blob: 731e9e973f2fb59120ee690cca01ccb15b16c95d [file] [log] [blame]
Chris Lattner64fd9352002-03-28 18:08:31 +00001//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===//
2//
3// This transform changes programs so that disjoint data structures are
4// allocated out of different pools of memory, increasing locality and shrinking
5// pointer size.
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Transforms/IPO/PoolAllocate.h"
Chris Lattner291a1b12002-03-29 19:05:48 +000010#include "llvm/Transforms/CloneFunction.h"
Chris Lattner64fd9352002-03-28 18:08:31 +000011#include "llvm/Analysis/DataStructure.h"
Chris Lattner396d5d72002-03-30 04:02:31 +000012#include "llvm/Analysis/DataStructureGraph.h"
Chris Lattner64fd9352002-03-28 18:08:31 +000013#include "llvm/Pass.h"
Chris Lattner175f37c2002-03-29 03:40:59 +000014#include "llvm/Module.h"
15#include "llvm/Function.h"
Chris Lattnerd92b01c2002-04-09 18:37:46 +000016#include "llvm/BasicBlock.h"
Chris Lattner175f37c2002-03-29 03:40:59 +000017#include "llvm/iMemory.h"
Chris Lattnere0618ca2002-03-29 05:50:20 +000018#include "llvm/iTerminators.h"
19#include "llvm/iOther.h"
20#include "llvm/ConstantVals.h"
21#include "llvm/Target/TargetData.h"
Chris Lattnerf32d65d2002-03-29 21:25:19 +000022#include "llvm/Support/InstVisitor.h"
Chris Lattner396d5d72002-03-30 04:02:31 +000023#include "Support/DepthFirstIterator.h"
Chris Lattnere0618ca2002-03-29 05:50:20 +000024#include "Support/STLExtras.h"
Chris Lattner175f37c2002-03-29 03:40:59 +000025#include <algorithm>
Chris Lattner64fd9352002-03-28 18:08:31 +000026
Chris Lattner692ad5d2002-03-29 17:13:46 +000027
Chris Lattnere0618ca2002-03-29 05:50:20 +000028// FIXME: This is dependant on the sparc backend layout conventions!!
29static TargetData TargetData("test");
30
Chris Lattner64fd9352002-03-28 18:08:31 +000031namespace {
Chris Lattner692ad5d2002-03-29 17:13:46 +000032 // ScalarInfo - Information about an LLVM value that we know points to some
33 // datastructure we are processing.
34 //
35 struct ScalarInfo {
Chris Lattnerca9f4d32002-03-30 09:12:35 +000036 Value *Val; // Scalar value in Current Function
37 DSNode *Node; // DataStructure node it points to
38 Value *PoolHandle; // PoolTy* LLVM value
Chris Lattner692ad5d2002-03-29 17:13:46 +000039
Chris Lattnerca9f4d32002-03-30 09:12:35 +000040 ScalarInfo(Value *V, DSNode *N, Value *PH)
41 : Val(V), Node(N), PoolHandle(PH) {
42 assert(V && N && PH && "Null value passed to ScalarInfo ctor!");
43 }
Chris Lattner692ad5d2002-03-29 17:13:46 +000044 };
45
Chris Lattner396d5d72002-03-30 04:02:31 +000046 // CallArgInfo - Information on one operand for a call that got expanded.
47 struct CallArgInfo {
Chris Lattnerca9f4d32002-03-30 09:12:35 +000048 int ArgNo; // Call argument number this corresponds to
49 DSNode *Node; // The graph node for the pool
50 Value *PoolHandle; // The LLVM value that is the pool pointer
Chris Lattner396d5d72002-03-30 04:02:31 +000051
Chris Lattnerca9f4d32002-03-30 09:12:35 +000052 CallArgInfo(int Arg, DSNode *N, Value *PH)
53 : ArgNo(Arg), Node(N), PoolHandle(PH) {
54 assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!");
Chris Lattner396d5d72002-03-30 04:02:31 +000055 }
56
Chris Lattnerca9f4d32002-03-30 09:12:35 +000057 // operator< when sorting, sort by argument number.
Chris Lattner396d5d72002-03-30 04:02:31 +000058 bool operator<(const CallArgInfo &CAI) const {
59 return ArgNo < CAI.ArgNo;
60 }
61 };
62
Chris Lattner692ad5d2002-03-29 17:13:46 +000063 // TransformFunctionInfo - Information about how a function eeds to be
64 // transformed.
65 //
66 struct TransformFunctionInfo {
67 // ArgInfo - Maintain information about the arguments that need to be
68 // processed. Each pair corresponds to an argument (whose number is the
69 // first element) that needs to have a pool pointer (the second element)
70 // passed into the transformed function with it.
71 //
72 // As a special case, "argument" number -1 corresponds to the return value.
73 //
Chris Lattner396d5d72002-03-30 04:02:31 +000074 vector<CallArgInfo> ArgInfo;
Chris Lattner692ad5d2002-03-29 17:13:46 +000075
76 // Func - The function to be transformed...
