Hal Finkel | 2bb61ba | 2015-02-17 01:36:59 +0000 | [diff] [blame^] | 1 | //===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the Bit-Tracking Dead Code Elimination pass. Some |
| 11 | // instructions (shifts, some ands, ors, etc.) kill some of their input bits. |
| 12 | // We track these dead bits and remove instructions that compute only these |
| 13 | // dead bits. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "llvm/Transforms/Scalar.h" |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/DepthFirstIterator.h" |
| 20 | #include "llvm/ADT/SmallPtrSet.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/Statistic.h" |
| 23 | #include "llvm/Analysis/AssumptionCache.h" |
| 24 | #include "llvm/Analysis/ValueTracking.h" |
| 25 | #include "llvm/IR/BasicBlock.h" |
| 26 | #include "llvm/IR/CFG.h" |
| 27 | #include "llvm/IR/DataLayout.h" |
| 28 | #include "llvm/IR/Dominators.h" |
| 29 | #include "llvm/IR/InstIterator.h" |
| 30 | #include "llvm/IR/Instructions.h" |
| 31 | #include "llvm/IR/IntrinsicInst.h" |
| 32 | #include "llvm/IR/Module.h" |
| 33 | #include "llvm/IR/Operator.h" |
| 34 | #include "llvm/Pass.h" |
| 35 | #include "llvm/Support/Debug.h" |
| 36 | #include "llvm/Support/raw_ostream.h" |
| 37 | |
| 38 | using namespace llvm; |
| 39 | |
| 40 | #define DEBUG_TYPE "bdce" |
| 41 | |
| 42 | STATISTIC(NumRemoved, "Number of instructions removed (unused)"); |
| 43 | STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)"); |
| 44 | |
| 45 | namespace { |
| 46 | struct BDCE : public FunctionPass { |
| 47 | static char ID; // Pass identification, replacement for typeid |
| 48 | BDCE() : FunctionPass(ID) { |
| 49 | initializeBDCEPass(*PassRegistry::getPassRegistry()); |
| 50 | } |
| 51 | |
| 52 | bool runOnFunction(Function& F) override; |
| 53 | |
| 54 | void getAnalysisUsage(AnalysisUsage& AU) const override { |
| 55 | AU.setPreservesCFG(); |
| 56 | AU.addRequired<AssumptionCacheTracker>(); |
| 57 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 58 | } |
| 59 | |
| 60 | void determineLiveOperandBits(const Instruction *UserI, |
| 61 | const Instruction *I, unsigned OperandNo, |
| 62 | const APInt &AOut, APInt &AB, |
| 63 | APInt &KnownZero, APInt &KnownOne, |
| 64 | APInt &KnownZero2, APInt &KnownOne2); |
| 65 | |
| 66 | AssumptionCache *AC; |
| 67 | const DataLayout *DL; |
| 68 | DominatorTree *DT; |
| 69 | }; |
| 70 | } |
| 71 | |
| 72 | char BDCE::ID = 0; |
| 73 | INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination", |
| 74 | false, false) |
| 75 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 76 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 77 | INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination", |
| 78 | false, false) |
| 79 | |
| 80 | static bool isAlwaysLive(Instruction *I) { |
| 81 | return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || |
| 82 | isa<LandingPadInst>(I) || I->mayHaveSideEffects(); |
| 83 | } |
| 84 | |
| 85 | void BDCE::determineLiveOperandBits(const Instruction *UserI, |
| 86 | const Instruction *I, unsigned OperandNo, |
| 87 | const APInt &AOut, APInt &AB, |
| 88 | APInt &KnownZero, APInt &KnownOne, |
| 89 | APInt &KnownZero2, APInt &KnownOne2) { |
| 90 | unsigned BitWidth = AB.getBitWidth(); |
| 91 | |
| 92 | // We're called once per operand, but for some instructions, we need to |
| 93 | // compute known bits of both operands in order to determine the live bits of |
| 94 | // either (when both operands are instructions themselves). We don't, |
| 95 | // however, want to do this twice, so we cache the result in APInts that live |
| 96 | // in the caller. For the two-relevant-operands case, both operand values are |
| 97 | // provided here. |
| 98 | auto ComputeKnownBits = [&](unsigned BitWidth, const Value *V1, |
| 99 | const Value *V2) { |
| 100 | KnownZero = APInt(BitWidth, 0); |
| 101 | KnownOne = APInt(BitWidth, 0); |
| 102 | computeKnownBits(const_cast<Value*>(V1), KnownZero, KnownOne, DL, 0, AC, |
| 103 | UserI, DT); |
| 104 | |
| 105 | if (V2) { |
