes extra alignment/volatile
6548arguments. Also, the destination can be in an arbitrary address space.
6549
6550Arguments:
6551""""""""""
6552
6553The first argument is a pointer to the destination to fill, the second
6554is the byte value with which to fill it, the third argument is an
6555integer argument specifying the number of bytes to fill, and the fourth
6556argument is the known alignment of the destination location.
6557
6558If the call to this intrinsic has an alignment value that is not 0 or 1,
6559then the caller guarantees that the destination pointer is aligned to
6560that boundary.
6561
6562If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6563a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6564very cleanly specified and it is unwise to depend on it.
6565
6566Semantics:
6567""""""""""
6568
6569The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6570at the destination location. If the argument is known to be aligned to
6571some boundary, this can be specified as the fourth argument, otherwise
6572it should be set to 0 or 1.
6573
6574'``llvm.sqrt.*``' Intrinsic
6575^^^^^^^^^^^^^^^^^^^^^^^^^^^
6576
6577Syntax:
6578"""""""
6579
6580This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6581floating point or vector of floating point type. Not all targets support
6582all types however.
6583
6584::
6585
6586 declare float @llvm.sqrt.f32(float %Val)
6587 declare double @llvm.sqrt.f64(double %Val)
6588 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6589 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6590 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6591
6592Overview:
6593"""""""""
6594
6595The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6596returning the same value as the libm '``sqrt``' functions would. Unlike
6597``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6598negative numbers other than -0.0 (which allows for better optimization,
6599because there is no need to worry about errno being set).
6600``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6601
6602Arguments:
6603""""""""""
6604
6605The argument and return value are floating point numbers of the same
6606type.
6607
6608Semantics:
6609""""""""""
6610
6611This function returns the sqrt of the specified operand if it is a
6612nonnegative floating point number.
6613
6614'``llvm.powi.*``' Intrinsic
6615^^^^^^^^^^^^^^^^^^^^^^^^^^^
6616
6617Syntax:
6618"""""""
6619
6620This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6621floating point or vector of floating point type. Not all targets support
6622all types however.
6623
6624::
6625
6626 declare float @llvm.powi.f32(float %Val, i32 %power)
6627 declare double @llvm.powi.f64(double %Val, i32 %power)
6628 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6629 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6630 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6631
6632Overview:
6633"""""""""
6634
6635The '``llvm.powi.*``' intrinsics return the first operand raised to the
6636specified (positive or negative) power. The order of evaluation of
6637multiplications is not defined. When a vector of floating point type is
6638used, the second argument remains a scalar integer value.
6639
6640Arguments:
6641""""""""""
6642
6643The second argument is an integer power, and the first is a value to
6644raise to that power.
6645
6646Semantics:
6647""""""""""
6648
6649This function returns the first value raised to the second power with an
6650unspecified sequence of rounding operations.
6651
6652'``llvm.sin.*``' Intrinsic
6653^^^^^^^^^^^^^^^^^^^^^^^^^^
6654
6655Syntax:
6656"""""""
6657
6658This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6659floating point or vector of floating point type. Not all targets support
6660all types however.
6661
6662::
6663
6664 declare float @llvm.sin.f32(float %Val)
6665 declare double @llvm.sin.f64(double %Val)
6666 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6667 declare fp128 @llvm.sin.f128(fp128 %Val)
6668 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6669
6670Overview:
6671"""""""""
6672
6673The '``llvm.sin.*``' intrinsics return the sine of the operand.
6674
6675Arguments:
6676""""""""""
6677
6678The argument and return value are floating point numbers of the same
6679type.
6680
6681Semantics:
6682""""""""""
6683
6684This function returns the sine of the specified operand, returning the
6685same values as the libm ``sin`` functions would, and handles error
6686conditions in the same way.
6687
6688'``llvm.cos.*``' Intrinsic
6689^^^^^^^^^^^^^^^^^^^^^^^^^^
6690
6691Syntax:
6692"""""""
6693
6694This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6695floating point or vector of floating point type. Not all targets support
6696all types however.
6697
6698::
6699
6700 declare float @llvm.cos.f32(float %Val)
6701 declare double @llvm.cos.f64(double %Val)
6702 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6703 declare fp128 @llvm.cos.f128(fp128 %Val)
6704 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6705
6706Overview:
6707"""""""""
6708
6709The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6710
6711Arguments:
6712""""""""""
6713
6714The argument and return value are floating point numbers of the same
6715type.
6716
6717Semantics:
6718""""""""""
6719
6720This function returns the cosine of the specified operand, returning the
6721same values as the libm ``cos`` functions would, and handles error
6722conditions in the same way.
6723
6724'``llvm.pow.*``' Intrinsic
6725^^^^^^^^^^^^^^^^^^^^^^^^^^
6726
6727Syntax:
6728"""""""
6729
6730This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6731floating point or vector of floating point type. Not all targets support
6732all types however.
6733
6734::
6735
6736 declare float @llvm.pow.f32(float %Val, float %Power)
6737 declare double @llvm.pow.f64(double %Val, double %Power)
6738 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6739 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6740 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6741
6742Overview:
6743"""""""""
6744
6745The '``llvm.pow.*``' intrinsics return the first operand raised to the
6746specified (positive or negative) power.
6747
6748Arguments:
6749""""""""""
6750
6751The second argument is a floating point power, and the first is a value
6752to raise to that power.
