blob: e731a5a02ab0fe3d6d125665c6a96587d7e517dc [file] [log] [blame]
Jason Molenda74b8fbc2016-09-29 01:00:16 +00001//===-- x86AssemblyInspectionEngine.cpp -------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "x86AssemblyInspectionEngine.h"
11
12#include "llvm-c/Disassembler.h"
13
14#include "lldb/Core/Address.h"
15#include "lldb/Symbol/UnwindPlan.h"
16#include "lldb/Target/RegisterContext.h"
17#include "lldb/Target/UnwindAssembly.h"
18
19using namespace lldb_private;
20using namespace lldb;
21
22x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch)
23 : m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM),
24 m_machine_sp_regnum(LLDB_INVALID_REGNUM),
25 m_machine_fp_regnum(LLDB_INVALID_REGNUM),
26 m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
27 m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
28 m_lldb_fp_regnum(LLDB_INVALID_REGNUM),
29
30 m_reg_map(), m_arch(arch), m_cpu(k_cpu_unspecified), m_wordsize(-1),
31 m_register_map_initialized(false), m_disasm_context() {
Jason Molendac0657a62016-10-01 00:19:26 +000032 m_disasm_context =
33 ::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr,
34 /*TagType=*/1, nullptr, nullptr);
Jason Molenda74b8fbc2016-09-29 01:00:16 +000035}
36
37x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
38 ::LLVMDisasmDispose(m_disasm_context);
39}
40
41void x86AssemblyInspectionEngine::Initialize(RegisterContextSP &reg_ctx) {
42 m_cpu = k_cpu_unspecified;
43 m_wordsize = -1;
44 m_register_map_initialized = false;
45
46 const llvm::Triple::ArchType cpu = m_arch.GetMachine();
47 if (cpu == llvm::Triple::x86)
48 m_cpu = k_i386;
49 else if (cpu == llvm::Triple::x86_64)
50 m_cpu = k_x86_64;
51
52 if (m_cpu == k_cpu_unspecified)
53 return;
54
55 if (reg_ctx.get() == nullptr)
56 return;
57
58 if (m_cpu == k_i386) {
59 m_machine_ip_regnum = k_machine_eip;
60 m_machine_sp_regnum = k_machine_esp;
61 m_machine_fp_regnum = k_machine_ebp;
62 m_wordsize = 4;
63
64 struct lldb_reg_info reginfo;
65 reginfo.name = "eax";
66 m_reg_map[k_machine_eax] = reginfo;
67 reginfo.name = "edx";
68 m_reg_map[k_machine_edx] = reginfo;
69 reginfo.name = "esp";
70 m_reg_map[k_machine_esp] = reginfo;
71 reginfo.name = "esi";
72 m_reg_map[k_machine_esi] = reginfo;
73 reginfo.name = "eip";
74 m_reg_map[k_machine_eip] = reginfo;
75 reginfo.name = "ecx";
76 m_reg_map[k_machine_ecx] = reginfo;
77 reginfo.name = "ebx";
78 m_reg_map[k_machine_ebx] = reginfo;
79 reginfo.name = "ebp";
80 m_reg_map[k_machine_ebp] = reginfo;
81 reginfo.name = "edi";
82 m_reg_map[k_machine_edi] = reginfo;
83 } else {
84 m_machine_ip_regnum = k_machine_rip;
85 m_machine_sp_regnum = k_machine_rsp;
86 m_machine_fp_regnum = k_machine_rbp;
87 m_wordsize = 8;
88
89 struct lldb_reg_info reginfo;
90 reginfo.name = "rax";
91 m_reg_map[k_machine_rax] = reginfo;
92 reginfo.name = "rdx";
93 m_reg_map[k_machine_rdx] = reginfo;
94 reginfo.name = "rsp";
95 m_reg_map[k_machine_rsp] = reginfo;
96 reginfo.name = "rsi";
97 m_reg_map[k_machine_rsi] = reginfo;
98 reginfo.name = "r8";
99 m_reg_map[k_machine_r8] = reginfo;
100 reginfo.name = "r10";
101 m_reg_map[k_machine_r10] = reginfo;
102 reginfo.name = "r12";
103 m_reg_map[k_machine_r12] = reginfo;
104 reginfo.name = "r14";
105 m_reg_map[k_machine_r14] = reginfo;
106 reginfo.name = "rip";
107 m_reg_map[k_machine_rip] = reginfo;
108 reginfo.name = "rcx";
109 m_reg_map[k_machine_rcx] = reginfo;
110 reginfo.name = "rbx";
111 m_reg_map[k_machine_rbx] = reginfo;
112 reginfo.name = "rbp";
113 m_reg_map[k_machine_rbp] = reginfo;
114 reginfo.name = "rdi";
115 m_reg_map[k_machine_rdi] = reginfo;
116 reginfo.name = "r9";
117 m_reg_map[k_machine_r9] = reginfo;
118 reginfo.name = "r11";
119 m_reg_map[k_machine_r11] = reginfo;
120 reginfo.name = "r13";
121 m_reg_map[k_machine_r13] = reginfo;
122 reginfo.name = "r15";
123 m_reg_map[k_machine_r15] = reginfo;
124 }
125
126 for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
127 it != m_reg_map.end(); ++it) {
128 const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name);
129 if (ri)
130 it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB];
131 }
132
133 uint32_t lldb_regno;
134 if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
135 m_lldb_sp_regnum = lldb_regno;
136 if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
137 m_lldb_fp_regnum = lldb_regno;
138 if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
