blob: bf5c40030314bba466c98cc0c0081c2714706c6f [file] [log] [blame]
Chris Lattner64fd9352002-03-28 18:08:31 +00001//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===//
2//
3// This transform changes programs so that disjoint data structures are
4// allocated out of different pools of memory, increasing locality and shrinking
5// pointer size.
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Transforms/IPO/PoolAllocate.h"
Chris Lattner291a1b12002-03-29 19:05:48 +000010#include "llvm/Transforms/CloneFunction.h"
Chris Lattner64fd9352002-03-28 18:08:31 +000011#include "llvm/Analysis/DataStructure.h"
12#include "llvm/Pass.h"
Chris Lattner175f37c2002-03-29 03:40:59 +000013#include "llvm/Module.h"
14#include "llvm/Function.h"
15#include "llvm/iMemory.h"
Chris Lattnere0618ca2002-03-29 05:50:20 +000016#include "llvm/iTerminators.h"
17#include "llvm/iOther.h"
18#include "llvm/ConstantVals.h"
19#include "llvm/Target/TargetData.h"
20#include "Support/STLExtras.h"
Chris Lattner175f37c2002-03-29 03:40:59 +000021#include <algorithm>
Chris Lattner64fd9352002-03-28 18:08:31 +000022
Chris Lattner692ad5d2002-03-29 17:13:46 +000023
Chris Lattnere0618ca2002-03-29 05:50:20 +000024// FIXME: This is dependant on the sparc backend layout conventions!!
25static TargetData TargetData("test");
26
Chris Lattner64fd9352002-03-28 18:08:31 +000027namespace {
Chris Lattner692ad5d2002-03-29 17:13:46 +000028 // ScalarInfo - Information about an LLVM value that we know points to some
29 // datastructure we are processing.
30 //
31 struct ScalarInfo {
32 Value *Val; // Scalar value in Current Function
33 AllocDSNode *AllocNode; // Allocation node it points to
34 Value *PoolHandle; // PoolTy* LLVM value
35
36 ScalarInfo(Value *V, AllocDSNode *AN, Value *PH)
37 : Val(V), AllocNode(AN), PoolHandle(PH) {}
38 };
39
40 // TransformFunctionInfo - Information about how a function eeds to be
41 // transformed.
42 //
43 struct TransformFunctionInfo {
44 // ArgInfo - Maintain information about the arguments that need to be
45 // processed. Each pair corresponds to an argument (whose number is the
46 // first element) that needs to have a pool pointer (the second element)
47 // passed into the transformed function with it.
48 //
49 // As a special case, "argument" number -1 corresponds to the return value.
50 //
51 vector<pair<int, Value*> > ArgInfo;
52
53 // Func - The function to be transformed...
54 Function *Func;
55
56 // default ctor...
57 TransformFunctionInfo() : Func(0) {}
58
59 inline bool operator<(const TransformFunctionInfo &TFI) const {
Chris Lattner291a1b12002-03-29 19:05:48 +000060 if (Func < TFI.Func) return true;
61 if (Func > TFI.Func) return false;
62
63 // Loop over the arguments, checking to see if only the arg _numbers_ are
64 // less...
65 if (ArgInfo.size() < TFI.ArgInfo.size()) return true;
66 if (ArgInfo.size() > TFI.ArgInfo.size()) return false;
67
68 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
69 if (ArgInfo[i].first < TFI.ArgInfo[i].first) return true;
70 if (ArgInfo[i].first > TFI.ArgInfo[i].first) return false;
71 }
72 return false; // They must be equal
Chris Lattner692ad5d2002-03-29 17:13:46 +000073 }
74
75 void finalizeConstruction() {
76 // Sort the vector so that the return value is first, followed by the
77 // argument records, in order.
78 sort(ArgInfo.begin(), ArgInfo.end());
79 }
80 };
81
82
83 // Define the pass class that we implement...