6753
6754Semantics:
6755""""""""""
6756
6757This function returns the first value raised to the second power,
6758returning the same values as the libm ``pow`` functions would, and
6759handles error conditions in the same way.
6760
6761'``llvm.exp.*``' Intrinsic
6762^^^^^^^^^^^^^^^^^^^^^^^^^^
6763
6764Syntax:
6765"""""""
6766
6767This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6768floating point or vector of floating point type. Not all targets support
6769all types however.
6770
6771::
6772
6773 declare float @llvm.exp.f32(float %Val)
6774 declare double @llvm.exp.f64(double %Val)
6775 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6776 declare fp128 @llvm.exp.f128(fp128 %Val)
6777 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6778
6779Overview:
6780"""""""""
6781
6782The '``llvm.exp.*``' intrinsics perform the exp function.
6783
6784Arguments:
6785""""""""""
6786
6787The argument and return value are floating point numbers of the same
6788type.
6789
6790Semantics:
6791""""""""""
6792
6793This function returns the same values as the libm ``exp`` functions
6794would, and handles error conditions in the same way.
6795
6796'``llvm.exp2.*``' Intrinsic
6797^^^^^^^^^^^^^^^^^^^^^^^^^^^
6798
6799Syntax:
6800"""""""
6801
6802This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6803floating point or vector of floating point type. Not all targets support
6804all types however.
6805
6806::
6807
6808 declare float @llvm.exp2.f32(float %Val)
6809 declare double @llvm.exp2.f64(double %Val)
6810 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6811 declare fp128 @llvm.exp2.f128(fp128 %Val)
6812 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6813
6814Overview:
6815"""""""""
6816
6817The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6818
6819Arguments:
6820""""""""""
6821
6822The argument and return value are floating point numbers of the same
6823type.
6824
6825Semantics:
6826""""""""""
6827
6828This function returns the same values as the libm ``exp2`` functions
6829would, and handles error conditions in the same way.
6830
6831'``llvm.log.*``' Intrinsic
6832^^^^^^^^^^^^^^^^^^^^^^^^^^
6833
6834Syntax:
6835"""""""
6836
6837This is an overloaded intrinsic. You can use ``llvm.log`` on any
6838floating point or vector of floating point type. Not all targets support
6839all types however.
6840
6841::
6842
6843 declare float @llvm.log.f32(float %Val)
6844 declare double @llvm.log.f64(double %Val)
6845 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6846 declare fp128 @llvm.log.f128(fp128 %Val)
6847 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6848
6849Overview:
6850"""""""""
6851
6852The '``llvm.log.*``' intrinsics perform the log function.
6853
6854Arguments:
6855""""""""""
6856
6857The argument and return value are floating point numbers of the same
6858type.
6859
6860Semantics:
6861""""""""""
6862
6863This function returns the same values as the libm ``log`` functions
6864would, and handles error conditions in the same way.
6865
6866'``llvm.log10.*``' Intrinsic
6867^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6868
6869Syntax:
6870"""""""
6871
6872This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6873floating point or vector of floating point type. Not all targets support
6874all types however.
6875
6876::
6877
6878 declare float @llvm.log10.f32(float %Val)
6879 declare double @llvm.log10.f64(double %Val)
6880 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6881 declare fp128 @llvm.log10.f128(fp128 %Val)
6882 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6883
6884Overview:
6885"""""""""
6886
6887The '``llvm.log10.*``' intrinsics perform the log10 function.
6888
6889Arguments:
6890""""""""""
6891
6892The argument and return value are floating point numbers of the same
6893type.
6894
6895Semantics:
6896""""""""""
6897
6898This function returns the same values as the libm ``log10`` functions
6899would, and handles error conditions in the same way.
6900
6901'``llvm.log2.*``' Intrinsic
6902^^^^^^^^^^^^^^^^^^^^^^^^^^^
6903
6904Syntax:
6905"""""""
6906
6907This is an overloaded intrinsic. You can use ``llvm.log2`` on any
6908floating point or vector of floating point type. Not all targets support
6909all types however.
6910
6911::
6912
6913 declare float @llvm.log2.f32(float %Val)
6914 declare double @llvm.log2.f64(double %Val)
6915 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
6916 declare fp128 @llvm.log2.f128(fp128 %Val)
6917 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
6918
6919Overview:
6920"""""""""
6921
6922The '``llvm.log2.*``' intrinsics perform the log2 function.
6923
6924Arguments:
6925""""""""""
6926
6927The argument and return value are floating point numbers of the same
6928type.
6929
6930Semantics:
6931""""""""""
6932
6933This function returns the same values as the libm ``log2`` functions
6934would, and handles error conditions in the same way.
6935
6936'``llvm.fma.*``' Intrinsic
6937^^^^^^^^^^^^^^^^^^^^^^^^^^
6938
6939Syntax:
6940"""""""
6941
6942This is an overloaded intrinsic. You can use ``llvm.fma`` on any
6943floating point or vector of floating point type. Not all targets support
6944all types however.
6945
6946::
6947
6948 declare float @llvm.fma.f32(float %a, float %b, float %c)
6949 declare double @llvm.fma.f64(double %a, double %b, double %c)
6950 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
6951 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
6952 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
6953
6954Overview:
6955"""""""""
6956
6957The '``llvm.fma.*``' intrinsics perform the fused multiply-add
6958operation.
6959
6960Arguments:
6961""""""""""
6962
6963The argument and return value are floating point numbers of the same
6964type.
6965
6966Semantics:
6967""""""""""
6968
6969This function returns the same values as the libm ``fma`` functions
6970would.