139 m_lldb_ip_regnum = lldb_regno;
140
141 m_register_map_initialized = true;
142}
143
144void x86AssemblyInspectionEngine::Initialize(
145 std::vector<lldb_reg_info> &reg_info) {
146 m_cpu = k_cpu_unspecified;
147 m_wordsize = -1;
148 m_register_map_initialized = false;
149
150 const llvm::Triple::ArchType cpu = m_arch.GetMachine();
151 if (cpu == llvm::Triple::x86)
152 m_cpu = k_i386;
153 else if (cpu == llvm::Triple::x86_64)
154 m_cpu = k_x86_64;
155
156 if (m_cpu == k_cpu_unspecified)
157 return;
158
159 if (m_cpu == k_i386) {
160 m_machine_ip_regnum = k_machine_eip;
161 m_machine_sp_regnum = k_machine_esp;
162 m_machine_fp_regnum = k_machine_ebp;
163 m_wordsize = 4;
164
165 struct lldb_reg_info reginfo;
166 reginfo.name = "eax";
167 m_reg_map[k_machine_eax] = reginfo;
168 reginfo.name = "edx";
169 m_reg_map[k_machine_edx] = reginfo;
170 reginfo.name = "esp";
171 m_reg_map[k_machine_esp] = reginfo;
172 reginfo.name = "esi";
173 m_reg_map[k_machine_esi] = reginfo;
174 reginfo.name = "eip";
175 m_reg_map[k_machine_eip] = reginfo;
176 reginfo.name = "ecx";
177 m_reg_map[k_machine_ecx] = reginfo;
178 reginfo.name = "ebx";
179 m_reg_map[k_machine_ebx] = reginfo;
180 reginfo.name = "ebp";
181 m_reg_map[k_machine_ebp] = reginfo;
182 reginfo.name = "edi";
183 m_reg_map[k_machine_edi] = reginfo;
184 } else {
185 m_machine_ip_regnum = k_machine_rip;
186 m_machine_sp_regnum = k_machine_rsp;
187 m_machine_fp_regnum = k_machine_rbp;
188 m_wordsize = 8;
189
190 struct lldb_reg_info reginfo;
191 reginfo.name = "rax";
192 m_reg_map[k_machine_rax] = reginfo;
193 reginfo.name = "rdx";
194 m_reg_map[k_machine_rdx] = reginfo;
195 reginfo.name = "rsp";
196 m_reg_map[k_machine_rsp] = reginfo;
197 reginfo.name = "rsi";
198 m_reg_map[k_machine_rsi] = reginfo;
199 reginfo.name = "r8";
200 m_reg_map[k_machine_r8] = reginfo;
201 reginfo.name = "r10";
202 m_reg_map[k_machine_r10] = reginfo;
203 reginfo.name = "r12";
204 m_reg_map[k_machine_r12] = reginfo;
205 reginfo.name = "r14";
206 m_reg_map[k_machine_r14] = reginfo;
207 reginfo.name = "rip";
208 m_reg_map[k_machine_rip] = reginfo;
209 reginfo.name = "rcx";
210 m_reg_map[k_machine_rcx] = reginfo;
211 reginfo.name = "rbx";
212 m_reg_map[k_machine_rbx] = reginfo;
213 reginfo.name = "rbp";
214 m_reg_map[k_machine_rbp] = reginfo;
215 reginfo.name = "rdi";
216 m_reg_map[k_machine_rdi] = reginfo;
217 reginfo.name = "r9";
218 m_reg_map[k_machine_r9] = reginfo;
219 reginfo.name = "r11";
220 m_reg_map[k_machine_r11] = reginfo;
221 reginfo.name = "r13";
222 m_reg_map[k_machine_r13] = reginfo;
223 reginfo.name = "r15";
224 m_reg_map[k_machine_r15] = reginfo;
225 }
226
227 for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
228 it != m_reg_map.end(); ++it) {
229 for (size_t i = 0; i < reg_info.size(); ++i) {
230 if (::strcmp(reg_info[i].name, it->second.name) == 0) {
231 it->second.lldb_regnum = reg_info[i].lldb_regnum;
232 break;
233 }
234 }
235 }
236
237 uint32_t lldb_regno;
238 if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
239 m_lldb_sp_regnum = lldb_regno;
240 if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
241 m_lldb_fp_regnum = lldb_regno;
242 if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
243 m_lldb_ip_regnum = lldb_regno;
244
245 m_register_map_initialized = true;
246}
247
248// This function expects an x86 native register number (i.e. the bits stripped
249// out of the
250// actual instruction), not an lldb register number.
251//
252// FIXME: This is ABI dependent, it shouldn't be hardcoded here.
253
254bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) {
255 if (m_cpu == k_i386) {
256 switch (machine_regno) {
257 case k_machine_ebx:
258 case k_machine_ebp: // not actually a nonvolatile but often treated as such
259 // by convention
260 case k_machine_esi:
261 case k_machine_edi:
262 case k_machine_esp:
263 return true;
264 default:
265 return false;
266 }
267 }
268 if (m_cpu == k_x86_64) {
269 switch (machine_regno) {
270 case k_machine_rbx:
271 case k_machine_rsp:
272 case k_machine_rbp: // not actually a nonvolatile but often treated as such
273 // by convention
274 case k_machine_r12:
275 case k_machine_r13:
276 case k_machine_r14:
277 case k_machine_r15:
278 return true;
279 default:
280 return false;
281 }
282 }
283 return false;
284}
285
286// Macro to detect if this is a REX mode prefix byte.