| 106 | KnownZero2 = APInt(BitWidth, 0); |
| 107 | KnownOne2 = APInt(BitWidth, 0); |
| 108 | computeKnownBits(const_cast<Value*>(V2), KnownZero2, KnownOne2, DL, 0, AC, |
| 109 | UserI, DT); |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | switch (UserI->getOpcode()) { |
| 114 | default: break; |
| 115 | case Instruction::Call: |
| 116 | case Instruction::Invoke: |
| 117 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) |
| 118 | switch (II->getIntrinsicID()) { |
| 119 | default: break; |
| 120 | case Intrinsic::bswap: |
| 121 | // The alive bits of the input are the swapped alive bits of |
| 122 | // the output. |
| 123 | AB = AOut.byteSwap(); |
| 124 | break; |
| 125 | case Intrinsic::ctlz: |
| 126 | if (OperandNo == 0) { |
| 127 | // We need some output bits, so we need all bits of the |
| 128 | // input to the left of, and including, the leftmost bit |
| 129 | // known to be one. |
| 130 | ComputeKnownBits(BitWidth, I, nullptr); |
| 131 | AB = APInt::getHighBitsSet(BitWidth, |
| 132 | std::min(BitWidth, KnownOne.countLeadingZeros()+1)); |
| 133 | } |
| 134 | break; |
| 135 | case Intrinsic::cttz: |
| 136 | if (OperandNo == 0) { |
| 137 | // We need some output bits, so we need all bits of the |
| 138 | // input to the right of, and including, the rightmost bit |
| 139 | // known to be one. |
| 140 | ComputeKnownBits(BitWidth, I, nullptr); |
| 141 | AB = APInt::getLowBitsSet(BitWidth, |
| 142 | std::min(BitWidth, KnownOne.countTrailingZeros()+1)); |
| 143 | } |
| 144 | break; |
| 145 | } |
| 146 | break; |
| 147 | case Instruction::Add: |
| 148 | case Instruction::Sub: |
| 149 | // Find the highest live output bit. We don't need any more input |
| 150 | // bits than that (adds, and thus subtracts, ripple only to the |
| 151 | // left). |
| 152 | AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); |
| 153 | break; |
| 154 | case Instruction::Shl: |
| 155 | if (OperandNo == 0) |
| 156 | if (ConstantInt *CI = |
| 157 | dyn_cast<ConstantInt>(UserI->getOperand(1))) { |
| 158 | uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); |
| 159 | AB = AOut.lshr(ShiftAmt); |
| 160 | |
| 161 | // If the shift is nuw/nsw, then the high bits are not dead |
| 162 | // (because we've promised that they *must* be zero). |
| 163 | const ShlOperator *S = cast<ShlOperator>(UserI); |
| 164 | if (S->hasNoSignedWrap()) |
| 165 | AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); |
| 166 | else if (S->hasNoUnsignedWrap()) |
| 167 | AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); |
| 168 | } |
| 169 | break; |
| 170 | case Instruction::LShr: |
| 171 | if (OperandNo == 0) |
| 172 | if (ConstantInt *CI = |
| 173 | dyn_cast<ConstantInt>(UserI->getOperand(1))) { |
| 174 | uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); |
| 175 | AB = AOut.shl(ShiftAmt); |
| 176 | |
| 177 | // If the shift is exact, then the low bits are not dead |
| 178 | // (they must be zero). |
| 179 | if (cast<LShrOperator>(UserI)->isExact()) |
| 180 | AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); |
| 181 | } |
| 182 | break; |
| 183 | case Instruction::AShr: |
| 184 | if (OperandNo == 0) |
| 185 | if (ConstantInt *CI = |
| 186 | dyn_cast<ConstantInt>(UserI->getOperand(1))) { |
| 187 | uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); |
| 188 | AB = AOut.shl(ShiftAmt); |
| 189 | // Because the high input bit is replicated into the |
| 190 | // high-order bits of the result, if we need any of those |
| 191 | // bits, then we must keep the highest input bit. |
| 192 | if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) |
| 193 | .getBoolValue()) |
| 194 | AB.setBit(BitWidth-1); |
| 195 | |
| 196 | // If the shift is exact, then the low bits are not dead |
| 197 | // (they must be zero). |
| 198 | if (cast<AShrOperator>(UserI)->isExact()) |
| 199 | AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); |
| 200 | } |
| 201 | break; |
| 202 | case Instruction::And: |
| 203 | AB = AOut; |
| 204 | |
