blob: afe0cd13e2296ce5fd7ac382b95ac16916c4b58d [file] [log] [blame]
Hal Finkel2bb61ba2015-02-17 01:36:59 +00001//===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Bit-Tracking Dead Code Elimination pass. Some
11// instructions (shifts, some ands, ors, etc.) kill some of their input bits.
12// We track these dead bits and remove instructions that compute only these
13// dead bits.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DepthFirstIterator.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AssumptionCache.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/CFG.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/Dominators.h"
29#include "llvm/IR/InstIterator.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/Module.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace llvm;
39
40#define DEBUG_TYPE "bdce"
41
42STATISTIC(NumRemoved, "Number of instructions removed (unused)");
43STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)");
44
45namespace {
46struct BDCE : public FunctionPass {
47 static char ID; // Pass identification, replacement for typeid
48 BDCE() : FunctionPass(ID) {
49 initializeBDCEPass(*PassRegistry::getPassRegistry());
50 }
51
52 bool runOnFunction(Function& F) override;
53
54 void getAnalysisUsage(AnalysisUsage& AU) const override {
55 AU.setPreservesCFG();
56 AU.addRequired<AssumptionCacheTracker>();
57 AU.addRequired<DominatorTreeWrapperPass>();
58 }
59
60 void determineLiveOperandBits(const Instruction *UserI,
61 const Instruction *I, unsigned OperandNo,
62 const APInt &AOut, APInt &AB,
63 APInt &KnownZero, APInt &KnownOne,
64 APInt &KnownZero2, APInt &KnownOne2);
65
66 AssumptionCache *AC;
67 const DataLayout *DL;
68 DominatorTree *DT;
69};
70}
71
72char BDCE::ID = 0;
73INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
74 false, false)
75INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
76INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
77INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
78 false, false)
79
80static bool isAlwaysLive(Instruction *I) {
81 return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
82 isa<LandingPadInst>(I) || I->mayHaveSideEffects();
83}
84
85void BDCE::determineLiveOperandBits(const Instruction *UserI,
86 const Instruction *I, unsigned OperandNo,
87 const APInt &AOut, APInt &AB,
88 APInt &KnownZero, APInt &KnownOne,
89 APInt &KnownZero2, APInt &KnownOne2) {
90 unsigned BitWidth = AB.getBitWidth();
91
92 // We're called once per operand, but for some instructions, we need to
93 // compute known bits of both operands in order to determine the live bits of
94 // either (when both operands are instructions themselves). We don't,
95 // however, want to do this twice, so we cache the result in APInts that live
96 // in the caller. For the two-relevant-operands case, both operand values are
97 // provided here.
98 auto ComputeKnownBits = [&](unsigned BitWidth, const Value *V1,
99 const Value *V2) {
100 KnownZero = APInt(BitWidth, 0);
101 KnownOne = APInt(BitWidth, 0);
102 computeKnownBits(const_cast<Value*>(V1), KnownZero, KnownOne, DL, 0, AC,
103 UserI, DT);
104
105 if (V2) {
106 KnownZero2 = APInt(BitWidth, 0);
107 KnownOne2 = APInt(BitWidth, 0);
108 computeKnownBits(const_cast<Value*>(V2), KnownZero2, KnownOne2, DL, 0, AC,
109 UserI, DT);
110 }
111 };
112
113 switch (UserI->getOpcode()) {
114 default: break;
115 case Instruction::Call:
116 case Instruction::Invoke:
117 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
118 switch (II->getIntrinsicID()) {
119 default: break;
120 case Intrinsic::bswap:
121 // The alive bits of the input are the swapped alive bits of
122 // the output.
123 AB = AOut.byteSwap();
124 break;
125 case Intrinsic::ctlz:
126 if (OperandNo == 0) {
127 // We need some output bits, so we need all bits of the
128 // input to the left of, and including, the leftmost bit
129 // known to be one.
130 ComputeKnownBits(BitWidth, I, nullptr);
131 AB = APInt::getHighBitsSet(BitWidth,
132 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
133 }
134 break;
135 case Intrinsic::cttz:
136 if (OperandNo == 0) {
137 // We need some output bits, so we need all bits of the
138 // input to the right of, and including, the rightmost bit
139 // known to be one.