287#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
288
289// The high bit which should be added to the source register number (the "R"
290// bit)
291#define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
292
293// The high bit which should be added to the destination register number (the
294// "B" bit)
295#define REX_W_DSTREG(opcode) ((opcode)&0x1)
296
297// pushq %rbp [0x55]
298bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
299 uint8_t *p = m_cur_insn;
300 if (*p == 0x55)
301 return true;
302 return false;
303}
304
305// pushq $0 ; the first instruction in start() [0x6a 0x00]
306bool x86AssemblyInspectionEngine::push_0_pattern_p() {
307 uint8_t *p = m_cur_insn;
308 if (*p == 0x6a && *(p + 1) == 0x0)
309 return true;
310 return false;
311}
312
313// pushq $0
314// pushl $0
315bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
316 uint8_t *p = m_cur_insn;
317 if (*p == 0x68 || *p == 0x6a)
318 return true;
319 return false;
320}
321
Jason Molendac0657a62016-10-01 00:19:26 +0000322// pushl imm8(%esp)
323//
324// e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)'
325// (same byte pattern for 'pushq 0x20(%rsp)' in an x86_64 program)
326//
327// 0xff (with opcode bits '6' in next byte, PUSH r/m32)
328// 0x74 (ModR/M byte with three bits used to specify the opcode)
329// mod == b01, opcode == b110, R/M == b100
330// "+disp8"
331// 0x24 (SIB byte - scaled index = 0, r32 == esp)
332// 0x20 imm8 value
333
334bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
335 if (*m_cur_insn == 0xff) {
336 // Get the 3 opcode bits from the ModR/M byte
337 uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7;
338 if (opcode == 6) {
339 // I'm only looking for 0xff /6 here - I
340 // don't really care what value is being pushed,
341 // just that we're pushing a 32/64 bit value on
342 // to the stack is enough.
343 return true;
344 }
345 }
346 return false;
347}
348
Jason Molenda2630acc2016-10-04 05:10:06 +0000349// instructions only valid in 32-bit mode:
350// 0x0e - push cs
351// 0x16 - push ss
352// 0x1e - push ds
353// 0x06 - push es
354bool x86AssemblyInspectionEngine::push_misc_reg_p() {
355 uint8_t p = *m_cur_insn;
356 if (m_wordsize == 4) {
357 if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06)
358 return true;
359 }
360 return false;
361}
362
Jason Molendac0657a62016-10-01 00:19:26 +0000363// pushq %rbx
364// pushl %ebx
365bool x86AssemblyInspectionEngine::push_reg_p(int &regno) {
366 uint8_t *p = m_cur_insn;
367 int regno_prefix_bit = 0;
368 // If we have a rex prefix byte, check to see if a B bit is set
369 if (m_wordsize == 8 && *p == 0x41) {
370 regno_prefix_bit = 1 << 3;
371 p++;
372 }
373 if (*p >= 0x50 && *p <= 0x57) {
374 regno = (*p - 0x50) | regno_prefix_bit;
375 return true;
376 }
377 return false;
378}
379
Jason Molenda74b8fbc2016-09-29 01:00:16 +0000380// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5]
381// movl %esp, %ebp [0x8b 0xec] or [0x89 0xe5]
382bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
383 uint8_t *p = m_cur_insn;
384 if (m_wordsize == 8 && *p == 0x48)
385 p++;
386 if (*(p) == 0x8b && *(p + 1) == 0xec)
387 return true;
388 if (*(p) == 0x89 && *(p + 1) == 0xe5)
389 return true;
390 return false;
391}
392
393// subq $0x20, %rsp
394bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) {
395 uint8_t *p = m_cur_insn;
396 if (m_wordsize == 8 && *p == 0x48)
397 p++;
398 // 8-bit immediate operand
399 if (*p == 0x83 && *(p + 1) == 0xec) {
400 amount = (int8_t) * (p + 2);
401 return true;
402 }
403 // 32-bit immediate operand
404 if (*p == 0x81 && *(p + 1) == 0xec) {
405 amount = (int32_t)extract_4(p + 2);
406 return true;
407 }
408 return false;
409}
410
411// addq $0x20, %rsp
412bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) {
413 uint8_t *p = m_cur_insn;
414 if (m_wordsize == 8 && *p == 0x48)
415 p++;
416 // 8-bit immediate operand
417 if (*p == 0x83 && *(p + 1) == 0xc4) {
418 amount = (int8_t) * (p + 2);
419 return true;
420 }
421 // 32-bit immediate operand
422 if (*p == 0x81 && *(p + 1) == 0xc4) {
423 amount = (int32_t)extract_4(p + 2);
424 return true;
425 }
426 return false;
427}
428
429// lea esp, [esp - 0x28]
430// lea esp, [esp + 0x28]
431bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) {
432 uint8_t *p = m_cur_insn;
433 if (m_wordsize == 8 && *p == 0x48)
434 p++;
435
436 // Check opcode
437 if (*p != 0x8d)
438 return false;
439
440 // 8 bit displacement
441 if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
442 amount = (int8_t) * (p + 3);
443 return true;
444 }
445
446 // 32 bit displacement
447 if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
448 amount = (int32_t)extract_4(p + 3);
449 return true;
450 }
451
452 return false;
453}
454
Jason Molenda74b8fbc2016-09-29 01:00:16 +0000455// popq %rbx
456// popl %ebx
457bool x86AssemblyInspectionEngine::pop_reg_p(int &regno) {
458 uint8_t *p = m_cur_insn;
459 int regno_prefix_bit = 0;
460 // If we have a rex prefix byte, check to see if a B bit is set
461 if (m_wordsize == 8 && *p == 0x41) {
462 regno_prefix_bit = 1 << 3;
463 p++;
464 }
465 if (*p >= 0x58 && *p <= 0x5f) {
466 regno = (*p - 0x58) | regno_prefix_bit;
