blob: b4ca8f2347a79973fbf9b266d82fbd3959d7950a [file] [log] [blame]
Alex Lorenz3d311772015-08-06 22:55:19 +00001========================================
2Machine IR (MIR) Format Reference Manual
3========================================
4
5.. contents::
6 :local:
7
8.. warning::
9 This is a work in progress.
10
11Introduction
12============
13
14This document is a reference manual for the Machine IR (MIR) serialization
15format. MIR is a human readable serialization format that is used to represent
16LLVM's :ref:`machine specific intermediate representation
17<machine code representation>`.
18
19The MIR serialization format is designed to be used for testing the code
20generation passes in LLVM.
21
22Overview
23========
24
25The MIR serialization format uses a YAML container. YAML is a standard
26data serialization language, and the full YAML language spec can be read at
27`yaml.org
28<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_.
29
30A MIR file is split up into a series of `YAML documents`_. The first document
31can contain an optional embedded LLVM IR module, and the rest of the documents
32contain the serialized machine functions.
33
34.. _YAML documents: http://www.yaml.org/spec/1.2/spec.html#id2800132
35
Alex Lorenzea788c42015-08-21 22:58:33 +000036MIR Testing Guide
37=================
38
39You can use the MIR format for testing in two different ways:
40
41- You can write MIR tests that invoke a single code generation pass using the
Matthias Braune6185b72017-04-13 22:14:45 +000042 ``-run-pass`` option in llc.
Alex Lorenzea788c42015-08-21 22:58:33 +000043
Matthias Braune6185b72017-04-13 22:14:45 +000044- You can use llc's ``-stop-after`` option with existing or new LLVM assembly
Alex Lorenzea788c42015-08-21 22:58:33 +000045 tests and check the MIR output of a specific code generation pass.
46
47Testing Individual Code Generation Passes
48-----------------------------------------
49
Matthias Braune6185b72017-04-13 22:14:45 +000050The ``-run-pass`` option in llc allows you to create MIR tests that invoke just
51a single code generation pass. When this option is used, llc will parse an
52input MIR file, run the specified code generation pass(es), and output the
53resulting MIR code.
Alex Lorenzea788c42015-08-21 22:58:33 +000054
Matthias Braune6185b72017-04-13 22:14:45 +000055You can generate an input MIR file for the test by using the ``-stop-after`` or
56``-stop-before`` option in llc. For example, if you would like to write a test
57for the post register allocation pseudo instruction expansion pass, you can
58specify the machine copy propagation pass in the ``-stop-after`` option, as it
59runs just before the pass that we are trying to test:
Alex Lorenzea788c42015-08-21 22:58:33 +000060
Matthias Braune6185b72017-04-13 22:14:45 +000061 ``llc -stop-after=machine-cp bug-trigger.ll > test.mir``
Alex Lorenzea788c42015-08-21 22:58:33 +000062
63After generating the input MIR file, you'll have to add a run line that uses
64the ``-run-pass`` option to it. In order to test the post register allocation
65pseudo instruction expansion pass on X86-64, a run line like the one shown
66below can be used:
67
Matthias Braune6185b72017-04-13 22:14:45 +000068 ``# RUN: llc -o - %s -mtriple=x86_64-- -run-pass=postrapseudos | FileCheck %s``
Alex Lorenzea788c42015-08-21 22:58:33 +000069
70The MIR files are target dependent, so they have to be placed in the target
Matthias Braune6185b72017-04-13 22:14:45 +000071specific test directories (``lib/CodeGen/TARGETNAME``). They also need to
72specify a target triple or a target architecture either in the run line or in
73the embedded LLVM IR module.
Alex Lorenzea788c42015-08-21 22:58:33 +000074
Matthias Braun836c3832017-04-13 23:45:14 +000075Simplifying MIR files
76^^^^^^^^^^^^^^^^^^^^^
77
78The MIR code coming out of ``-stop-after``/``-stop-before`` is very verbose;
79Tests are more accessible and future proof when simplified:
80
Matthias Braun89401142017-05-05 21:09:30 +000081- Use the ``-simplify-mir`` option with llc.
82
Matthias Braun836c3832017-04-13 23:45:14 +000083- Machine function attributes often have default values or the test works just
84 as well with default values. Typical candidates for this are: `alignment:`,
85 `exposesReturnsTwice`, `legalized`, `regBankSelected`, `selected`.
86 The whole `frameInfo` section is often unnecessary if there is no special
87 frame usage in the function. `tracksRegLiveness` on the other hand is often
88 necessary for some passes that care about block livein lists.