77 Function *Func;
78
Chris Lattnerca9f4d32002-03-30 09:12:35 +000079 // The call instruction that is used to map CallArgInfo PoolHandle values
80 // into the new function values.
81 CallInst *Call;
82
Chris Lattner692ad5d2002-03-29 17:13:46 +000083 // default ctor...
Chris Lattnerca9f4d32002-03-30 09:12:35 +000084 TransformFunctionInfo() : Func(0), Call(0) {}
Chris Lattner692ad5d2002-03-29 17:13:46 +000085
Chris Lattner396d5d72002-03-30 04:02:31 +000086 bool operator<(const TransformFunctionInfo &TFI) const {
Chris Lattner291a1b12002-03-29 19:05:48 +000087 if (Func < TFI.Func) return true;
88 if (Func > TFI.Func) return false;
Chris Lattner291a1b12002-03-29 19:05:48 +000089 if (ArgInfo.size() < TFI.ArgInfo.size()) return true;
90 if (ArgInfo.size() > TFI.ArgInfo.size()) return false;
Chris Lattner396d5d72002-03-30 04:02:31 +000091 return ArgInfo < TFI.ArgInfo;
Chris Lattner692ad5d2002-03-29 17:13:46 +000092 }
93
94 void finalizeConstruction() {
95 // Sort the vector so that the return value is first, followed by the
Chris Lattnerca9f4d32002-03-30 09:12:35 +000096 // argument records, in order. Note that this must be a stable sort so
97 // that the entries with the same sorting criteria (ie they are multiple
98 // pool entries for the same argument) are kept in depth first order.
99 stable_sort(ArgInfo.begin(), ArgInfo.end());
Chris Lattner692ad5d2002-03-29 17:13:46 +0000100 }
101 };
102
103
104 // Define the pass class that we implement...
Chris Lattner175f37c2002-03-29 03:40:59 +0000105 class PoolAllocate : public Pass {
106 // PoolTy - The type of a scalar value that contains a pool pointer.
107 PointerType *PoolTy;
108 public:
109
110 PoolAllocate() {
111 // Initialize the PoolTy instance variable, since the type never changes.
112 vector<const Type*> PoolElements;
113 PoolElements.push_back(PointerType::get(Type::SByteTy));
114 PoolElements.push_back(Type::UIntTy);
115 PoolTy = PointerType::get(StructType::get(PoolElements));
116 // PoolTy = { sbyte*, uint }*
117
118 CurModule = 0; DS = 0;
119 PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0;
Chris Lattner64fd9352002-03-28 18:08:31 +0000120 }
121
Chris Lattner175f37c2002-03-29 03:40:59 +0000122 bool run(Module *M);
123
124 // getAnalysisUsageInfo - This function requires data structure information
125 // to be able to see what is pool allocatable.
Chris Lattner64fd9352002-03-28 18:08:31 +0000126 //
127 virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required,
Chris Lattner175f37c2002-03-29 03:40:59 +0000128 Pass::AnalysisSet &,Pass::AnalysisSet &) {
Chris Lattner64fd9352002-03-28 18:08:31 +0000129 Required.push_back(DataStructure::ID);
130 }
Chris Lattner175f37c2002-03-29 03:40:59 +0000131
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000132 public:
Chris Lattner175f37c2002-03-29 03:40:59 +0000133 // CurModule - The module being processed.
134 Module *CurModule;
135
136 // DS - The data structure graph for the module being processed.
137 DataStructure *DS;
138
139 // Prototypes that we add to support pool allocation...
140 Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
141
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000142 // The map of already transformed functions... note that the keys of this
143 // map do not have meaningful values for 'Call' or the 'PoolHandle' elements
144 // of the ArgInfo elements.
145 //
Chris Lattner692ad5d2002-03-29 17:13:46 +0000146 map<TransformFunctionInfo, Function*> TransformedFunctions;
147
148 // getTransformedFunction - Get a transformed function, or return null if
149 // the function specified hasn't been transformed yet.
150 //
151 Function *getTransformedFunction(TransformFunctionInfo &TFI) const {
152 map<TransformFunctionInfo, Function*>::const_iterator I =
153 TransformedFunctions.find(TFI);
154 if (I != TransformedFunctions.end()) return I->second;
155 return 0;
156 }
157
158
Chris Lattner175f37c2002-03-29 03:40:59 +0000159 // addPoolPrototypes - Add prototypes for the pool methods to the specified
160 // module and update the Pool* instance variables to point to them.
161 //
162 void addPoolPrototypes(Module *M);
163
Chris Lattner66df97d2002-03-29 06:21:38 +0000164
165 // CreatePools - Insert instructions into the function we are processing to
166 // create all of the memory pool objects themselves. This also inserts
167 // destruction code. Add an alloca for each pool that is allocated to the
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000168 // PoolDescriptors map.
Chris Lattner66df97d2002-03-29 06:21:38 +0000169 //
170 void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000171 map<DSNode*, Value*> &PoolDescriptors);
Chris Lattner66df97d2002-03-29 06:21:38 +0000172
Chris Lattner175f37c2002-03-29 03:40:59 +0000173 // processFunction - Convert a function to use pool allocation where
174 // available.