| 205 | // For bits that are known zero, the corresponding bits in the |
| 206 | // other operand are dead (unless they're both zero, in which |
| 207 | // case they can't both be dead, so just mark the LHS bits as |
| 208 | // dead). |
| 209 | if (OperandNo == 0) { |
| 210 | ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); |
| 211 | AB &= ~KnownZero2; |
| 212 | } else { |
| 213 | if (!isa<Instruction>(UserI->getOperand(0))) |
| 214 | ComputeKnownBits(BitWidth, UserI->getOperand(0), I); |
| 215 | AB &= ~(KnownZero & ~KnownZero2); |
| 216 | } |
| 217 | break; |
| 218 | case Instruction::Or: |
| 219 | AB = AOut; |
| 220 | |
| 221 | // For bits that are known one, the corresponding bits in the |
| 222 | // other operand are dead (unless they're both one, in which |
| 223 | // case they can't both be dead, so just mark the LHS bits as |
| 224 | // dead). |
| 225 | if (OperandNo == 0) { |
| 226 | ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); |
| 227 | AB &= ~KnownOne2; |
| 228 | } else { |
| 229 | if (!isa<Instruction>(UserI->getOperand(0))) |
| 230 | ComputeKnownBits(BitWidth, UserI->getOperand(0), I); |
| 231 | AB &= ~(KnownOne & ~KnownOne2); |
| 232 | } |
| 233 | break; |
| 234 | case Instruction::Xor: |
| 235 | case Instruction::PHI: |
| 236 | AB = AOut; |
| 237 | break; |
| 238 | case Instruction::Trunc: |
| 239 | AB = AOut.zext(BitWidth); |
| 240 | break; |
| 241 | case Instruction::ZExt: |
| 242 | AB = AOut.trunc(BitWidth); |
| 243 | break; |
| 244 | case Instruction::SExt: |
| 245 | AB = AOut.trunc(BitWidth); |
| 246 | // Because the high input bit is replicated into the |
| 247 | // high-order bits of the result, if we need any of those |
| 248 | // bits, then we must keep the highest input bit. |
| 249 | if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), |
| 250 | AOut.getBitWidth() - BitWidth)) |
| 251 | .getBoolValue()) |
| 252 | AB.setBit(BitWidth-1); |
| 253 | break; |
| 254 | case Instruction::Select: |
| 255 | if (OperandNo != 0) |
| 256 | AB = AOut; |
| 257 | break; |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | bool BDCE::runOnFunction(Function& F) { |
| 262 | if (skipOptnoneFunction(F)) |
| 263 | return false; |
| 264 | |
| 265 | AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| 266 | DL = F.getParent()->getDataLayout(); |
| 267 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 268 | |
| 269 | DenseMap<Instruction *, APInt> AliveBits; |
| 270 | SmallVector<Instruction*, 128> Worklist; |
| 271 | |
| 272 | // The set of visited instructions (non-integer-typed only). |
| 273 | SmallPtrSet<Instruction*, 128> Visited; |
| 274 | |
| 275 | // Collect the set of "root" instructions that are known live. |
| 276 | for (Instruction &I : inst_range(F)) { |
| 277 | if (!isAlwaysLive(&I)) |
| 278 | continue; |
| 279 | |
| 280 | // For integer-valued instructions, set up an initial empty set of alive |
| 281 | // bits and add the instruction to the work list. For other instructions |
| 282 | // add their operands to the work list (for integer values operands, mark |
| 283 | // all bits as live). |
| 284 | if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { |
| 285 | AliveBits[&I] = APInt(IT->getBitWidth(), 0); |
| 286 | Worklist.push_back(&I); |
| 287 | continue; |
| 288 | } |
| 289 | |
| 290 | // Non-integer-typed instructions... |
| 291 | for (Use &OI : I.operands()) { |
| 292 | if (Instruction *J = dyn_cast<Instruction>(OI)) { |
| 293 | if (IntegerType *IT = dyn_cast<IntegerType>(J->getType())) |
| 294 | AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth()); |
| 295 | Worklist.push_back(J); |
| 296 | } |
| 297 | } |
| 298 | // To save memory, we don't add I to the Visited set here. Instead, we |
| 299 | // check isAlwaysLive on every instruction when searching for dead |
| 300 | // instructions later (we need to check isAlwaysLive for the |
| 301 | // integer-typed instructions anyway). |
| 302 | } |
| 303 | |
| 304 | // Propagate liveness backwards to operands. |
| 305 | while (!Worklist.empty()) { |