Chris Lattner175f37c2002-03-29 03:40:59 +000084 class PoolAllocate : public Pass {
85 // PoolTy - The type of a scalar value that contains a pool pointer.
86 PointerType *PoolTy;
87 public:
88
89 PoolAllocate() {
90 // Initialize the PoolTy instance variable, since the type never changes.
91 vector<const Type*> PoolElements;
92 PoolElements.push_back(PointerType::get(Type::SByteTy));
93 PoolElements.push_back(Type::UIntTy);
94 PoolTy = PointerType::get(StructType::get(PoolElements));
95 // PoolTy = { sbyte*, uint }*
96
97 CurModule = 0; DS = 0;
98 PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0;
Chris Lattner64fd9352002-03-28 18:08:31 +000099 }
100
Chris Lattner175f37c2002-03-29 03:40:59 +0000101 bool run(Module *M);
102
103 // getAnalysisUsageInfo - This function requires data structure information
104 // to be able to see what is pool allocatable.
Chris Lattner64fd9352002-03-28 18:08:31 +0000105 //
106 virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required,
Chris Lattner175f37c2002-03-29 03:40:59 +0000107 Pass::AnalysisSet &,Pass::AnalysisSet &) {
Chris Lattner64fd9352002-03-28 18:08:31 +0000108 Required.push_back(DataStructure::ID);
109 }
Chris Lattner175f37c2002-03-29 03:40:59 +0000110
111 private:
112 // CurModule - The module being processed.
113 Module *CurModule;
114
115 // DS - The data structure graph for the module being processed.
116 DataStructure *DS;
117
118 // Prototypes that we add to support pool allocation...
119 Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
120
Chris Lattner692ad5d2002-03-29 17:13:46 +0000121 // The map of already transformed functions...
122 map<TransformFunctionInfo, Function*> TransformedFunctions;
123
124 // getTransformedFunction - Get a transformed function, or return null if
125 // the function specified hasn't been transformed yet.
126 //
127 Function *getTransformedFunction(TransformFunctionInfo &TFI) const {
128 map<TransformFunctionInfo, Function*>::const_iterator I =
129 TransformedFunctions.find(TFI);
130 if (I != TransformedFunctions.end()) return I->second;
131 return 0;
132 }
133
134
Chris Lattner175f37c2002-03-29 03:40:59 +0000135 // addPoolPrototypes - Add prototypes for the pool methods to the specified
136 // module and update the Pool* instance variables to point to them.
137 //
138 void addPoolPrototypes(Module *M);
139
Chris Lattner66df97d2002-03-29 06:21:38 +0000140
141 // CreatePools - Insert instructions into the function we are processing to
142 // create all of the memory pool objects themselves. This also inserts
143 // destruction code. Add an alloca for each pool that is allocated to the
144 // PoolDescriptors vector.
145 //
146 void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
147 vector<AllocaInst*> &PoolDescriptors);
148
Chris Lattner175f37c2002-03-29 03:40:59 +0000149 // processFunction - Convert a function to use pool allocation where
150 // available.
151 //
152 bool processFunction(Function *F);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000153
154
155 void transformFunctionBody(Function *F, vector<ScalarInfo> &Scalars);
156
157 // transformFunction - Transform the specified function the specified way.
158 // It we have already transformed that function that way, don't do anything.
159 //
160 void transformFunction(TransformFunctionInfo &TFI);
161
Chris Lattner64fd9352002-03-28 18:08:31 +0000162 };
163}
164
Chris Lattner175f37c2002-03-29 03:40:59 +0000165
166
Chris Lattner692ad5d2002-03-29 17:13:46 +0000167// isNotPoolableAlloc - This is a predicate that returns true if the specified
Chris Lattner175f37c2002-03-29 03:40:59 +0000168// allocation node in a data structure graph is eligable for pool allocation.
169//
170static bool isNotPoolableAlloc(const AllocDSNode *DS) {
Chris Lattnere0618ca2002-03-29 05:50:20 +0000171 if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's.