175 //
176 bool processFunction(Function *F);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000177
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000178 // transformFunctionBody - This transforms the instruction in 'F' to use the
179 // pools specified in PoolDescriptors when modifying data structure nodes
180 // specified in the PoolDescriptors map. IPFGraph is the closed data
181 // structure graph for F, of which the PoolDescriptor nodes come from.
182 //
183 void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
184 map<DSNode*, Value*> &PoolDescriptors);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000185
186 // transformFunction - Transform the specified function the specified way.
187 // It we have already transformed that function that way, don't do anything.
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000188 // The nodes in the TransformFunctionInfo come out of callers data structure
189 // graph.
Chris Lattner692ad5d2002-03-29 17:13:46 +0000190 //
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000191 void transformFunction(TransformFunctionInfo &TFI,
192 FunctionDSGraph &CallerIPGraph);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000193
Chris Lattner64fd9352002-03-28 18:08:31 +0000194 };
195}
196
Chris Lattner175f37c2002-03-29 03:40:59 +0000197
198
Chris Lattner692ad5d2002-03-29 17:13:46 +0000199// isNotPoolableAlloc - This is a predicate that returns true if the specified
Chris Lattner175f37c2002-03-29 03:40:59 +0000200// allocation node in a data structure graph is eligable for pool allocation.
201//
202static bool isNotPoolableAlloc(const AllocDSNode *DS) {
Chris Lattnere0618ca2002-03-29 05:50:20 +0000203 if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's.
Chris Lattner175f37c2002-03-29 03:40:59 +0000204
205 MallocInst *MI = cast<MallocInst>(DS->getAllocation());
206 if (MI->isArrayAllocation() && !isa<Constant>(MI->getArraySize()))
Chris Lattnere0618ca2002-03-29 05:50:20 +0000207 return true; // Do not allow variable size allocations...
Chris Lattner175f37c2002-03-29 03:40:59 +0000208
Chris Lattnere0618ca2002-03-29 05:50:20 +0000209 return false;
Chris Lattner175f37c2002-03-29 03:40:59 +0000210}
211
Chris Lattner175f37c2002-03-29 03:40:59 +0000212// processFunction - Convert a function to use pool allocation where
213// available.
214//
215bool PoolAllocate::processFunction(Function *F) {
216 // Get the closed datastructure graph for the current function... if there are
217 // any allocations in this graph that are not escaping, we need to pool
218 // allocate them here!
219 //
220 FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F);
221
222 // Get all of the allocations that do not escape the current function. Since
223 // they are still live (they exist in the graph at all), this means we must
224 // have scalar references to these nodes, but the scalars are never returned.
225 //
Chris Lattner692ad5d2002-03-29 17:13:46 +0000226 vector<AllocDSNode*> Allocs;
Chris Lattner175f37c2002-03-29 03:40:59 +0000227 IPGraph.getNonEscapingAllocations(Allocs);
228
229 // Filter out allocations that we cannot handle. Currently, this includes
230 // variable sized array allocations and alloca's (which we do not want to
231 // pool allocate)
232 //
233 Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc),
234 Allocs.end());
235
236
237 if (Allocs.empty()) return false; // Nothing to do.
238
Chris Lattner692ad5d2002-03-29 17:13:46 +0000239 // Insert instructions into the function we are processing to create all of
240 // the memory pool objects themselves. This also inserts destruction code.
Chris Lattner396d5d72002-03-30 04:02:31 +0000241 // This fills in the PoolDescriptors map to associate the alloc node with the
242 // allocation of the memory pool corresponding to it.
Chris Lattner692ad5d2002-03-29 17:13:46 +0000243 //
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000244 map<DSNode*, Value*> PoolDescriptors;
Chris Lattner692ad5d2002-03-29 17:13:46 +0000245 CreatePools(F, Allocs, PoolDescriptors);
246
Chris Lattner692ad5d2002-03-29 17:13:46 +0000247 // Now we need to figure out what called methods we need to transform, and
248 // how. To do this, we look at all of the scalars, seeing which functions are
249 // either used as a scalar value (so they return a data structure), or are
250 // passed one of our scalar values.
251 //
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000252 transformFunctionBody(F, IPGraph, PoolDescriptors);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000253
254 return true;
255}
256
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000257
258class FunctionBodyTransformer : public InstVisitor<FunctionBodyTransformer> {
259 PoolAllocate &PoolAllocator;
260 vector<ScalarInfo> &Scalars;
261 map<CallInst*, TransformFunctionInfo> &CallMap;
262
263 const ScalarInfo &getScalar(const Value *V) {
264 for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
265 if (Scalars[i].Val == V) return Scalars[i];
266 assert(0 && "Scalar not found in getScalar!");
267 abort();
268 return Scalars[0];
269 }
270
271 // updateScalars - Map the scalars array entries that look like 'From' to look
272 // like 'To'.
273 //
274 void updateScalars(Value *From, Value *To) {
275 for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
276 if (Scalars[i].Val == From) Scalars[i].Val = To;
277 }
278
279public:
280 FunctionBodyTransformer(PoolAllocate &PA, vector<ScalarInfo> &S,
281 map<CallInst*, TransformFunctionInfo> &C)
282 : PoolAllocator(PA), Scalars(S), CallMap(C) {}
283
284 void visitMemAccessInst(MemAccessInst *MAI) {
285 // Don't do anything to load, store, or GEP yet...