140 ComputeKnownBits(BitWidth, I, nullptr);
141 AB = APInt::getLowBitsSet(BitWidth,
142 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
143 }
144 break;
145 }
146 break;
147 case Instruction::Add:
148 case Instruction::Sub:
149 // Find the highest live output bit. We don't need any more input
150 // bits than that (adds, and thus subtracts, ripple only to the
151 // left).
152 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
153 break;
154 case Instruction::Shl:
155 if (OperandNo == 0)
156 if (ConstantInt *CI =
157 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
158 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
159 AB = AOut.lshr(ShiftAmt);
160
161 // If the shift is nuw/nsw, then the high bits are not dead
162 // (because we've promised that they *must* be zero).
163 const ShlOperator *S = cast<ShlOperator>(UserI);
164 if (S->hasNoSignedWrap())
165 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
166 else if (S->hasNoUnsignedWrap())
167 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
168 }
169 break;
170 case Instruction::LShr:
171 if (OperandNo == 0)
172 if (ConstantInt *CI =
173 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
174 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
175 AB = AOut.shl(ShiftAmt);
176
177 // If the shift is exact, then the low bits are not dead
178 // (they must be zero).
179 if (cast<LShrOperator>(UserI)->isExact())
180 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
181 }
182 break;
183 case Instruction::AShr:
184 if (OperandNo == 0)
185 if (ConstantInt *CI =
186 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
187 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
188 AB = AOut.shl(ShiftAmt);
189 // Because the high input bit is replicated into the
190 // high-order bits of the result, if we need any of those
191 // bits, then we must keep the highest input bit.
192 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
193 .getBoolValue())
194 AB.setBit(BitWidth-1);
195
196 // If the shift is exact, then the low bits are not dead
197 // (they must be zero).
198 if (cast<AShrOperator>(UserI)->isExact())
199 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
200 }
201 break;
202 case Instruction::And:
203 AB = AOut;
204
205 // For bits that are known zero, the corresponding bits in the
206 // other operand are dead (unless they're both zero, in which
207 // case they can't both be dead, so just mark the LHS bits as
208 // dead).
209 if (OperandNo == 0) {
210 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
211 AB &= ~KnownZero2;
212 } else {
213 if (!isa<Instruction>(UserI->getOperand(0)))
214 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
215 AB &= ~(KnownZero & ~KnownZero2);
216 }
217 break;
218 case Instruction::Or:
219 AB = AOut;
220
221 // For bits that are known one, the corresponding bits in the
222 // other operand are dead (unless they're both one, in which
223 // case they can't both be dead, so just mark the LHS bits as
224 // dead).
225 if (OperandNo == 0) {
226 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
227 AB &= ~KnownOne2;
228 } else {
229 if (!isa<Instruction>(UserI->getOperand(0)))
230 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
231 AB &= ~(KnownOne & ~KnownOne2);
232 }
233 break;
234 case Instruction::Xor:
235 case Instruction::PHI:
236 AB = AOut;
237 break;
238 case Instruction::Trunc:
239 AB = AOut.zext(BitWidth);
240 break;
241 case Instruction::ZExt:
242 AB = AOut.trunc(BitWidth);
243 break;
244 case Instruction::SExt:
245 AB = AOut.trunc(BitWidth);
246 // Because the high input bit is replicated into the
247 // high-order bits of the result, if we need any of those
248 // bits, then we must keep the highest input bit.
249 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
250 AOut.getBitWidth() - BitWidth))
251 .getBoolValue())
252 AB.setBit(BitWidth-1);
253 break;
254 case Instruction::Select:
255 if (OperandNo != 0)
256 AB = AOut;
257 break;
258 }
259}
260
261bool BDCE::runOnFunction(Function& F) {
262 if (skipOptnoneFunction(F))
263 return false;
264
265 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
266 DL = F.getParent()->getDataLayout();
267 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
268
269 DenseMap<Instruction *, APInt> AliveBits;
270 SmallVector<Instruction*, 128> Worklist;
271
272 // The set of visited instructions (non-integer-typed only).
273 SmallPtrSet<Instruction*, 128> Visited;
274
275 // Collect the set of "root" instructions that are known live.
276 for (Instruction &I : inst_range(F)) {
277 if (!isAlwaysLive(&I))
278 continue;
279
280 // For integer-valued instructions, set up an initial empty set of alive
281 // bits and add the instruction to the work list. For other instructions
282 // add their operands to the work list (for integer values operands, mark
283 // all bits as live).