Chris Lattner175f37c2002-03-29 03:40:59 +0000172
173 MallocInst *MI = cast<MallocInst>(DS->getAllocation());
174 if (MI->isArrayAllocation() && !isa<Constant>(MI->getArraySize()))
Chris Lattnere0618ca2002-03-29 05:50:20 +0000175 return true; // Do not allow variable size allocations...
Chris Lattner175f37c2002-03-29 03:40:59 +0000176
Chris Lattnere0618ca2002-03-29 05:50:20 +0000177 return false;
Chris Lattner175f37c2002-03-29 03:40:59 +0000178}
179
Chris Lattner175f37c2002-03-29 03:40:59 +0000180// processFunction - Convert a function to use pool allocation where
181// available.
182//
183bool PoolAllocate::processFunction(Function *F) {
184 // Get the closed datastructure graph for the current function... if there are
185 // any allocations in this graph that are not escaping, we need to pool
186 // allocate them here!
187 //
188 FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F);
189
190 // Get all of the allocations that do not escape the current function. Since
191 // they are still live (they exist in the graph at all), this means we must
192 // have scalar references to these nodes, but the scalars are never returned.
193 //
Chris Lattner692ad5d2002-03-29 17:13:46 +0000194 vector<AllocDSNode*> Allocs;
Chris Lattner175f37c2002-03-29 03:40:59 +0000195 IPGraph.getNonEscapingAllocations(Allocs);
196
197 // Filter out allocations that we cannot handle. Currently, this includes
198 // variable sized array allocations and alloca's (which we do not want to
199 // pool allocate)
200 //
201 Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc),
202 Allocs.end());
203
204
205 if (Allocs.empty()) return false; // Nothing to do.
206
Chris Lattner692ad5d2002-03-29 17:13:46 +0000207 // Insert instructions into the function we are processing to create all of
208 // the memory pool objects themselves. This also inserts destruction code.
209 // This fills in the PoolDescriptors vector to be a array parallel with
210 // Allocs, but containing the alloca instructions that allocate the pool ptr.
211 //
212 vector<AllocaInst*> PoolDescriptors;
213 CreatePools(F, Allocs, PoolDescriptors);
214
215
Chris Lattner175f37c2002-03-29 03:40:59 +0000216 // Loop through the value map looking for scalars that refer to nonescaping
Chris Lattner692ad5d2002-03-29 17:13:46 +0000217 // allocations. Add them to the Scalars vector. Note that we may have
218 // multiple entries in the Scalars vector for each value if it points to more
219 // than one object.
Chris Lattner175f37c2002-03-29 03:40:59 +0000220 //
221 map<Value*, PointerValSet> &ValMap = IPGraph.getValueMap();
Chris Lattner692ad5d2002-03-29 17:13:46 +0000222 vector<ScalarInfo> Scalars;
Chris Lattner175f37c2002-03-29 03:40:59 +0000223
224 for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
225 E = ValMap.end(); I != E; ++I) {
226 const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
Chris Lattner692ad5d2002-03-29 17:13:46 +0000227
228 assert(PVS.size() == 1 &&
229 "Only handle scalars that point to one thing so far!");
230
Chris Lattner175f37c2002-03-29 03:40:59 +0000231 // Check to see if the scalar points to anything that is an allocation...
232 for (unsigned i = 0, e = PVS.size(); i != e; ++i)
233 if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(PVS[i].Node)) {
234 assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
235
236 // If the allocation is in the nonescaping set...