286 }
287
288 // Convert a malloc instruction into a call to poolalloc
289 void visitMallocInst(MallocInst *I) {
290 const ScalarInfo &SC = getScalar(I);
291 BasicBlock *BB = I->getParent();
292 BasicBlock::iterator MI = find(BB->begin(), BB->end(), I);
293 BB->getInstList().remove(MI); // Remove the Malloc instruction from the BB
294
295 // Create a new call to poolalloc before the malloc instruction
296 vector<Value*> Args;
297 Args.push_back(SC.PoolHandle);
298 CallInst *Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName());
299 MI = BB->getInstList().insert(MI, Call)+1;
300
301 // If the type desired is not void*, cast it now...
302 Value *Ptr = Call;
303 if (Call->getType() != I->getType()) {
304 CastInst *CI = new CastInst(Ptr, I->getType(), I->getName());
305 BB->getInstList().insert(MI, CI);
306 Ptr = CI;
307 }
308
309 // Change everything that used the malloc to now use the pool alloc...
310 I->replaceAllUsesWith(Ptr);
311
312 // Update the scalars array...
313 updateScalars(I, Ptr);
314
315 // Delete the instruction now.
316 delete I;
317 }
318
319 // Convert the free instruction into a call to poolfree
320 void visitFreeInst(FreeInst *I) {
321 Value *Ptr = I->getOperand(0);
322 const ScalarInfo &SC = getScalar(Ptr);
323 BasicBlock *BB = I->getParent();
324 BasicBlock::iterator FI = find(BB->begin(), BB->end(), I);
325
326 // If the value is not an sbyte*, convert it now!
327 if (Ptr->getType() != PointerType::get(Type::SByteTy)) {
328 CastInst *CI = new CastInst(Ptr, PointerType::get(Type::SByteTy),
329 Ptr->getName());
330 FI = BB->getInstList().insert(FI, CI)+1;
331 Ptr = CI;
332 }
333
334 // Create a new call to poolfree before the free instruction
335 vector<Value*> Args;
336 Args.push_back(SC.PoolHandle);
337 Args.push_back(Ptr);
338 CallInst *Call = new CallInst(PoolAllocator.PoolFree, Args);
339 FI = BB->getInstList().insert(FI, Call)+1;
340
341 // Remove the old free instruction...
342 delete BB->getInstList().remove(FI);
343 }
344
345 // visitCallInst - Create a new call instruction with the extra arguments for
346 // all of the memory pools that the call needs.
347 //
348 void visitCallInst(CallInst *I) {
349 TransformFunctionInfo &TI = CallMap[I];
350 BasicBlock *BB = I->getParent();
351 BasicBlock::iterator CI = find(BB->begin(), BB->end(), I);
352 BB->getInstList().remove(CI); // Remove the old call instruction
353
354 // Start with all of the old arguments...
355 vector<Value*> Args(I->op_begin()+1, I->op_end());
356
357 // Add all of the pool arguments...
358 for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i)
Chris Lattner396d5d72002-03-30 04:02:31 +0000359 Args.push_back(TI.ArgInfo[i].PoolHandle);
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000360
361 Function *NF = PoolAllocator.getTransformedFunction(TI);
362 CallInst *NewCall = new CallInst(NF, Args, I->getName());
363 BB->getInstList().insert(CI, NewCall);
364
365 // Change everything that used the malloc to now use the pool alloc...
366 if (I->getType() != Type::VoidTy) {
367 I->replaceAllUsesWith(NewCall);
368
369 // Update the scalars array...
370 updateScalars(I, NewCall);
371 }
372
373 delete I; // Delete the old call instruction now...
374 }
375
Chris Lattner396d5d72002-03-30 04:02:31 +0000376 void visitPHINode(PHINode *PN) {
377 // Handle PHI Node
378 }
379
Chris Lattner847b6e22002-03-30 20:53:14 +0000380 void visitReturnInst(ReturnInst *I) {
381 // Nothing of interest
382 }
383
Chris Lattnercf09a2a2002-04-01 00:45:33 +0000384 void visitSetCondInst(SetCondInst *SCI) {
385 // hrm, notice a pattern?
386 }
387
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000388 void visitInstruction(Instruction *I) {
389 cerr << "Unknown instruction to FunctionBodyTransformer:\n";
390 I->dump();
391 }
392
393};
394
395
Chris Lattner0dc225c2002-03-31 07:17:46 +0000396static void addCallInfo(DataStructure *DS,
397 TransformFunctionInfo &TFI, CallInst *CI, int Arg,
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000398 DSNode *GraphNode,
399 map<DSNode*, Value*> &PoolDescriptors) {
Chris Lattner0dc225c2002-03-31 07:17:46 +0000400 assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
401 assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
402 "Function call record should always call the same function!");
403 assert(TFI.Call == 0 || TFI.Call == CI &&
404 "Call element already filled in with different value!");
405 TFI.Func = CI->getCalledFunction();
406 TFI.Call = CI;
407 //FunctionDSGraph &CalledGraph = DS->getClosedDSGraph(TFI.Func);
Chris Lattner396d5d72002-03-30 04:02:31 +0000408
409 // For now, add the entire graph that is pointed to by the call argument.