89
90- The (global) `liveins:` list is typically only interesting for early
91 instruction selection passes and can be removed when testing later passes.
92 The per-block `liveins:` on the other hand are necessary if
93 `tracksRegLiveness` is true.
94
95- Branch probability data in block `successors:` lists can be dropped if the
96 test doesn't depend on it. Example:
97 `successors: %bb.1(0x40000000), %bb.2(0x40000000)` can be replaced with
98 `successors: %bb.1, %bb.2`.
99
100- MIR code contains a whole IR module. This is necessary because there are
101 no equivalents in MIR for global variables, references to external functions,
102 function attributes, metadata, debug info. Instead some MIR data references
103 the IR constructs. You can often remove them if the test doesn't depend on
104 them.
105
106- Alias Analysis is performed on IR values. These are referenced by memory
107 operands in MIR. Example: `:: (load 8 from %ir.foobar, !alias.scope !9)`.
108 If the test doesn't depend on (good) alias analysis the references can be
109 dropped: `:: (load 8)`
110
111- MIR blocks can reference IR blocks for debug printing, profile information
112 or debug locations. Example: `bb.42.myblock` in MIR references the IR block
113 `myblock`. It is usually possible to drop the `.myblock` reference and simply
114 use `bb.42`.
115
116- If there are no memory operands or blocks referencing the IR then the
117 IR function can be replaced by a parameterless dummy function like
118 `define @func() { ret void }`.
119
120- It is possible to drop the whole IR section of the MIR file if it only
121 contains dummy functions (see above). The .mir loader will create the
122 IR functions automatically in this case.
123
Alex Lorenzea788c42015-08-21 22:58:33 +0000124Limitations
125-----------
126
127Currently the MIR format has several limitations in terms of which state it
128can serialize:
129
130- The target-specific state in the target-specific ``MachineFunctionInfo``
131 subclasses isn't serialized at the moment.
132
133- The target-specific ``MachineConstantPoolValue`` subclasses (in the ARM and
134 SystemZ backends) aren't serialized at the moment.
135
136- The ``MCSymbol`` machine operands are only printed, they can't be parsed.
137
138- A lot of the state in ``MachineModuleInfo`` isn't serialized - only the CFI
139 instructions and the variable debug information from MMI is serialized right
140 now.
141
142These limitations impose restrictions on what you can test with the MIR format.
143For now, tests that would like to test some behaviour that depends on the state
144of certain ``MCSymbol`` operands or the exception handling state in MMI, can't
145use the MIR format. As well as that, tests that test some behaviour that
146depends on the state of the target specific ``MachineFunctionInfo`` or
147``MachineConstantPoolValue`` subclasses can't use the MIR format at the moment.
148
Alex Lorenz3d311772015-08-06 22:55:19 +0000149High Level Structure
150====================
151
Alex Lorenzd4990eb2015-09-08 11:38:16 +0000152.. _embedded-module:
153
Alex Lorenz3d311772015-08-06 22:55:19 +0000154Embedded Module
155---------------
156
157When the first YAML document contains a `YAML block literal string`_, the MIR
158parser will treat this string as an LLVM assembly language string that
159represents an embedded LLVM IR module.
160Here is an example of a YAML document that contains an LLVM module:
161
162.. code-block:: llvm
163
Alex Lorenz3d311772015-08-06 22:55:19 +0000164 define i32 @inc(i32* %x) {
165 entry:
166 %0 = load i32, i32* %x
167 %1 = add i32 %0, 1
168 store i32 %1, i32* %x
169 ret i32 %1
170 }
Alex Lorenz3d311772015-08-06 22:55:19 +0000171
172.. _YAML block literal string: http://www.yaml.org/spec/1.2/spec.html#id2795688
173
174Machine Functions
175-----------------
176
177The remaining YAML documents contain the machine functions. This is an example
178of such YAML document:
179
Renato Golin124f2592016-07-20 12:16:38 +0000180.. code-block:: text
Alex Lorenz3d311772015-08-06 22:55:19 +0000181
182 ---
183 name: inc
184 tracksRegLiveness: true
185 liveins:
186 - { reg: '%rdi' }
Alex Lorenz98461672015-08-14 00:36:10 +0000187 body: |
188 bb.0.entry:
189 liveins: %rdi
190
191 %eax = MOV32rm %rdi, 1, _, 0, _
192 %eax = INC32r killed %eax, implicit-def dead %eflags
193 MOV32mr killed %rdi, 1, _, 0, _, %eax
194 RETQ %eax
Alex Lorenz3d311772015-08-06 22:55:19 +0000195 ...