6971
6972'``llvm.fabs.*``' Intrinsic
6973^^^^^^^^^^^^^^^^^^^^^^^^^^^
6974
6975Syntax:
6976"""""""
6977
6978This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
6979floating point or vector of floating point type. Not all targets support
6980all types however.
6981
6982::
6983
6984 declare float @llvm.fabs.f32(float %Val)
6985 declare double @llvm.fabs.f64(double %Val)
6986 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
6987 declare fp128 @llvm.fabs.f128(fp128 %Val)
6988 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
6989
6990Overview:
6991"""""""""
6992
6993The '``llvm.fabs.*``' intrinsics return the absolute value of the
6994operand.
6995
6996Arguments:
6997""""""""""
6998
6999The argument and return value are floating point numbers of the same
7000type.
7001
7002Semantics:
7003""""""""""
7004
7005This function returns the same values as the libm ``fabs`` functions
7006would, and handles error conditions in the same way.
7007
7008'``llvm.floor.*``' Intrinsic
7009^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7010
7011Syntax:
7012"""""""
7013
7014This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7015floating point or vector of floating point type. Not all targets support
7016all types however.
7017
7018::
7019
7020 declare float @llvm.floor.f32(float %Val)
7021 declare double @llvm.floor.f64(double %Val)
7022 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7023 declare fp128 @llvm.floor.f128(fp128 %Val)
7024 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7025
7026Overview:
7027"""""""""
7028
7029The '``llvm.floor.*``' intrinsics return the floor of the operand.
7030
7031Arguments:
7032""""""""""
7033
7034The argument and return value are floating point numbers of the same
7035type.
7036
7037Semantics:
7038""""""""""
7039
7040This function returns the same values as the libm ``floor`` functions
7041would, and handles error conditions in the same way.
7042
7043'``llvm.ceil.*``' Intrinsic
7044^^^^^^^^^^^^^^^^^^^^^^^^^^^
7045
7046Syntax:
7047"""""""
7048
7049This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7050floating point or vector of floating point type. Not all targets support
7051all types however.
7052
7053::
7054
7055 declare float @llvm.ceil.f32(float %Val)
7056 declare double @llvm.ceil.f64(double %Val)
7057 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7058 declare fp128 @llvm.ceil.f128(fp128 %Val)
7059 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7060
7061Overview:
7062"""""""""
7063
7064The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7065
7066Arguments:
7067""""""""""
7068
7069The argument and return value are floating point numbers of the same
7070type.
7071
7072Semantics:
7073""""""""""
7074
7075This function returns the same values as the libm ``ceil`` functions
7076would, and handles error conditions in the same way.
7077
7078'``llvm.trunc.*``' Intrinsic
7079^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7080
7081Syntax:
7082"""""""
7083
7084This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7085floating point or vector of floating point type. Not all targets support
7086all types however.
7087
7088::
7089
7090 declare float @llvm.trunc.f32(float %Val)
7091 declare double @llvm.trunc.f64(double %Val)
7092 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7093 declare fp128 @llvm.trunc.f128(fp128 %Val)
7094 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7095
7096Overview:
7097"""""""""
7098
7099The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7100nearest integer not larger in magnitude than the operand.
7101
7102Arguments:
7103""""""""""
7104
7105The argument and return value are floating point numbers of the same
7106type.
7107
7108Semantics:
7109""""""""""
7110
7111This function returns the same values as the libm ``trunc`` functions
7112would, and handles error conditions in the same way.
7113
7114'``llvm.rint.*``' Intrinsic
7115^^^^^^^^^^^^^^^^^^^^^^^^^^^
7116
7117Syntax:
7118"""""""
7119
7120This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7121floating point or vector of floating point type. Not all targets support
7122all types however.
7123
7124::
7125
7126 declare float @llvm.rint.f32(float %Val)
7127 declare double @llvm.rint.f64(double %Val)
7128 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7129 declare fp128 @llvm.rint.f128(fp128 %Val)
7130 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7131
7132Overview:
7133"""""""""
7134
7135The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7136nearest integer. It may raise an inexact floating-point exception if the
7137operand isn't an integer.
7138
7139Arguments:
7140""""""""""
7141
7142The argument and return value are floating point numbers of the same
7143type.
7144
7145Semantics:
7146""""""""""
7147
7148This function returns the same values as the libm ``rint`` functions
7149would, and handles error conditions in the same way.
7150
7151'``llvm.nearbyint.*``' Intrinsic
7152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7153
7154Syntax:
7155"""""""
7156
7157This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7158floating point or vector of floating point type. Not all targets support
7159all types however.
7160
7161::
7162
7163 declare float @llvm.nearbyint.f32(float %Val)
7164 declare double @llvm.nearbyint.f64(double %Val)
7165 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7166 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7167 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7168
7169Overview:
7170"""""""""
7171
7172The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7173nearest integer.
7174
7175Arguments:
7176""""""""""
7177
7178The argument and return value are floating point numbers of the same
7179type.
7180
7181Semantics:
7182""""""""""
7183
7184This function returns the same values as the libm ``nearbyint``
7185functions would, and handles error conditions in the same way.
7186
7187Bit Manipulation Intrinsics
7188---------------------------
7189
7190LLVM provides intrinsics for a few important bit manipulation
7191operations. These allow efficient code generation for some algorithms.