410 // This graph can and should be pruned to only what the function itself will
411 // use, because often this will be a dramatically smaller subset of what we
412 // are providing.
413 //
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000414 for (df_iterator<DSNode*> I = df_begin(GraphNode), E = df_end(GraphNode);
Chris Lattner396d5d72002-03-30 04:02:31 +0000415 I != E; ++I) {
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000416 TFI.ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescriptors[*I]));
Chris Lattner396d5d72002-03-30 04:02:31 +0000417 }
Chris Lattner396d5d72002-03-30 04:02:31 +0000418}
419
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000420
421// transformFunctionBody - This transforms the instruction in 'F' to use the
422// pools specified in PoolDescriptors when modifying data structure nodes
423// specified in the PoolDescriptors map. Specifically, scalar values specified
424// in the Scalars vector must be remapped. IPFGraph is the closed data
425// structure graph for F, of which the PoolDescriptor nodes come from.
426//
427void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
428 map<DSNode*, Value*> &PoolDescriptors) {
429
430 // Loop through the value map looking for scalars that refer to nonescaping
431 // allocations. Add them to the Scalars vector. Note that we may have
432 // multiple entries in the Scalars vector for each value if it points to more
433 // than one object.
434 //
435 map<Value*, PointerValSet> &ValMap = IPFGraph.getValueMap();
436 vector<ScalarInfo> Scalars;
437
Chris Lattner847b6e22002-03-30 20:53:14 +0000438 cerr << "Building scalar map:\n";
439
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000440 for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
441 E = ValMap.end(); I != E; ++I) {
442 const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
443
Chris Lattner847b6e22002-03-30 20:53:14 +0000444 cerr << "Scalar Mapping from:"; I->first->dump();
445 cerr << "\nScalar Mapping to: "; PVS.print(cerr);
446
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000447 // Check to see if the scalar points to a data structure node...
448 for (unsigned i = 0, e = PVS.size(); i != e; ++i) {
449 assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
450
451 // If the allocation is in the nonescaping set...
452 map<DSNode*, Value*>::iterator AI = PoolDescriptors.find(PVS[i].Node);
453 if (AI != PoolDescriptors.end()) // Add it to the list of scalars
454 Scalars.push_back(ScalarInfo(I->first, PVS[i].Node, AI->second));
455 }
456 }
457
458
459
Chris Lattner847b6e22002-03-30 20:53:14 +0000460 cerr << "\nIn '" << F->getName()
Chris Lattner175f37c2002-03-29 03:40:59 +0000461 << "': Found the following values that point to poolable nodes:\n";
462
463 for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
Chris Lattner692ad5d2002-03-29 17:13:46 +0000464 Scalars[i].Val->dump();
Chris Lattnere0618ca2002-03-29 05:50:20 +0000465
Chris Lattner692ad5d2002-03-29 17:13:46 +0000466 // CallMap - Contain an entry for every call instruction that needs to be
467 // transformed. Each entry in the map contains information about what we need
468 // to do to each call site to change it to work.
469 //
470 map<CallInst*, TransformFunctionInfo> CallMap;
Chris Lattner66df97d2002-03-29 06:21:38 +0000471
Chris Lattner692ad5d2002-03-29 17:13:46 +0000472 // Now we need to figure out what called methods we need to transform, and
473 // how. To do this, we look at all of the scalars, seeing which functions are
474 // either used as a scalar value (so they return a data structure), or are
475 // passed one of our scalar values.
476 //
477 for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
478 Value *ScalarVal = Scalars[i].Val;
479
480 // Check to see if the scalar _IS_ a call...
481 if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
482 // If so, add information about the pool it will be returning...
Chris Lattner0dc225c2002-03-31 07:17:46 +0000483 addCallInfo(DS, CallMap[CI], CI, -1, Scalars[i].Node, PoolDescriptors);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000484
485 // Check to see if the scalar is an operand to a call...
486 for (Value::use_iterator UI = ScalarVal->use_begin(),
487 UE = ScalarVal->use_end(); UI != UE; ++UI) {
488 if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
489 // Find out which operand this is to the call instruction...
490 User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal);
491 assert(OI != CI->op_end() && "Call on use list but not an operand!?");
492 assert(OI != CI->op_begin() && "Pointer operand is call destination?");
493
494 // FIXME: This is broken if the same pointer is passed to a call more
495 // than once! It will get multiple entries for the first pointer.
496
497 // Add the operand number and pool handle to the call table...
Chris Lattner0dc225c2002-03-31 07:17:46 +0000498 addCallInfo(DS, CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].Node,
Chris Lattner396d5d72002-03-30 04:02:31 +0000499 PoolDescriptors);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000500 }
501 }
502 }
503
504 // Print out call map...