| 306 | Instruction *UserI = Worklist.pop_back_val(); |
| 307 | |
| 308 | DEBUG(dbgs() << "BDCE: Visiting: " << *UserI); |
| 309 | APInt AOut; |
| 310 | if (UserI->getType()->isIntegerTy()) { |
| 311 | AOut = AliveBits[UserI]; |
| 312 | DEBUG(dbgs() << " Alive Out: " << AOut); |
| 313 | } |
| 314 | DEBUG(dbgs() << "\n"); |
| 315 | |
| 316 | if (!UserI->getType()->isIntegerTy()) |
| 317 | Visited.insert(UserI); |
| 318 | |
| 319 | APInt KnownZero, KnownOne, KnownZero2, KnownOne2; |
| 320 | // Compute the set of alive bits for each operand. These are anded into the |
| 321 | // existing set, if any, and if that changes the set of alive bits, the |
| 322 | // operand is added to the work-list. |
| 323 | for (Use &OI : UserI->operands()) { |
| 324 | if (Instruction *I = dyn_cast<Instruction>(OI)) { |
| 325 | if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) { |
| 326 | unsigned BitWidth = IT->getBitWidth(); |
| 327 | APInt AB = APInt::getAllOnesValue(BitWidth); |
| 328 | if (UserI->getType()->isIntegerTy() && !AOut && |
| 329 | !isAlwaysLive(UserI)) { |
| 330 | AB = APInt(BitWidth, 0); |
| 331 | } else { |
| 332 | // If all bits of the output are dead, then all bits of the input |
| 333 | // Bits of each operand that are used to compute alive bits of the |
| 334 | // output are alive, all others are dead. |
| 335 | determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB, |
| 336 | KnownZero, KnownOne, |
| 337 | KnownZero2, KnownOne2); |
| 338 | } |
| 339 | |
| 340 | // If we've added to the set of alive bits (or the operand has not |
| 341 | // been previously visited), then re-queue the operand to be visited |
| 342 | // again. |
| 343 | APInt ABPrev(BitWidth, 0); |
| 344 | auto ABI = AliveBits.find(I); |
| 345 | if (ABI != AliveBits.end()) |
| 346 | ABPrev = ABI->second; |
| 347 | |
| 348 | APInt ABNew = AB | ABPrev; |
| 349 | if (ABNew != ABPrev || ABI == AliveBits.end()) { |
| 350 | AliveBits[I] = std::move(ABNew); |
| 351 | Worklist.push_back(I); |
| 352 | } |
| 353 | } else if (!Visited.count(I)) { |
| 354 | Worklist.push_back(I); |
| 355 | } |
| 356 | } |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | bool Changed = false; |
| 361 | // The inverse of the live set is the dead set. These are those instructions |
| 362 | // which have no side effects and do not influence the control flow or return |
| 363 | // value of the function, and may therefore be deleted safely. |
| 364 | // NOTE: We reuse the Worklist vector here for memory efficiency. |
| 365 | for (Instruction &I : inst_range(F)) { |
| 366 | // For live instructions that have all dead bits, first make them dead by |
| 367 | // replacing all uses with something else. Then, if they don't need to |
| 368 | // remain live (because they have side effects, etc.) we can remove them. |
| 369 | if (I.getType()->isIntegerTy()) { |
| 370 | auto ABI = AliveBits.find(&I); |
| 371 | if (ABI != AliveBits.end()) { |
| 372 | if (ABI->second.getBoolValue()) |
| 373 | continue; |
| 374 | |
| 375 | DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n"); |
| 376 | // FIXME: In theory we could substitute undef here instead of zero. |
| 377 | // This should be reconsidered once we settle on the semantics of |
| 378 | // undef, poison, etc. |
| 379 | Value *Zero = ConstantInt::get(I.getType(), 0); |
| 380 | ++NumSimplified; |
| 381 | I.replaceAllUsesWith(Zero); |
| 382 | Changed = true; |
| 383 | } |
| 384 | } else if (Visited.count(&I)) { |
| 385 | continue; |
| 386 | } |
| 387 | |
| 388 | if (isAlwaysLive(&I)) |
| 389 | continue; |
| 390 | |
| 391 | DEBUG(dbgs() << "BDCE: Removing: " << I << " (unused)\n"); |
| 392 | Worklist.push_back(&I); |
| 393 | I.dropAllReferences(); |
| 394 | Changed = true; |
| 395 | } |
| 396 | |
| 397 | for (Instruction *&I : Worklist) { |
| 398 | ++NumRemoved; |
| 399 | I->eraseFromParent(); |
| 400 | } |
| 401 | |
| 402 | return Changed; |
| 403 | } |
| 404 | |
| 405 | FunctionPass *llvm::createBitTrackingDCEPass() { |
| 406 | return new BDCE(); |
| 407 | } |
| 408 | |