196
197The document above consists of attributes that represent the various
198properties and data structures in a machine function.
199
200The attribute ``name`` is required, and its value should be identical to the
201name of a function that this machine function is based on.
202
Alex Lorenz98461672015-08-14 00:36:10 +0000203The attribute ``body`` is a `YAML block literal string`_. Its value represents
204the function's machine basic blocks and their machine instructions.
Alex Lorenz3d311772015-08-06 22:55:19 +0000205
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000206Machine Instructions Format Reference
207=====================================
208
209The machine basic blocks and their instructions are represented using a custom,
210human readable serialization language. This language is used in the
211`YAML block literal string`_ that corresponds to the machine function's body.
212
213A source string that uses this language contains a list of machine basic
214blocks, which are described in the section below.
215
216Machine Basic Blocks
217--------------------
218
219A machine basic block is defined in a single block definition source construct
220that contains the block's ID.
221The example below defines two blocks that have an ID of zero and one:
222
Renato Golin124f2592016-07-20 12:16:38 +0000223.. code-block:: text
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000224
225 bb.0:
226 <instructions>
227 bb.1:
228 <instructions>
229
230A machine basic block can also have a name. It should be specified after the ID
231in the block's definition:
232
Renato Golin124f2592016-07-20 12:16:38 +0000233.. code-block:: text
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000234
235 bb.0.entry: ; This block's name is "entry"
236 <instructions>
237
238The block's name should be identical to the name of the IR block that this
239machine block is based on.
240
241Block References
242^^^^^^^^^^^^^^^^
243
244The machine basic blocks are identified by their ID numbers. Individual
245blocks are referenced using the following syntax:
246
Renato Golin124f2592016-07-20 12:16:38 +0000247.. code-block:: text
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000248
249 %bb.<id>[.<name>]
250
251Examples:
252
253.. code-block:: llvm
254
255 %bb.0
256 %bb.1.then
257
258Successors
259^^^^^^^^^^
260
261The machine basic block's successors have to be specified before any of the
262instructions:
263
Renato Golin124f2592016-07-20 12:16:38 +0000264.. code-block:: text
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000265
266 bb.0.entry:
267 successors: %bb.1.then, %bb.2.else
268 <instructions>
269 bb.1.then:
270 <instructions>
271 bb.2.else:
272 <instructions>
273
274The branch weights can be specified in brackets after the successor blocks.
275The example below defines a block that has two successors with branch weights
276of 32 and 16:
277
Renato Golin124f2592016-07-20 12:16:38 +0000278.. code-block:: text
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000279
280 bb.0.entry:
281 successors: %bb.1.then(32), %bb.2.else(16)
282
Alex Lorenzb981d372015-08-21 21:17:01 +0000283.. _bb-liveins:
284
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000285Live In Registers
286^^^^^^^^^^^^^^^^^
287
288The machine basic block's live in registers have to be specified before any of
289the instructions:
290
Renato Golin124f2592016-07-20 12:16:38 +0000291.. code-block:: text
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000292
293 bb.0.entry:
294 liveins: %edi, %esi
295
296The list of live in registers and successors can be empty. The language also
297allows multiple live in register and successor lists - they are combined into
298one list by the parser.
299
300Miscellaneous Attributes
301^^^^^^^^^^^^^^^^^^^^^^^^
302
303The attributes ``IsAddressTaken``, ``IsLandingPad`` and ``Alignment`` can be
304specified in brackets after the block's definition:
305
Renato Golin124f2592016-07-20 12:16:38 +0000306.. code-block:: text
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000307
308 bb.0.entry (address-taken):
309 <instructions>
310 bb.2.else (align 4):
311 <instructions>
312 bb.3(landing-pad, align 4):
313 <instructions>
314
315.. TODO: Describe the way the reference to an unnamed LLVM IR block can be
316 preserved.
317
Alex Lorenz8eadc3f2015-08-21 17:26:38 +0000318Machine Instructions
319--------------------
320
Alex Lorenzb981d372015-08-21 21:17:01 +0000321A machine instruction is composed of a name,
322:ref:`machine operands <machine-operands>`,
Alex Lorenz8eadc3f2015-08-21 17:26:38 +0000323:ref:`instruction flags <instruction-flags>`, and machine memory operands.