284 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
285 AliveBits[&I] = APInt(IT->getBitWidth(), 0);
286 Worklist.push_back(&I);
287 continue;
288 }
289
290 // Non-integer-typed instructions...
291 for (Use &OI : I.operands()) {
292 if (Instruction *J = dyn_cast<Instruction>(OI)) {
293 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
294 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
295 Worklist.push_back(J);
296 }
297 }
298 // To save memory, we don't add I to the Visited set here. Instead, we
299 // check isAlwaysLive on every instruction when searching for dead
300 // instructions later (we need to check isAlwaysLive for the
301 // integer-typed instructions anyway).
302 }
303
304 // Propagate liveness backwards to operands.
305 while (!Worklist.empty()) {
306 Instruction *UserI = Worklist.pop_back_val();
307
308 DEBUG(dbgs() << "BDCE: Visiting: " << *UserI);
309 APInt AOut;
310 if (UserI->getType()->isIntegerTy()) {
311 AOut = AliveBits[UserI];
312 DEBUG(dbgs() << " Alive Out: " << AOut);
313 }
314 DEBUG(dbgs() << "\n");
315
316 if (!UserI->getType()->isIntegerTy())
317 Visited.insert(UserI);
318
319 APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
320 // Compute the set of alive bits for each operand. These are anded into the
321 // existing set, if any, and if that changes the set of alive bits, the
322 // operand is added to the work-list.
323 for (Use &OI : UserI->operands()) {
324 if (Instruction *I = dyn_cast<Instruction>(OI)) {
325 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
326 unsigned BitWidth = IT->getBitWidth();
327 APInt AB = APInt::getAllOnesValue(BitWidth);
328 if (UserI->getType()->isIntegerTy() && !AOut &&
329 !isAlwaysLive(UserI)) {
330 AB = APInt(BitWidth, 0);
331 } else {
332 // If all bits of the output are dead, then all bits of the input
333 // Bits of each operand that are used to compute alive bits of the
334 // output are alive, all others are dead.
335 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
336 KnownZero, KnownOne,
337 KnownZero2, KnownOne2);
338 }
339
340 // If we've added to the set of alive bits (or the operand has not
341 // been previously visited), then re-queue the operand to be visited
342 // again.
343 APInt ABPrev(BitWidth, 0);
344 auto ABI = AliveBits.find(I);
345 if (ABI != AliveBits.end())
346 ABPrev = ABI->second;
347
348 APInt ABNew = AB | ABPrev;
349 if (ABNew != ABPrev || ABI == AliveBits.end()) {
350 AliveBits[I] = std::move(ABNew);
351 Worklist.push_back(I);
352 }
353 } else if (!Visited.count(I)) {
354 Worklist.push_back(I);
355 }
356 }
357 }
358 }
359
360 bool Changed = false;
361 // The inverse of the live set is the dead set. These are those instructions
362 // which have no side effects and do not influence the control flow or return
363 // value of the function, and may therefore be deleted safely.
364 // NOTE: We reuse the Worklist vector here for memory efficiency.
365 for (Instruction &I : inst_range(F)) {
366 // For live instructions that have all dead bits, first make them dead by
367 // replacing all uses with something else. Then, if they don't need to
368 // remain live (because they have side effects, etc.) we can remove them.
369 if (I.getType()->isIntegerTy()) {
370 auto ABI = AliveBits.find(&I);
371 if (ABI != AliveBits.end()) {
372 if (ABI->second.getBoolValue())
373 continue;
374
375 DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
376 // FIXME: In theory we could substitute undef here instead of zero.
377 // This should be reconsidered once we settle on the semantics of
378 // undef, poison, etc.
379 Value *Zero = ConstantInt::get(I.getType(), 0);
380 ++NumSimplified;
381 I.replaceAllUsesWith(Zero);
382 Changed = true;
383 }
384 } else if (Visited.count(&I)) {
385 continue;
386 }
387
388 if (isAlwaysLive(&I))
389 continue;
390
391 DEBUG(dbgs() << "BDCE: Removing: " << I << " (unused)\n");
392 Worklist.push_back(&I);
393 I.dropAllReferences();
394 Changed = true;
395 }
396
397 for (Instruction *&I : Worklist) {
398 ++NumRemoved;
399 I->eraseFromParent();
400 }
401
402 return Changed;
403}
404
405FunctionPass *llvm::createBitTrackingDCEPass() {
406 return new BDCE();
407}
408