505 for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
506 I != CallMap.end(); ++I) {
507 cerr << "\nFor call: ";
508 I->first->dump();
509 I->second.finalizeConstruction();
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000510 cerr << I->second.Func->getName() << " must pass pool pointer for args #";
Chris Lattner692ad5d2002-03-29 17:13:46 +0000511 for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000512 cerr << I->second.ArgInfo[i].ArgNo << ", ";
Chris Lattner692ad5d2002-03-29 17:13:46 +0000513 cerr << "\n";
514 }
515
516 // Loop through all of the call nodes, recursively creating the new functions
517 // that we want to call... This uses a map to prevent infinite recursion and
518 // to avoid duplicating functions unneccesarily.
519 //
520 for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(),
521 E = CallMap.end(); I != E; ++I) {
522 // Make sure the entries are sorted.
523 I->second.finalizeConstruction();
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000524
525 // Transform all of the functions we need, or at least ensure there is a
526 // cached version available.
527 transformFunction(I->second, IPFGraph);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000528 }
529
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000530 // Now that all of the functions that we want to call are available, transform
531 // the local method so that it uses the pools locally and passes them to the
532 // functions that we just hacked up.
533 //
534
535 // First step, find the instructions to be modified.
536 vector<Instruction*> InstToFix;
537 for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
538 Value *ScalarVal = Scalars[i].Val;
539
540 // Check to see if the scalar _IS_ an instruction. If so, it is involved.
541 if (Instruction *Inst = dyn_cast<Instruction>(ScalarVal))
542 InstToFix.push_back(Inst);
543
544 // All all of the instructions that use the scalar as an operand...
545 for (Value::use_iterator UI = ScalarVal->use_begin(),
546 UE = ScalarVal->use_end(); UI != UE; ++UI)
547 InstToFix.push_back(dyn_cast<Instruction>(*UI));
548 }
549
550 // Eliminate duplicates by sorting, then removing equal neighbors.
551 sort(InstToFix.begin(), InstToFix.end());
552 InstToFix.erase(unique(InstToFix.begin(), InstToFix.end()), InstToFix.end());
553
554 // Use a FunctionBodyTransformer to transform all of the involved instructions
555 FunctionBodyTransformer FBT(*this, Scalars, CallMap);
556 for (unsigned i = 0, e = InstToFix.size(); i != e; ++i)
557 FBT.visit(InstToFix[i]);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000558
559
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000560 // Since we have liberally hacked the function to pieces, we want to inform
561 // the datastructure pass that its internal representation is out of date.
562 //
563 DS->invalidateFunction(F);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000564}
565
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000566static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS,
567 map<DSNode*, PointerValSet> &NodeMapping) {
568 for (unsigned i = 0, e = PVS.size(); i != e; ++i)
569 if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet?
570 assert(PVS[i].Index == 0 && "Node indexing not supported yet!");
571 DSNode *DestNode = PVS[i].Node;
Chris Lattner692ad5d2002-03-29 17:13:46 +0000572
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000573 // Loop over all of the outgoing links in the mapped graph
574 for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) {
575 PointerValSet &SrcSet = SrcNode->getOutgoingLink(l);
576 const PointerValSet &DestSet = DestNode->getOutgoingLink(l);
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000577
578 // Add all of the node mappings now!
579 for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) {
580 assert(SrcSet[si].Index == 0 && "Can't handle node offset!");
581 addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping);
582 }
583 }
584 }
585}
586
587// CalculateNodeMapping - There is a partial isomorphism between the graph
588// passed in and the graph that is actually used by the function. We need to
589// figure out what this mapping is so that we can transformFunctionBody the
590// instructions in the function itself. Note that every node in the graph that
591// we are interested in must be both in the local graph of the called function,
592// and in the local graph of the calling function. Because of this, we only
593// define the mapping for these nodes [conveniently these are the only nodes we
594// CAN define a mapping for...]
Chris Lattner692ad5d2002-03-29 17:13:46 +0000595//
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000596// The roots of the graph that we are transforming is rooted in the arguments
597// passed into the function from the caller. This is where we start our
598// mapping calculation.
599//
600// The NodeMapping calculated maps from the callers graph to the called graph.
601//
Chris Lattner847b6e22002-03-30 20:53:14 +0000602static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI,
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000603 FunctionDSGraph &CallerGraph,
604 FunctionDSGraph &CalledGraph,
605 map<DSNode*, PointerValSet> &NodeMapping) {
606 int LastArgNo = -2;
607 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
608 // Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node
609 // corresponds to...
610 //
611 // Only consider first node of sequence. Extra nodes may may be added
612 // to the TFI if the data structure requires more nodes than just the
613 // one the argument points to. We are only interested in the one the
614 // argument points to though.
615 //
616 if (TFI.ArgInfo[i].ArgNo != LastArgNo) {
617 if (TFI.ArgInfo[i].ArgNo == -1) {
618 addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(),
619 NodeMapping);
620 } else {
621 // Figure out which node argument # ArgNo points to in the called graph.