467 return true;
468 }
469 return false;
470}
471
472// popq %rbp [0x5d]
473// popl %ebp [0x5d]
474bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
475 uint8_t *p = m_cur_insn;
476 return (*p == 0x5d);
477}
478
Jason Molenda2630acc2016-10-04 05:10:06 +0000479// instructions valid only in 32-bit mode:
480// 0x1f - pop ds
481// 0x07 - pop es
482// 0x17 - pop ss
483bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
484 uint8_t p = *m_cur_insn;
485 if (m_wordsize == 4) {
486 if (p == 0x1f || p == 0x07 || p == 0x17)
487 return true;
488 }
489 return false;
490}
491
Jason Molenda74b8fbc2016-09-29 01:00:16 +0000492// leave [0xc9]
493bool x86AssemblyInspectionEngine::leave_pattern_p() {
494 uint8_t *p = m_cur_insn;
495 return (*p == 0xc9);
496}
497
498// call $0 [0xe8 0x0 0x0 0x0 0x0]
499bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
500 uint8_t *p = m_cur_insn;
501 return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
502 (*(p + 3) == 0x0) && (*(p + 4) == 0x0);
503}
504
505// Look for an instruction sequence storing a nonvolatile register
506// on to the stack frame.
507
508// movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
509// movl %eax, -0xc(%ebp) [0x89 0x45 0xf4]
510
511// The offset value returned in rbp_offset will be positive --
512// but it must be subtraced from the frame base register to get
513// the actual location. The positive value returned for the offset
514// is a convention used elsewhere for CFA offsets et al.
515
516bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
517 int &regno, int &rbp_offset) {
518 uint8_t *p = m_cur_insn;
519 int src_reg_prefix_bit = 0;
520 int target_reg_prefix_bit = 0;
521
522 if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
523 src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
524 target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
525 if (target_reg_prefix_bit == 1) {
526 // rbp/ebp don't need a prefix bit - we know this isn't the
527 // reg we care about.
528 return false;
529 }
530 p++;
531 }
532
533 if (*p == 0x89) {
534 /* Mask off the 3-5 bits which indicate the destination register
535 if this is a ModR/M byte. */
536 int opcode_destreg_masked_out = *(p + 1) & (~0x38);
537
538 /* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
539 and three bits between them, e.g. 01nnn101
540 We're looking for a destination of ebp-disp8 or ebp-disp32. */
541 int immsize;
542 if (opcode_destreg_masked_out == 0x45)
543 immsize = 2;
544 else if (opcode_destreg_masked_out == 0x85)
545 immsize = 4;
546 else
547 return false;
548
549 int offset = 0;
550 if (immsize == 2)
551 offset = (int8_t) * (p + 2);
552 if (immsize == 4)
553 offset = (uint32_t)extract_4(p + 2);
554 if (offset > 0)
555 return false;
556
557 regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
558 rbp_offset = offset > 0 ? offset : -offset;
559 return true;
560 }
561 return false;
562}
563
564// ret [0xc9] or [0xc2 imm8] or [0xca imm8]
565bool x86AssemblyInspectionEngine::ret_pattern_p() {
566 uint8_t *p = m_cur_insn;
567 if (*p == 0xc9 || *p == 0xc2 || *p == 0xca || *p == 0xc3)
568 return true;
569 return false;
570}
571
572uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) {
573 uint32_t v = 0;
574 for (int i = 3; i >= 0; i--)
575 v = (v << 8) | b[i];
576 return v;
577}
578
579bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p,
580 int &length) {
581
582 const uint32_t max_op_byte_size = m_arch.GetMaximumOpcodeByteSize();
583 llvm::SmallVector<uint8_t, 32> opcode_data;
584 opcode_data.resize(max_op_byte_size);
585
586 char out_string[512];
587 const size_t inst_size =
588 ::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0,
589 out_string, sizeof(out_string));
590
591 length = inst_size;
592 return true;
593}
594
595bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
596 int machine_regno, uint32_t &lldb_regno) {
597 MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno);
598 if (it != m_reg_map.end()) {
599 lldb_regno = it->second.lldb_regnum;
600 return true;
601 }
602 return false;
603 return false;
604}
605
606bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
607 uint8_t *data, size_t size, AddressRange &func_range,
608 UnwindPlan &unwind_plan) {
609 unwind_plan.Clear();
610
611 if (data == nullptr || size == 0)
612 return false;
613
614 if (m_register_map_initialized == false)
615 return false;
616
617 addr_t current_func_text_offset = 0;
618 int current_sp_bytes_offset_from_cfa = 0;
619 UnwindPlan::Row::RegisterLocation initial_regloc;
620 UnwindPlan::RowSP row(new UnwindPlan::Row);
621
622 unwind_plan.SetPlanValidAddressRange(func_range);
623 unwind_plan.SetRegisterKind(eRegisterKindLLDB);
624
625 // At the start of the function, find the CFA by adding wordsize to the SP
626 // register
627 row->SetOffset(current_func_text_offset);
628 row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
629
630 // caller's stack pointer value before the call insn is the CFA address
631 initial_regloc.SetIsCFAPlusOffset(0);
632 row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);
633
634 // saved instruction pointer can be found at CFA - wordsize.