7192
7193'``llvm.bswap.*``' Intrinsics
7194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7195
7196Syntax:
7197"""""""
7198
7199This is an overloaded intrinsic function. You can use bswap on any
7200integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7201
7202::
7203
7204 declare i16 @llvm.bswap.i16(i16 <id>)
7205 declare i32 @llvm.bswap.i32(i32 <id>)
7206 declare i64 @llvm.bswap.i64(i64 <id>)
7207
7208Overview:
7209"""""""""
7210
7211The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7212values with an even number of bytes (positive multiple of 16 bits).
7213These are useful for performing operations on data that is not in the
7214target's native byte order.
7215
7216Semantics:
7217""""""""""
7218
7219The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7220and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7221intrinsic returns an i32 value that has the four bytes of the input i32
7222swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7223returned i32 will have its bytes in 3, 2, 1, 0 order. The
7224``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7225concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7226respectively).
7227
7228'``llvm.ctpop.*``' Intrinsic
7229^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7230
7231Syntax:
7232"""""""
7233
7234This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7235bit width, or on any vector with integer elements. Not all targets
7236support all bit widths or vector types, however.
7237
7238::
7239
7240 declare i8 @llvm.ctpop.i8(i8 <src>)
7241 declare i16 @llvm.ctpop.i16(i16 <src>)
7242 declare i32 @llvm.ctpop.i32(i32 <src>)
7243 declare i64 @llvm.ctpop.i64(i64 <src>)
7244 declare i256 @llvm.ctpop.i256(i256 <src>)
7245 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7246
7247Overview:
7248"""""""""
7249
7250The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7251in a value.
7252
7253Arguments:
7254""""""""""
7255
7256The only argument is the value to be counted. The argument may be of any
7257integer type, or a vector with integer elements. The return type must
7258match the argument type.
7259
7260Semantics:
7261""""""""""
7262
7263The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7264each element of a vector.
7265
7266'``llvm.ctlz.*``' Intrinsic
7267^^^^^^^^^^^^^^^^^^^^^^^^^^^
7268
7269Syntax:
7270"""""""
7271
7272This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7273integer bit width, or any vector whose elements are integers. Not all
7274targets support all bit widths or vector types, however.
7275
7276::
7277
7278 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7279 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7280 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7281 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7282 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7283 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7284
7285Overview:
7286"""""""""
7287
7288The '``llvm.ctlz``' family of intrinsic functions counts the number of
7289leading zeros in a variable.
7290
7291Arguments:
7292""""""""""
7293
7294The first argument is the value to be counted. This argument may be of
7295any integer type, or a vectory with integer element type. The return
7296type must match the first argument type.
7297
7298The second argument must be a constant and is a flag to indicate whether
7299the intrinsic should ensure that a zero as the first argument produces a
7300defined result. Historically some architectures did not provide a
7301defined result for zero values as efficiently, and many algorithms are
7302now predicated on avoiding zero-value inputs.
7303
7304Semantics:
7305""""""""""
7306
7307The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7308zeros in a variable, or within each element of the vector. If
7309``src == 0`` then the result is the size in bits of the type of ``src``
7310if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7311``llvm.ctlz(i32 2) = 30``.
7312
7313'``llvm.cttz.*``' Intrinsic
7314^^^^^^^^^^^^^^^^^^^^^^^^^^^
7315
7316Syntax:
7317"""""""
7318
7319This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7320integer bit width, or any vector of integer elements. Not all targets
7321support all bit widths or vector types, however.
7322
7323::
7324
7325 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7326 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7327 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7328 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7329 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7330 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7331
7332Overview:
7333"""""""""
7334
7335The '``llvm.cttz``' family of intrinsic functions counts the number of
7336trailing zeros.
7337
7338Arguments:
7339""""""""""
7340
7341The first argument is the value to be counted. This argument may be of
7342any integer type, or a vectory with integer element type. The return
7343type must match the first argument type.
7344
7345The second argument must be a constant and is a flag to indicate whether
7346the intrinsic should ensure that a zero as the first argument produces a
7347defined result. Historically some architectures did not provide a
7348defined result for zero values as efficiently, and many algorithms are
7349now predicated on avoiding zero-value inputs.
7350
7351Semantics:
7352""""""""""
7353
7354The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7355zeros in a variable, or within each element of a vector. If ``src == 0``
7356then the result is the size in bits of the type of ``src`` if
7357``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7358``llvm.cttz(2) = 1``.
7359
7360Arithmetic with Overflow Intrinsics
7361-----------------------------------
7362
7363LLVM provides intrinsics for some arithmetic with overflow operations.
7364
7365'``llvm.sadd.with.overflow.*``' Intrinsics
7366^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7367
7368Syntax:
7369"""""""
7370
7371This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7372on any integer bit width.
7373
7374::
7375
7376 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7377 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7378 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7379
7380Overview:
7381"""""""""
7382
7383The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7384a signed addition of the two arguments, and indicate whether an overflow
7385occurred during the signed summation.
7386
7387Arguments:
7388""""""""""
7389
7390The arguments (%a and %b) and the first element of the result structure
7391may be of integer types of any bit width, but they must have the same
7392bit width. The second element of the result structure must be of type
7393``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7394addition.
7395
7396Semantics:
7397""""""""""
7398
7399The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7400a signed addition of the two variables. They return a structure — the
7401first element of which is the signed summation, and the second element
7402of which is a bit specifying if the signed summation resulted in an
7403overflow.