Chris Lattner692ad5d2002-03-29 17:13:46 +0000237 vector<AllocDSNode*>::iterator AI =
238 find(Allocs.begin(), Allocs.end(), Alloc);
239 if (AI != Allocs.end()) {
240 unsigned IDX = AI-Allocs.begin();
Chris Lattner175f37c2002-03-29 03:40:59 +0000241 // Add it to the list of scalars we have
Chris Lattner692ad5d2002-03-29 17:13:46 +0000242 Scalars.push_back(ScalarInfo(I->first, Alloc, PoolDescriptors[IDX]));
243 }
Chris Lattner175f37c2002-03-29 03:40:59 +0000244 }
245 }
246
Chris Lattner692ad5d2002-03-29 17:13:46 +0000247 // Now we need to figure out what called methods we need to transform, and
248 // how. To do this, we look at all of the scalars, seeing which functions are
249 // either used as a scalar value (so they return a data structure), or are
250 // passed one of our scalar values.
251 //
252 transformFunctionBody(F, Scalars);
253
254 return true;
255}
256
257static void addCallInfo(TransformFunctionInfo &TFI, CallInst *CI, int Arg,
258 Value *PoolHandle) {
259 assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
260 TFI.ArgInfo.push_back(make_pair(Arg, PoolHandle));
261
262 assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
263 "Function call record should always call the same function!");
264 TFI.Func = CI->getCalledFunction();
265}
266
267void PoolAllocate::transformFunctionBody(Function *F,
268 vector<ScalarInfo> &Scalars) {
Chris Lattner175f37c2002-03-29 03:40:59 +0000269 cerr << "In '" << F->getName()
270 << "': Found the following values that point to poolable nodes:\n";
271
272 for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
Chris Lattner692ad5d2002-03-29 17:13:46 +0000273 Scalars[i].Val->dump();
Chris Lattnere0618ca2002-03-29 05:50:20 +0000274
Chris Lattner692ad5d2002-03-29 17:13:46 +0000275 // CallMap - Contain an entry for every call instruction that needs to be
276 // transformed. Each entry in the map contains information about what we need
277 // to do to each call site to change it to work.
278 //
279 map<CallInst*, TransformFunctionInfo> CallMap;
Chris Lattner66df97d2002-03-29 06:21:38 +0000280
Chris Lattner692ad5d2002-03-29 17:13:46 +0000281 // Now we need to figure out what called methods we need to transform, and
282 // how. To do this, we look at all of the scalars, seeing which functions are
283 // either used as a scalar value (so they return a data structure), or are
284 // passed one of our scalar values.
285 //
286 for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
287 Value *ScalarVal = Scalars[i].Val;
288
289 // Check to see if the scalar _IS_ a call...
290 if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
291 // If so, add information about the pool it will be returning...
292 addCallInfo(CallMap[CI], CI, -1, Scalars[i].PoolHandle);
293
294 // Check to see if the scalar is an operand to a call...
295 for (Value::use_iterator UI = ScalarVal->use_begin(),
296 UE = ScalarVal->use_end(); UI != UE; ++UI) {
297 if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
298 // Find out which operand this is to the call instruction...
299 User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal);
300 assert(OI != CI->op_end() && "Call on use list but not an operand!?");
301 assert(OI != CI->op_begin() && "Pointer operand is call destination?");
302
303 // FIXME: This is broken if the same pointer is passed to a call more
304 // than once! It will get multiple entries for the first pointer.
305
306 // Add the operand number and pool handle to the call table...
Chris Lattner291a1b12002-03-29 19:05:48 +0000307 addCallInfo(CallMap[CI], CI, OI-CI->op_begin()-1,Scalars[i].PoolHandle);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000308 }
309 }
310 }
311
312 // Print out call map...
313 for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
314 I != CallMap.end(); ++I) {
315 cerr << "\nFor call: ";
316 I->first->dump();
317 I->second.finalizeConstruction();
Chris Lattner291a1b12002-03-29 19:05:48 +0000318 cerr << I->second.Func->getName() << " must pass pool pointer for arg #";
Chris Lattner692ad5d2002-03-29 17:13:46 +0000319 for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
320 cerr << I->second.ArgInfo[i].first << " ";
321 cerr << "\n";
322 }
323
324 // Loop through all of the call nodes, recursively creating the new functions
325 // that we want to call... This uses a map to prevent infinite recursion and
326 // to avoid duplicating functions unneccesarily.