635 current_sp_bytes_offset_from_cfa = m_wordsize;
636 initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_cfa);
637 row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);
638
639 unwind_plan.AppendRow(row);
640
641 // Allocate a new Row, populate it with the existing Row contents.
642 UnwindPlan::Row *newrow = new UnwindPlan::Row;
643 *newrow = *row.get();
644 row.reset(newrow);
645
646 // Track which registers have been saved so far in the prologue.
647 // If we see another push of that register, it's not part of the prologue.
648 // The register numbers used here are the machine register #'s
649 // (i386_register_numbers, x86_64_register_numbers).
650 std::vector<bool> saved_registers(32, false);
651
652 // Once the prologue has completed we'll save a copy of the unwind
653 // instructions
654 // If there is an epilogue in the middle of the function, after that epilogue
655 // we'll reinstate
656 // the unwind setup -- we assume that some code path jumps over the
657 // mid-function epilogue
658
659 UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
660 int prologue_completed_sp_bytes_offset_from_cfa; // The sp value before the
661 // epilogue started executed
662 std::vector<bool> prologue_completed_saved_registers;
663
664 while (current_func_text_offset < size) {
665 int stack_offset, insn_len;
666 int machine_regno; // register numbers masked directly out of instructions
667 uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
668 // numbering scheme
669
670 bool in_epilogue = false; // we're in the middle of an epilogue sequence
671 bool row_updated = false; // The UnwindPlan::Row 'row' has been updated
672
673 m_cur_insn = data + current_func_text_offset;
674 if (!instruction_length(m_cur_insn, insn_len) || insn_len == 0 ||
675 insn_len > kMaxInstructionByteSize) {
676 // An unrecognized/junk instruction
677 break;
678 }
679
680 if (push_rbp_pattern_p()) {
681 current_sp_bytes_offset_from_cfa += m_wordsize;
682 row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
683 UnwindPlan::Row::RegisterLocation regloc;
684 regloc.SetAtCFAPlusOffset(-row->GetCFAValue().GetOffset());
685 row->SetRegisterInfo(m_lldb_fp_regnum, regloc);
686 saved_registers[m_machine_fp_regnum] = true;
687 row_updated = true;
688 }
689
690 else if (mov_rsp_rbp_pattern_p()) {
691 row->GetCFAValue().SetIsRegisterPlusOffset(
692 m_lldb_fp_regnum, row->GetCFAValue().GetOffset());
693 row_updated = true;
694 }
695
696 // This is the start() function (or a pthread equivalent), it starts with a
697 // pushl $0x0 which puts the
698 // saved pc value of 0 on the stack. In this case we want to pretend we
699 // didn't see a stack movement at all --
700 // normally the saved pc value is already on the stack by the time the
701 // function starts executing.
702 else if (push_0_pattern_p()) {
703 }
704
705 else if (push_reg_p(machine_regno)) {
706 current_sp_bytes_offset_from_cfa += m_wordsize;
707 // the PUSH instruction has moved the stack pointer - if the CFA is set in
708 // terms of the stack pointer,
709 // we need to add a new row of instructions.
710 if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
711 row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
712 row_updated = true;
713 }
714 // record where non-volatile (callee-saved, spilled) registers are saved
715 // on the stack
716 if (nonvolatile_reg_p(machine_regno) &&
717 machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
718 saved_registers[machine_regno] == false) {
719 UnwindPlan::Row::RegisterLocation regloc;
720 regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_cfa);
721 row->SetRegisterInfo(lldb_regno, regloc);
722 saved_registers[machine_regno] = true;
723 row_updated = true;
724 }
725 }
726
727 else if (pop_reg_p(machine_regno)) {
728 current_sp_bytes_offset_from_cfa -= m_wordsize;
729
730 if (nonvolatile_reg_p(machine_regno) &&
731 machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
732 saved_registers[machine_regno] == true) {
733 saved_registers[machine_regno] = false;
734 row->RemoveRegisterInfo(lldb_regno);
735
736 if (machine_regno == (int)m_machine_fp_regnum) {
737 row->GetCFAValue().SetIsRegisterPlusOffset(
738 m_lldb_sp_regnum, row->GetCFAValue().GetOffset());
739 }
740
741 in_epilogue = true;
742 row_updated = true;
743 }
744
745 // the POP instruction has moved the stack pointer - if the CFA is set in
746 // terms of the stack pointer,
747 // we need to add a new row of instructions.