7404
7405Examples:
7406"""""""""
7407
7408.. code-block:: llvm
7409
7410 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7411 %sum = extractvalue {i32, i1} %res, 0
7412 %obit = extractvalue {i32, i1} %res, 1
7413 br i1 %obit, label %overflow, label %normal
7414
7415'``llvm.uadd.with.overflow.*``' Intrinsics
7416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7417
7418Syntax:
7419"""""""
7420
7421This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7422on any integer bit width.
7423
7424::
7425
7426 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7427 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7428 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7429
7430Overview:
7431"""""""""
7432
7433The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7434an unsigned addition of the two arguments, and indicate whether a carry
7435occurred during the unsigned summation.
7436
7437Arguments:
7438""""""""""
7439
7440The arguments (%a and %b) and the first element of the result structure
7441may be of integer types of any bit width, but they must have the same
7442bit width. The second element of the result structure must be of type
7443``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7444addition.
7445
7446Semantics:
7447""""""""""
7448
7449The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7450an unsigned addition of the two arguments. They return a structure — the
7451first element of which is the sum, and the second element of which is a
7452bit specifying if the unsigned summation resulted in a carry.
7453
7454Examples:
7455"""""""""
7456
7457.. code-block:: llvm
7458
7459 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7460 %sum = extractvalue {i32, i1} %res, 0
7461 %obit = extractvalue {i32, i1} %res, 1
7462 br i1 %obit, label %carry, label %normal
7463
7464'``llvm.ssub.with.overflow.*``' Intrinsics
7465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7466
7467Syntax:
7468"""""""
7469
7470This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7471on any integer bit width.
7472
7473::
7474
7475 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7476 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7477 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7478
7479Overview:
7480"""""""""
7481
7482The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7483a signed subtraction of the two arguments, and indicate whether an
7484overflow occurred during the signed subtraction.
7485
7486Arguments:
7487""""""""""
7488
7489The arguments (%a and %b) and the first element of the result structure
7490may be of integer types of any bit width, but they must have the same
7491bit width. The second element of the result structure must be of type
7492``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7493subtraction.
7494
7495Semantics:
7496""""""""""
7497
7498The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7499a signed subtraction of the two arguments. They return a structure — the
7500first element of which is the subtraction, and the second element of
7501which is a bit specifying if the signed subtraction resulted in an
7502overflow.
7503
7504Examples:
7505"""""""""
7506
7507.. code-block:: llvm
7508
7509 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7510 %sum = extractvalue {i32, i1} %res, 0
7511 %obit = extractvalue {i32, i1} %res, 1
7512 br i1 %obit, label %overflow, label %normal
7513
7514'``llvm.usub.with.overflow.*``' Intrinsics
7515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7516
7517Syntax:
7518"""""""
7519
7520This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7521on any integer bit width.
7522
7523::
7524
7525 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7526 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7527 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7528
7529Overview:
7530"""""""""
7531
7532The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7533an unsigned subtraction of the two arguments, and indicate whether an
7534overflow occurred during the unsigned subtraction.
7535
7536Arguments:
7537""""""""""
7538
7539The arguments (%a and %b) and the first element of the result structure
7540may be of integer types of any bit width, but they must have the same
7541bit width. The second element of the result structure must be of type
7542``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7543subtraction.
7544
7545Semantics:
7546""""""""""
7547
7548The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7549an unsigned subtraction of the two arguments. They return a structure —
7550the first element of which is the subtraction, and the second element of
7551which is a bit specifying if the unsigned subtraction resulted in an
7552overflow.
7553
7554Examples:
7555"""""""""
7556
7557.. code-block:: llvm
7558
7559 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7560 %sum = extractvalue {i32, i1} %res, 0
7561 %obit = extractvalue {i32, i1} %res, 1
7562 br i1 %obit, label %overflow, label %normal
7563
7564'``llvm.smul.with.overflow.*``' Intrinsics
7565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7566
7567Syntax:
7568"""""""
7569
7570This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7571on any integer bit width.
7572
7573::
7574
7575 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7576 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7577 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7578
7579Overview:
7580"""""""""
7581
7582The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7583a signed multiplication of the two arguments, and indicate whether an
7584overflow occurred during the signed multiplication.
7585
7586Arguments:
7587""""""""""
7588
7589The arguments (%a and %b) and the first element of the result structure
7590may be of integer types of any bit width, but they must have the same
7591bit width. The second element of the result structure must be of type
7592``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7593multiplication.
7594
7595Semantics:
7596""""""""""
7597
7598The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7599a signed multiplication of the two arguments. They return a structure —
7600the first element of which is the multiplication, and the second element
7601of which is a bit specifying if the signed multiplication resulted in an
7602overflow.
7603
7604Examples:
7605"""""""""
7606
7607.. code-block:: llvm
7608
7609 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7610 %sum = extractvalue {i32, i1} %res, 0
7611 %obit = extractvalue {i32, i1} %res, 1
7612 br i1 %obit, label %overflow, label %normal
7613
7614'``llvm.umul.with.overflow.*``' Intrinsics
7615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7616
7617Syntax:
7618"""""""
7619
7620This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7621on any integer bit width.
7622
7623::
7624
7625 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7626 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7627 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7628
7629Overview:
7630"""""""""
7631
7632The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7633a unsigned multiplication of the two arguments, and indicate whether an
7634overflow occurred during the unsigned multiplication.
7635
7636Arguments:
7637""""""""""
7638
7639The arguments (%a and %b) and the first element of the result structure
7640may be of integer types of any bit width, but they must have the same
7641bit width. The second element of the result structure must be of type
7642``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7643multiplication.