327 //
328 for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(),
329 E = CallMap.end(); I != E; ++I) {
330 // Make sure the entries are sorted.
331 I->second.finalizeConstruction();
332 transformFunction(I->second);
333 }
334
335
336
337}
338
339
340// transformFunction - Transform the specified function the specified way.
341// It we have already transformed that function that way, don't do anything.
342//
343void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
344 if (getTransformedFunction(TFI)) return; // Function xformation already done?
345
Chris Lattner291a1b12002-03-29 19:05:48 +0000346 Function *FuncToXForm = TFI.Func;
347 const FunctionType *OldFuncType = FuncToXForm->getFunctionType();
Chris Lattner692ad5d2002-03-29 17:13:46 +0000348
Chris Lattner291a1b12002-03-29 19:05:48 +0000349 assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
Chris Lattner692ad5d2002-03-29 17:13:46 +0000350
Chris Lattner291a1b12002-03-29 19:05:48 +0000351 // Build the type for the new function that we are transforming
352 vector<const Type*> ArgTys;
353 for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i)
354 ArgTys.push_back(OldFuncType->getParamType(i));
355
356 // Add one pool pointer for every argument that needs to be supplemented.
357 ArgTys.insert(ArgTys.end(), TFI.ArgInfo.size(), PoolTy);
358
359 // Build the new function type...
360 const // FIXME when types are not const
361 FunctionType *NewFuncType = FunctionType::get(OldFuncType->getReturnType(),
362 ArgTys,OldFuncType->isVarArg());
363
364 // The new function is internal, because we know that only we can call it.
365 // This also helps subsequent IP transformations to eliminate duplicated pool
366 // pointers. [in the future when they are implemented].
367 //
368 Function *NewFunc = new Function(NewFuncType, true,
369 FuncToXForm->getName()+".poolxform");
370 CurModule->getFunctionList().push_back(NewFunc);
371
372 // Add the newly formed function to the TransformedFunctions table so that
373 // infinite recursion does not occur!
374 //
375 TransformedFunctions[TFI] = NewFunc;
376
377 // Add arguments to the function... starting with all of the old arguments
378 vector<Value*> ArgMap;
379 for (unsigned i = 0, e = FuncToXForm->getArgumentList().size(); i != e; ++i) {
380 const FunctionArgument *OFA = FuncToXForm->getArgumentList()[i];
381 FunctionArgument *NFA = new FunctionArgument(OFA->getType(),OFA->getName());
382 NewFunc->getArgumentList().push_back(NFA);
383 ArgMap.push_back(NFA); // Keep track of the arguments
384 }
385
386 // Now add all of the arguments corresponding to pools passed in...
387 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
388 string Name;
389 if (TFI.ArgInfo[i].first == -1)
390 Name = "retpool";
391 else
392 Name = ArgMap[TFI.ArgInfo[i].first]->getName(); // Get the arg name
393 FunctionArgument *NFA = new FunctionArgument(PoolTy, Name+".pool");
394 NewFunc->getArgumentList().push_back(NFA);
395 }
396
397 // Now clone the body of the old function into the new function...
398 CloneFunctionInto(NewFunc, FuncToXForm, ArgMap);
399
Chris Lattner66df97d2002-03-29 06:21:38 +0000400}
401
402
403// CreatePools - Insert instructions into the function we are processing to
404// create all of the memory pool objects themselves. This also inserts
405// destruction code. Add an alloca for each pool that is allocated to the
406// PoolDescriptors vector.
407//
408void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
409 vector<AllocaInst*> &PoolDescriptors) {
Chris Lattnere0618ca2002-03-29 05:50:20 +0000410 // FIXME: This should use an IP version of the UnifyAllExits pass!
411 vector<BasicBlock*> ReturnNodes;
412 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
413 if (isa<ReturnInst>((*I)->getTerminator()))
414 ReturnNodes.push_back(*I);
415
416
417 // Create the code that goes in the entry and exit nodes for the method...