748 if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
749 row->GetCFAValue().SetIsRegisterPlusOffset(
750 m_lldb_sp_regnum, current_sp_bytes_offset_from_cfa);
751 row_updated = true;
752 }
753 }
754
Jason Molenda2630acc2016-10-04 05:10:06 +0000755 else if (pop_misc_reg_p()) {
756 current_sp_bytes_offset_from_cfa -= m_wordsize;
757 if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
758 row->GetCFAValue().SetIsRegisterPlusOffset(
759 m_lldb_sp_regnum, current_sp_bytes_offset_from_cfa);
760 row_updated = true;
761 }
762 }
763
Jason Molenda74b8fbc2016-09-29 01:00:16 +0000764 // The LEAVE instruction moves the value from rbp into rsp and pops
765 // a value off the stack into rbp (restoring the caller's rbp value).
766 // It is the opposite of ENTER, or 'push rbp, mov rsp rbp'.
767 else if (leave_pattern_p()) {
768 // We're going to copy the value in rbp into rsp, so re-set the sp offset
769 // based on the CFAValue. Also, adjust it to recognize that we're popping
770 // the saved rbp value off the stack.
771 current_sp_bytes_offset_from_cfa = row->GetCFAValue().GetOffset();
772 current_sp_bytes_offset_from_cfa -= m_wordsize;
773 row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
774
775 // rbp is restored to the caller's value
776 saved_registers[m_machine_fp_regnum] = false;
777 row->RemoveRegisterInfo(m_lldb_fp_regnum);
778
779 // cfa is now in terms of rsp again.
780 row->GetCFAValue().SetIsRegisterPlusOffset(
781 m_lldb_sp_regnum, row->GetCFAValue().GetOffset());
782 row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
783
784 in_epilogue = true;
785 row_updated = true;
786 }
787
788 else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
789 nonvolatile_reg_p(machine_regno) &&
790 machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
791 saved_registers[machine_regno] == false) {
792 saved_registers[machine_regno] = true;
793
794 UnwindPlan::Row::RegisterLocation regloc;
795
796 // stack_offset for 'movq %r15, -80(%rbp)' will be 80.
797 // In the Row, we want to express this as the offset from the CFA. If the
798 // frame base
799 // is rbp (like the above instruction), the CFA offset for rbp is probably
800 // 16. So we
801 // want to say that the value is stored at the CFA address - 96.
802 regloc.SetAtCFAPlusOffset(
803 -(stack_offset + row->GetCFAValue().GetOffset()));
804
805 row->SetRegisterInfo(lldb_regno, regloc);
806
807 row_updated = true;
808 }
809
810 else if (sub_rsp_pattern_p(stack_offset)) {
811 current_sp_bytes_offset_from_cfa += stack_offset;
812 if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
813 row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
814 row_updated = true;
815 }
816 }
817
818 else if (add_rsp_pattern_p(stack_offset)) {
819 current_sp_bytes_offset_from_cfa -= stack_offset;
820 if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
821 row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
822 row_updated = true;
823 }
824 in_epilogue = true;
825 }
826
Jason Molenda2630acc2016-10-04 05:10:06 +0000827 else if (push_extended_pattern_p() || push_imm_pattern_p() ||
828 push_misc_reg_p()) {
Jason Molendac0657a62016-10-01 00:19:26 +0000829 current_sp_bytes_offset_from_cfa += m_wordsize;
830 if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
831 row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
832 row_updated = true;
833 }
834 }
835
Jason Molenda74b8fbc2016-09-29 01:00:16 +0000836 else if (lea_rsp_pattern_p(stack_offset)) {
837 current_sp_bytes_offset_from_cfa -= stack_offset;
838 if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
839 row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
840 row_updated = true;
841 }
842 if (stack_offset > 0)
843 in_epilogue = true;
844 }
845
846 else if (ret_pattern_p() && prologue_completed_row.get()) {
847 // Reinstate the saved prologue setup for any instructions
848 // that come after the ret instruction
849
850 UnwindPlan::Row *newrow = new UnwindPlan::Row;
851 *newrow = *prologue_completed_row.get();
852 row.reset(newrow);
853 current_sp_bytes_offset_from_cfa =
854 prologue_completed_sp_bytes_offset_from_cfa;
855
856 saved_registers.clear();
857 saved_registers.resize(prologue_completed_saved_registers.size(), false);
858 for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
859 saved_registers[i] = prologue_completed_saved_registers[i];
860 }
861
862 in_epilogue = true;
863 row_updated = true;
864 }
865
866 // call next instruction
867 // call 0
868 // => pop %ebx
869 // This is used in i386 programs to get the PIC base address for finding
870 // global data
871 else if (call_next_insn_pattern_p()) {
872 current_sp_bytes_offset_from_cfa += m_wordsize;
873 if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
874 row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
875 row_updated = true;
876 }
877 }
878
879 if (row_updated) {
880 if (current_func_text_offset + insn_len < size) {
881 row->SetOffset(current_func_text_offset + insn_len);
882 unwind_plan.AppendRow(row);
883 // Allocate a new Row, populate it with the existing Row contents.