7644
7645Semantics:
7646""""""""""
7647
7648The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7649an unsigned multiplication of the two arguments. They return a structure
7650— the first element of which is the multiplication, and the second
7651element of which is a bit specifying if the unsigned multiplication
7652resulted in an overflow.
7653
7654Examples:
7655"""""""""
7656
7657.. code-block:: llvm
7658
7659 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7660 %sum = extractvalue {i32, i1} %res, 0
7661 %obit = extractvalue {i32, i1} %res, 1
7662 br i1 %obit, label %overflow, label %normal
7663
7664Specialised Arithmetic Intrinsics
7665---------------------------------
7666
7667'``llvm.fmuladd.*``' Intrinsic
7668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7669
7670Syntax:
7671"""""""
7672
7673::
7674
7675 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7676 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7677
7678Overview:
7679"""""""""
7680
7681The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
7682expressions that can be fused if the code generator determines that the
7683fused expression would be legal and efficient.
7684
7685Arguments:
7686""""""""""
7687
7688The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7689multiplicands, a and b, and an addend c.
7690
7691Semantics:
7692""""""""""
7693
7694The expression:
7695
7696::
7697
7698 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7699
7700is equivalent to the expression a \* b + c, except that rounding will
7701not be performed between the multiplication and addition steps if the
7702code generator fuses the operations. Fusion is not guaranteed, even if
7703the target platform supports it. If a fused multiply-add is required the
7704corresponding llvm.fma.\* intrinsic function should be used instead.
7705
7706Examples:
7707"""""""""
7708
7709.. code-block:: llvm
7710
7711 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7712
7713Half Precision Floating Point Intrinsics
7714----------------------------------------
7715
7716For most target platforms, half precision floating point is a
7717storage-only format. This means that it is a dense encoding (in memory)
7718but does not support computation in the format.
7719
7720This means that code must first load the half-precision floating point
7721value as an i16, then convert it to float with
7722:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7723then be performed on the float value (including extending to double
7724etc). To store the value back to memory, it is first converted to float
7725if needed, then converted to i16 with
7726:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7727i16 value.
7728
7729.. _int_convert_to_fp16:
7730
7731'``llvm.convert.to.fp16``' Intrinsic
7732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7733
7734Syntax:
7735"""""""
7736
7737::
7738
7739 declare i16 @llvm.convert.to.fp16(f32 %a)
7740
7741Overview:
7742"""""""""
7743
7744The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7745from single precision floating point format to half precision floating
7746point format.
7747
7748Arguments:
7749""""""""""
7750
7751The intrinsic function contains single argument - the value to be
7752converted.
7753
7754Semantics:
7755""""""""""
7756
7757The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7758from single precision floating point format to half precision floating
7759point format. The return value is an ``i16`` which contains the
7760converted number.
7761
7762Examples:
7763"""""""""
7764
7765.. code-block:: llvm
7766
7767 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7768 store i16 %res, i16* @x, align 2
7769
7770.. _int_convert_from_fp16:
7771
7772'``llvm.convert.from.fp16``' Intrinsic
7773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7774
7775Syntax:
7776"""""""
7777
7778::
7779
7780 declare f32 @llvm.convert.from.fp16(i16 %a)
7781
7782Overview:
7783"""""""""
7784
7785The '``llvm.convert.from.fp16``' intrinsic function performs a
7786conversion from half precision floating point format to single precision
7787floating point format.
7788
7789Arguments:
7790""""""""""
7791
7792The intrinsic function contains single argument - the value to be
7793converted.
7794
7795Semantics:
7796""""""""""
7797
7798The '``llvm.convert.from.fp16``' intrinsic function performs a
7799conversion from half single precision floating point format to single
7800precision floating point format. The input half-float value is
7801represented by an ``i16`` value.
7802
7803Examples:
7804"""""""""
7805
7806.. code-block:: llvm
7807
7808 %a = load i16* @x, align 2
7809 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7810
7811Debugger Intrinsics
7812-------------------
7813
7814The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7815prefix), are described in the `LLVM Source Level
7816Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7817document.
7818
7819Exception Handling Intrinsics
7820-----------------------------
7821
7822The LLVM exception handling intrinsics (which all start with
7823``llvm.eh.`` prefix), are described in the `LLVM Exception
7824Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7825
7826.. _int_trampoline:
7827
7828Trampoline Intrinsics
7829---------------------
7830
7831These intrinsics make it possible to excise one parameter, marked with
7832the :ref:`nest <nest>` attribute, from a function. The result is a
7833callable function pointer lacking the nest parameter - the caller does
7834not need to provide a value for it. Instead, the value to use is stored
7835in advance in a "trampoline", a block of memory usually allocated on the
7836stack, which also contains code to splice the nest value into the
7837argument list. This is used to implement the GCC nested function address
7838extension.
7839
7840For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7841then the resulting function pointer has signature ``i32 (i32, i32)*``.
7842It can be created as follows:
7843
7844.. code-block:: llvm
7845
7846 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7847 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7848 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7849 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7850 %fp = bitcast i8* %p to i32 (i32, i32)*
7851
7852The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7853``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7854
7855.. _int_it:
7856
7857'``llvm.init.trampoline``' Intrinsic
7858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7859
7860Syntax:
7861"""""""
7862
7863::
7864
7865 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7866
7867Overview:
7868"""""""""
7869
7870This fills the memory pointed to by ``tramp`` with executable code,
7871turning it into a trampoline.