Chris Lattner847b6e22002-03-30 20:53:14 +0000622 Value *Arg = F->getArgumentList()[TFI.ArgInfo[i].ArgNo];
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000623 addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
624 NodeMapping);
625 }
626 LastArgNo = TFI.ArgInfo[i].ArgNo;
627 }
628 }
629}
630
631
632// transformFunction - Transform the specified function the specified way. It
633// we have already transformed that function that way, don't do anything. The
634// nodes in the TransformFunctionInfo come out of callers data structure graph.
635//
636void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
637 FunctionDSGraph &CallerIPGraph) {
Chris Lattner692ad5d2002-03-29 17:13:46 +0000638 if (getTransformedFunction(TFI)) return; // Function xformation already done?
639
Chris Lattner0dc225c2002-03-31 07:17:46 +0000640 cerr << "**********\nEntering transformFunction for "
641 << TFI.Func->getName() << ":\n";
642 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i)
643 cerr << " ArgInfo[" << i << "] = " << TFI.ArgInfo[i].ArgNo << "\n";
644 cerr << "\n";
645
646
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000647 const FunctionType *OldFuncType = TFI.Func->getFunctionType();
Chris Lattner692ad5d2002-03-29 17:13:46 +0000648
Chris Lattner291a1b12002-03-29 19:05:48 +0000649 assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
Chris Lattner692ad5d2002-03-29 17:13:46 +0000650
Chris Lattner291a1b12002-03-29 19:05:48 +0000651 // Build the type for the new function that we are transforming
652 vector<const Type*> ArgTys;
653 for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i)
654 ArgTys.push_back(OldFuncType->getParamType(i));
655
656 // Add one pool pointer for every argument that needs to be supplemented.
657 ArgTys.insert(ArgTys.end(), TFI.ArgInfo.size(), PoolTy);
658
659 // Build the new function type...
660 const // FIXME when types are not const
661 FunctionType *NewFuncType = FunctionType::get(OldFuncType->getReturnType(),
662 ArgTys,OldFuncType->isVarArg());
663
664 // The new function is internal, because we know that only we can call it.
665 // This also helps subsequent IP transformations to eliminate duplicated pool
666 // pointers. [in the future when they are implemented].
667 //
668 Function *NewFunc = new Function(NewFuncType, true,
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000669 TFI.Func->getName()+".poolxform");
Chris Lattner291a1b12002-03-29 19:05:48 +0000670 CurModule->getFunctionList().push_back(NewFunc);
671
672 // Add the newly formed function to the TransformedFunctions table so that
673 // infinite recursion does not occur!
674 //
675 TransformedFunctions[TFI] = NewFunc;
676
677 // Add arguments to the function... starting with all of the old arguments
678 vector<Value*> ArgMap;
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000679 for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
680 const FunctionArgument *OFA = TFI.Func->getArgumentList()[i];
Chris Lattner291a1b12002-03-29 19:05:48 +0000681 FunctionArgument *NFA = new FunctionArgument(OFA->getType(),OFA->getName());
682 NewFunc->getArgumentList().push_back(NFA);
683 ArgMap.push_back(NFA); // Keep track of the arguments
684 }
685
686 // Now add all of the arguments corresponding to pools passed in...
687 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
688 string Name;
Chris Lattner396d5d72002-03-30 04:02:31 +0000689 if (TFI.ArgInfo[i].ArgNo == -1)
Chris Lattner291a1b12002-03-29 19:05:48 +0000690 Name = "retpool";
691 else
Chris Lattner396d5d72002-03-30 04:02:31 +0000692 Name = ArgMap[TFI.ArgInfo[i].ArgNo]->getName(); // Get the arg name
Chris Lattner291a1b12002-03-29 19:05:48 +0000693 FunctionArgument *NFA = new FunctionArgument(PoolTy, Name+".pool");
694 NewFunc->getArgumentList().push_back(NFA);
695 }
696
697 // Now clone the body of the old function into the new function...
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000698 CloneFunctionInto(NewFunc, TFI.Func, ArgMap);
Chris Lattner291a1b12002-03-29 19:05:48 +0000699
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000700 // Okay, now we have a function that is identical to the old one, except that
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000701 // it has extra arguments for the pools coming in. Now we have to get the
702 // data structure graph for the function we are replacing, and figure out how
703 // our graph nodes map to the graph nodes in the dest function.
704 //
Chris Lattner847b6e22002-03-30 20:53:14 +0000705 FunctionDSGraph &DSGraph = DS->getClosedDSGraph(NewFunc);
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000706
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000707 // NodeMapping - Multimap from callers graph to called graph.
708 //
709 map<DSNode*, PointerValSet> NodeMapping;
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000710
Chris Lattner847b6e22002-03-30 20:53:14 +0000711 CalculateNodeMapping(NewFunc, TFI, CallerIPGraph, DSGraph,
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000712 NodeMapping);
713
714 // Print out the node mapping...
Chris Lattner847b6e22002-03-30 20:53:14 +0000715 cerr << "\nNode mapping for call of " << NewFunc->getName() << "\n";
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000716 for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
717 I != NodeMapping.end(); ++I) {
718 cerr << "Map: "; I->first->print(cerr);
719 cerr << "To: "; I->second.print(cerr);
720 cerr << "\n";
721 }
722
723 // Fill in the PoolDescriptor information for the transformed function so that
724 // it can determine which value holds the pool descriptor for each data
725 // structure node that it accesses.