324
325The instruction's name is usually specified before the operands. The example
326below shows an instance of the X86 ``RETQ`` instruction with a single machine
327operand:
328
Renato Golin124f2592016-07-20 12:16:38 +0000329.. code-block:: text
Alex Lorenz8eadc3f2015-08-21 17:26:38 +0000330
331 RETQ %eax
332
333However, if the machine instruction has one or more explicitly defined register
334operands, the instruction's name has to be specified after them. The example
335below shows an instance of the AArch64 ``LDPXpost`` instruction with three
336defined register operands:
337
Renato Golin124f2592016-07-20 12:16:38 +0000338.. code-block:: text
Alex Lorenz8eadc3f2015-08-21 17:26:38 +0000339
340 %sp, %fp, %lr = LDPXpost %sp, 2
341
342The instruction names are serialized using the exact definitions from the
343target's ``*InstrInfo.td`` files, and they are case sensitive. This means that
344similar instruction names like ``TSTri`` and ``tSTRi`` represent different
345machine instructions.
346
347.. _instruction-flags:
348
349Instruction Flags
350^^^^^^^^^^^^^^^^^
351
352The flag ``frame-setup`` can be specified before the instruction's name:
353
Renato Golin124f2592016-07-20 12:16:38 +0000354.. code-block:: text
Alex Lorenz8eadc3f2015-08-21 17:26:38 +0000355
356 %fp = frame-setup ADDXri %sp, 0, 0
357
Alex Lorenzb981d372015-08-21 21:17:01 +0000358.. _registers:
359
360Registers
361---------
362
363Registers are one of the key primitives in the machine instructions
364serialization language. They are primarly used in the
365:ref:`register machine operands <register-operands>`,
366but they can also be used in a number of other places, like the
367:ref:`basic block's live in list <bb-liveins>`.
368
369The physical registers are identified by their name. They use the following
370syntax:
371
Renato Golin124f2592016-07-20 12:16:38 +0000372.. code-block:: text
Alex Lorenzb981d372015-08-21 21:17:01 +0000373
374 %<name>
375
376The example below shows three X86 physical registers:
377
Renato Golin124f2592016-07-20 12:16:38 +0000378.. code-block:: text
Alex Lorenzb981d372015-08-21 21:17:01 +0000379
380 %eax
381 %r15
382 %eflags
383
384The virtual registers are identified by their ID number. They use the following
385syntax:
386
Renato Golin124f2592016-07-20 12:16:38 +0000387.. code-block:: text
Alex Lorenzb981d372015-08-21 21:17:01 +0000388
389 %<id>
390
391Example:
392
Renato Golin124f2592016-07-20 12:16:38 +0000393.. code-block:: text
Alex Lorenzb981d372015-08-21 21:17:01 +0000394
395 %0
396
397The null registers are represented using an underscore ('``_``'). They can also be
398represented using a '``%noreg``' named register, although the former syntax
399is preferred.
400
401.. _machine-operands:
402
403Machine Operands
404----------------
405
406There are seventeen different kinds of machine operands, and all of them, except
407the ``MCSymbol`` operand, can be serialized. The ``MCSymbol`` operands are
408just printed out - they can't be parsed back yet.
409
410Immediate Operands
411^^^^^^^^^^^^^^^^^^
412
413The immediate machine operands are untyped, 64-bit signed integers. The
414example below shows an instance of the X86 ``MOV32ri`` instruction that has an
415immediate machine operand ``-42``:
416
Renato Golin124f2592016-07-20 12:16:38 +0000417.. code-block:: text
Alex Lorenzb981d372015-08-21 21:17:01 +0000418
419 %eax = MOV32ri -42
420
421.. TODO: Describe the CIMM (Rare) and FPIMM immediate operands.
422
423.. _register-operands:
424
425Register Operands
426^^^^^^^^^^^^^^^^^
427
428The :ref:`register <registers>` primitive is used to represent the register
429machine operands. The register operands can also have optional
430:ref:`register flags <register-flags>`,
Alex Lorenz37e02622015-09-08 11:39:47 +0000431:ref:`a subregister index <subregister-indices>`,
432and a reference to the tied register operand.