7872
7873Arguments:
7874""""""""""
7875
7876The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7877pointers. The ``tramp`` argument must point to a sufficiently large and
7878sufficiently aligned block of memory; this memory is written to by the
7879intrinsic. Note that the size and the alignment are target-specific -
7880LLVM currently provides no portable way of determining them, so a
7881front-end that generates this intrinsic needs to have some
7882target-specific knowledge. The ``func`` argument must hold a function
7883bitcast to an ``i8*``.
7884
7885Semantics:
7886""""""""""
7887
7888The block of memory pointed to by ``tramp`` is filled with target
7889dependent code, turning it into a function. Then ``tramp`` needs to be
7890passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
7891be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
7892function's signature is the same as that of ``func`` with any arguments
7893marked with the ``nest`` attribute removed. At most one such ``nest``
7894argument is allowed, and it must be of pointer type. Calling the new
7895function is equivalent to calling ``func`` with the same argument list,
7896but with ``nval`` used for the missing ``nest`` argument. If, after
7897calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
7898modified, then the effect of any later call to the returned function
7899pointer is undefined.
7900
7901.. _int_at:
7902
7903'``llvm.adjust.trampoline``' Intrinsic
7904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7905
7906Syntax:
7907"""""""
7908
7909::
7910
7911 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
7912
7913Overview:
7914"""""""""
7915
7916This performs any required machine-specific adjustment to the address of
7917a trampoline (passed as ``tramp``).
7918
7919Arguments:
7920""""""""""
7921
7922``tramp`` must point to a block of memory which already has trampoline
7923code filled in by a previous call to
7924:ref:`llvm.init.trampoline <int_it>`.
7925
7926Semantics:
7927""""""""""
7928
7929On some architectures the address of the code to be executed needs to be
7930different to the address where the trampoline is actually stored. This
7931intrinsic returns the executable address corresponding to ``tramp``
7932after performing the required machine specific adjustments. The pointer
7933returned can then be :ref:`bitcast and executed <int_trampoline>`.
7934
7935Memory Use Markers
7936------------------
7937
7938This class of intrinsics exists to information about the lifetime of
7939memory objects and ranges where variables are immutable.
7940
7941'``llvm.lifetime.start``' Intrinsic
7942^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7943
7944Syntax:
7945"""""""
7946
7947::
7948
7949 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
7950
7951Overview:
7952"""""""""
7953
7954The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
7955object's lifetime.
7956
7957Arguments:
7958""""""""""
7959
7960The first argument is a constant integer representing the size of the
7961object, or -1 if it is variable sized. The second argument is a pointer
7962to the object.
7963
7964Semantics:
7965""""""""""
7966
7967This intrinsic indicates that before this point in the code, the value
7968of the memory pointed to by ``ptr`` is dead. This means that it is known
7969to never be used and has an undefined value. A load from the pointer
7970that precedes this intrinsic can be replaced with ``'undef'``.
7971
7972'``llvm.lifetime.end``' Intrinsic
7973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7974
7975Syntax:
7976"""""""
7977
7978::
7979
7980 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
7981
7982Overview:
7983"""""""""
7984
7985The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
7986object's lifetime.
7987
7988Arguments:
7989""""""""""
7990
7991The first argument is a constant integer representing the size of the
7992object, or -1 if it is variable sized. The second argument is a pointer
7993to the object.
7994
7995Semantics:
7996""""""""""
7997
7998This intrinsic indicates that after this point in the code, the value of
7999the memory pointed to by ``ptr`` is dead. This means that it is known to
8000never be used and has an undefined value. Any stores into the memory
8001object following this intrinsic may be removed as dead.
8002
8003'``llvm.invariant.start``' Intrinsic
8004^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8005
8006Syntax:
8007"""""""
8008
8009::
8010
8011 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8012
8013Overview:
8014"""""""""
8015
8016The '``llvm.invariant.start``' intrinsic specifies that the contents of
8017a memory object will not change.
8018
8019Arguments:
8020""""""""""
8021
8022The first argument is a constant integer representing the size of the
8023object, or -1 if it is variable sized. The second argument is a pointer
8024to the object.
8025
8026Semantics:
8027""""""""""
8028
8029This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8030the return value, the referenced memory location is constant and
8031unchanging.
8032
8033'``llvm.invariant.end``' Intrinsic
8034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8035
8036Syntax:
8037"""""""
8038
8039::
8040
8041 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8042
8043Overview:
8044"""""""""
8045
8046The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8047memory object are mutable.
8048
8049Arguments:
8050""""""""""
8051
8052The first argument is the matching ``llvm.invariant.start`` intrinsic.
8053The second argument is a constant integer representing the size of the
8054object, or -1 if it is variable sized and the third argument is a
8055pointer to the object.
8056
8057Semantics:
8058""""""""""
8059
8060This intrinsic indicates that the memory is mutable again.
8061
8062General Intrinsics
8063------------------
8064
8065This class of intrinsics is designed to be generic and has no specific
8066purpose.
8067
8068'``llvm.var.annotation``' Intrinsic
8069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8070
8071Syntax:
8072"""""""
8073
8074::
8075
8076 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8077
8078Overview:
8079"""""""""
8080
8081The '``llvm.var.annotation``' intrinsic.
8082
8083Arguments:
8084""""""""""
8085
8086The first argument is a pointer to a value, the second is a pointer to a
8087global string, the third is a pointer to a global string which is the
8088source file name, and the last argument is the line number.