884 newrow = new UnwindPlan::Row;
885 *newrow = *row.get();
886 row.reset(newrow);
887 }
888 }
889
890 if (in_epilogue == false && row_updated) {
891 // If we're not in an epilogue sequence, save the updated Row
892 UnwindPlan::Row *newrow = new UnwindPlan::Row;
893 *newrow = *row.get();
894 prologue_completed_row.reset(newrow);
895
896 prologue_completed_saved_registers.clear();
897 prologue_completed_saved_registers.resize(saved_registers.size(), false);
898 for (size_t i = 0; i < saved_registers.size(); ++i) {
899 prologue_completed_saved_registers[i] = saved_registers[i];
900 }
901 }
902
903 // We may change the sp value without adding a new Row necessarily -- keep
904 // track of it either way.
905 if (in_epilogue == false) {
906 prologue_completed_sp_bytes_offset_from_cfa =
907 current_sp_bytes_offset_from_cfa;
908 }
909
910 m_cur_insn = m_cur_insn + insn_len;
911 current_func_text_offset += insn_len;
912 }
913
914 unwind_plan.SetSourceName("assembly insn profiling");
915 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
916 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
917
918 return true;
919}
920
921bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
922 uint8_t *data, size_t size, AddressRange &func_range,
923 UnwindPlan &unwind_plan, RegisterContextSP &reg_ctx) {
924 Address addr_start = func_range.GetBaseAddress();
925 if (!addr_start.IsValid())
926 return false;
927
928 // We either need a live RegisterContext, or we need the UnwindPlan to already
929 // be in the lldb register numbering scheme.
930 if (reg_ctx.get() == nullptr &&
931 unwind_plan.GetRegisterKind() != eRegisterKindLLDB)
932 return false;
933
934 // Is original unwind_plan valid?
935 // unwind_plan should have at least one row which is ABI-default (CFA register
936 // is sp),
937 // and another row in mid-function.
938 if (unwind_plan.GetRowCount() < 2)
939 return false;
940
941 UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
942 if (first_row->GetOffset() != 0)
943 return false;
944 uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber();
945 if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
946 cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
947 unwind_plan.GetRegisterKind(),
948 first_row->GetCFAValue().GetRegisterNumber());
949 }
950 if (cfa_reg != m_lldb_sp_regnum ||
951 first_row->GetCFAValue().GetOffset() != m_wordsize)
952 return false;
953
954 UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);
955
956 size_t offset = 0;
957 int row_id = 1;
958 bool unwind_plan_updated = false;
959 UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
960 m_cur_insn = data + offset;
961
962 // After a mid-function epilogue we will need to re-insert the original unwind
963 // rules
964 // so unwinds work for the remainder of the function. These aren't common
965 // with clang/gcc
966 // on x86 but it is possible.
967 bool reinstate_unwind_state = false;
968
969 while (offset < size) {
970 m_cur_insn = data + offset;
971 int insn_len;
972 if (!instruction_length(m_cur_insn, insn_len) || insn_len == 0 ||
973 insn_len > kMaxInstructionByteSize) {
974 // An unrecognized/junk instruction.
975 break;
976 }
977
978 // Advance offsets.
979 offset += insn_len;
980 m_cur_insn = data + offset;
981
982 if (reinstate_unwind_state) {
983 // that was the last instruction of this function
984 if (offset >= size)
985 continue;
986
987 UnwindPlan::RowSP new_row(new UnwindPlan::Row());
988 *new_row = *original_last_row;
989 new_row->SetOffset(offset);
990 unwind_plan.AppendRow(new_row);
991 row.reset(new UnwindPlan::Row());
992 *row = *new_row;
993 reinstate_unwind_state = false;
994 unwind_plan_updated = true;
995 continue;
996 }
997
998 // If we already have one row for this instruction, we can continue.
999 while (row_id < unwind_plan.GetRowCount() &&
1000 unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
1001 row_id++;
1002 }
1003 UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
1004 if (original_row->GetOffset() == offset) {
1005 *row = *original_row;
1006 continue;
1007 }
1008
1009 if (row_id == 0) {
1010 // If we are here, compiler didn't generate CFI for prologue.
1011 // This won't happen to GCC or clang.
1012 // In this case, bail out directly.
1013 return false;
1014 }
1015
1016 // Inspect the instruction to check if we need a new row for it.
1017 cfa_reg = row->GetCFAValue().GetRegisterNumber();
1018 if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
1019 cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
1020 unwind_plan.GetRegisterKind(),
1021 row->GetCFAValue().GetRegisterNumber());
1022 }
1023 if (cfa_reg == m_lldb_sp_regnum) {
1024 // CFA register is sp.
1025
1026 // call next instruction
1027 // call 0
1028 // => pop %ebx
1029 if (call_next_insn_pattern_p()) {
1030 row->SetOffset(offset);
1031 row->GetCFAValue().IncOffset(m_wordsize);
1032
1033 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1034 unwind_plan.InsertRow(new_row);
1035 unwind_plan_updated = true;
1036 continue;
1037 }
1038
1039 // push/pop register
1040 int regno;
1041 if (push_reg_p(regno)) {
1042 row->SetOffset(offset);
1043 row->GetCFAValue().IncOffset(m_wordsize);
1044
1045 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1046 unwind_plan.InsertRow(new_row);
1047 unwind_plan_updated = true;
1048 continue;
1049 }
1050 if (pop_reg_p(regno)) {
1051 // Technically, this might be a nonvolatile register recover in
1052 // epilogue.
1053 // We should reset RegisterInfo for the register.
1054 // But in practice, previous rule for the register is still valid...