Alex Lorenzb981d372015-08-21 21:17:01 +0000433The full syntax of a register operand is shown below:
434
Renato Golin124f2592016-07-20 12:16:38 +0000435.. code-block:: text
Alex Lorenzb981d372015-08-21 21:17:01 +0000436
437 [<flags>] <register> [ :<subregister-idx-name> ] [ (tied-def <tied-op>) ]
438
439This example shows an instance of the X86 ``XOR32rr`` instruction that has
4405 register operands with different register flags:
441
Renato Golin124f2592016-07-20 12:16:38 +0000442.. code-block:: text
Alex Lorenzb981d372015-08-21 21:17:01 +0000443
444 dead %eax = XOR32rr undef %eax, undef %eax, implicit-def dead %eflags, implicit-def %al
445
446.. _register-flags:
447
448Register Flags
449~~~~~~~~~~~~~~
450
451The table below shows all of the possible register flags along with the
452corresponding internal ``llvm::RegState`` representation:
453
454.. list-table::
455 :header-rows: 1
456
457 * - Flag
458 - Internal Value
459
460 * - ``implicit``
461 - ``RegState::Implicit``
462
463 * - ``implicit-def``
464 - ``RegState::ImplicitDefine``
465
466 * - ``def``
467 - ``RegState::Define``
468
469 * - ``dead``
470 - ``RegState::Dead``
471
472 * - ``killed``
473 - ``RegState::Kill``
474
475 * - ``undef``
476 - ``RegState::Undef``
477
478 * - ``internal``
479 - ``RegState::InternalRead``
480
481 * - ``early-clobber``
482 - ``RegState::EarlyClobber``
483
484 * - ``debug-use``
485 - ``RegState::Debug``
Alex Lorenz3a4a60c2015-08-15 01:06:06 +0000486
Alex Lorenz37e02622015-09-08 11:39:47 +0000487.. _subregister-indices:
488
489Subregister Indices
490~~~~~~~~~~~~~~~~~~~
491
492The register machine operands can reference a portion of a register by using
493the subregister indices. The example below shows an instance of the ``COPY``
494pseudo instruction that uses the X86 ``sub_8bit`` subregister index to copy 8
495lower bits from the 32-bit virtual register 0 to the 8-bit virtual register 1:
496
Renato Golin124f2592016-07-20 12:16:38 +0000497.. code-block:: text
Alex Lorenz37e02622015-09-08 11:39:47 +0000498
499 %1 = COPY %0:sub_8bit
500
501The names of the subregister indices are target specific, and are typically
502defined in the target's ``*RegisterInfo.td`` file.
503
Alex Lorenzd4990eb2015-09-08 11:38:16 +0000504Global Value Operands
505^^^^^^^^^^^^^^^^^^^^^
506
507The global value machine operands reference the global values from the
508:ref:`embedded LLVM IR module <embedded-module>`.
509The example below shows an instance of the X86 ``MOV64rm`` instruction that has
510a global value operand named ``G``:
511
Renato Golin124f2592016-07-20 12:16:38 +0000512.. code-block:: text
Alex Lorenzd4990eb2015-09-08 11:38:16 +0000513
514 %rax = MOV64rm %rip, 1, _, @G, _
515
516The named global values are represented using an identifier with the '@' prefix.
517If the identifier doesn't match the regular expression
518`[-a-zA-Z$._][-a-zA-Z$._0-9]*`, then this identifier must be quoted.
519
520The unnamed global values are represented using an unsigned numeric value with
521the '@' prefix, like in the following examples: ``@0``, ``@989``.
522
Alex Lorenz3d311772015-08-06 22:55:19 +0000523.. TODO: Describe the parsers default behaviour when optional YAML attributes
524 are missing.
Alex Lorenz8eadc3f2015-08-21 17:26:38 +0000525.. TODO: Describe the syntax for the bundled instructions.
Alex Lorenzb981d372015-08-21 21:17:01 +0000526.. TODO: Describe the syntax for virtual register YAML definitions.
Alex Lorenz3d311772015-08-06 22:55:19 +0000527.. TODO: Describe the machine function's YAML flag attributes.
Alex Lorenzd4990eb2015-09-08 11:38:16 +0000528.. TODO: Describe the syntax for the external symbol and register
Alex Lorenz3d311772015-08-06 22:55:19 +0000529 mask machine operands.
530.. TODO: Describe the frame information YAML mapping.
531.. TODO: Describe the syntax of the stack object machine operands and their
532 YAML definitions.
533.. TODO: Describe the syntax of the constant pool machine operands and their
534 YAML definitions.
535.. TODO: Describe the syntax of the jump table machine operands and their
536 YAML definitions.
537.. TODO: Describe the syntax of the block address machine operands.
538.. TODO: Describe the syntax of the CFI index machine operands.
539.. TODO: Describe the syntax of the metadata machine operands, and the
540 instructions debug location attribute.
541.. TODO: Describe the syntax of the target index machine operands.
542.. TODO: Describe the syntax of the register live out machine operands.
543.. TODO: Describe the syntax of the machine memory operands.