8089
8090Semantics:
8091""""""""""
8092
8093This intrinsic allows annotation of local variables with arbitrary
8094strings. This can be useful for special purpose optimizations that want
8095to look for these annotations. These have no other defined use; they are
8096ignored by code generation and optimization.
8097
8098'``llvm.annotation.*``' Intrinsic
8099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8100
8101Syntax:
8102"""""""
8103
8104This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8105any integer bit width.
8106
8107::
8108
8109 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8110 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8111 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8112 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8113 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8114
8115Overview:
8116"""""""""
8117
8118The '``llvm.annotation``' intrinsic.
8119
8120Arguments:
8121""""""""""
8122
8123The first argument is an integer value (result of some expression), the
8124second is a pointer to a global string, the third is a pointer to a
8125global string which is the source file name, and the last argument is
8126the line number. It returns the value of the first argument.
8127
8128Semantics:
8129""""""""""
8130
8131This intrinsic allows annotations to be put on arbitrary expressions
8132with arbitrary strings. This can be useful for special purpose
8133optimizations that want to look for these annotations. These have no
8134other defined use; they are ignored by code generation and optimization.
8135
8136'``llvm.trap``' Intrinsic
8137^^^^^^^^^^^^^^^^^^^^^^^^^
8138
8139Syntax:
8140"""""""
8141
8142::
8143
8144 declare void @llvm.trap() noreturn nounwind
8145
8146Overview:
8147"""""""""
8148
8149The '``llvm.trap``' intrinsic.
8150
8151Arguments:
8152""""""""""
8153
8154None.
8155
8156Semantics:
8157""""""""""
8158
8159This intrinsic is lowered to the target dependent trap instruction. If
8160the target does not have a trap instruction, this intrinsic will be
8161lowered to a call of the ``abort()`` function.
8162
8163'``llvm.debugtrap``' Intrinsic
8164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8165
8166Syntax:
8167"""""""
8168
8169::
8170
8171 declare void @llvm.debugtrap() nounwind
8172
8173Overview:
8174"""""""""
8175
8176The '``llvm.debugtrap``' intrinsic.
8177
8178Arguments:
8179""""""""""
8180
8181None.
8182
8183Semantics:
8184""""""""""
8185
8186This intrinsic is lowered to code which is intended to cause an
8187execution trap with the intention of requesting the attention of a
8188debugger.
8189
8190'``llvm.stackprotector``' Intrinsic
8191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8192
8193Syntax:
8194"""""""
8195
8196::
8197
8198 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8199
8200Overview:
8201"""""""""
8202
8203The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8204onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8205is placed on the stack before local variables.
8206
8207Arguments:
8208""""""""""
8209
8210The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8211The first argument is the value loaded from the stack guard
8212``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8213enough space to hold the value of the guard.
8214
8215Semantics:
8216""""""""""
8217
8218This intrinsic causes the prologue/epilogue inserter to force the
8219position of the ``AllocaInst`` stack slot to be before local variables
8220on the stack. This is to ensure that if a local variable on the stack is
8221overwritten, it will destroy the value of the guard. When the function
8222exits, the guard on the stack is checked against the original guard. If
8223they are different, then the program aborts by calling the
8224``__stack_chk_fail()`` function.
8225
8226'``llvm.objectsize``' Intrinsic
8227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8228
8229Syntax:
8230"""""""
8231
8232::
8233
8234 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8235 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8236
8237Overview:
8238"""""""""
8239
8240The ``llvm.objectsize`` intrinsic is designed to provide information to
8241the optimizers to determine at compile time whether a) an operation
8242(like memcpy) will overflow a buffer that corresponds to an object, or
8243b) that a runtime check for overflow isn't necessary. An object in this
8244context means an allocation of a specific class, structure, array, or
8245other object.
8246
8247Arguments:
8248""""""""""
8249
8250The ``llvm.objectsize`` intrinsic takes two arguments. The first
8251argument is a pointer to or into the ``object``. The second argument is
8252a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8253or -1 (if false) when the object size is unknown. The second argument
8254only accepts constants.
8255
8256Semantics:
8257""""""""""
8258
8259The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8260the size of the object concerned. If the size cannot be determined at
8261compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8262on the ``min`` argument).
8263
8264'``llvm.expect``' Intrinsic
8265^^^^^^^^^^^^^^^^^^^^^^^^^^^
8266
8267Syntax:
8268"""""""
8269
8270::
8271
8272 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8273 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8274
8275Overview:
8276"""""""""
8277
8278The ``llvm.expect`` intrinsic provides information about expected (the
8279most probable) value of ``val``, which can be used by optimizers.
8280
8281Arguments:
8282""""""""""
8283
8284The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8285a value. The second argument is an expected value, this needs to be a
8286constant value, variables are not allowed.
8287
8288Semantics:
8289""""""""""
8290
8291This intrinsic is lowered to the ``val``.
8292
8293'``llvm.donothing``' Intrinsic
8294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8295
8296Syntax:
8297"""""""
8298
8299::
8300
8301 declare void @llvm.donothing() nounwind readnone
8302
8303Overview:
8304"""""""""
8305
8306The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8307only intrinsic that can be called with an invoke instruction.
8308
8309Arguments:
8310""""""""""
8311
8312None.
8313
8314Semantics:
8315""""""""""
8316
8317This intrinsic does nothing, and it's removed by optimizers and ignored
8318by codegen.