418 vector<Instruction*> EntryNodeInsts;
419 for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
420 // Add an allocation and a free for each pool...
421 AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool");
422 EntryNodeInsts.push_back(PoolAlloc);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000423 PoolDescriptors.push_back(PoolAlloc); // Keep track of pool allocas
Chris Lattnere0618ca2002-03-29 05:50:20 +0000424 AllocationInst *AI = Allocs[i]->getAllocation();
425
426 // Initialize the pool. We need to know how big each allocation is. For
427 // our purposes here, we assume we are allocating a scalar, or array of
428 // constant size.
429 //
430 unsigned ElSize = TargetData.getTypeSize(AI->getAllocatedType());
431 ElSize *= cast<ConstantUInt>(AI->getArraySize())->getValue();
432
433 vector<Value*> Args;
434 Args.push_back(PoolAlloc); // Pool to initialize
435 Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize));
436 EntryNodeInsts.push_back(new CallInst(PoolInit, Args));
437
438 // Destroy the pool...
439 Args.pop_back();
440
441 for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) {
442 Instruction *Destroy = new CallInst(PoolDestroy, Args);
443
444 // Insert it before the return instruction...
445 BasicBlock *RetNode = ReturnNodes[EN];
446 RetNode->getInstList().insert(RetNode->end()-1, Destroy);
447 }
448 }
449
450 // Insert the entry node code into the entry block...
451 F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
452 EntryNodeInsts.begin(),
453 EntryNodeInsts.end());
Chris Lattner175f37c2002-03-29 03:40:59 +0000454}
455
456
Chris Lattner175f37c2002-03-29 03:40:59 +0000457// addPoolPrototypes - Add prototypes for the pool methods to the specified
458// module and update the Pool* instance variables to point to them.
459//
460void PoolAllocate::addPoolPrototypes(Module *M) {
Chris Lattnere0618ca2002-03-29 05:50:20 +0000461 // Get PoolInit function...
462 vector<const Type*> Args;
463 Args.push_back(PoolTy); // Pool to initialize
464 Args.push_back(Type::UIntTy); // Num bytes per element
465 FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, false);
466 PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
Chris Lattner175f37c2002-03-29 03:40:59 +0000467
Chris Lattnere0618ca2002-03-29 05:50:20 +0000468 // Get pooldestroy function...
469 Args.pop_back(); // Only takes a pool...
470 FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, false);
471 PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
472
473 const Type *PtrVoid = PointerType::get(Type::SByteTy);
474
475 // Get the poolalloc function...
476 FunctionType *PoolAllocTy = FunctionType::get(PtrVoid, Args, false);
477 PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
478
479 // Get the poolfree function...
480 Args.push_back(PtrVoid);
481 FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, false);
482 PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
483
484 // Add the %PoolTy type to the symbol table of the module...
485 M->addTypeName("PoolTy", PoolTy->getElementType());
Chris Lattner175f37c2002-03-29 03:40:59 +0000486}
487
488
489bool PoolAllocate::run(Module *M) {
490 addPoolPrototypes(M);
491 CurModule = M;
492
493 DS = &getAnalysis<DataStructure>();
494 bool Changed = false;
Chris Lattner291a1b12002-03-29 19:05:48 +0000495
496 // We cannot use an iterator here because it will get invalidated when we add
497 // functions to the module later...
498 for (unsigned i = 0; i != M->size(); ++i)
499 if (!M->getFunctionList()[i]->isExternal())
500 Changed |= processFunction(M->getFunctionList()[i]);
Chris Lattner175f37c2002-03-29 03:40:59 +0000501
502 CurModule = 0;
503 DS = 0;
504 return false;
505}
506
507
508// createPoolAllocatePass - Global function to access the functionality of this
509// pass...
510//
Chris Lattner64fd9352002-03-28 18:08:31 +0000511Pass *createPoolAllocatePass() { return new PoolAllocate(); }