1055 // So we ignore this case.
1056
1057 row->SetOffset(offset);
1058 row->GetCFAValue().IncOffset(-m_wordsize);
1059
1060 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1061 unwind_plan.InsertRow(new_row);
1062 unwind_plan_updated = true;
1063 continue;
1064 }
1065
Jason Molenda2630acc2016-10-04 05:10:06 +00001066 if (pop_misc_reg_p()) {
1067 row->SetOffset(offset);
1068 row->GetCFAValue().IncOffset(-m_wordsize);
1069
1070 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1071 unwind_plan.InsertRow(new_row);
1072 unwind_plan_updated = true;
1073 continue;
1074 }
1075
Jason Molenda74b8fbc2016-09-29 01:00:16 +00001076 // push imm
1077 if (push_imm_pattern_p()) {
1078 row->SetOffset(offset);
1079 row->GetCFAValue().IncOffset(m_wordsize);
1080 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1081 unwind_plan.InsertRow(new_row);
1082 unwind_plan_updated = true;
1083 continue;
1084 }
1085
Jason Molendac0657a62016-10-01 00:19:26 +00001086 // push extended
Jason Molenda2630acc2016-10-04 05:10:06 +00001087 if (push_extended_pattern_p() || push_misc_reg_p()) {
Jason Molendac0657a62016-10-01 00:19:26 +00001088 row->SetOffset(offset);
1089 row->GetCFAValue().IncOffset(m_wordsize);
1090 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1091 unwind_plan.InsertRow(new_row);
1092 unwind_plan_updated = true;
1093 continue;
1094 }
1095
Jason Molenda74b8fbc2016-09-29 01:00:16 +00001096 // add/sub %rsp/%esp
1097 int amount;
1098 if (add_rsp_pattern_p(amount)) {
1099 row->SetOffset(offset);
1100 row->GetCFAValue().IncOffset(-amount);
1101
1102 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1103 unwind_plan.InsertRow(new_row);
1104 unwind_plan_updated = true;
1105 continue;
1106 }
1107 if (sub_rsp_pattern_p(amount)) {
1108 row->SetOffset(offset);
1109 row->GetCFAValue().IncOffset(amount);
1110
1111 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1112 unwind_plan.InsertRow(new_row);
1113 unwind_plan_updated = true;
1114 continue;
1115 }
1116
1117 // lea %rsp, [%rsp + $offset]
1118 if (lea_rsp_pattern_p(amount)) {
1119 row->SetOffset(offset);
1120 row->GetCFAValue().IncOffset(-amount);
1121
1122 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1123 unwind_plan.InsertRow(new_row);
1124 unwind_plan_updated = true;
1125 continue;
1126 }
1127
1128 if (ret_pattern_p()) {
1129 reinstate_unwind_state = true;
1130 continue;
1131 }
1132 } else if (cfa_reg == m_lldb_fp_regnum) {
1133 // CFA register is fp.
1134
1135 // The only case we care about is epilogue:
1136 // [0x5d] pop %rbp/%ebp
1137 // => [0xc3] ret
1138 if (pop_rbp_pattern_p() || leave_pattern_p()) {
Jason Molendac0657a62016-10-01 00:19:26 +00001139 offset += 1;
1140 row->SetOffset(offset);
1141 row->GetCFAValue().SetIsRegisterPlusOffset(
1142 first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);
Jason Molenda74b8fbc2016-09-29 01:00:16 +00001143
Jason Molendac0657a62016-10-01 00:19:26 +00001144 UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1145 unwind_plan.InsertRow(new_row);
1146 unwind_plan_updated = true;
1147 reinstate_unwind_state = true;
1148 continue;
Jason Molenda74b8fbc2016-09-29 01:00:16 +00001149 }
1150 } else {
1151 // CFA register is not sp or fp.
1152
1153 // This must be hand-written assembly.
1154 // Just trust eh_frame and assume we have finished.
1155 break;
1156 }
1157 }
1158
1159 unwind_plan.SetPlanValidAddressRange(func_range);
1160 if (unwind_plan_updated) {
1161 std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
1162 unwind_plan_source += " plus augmentation from assembly parsing";
1163 unwind_plan.SetSourceName(unwind_plan_source.c_str());
1164 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1165 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
1166 }
1167 return true;
1168}
1169
1170bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
1171 uint8_t *data, size_t size, size_t &offset) {
1172 offset = 0;
1173
1174 if (m_register_map_initialized == false)
1175 return false;
1176
1177 while (offset < size) {
1178 int regno;
1179 int insn_len;
1180 int scratch;
1181
1182 m_cur_insn = data + offset;
1183 if (!instruction_length(m_cur_insn, insn_len) ||
1184 insn_len > kMaxInstructionByteSize || insn_len == 0) {
1185 // An error parsing the instruction, i.e. probably data/garbage - stop
1186 // scanning
1187 break;
1188 }
1189
1190 if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
1191 sub_rsp_pattern_p(scratch) || push_reg_p(regno) ||
1192 mov_reg_to_local_stack_frame_p(regno, scratch) ||
1193 (lea_rsp_pattern_p(scratch) && offset == 0)) {
1194 offset += insn_len;
1195 continue;
1196 }
1197 //
1198 // Unknown non-prologue instruction - stop scanning
1199 break;
1200 }
1201
1202 return true;
1203}