726 //
727 map<DSNode*, Value*> PoolDescriptors;
728
Chris Lattner847b6e22002-03-30 20:53:14 +0000729 cerr << "\nCalculating the pool descriptor map:\n";
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000730
Chris Lattner847b6e22002-03-30 20:53:14 +0000731 // All of the pool descriptors must be passed in as arguments...
732 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
733 DSNode *CallerNode = TFI.ArgInfo[i].Node;
734 Value *CallerPool = TFI.ArgInfo[i].PoolHandle;
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000735
Chris Lattner847b6e22002-03-30 20:53:14 +0000736 cerr << "Mapped caller node: "; CallerNode->print(cerr);
737 cerr << "Mapped caller pool: "; CallerPool->dump();
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000738
Chris Lattner847b6e22002-03-30 20:53:14 +0000739 // Calculate the argument number that the pool is to the function call...
740 // The call instruction should not have the pool operands added yet.
741 unsigned ArgNo = TFI.Call->getNumOperands()-1+i;
742 cerr << "Should be argument #: " << ArgNo << "[i = " << i << "]\n";
743 assert(ArgNo < NewFunc->getArgumentList().size() &&
744 "Call already has pool arguments added??");
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000745
Chris Lattner847b6e22002-03-30 20:53:14 +0000746 // Map the pool argument into the called function...
747 Value *CalleePool = NewFunc->getArgumentList()[ArgNo];
748
749 // Map the DSNode into the callee's DSGraph
750 const PointerValSet &CalleeNodes = NodeMapping[CallerNode];
751 for (unsigned n = 0, ne = CalleeNodes.size(); n != ne; ++n) {
752 assert(CalleeNodes[n].Index == 0 && "Indexed node not handled yet!");
753 DSNode *CalleeNode = CalleeNodes[n].Node;
754
755 cerr << "*** to callee node: "; CalleeNode->print(cerr);
756 cerr << "*** to callee pool: "; CalleePool->dump();
757 cerr << "\n";
758
759 assert(CalleeNode && CalleePool && "Invalid nodes!");
760 Value *&PV = PoolDescriptors[CalleeNode];
761 //assert((PV == 0 || PV == CalleePool) && "Invalid node remapping!");
762 PV = CalleePool; // Update the pool descriptor map!
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000763 }
Chris Lattner847b6e22002-03-30 20:53:14 +0000764 }
765
766 // We must destroy the node mapping so that we don't have latent references
767 // into the data structure graph for the new function. Otherwise we get
768 // assertion failures when transformFunctionBody tries to invalidate the
769 // graph.
770 //
771 NodeMapping.clear();
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000772
773 // Now that we know everything we need about the function, transform the body
774 // now!
775 //
Chris Lattner847b6e22002-03-30 20:53:14 +0000776 transformFunctionBody(NewFunc, DSGraph, PoolDescriptors);
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000777
778 cerr << "Function after transformation:\n";
Chris Lattner847b6e22002-03-30 20:53:14 +0000779 NewFunc->dump();
Chris Lattner66df97d2002-03-29 06:21:38 +0000780}
781
782
783// CreatePools - Insert instructions into the function we are processing to
784// create all of the memory pool objects themselves. This also inserts
785// destruction code. Add an alloca for each pool that is allocated to the
786// PoolDescriptors vector.
787//
788void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000789 map<DSNode*, Value*> &PoolDescriptors) {
Chris Lattnere0618ca2002-03-29 05:50:20 +0000790 // FIXME: This should use an IP version of the UnifyAllExits pass!
791 vector<BasicBlock*> ReturnNodes;
792 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
793 if (isa<ReturnInst>((*I)->getTerminator()))
794 ReturnNodes.push_back(*I);
795
796
797 // Create the code that goes in the entry and exit nodes for the method...
798 vector<Instruction*> EntryNodeInsts;
799 for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
800 // Add an allocation and a free for each pool...
801 AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool");
802 EntryNodeInsts.push_back(PoolAlloc);
Chris Lattner396d5d72002-03-30 04:02:31 +0000803 PoolDescriptors[Allocs[i]] = PoolAlloc; // Keep track of pool allocas
Chris Lattnere0618ca2002-03-29 05:50:20 +0000804 AllocationInst *AI = Allocs[i]->getAllocation();
805
806 // Initialize the pool. We need to know how big each allocation is. For
807 // our purposes here, we assume we are allocating a scalar, or array of
808 // constant size.
809 //
810 unsigned ElSize = TargetData.getTypeSize(AI->getAllocatedType());
811 ElSize *= cast<ConstantUInt>(AI->getArraySize())->getValue();
812
813 vector<Value*> Args;
814 Args.push_back(PoolAlloc); // Pool to initialize
815 Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize));
816 EntryNodeInsts.push_back(new CallInst(PoolInit, Args));
817
818 // Destroy the pool...
819 Args.pop_back();
820
821 for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) {
822 Instruction *Destroy = new CallInst(PoolDestroy, Args);
823
824 // Insert it before the return instruction...
825 BasicBlock *RetNode = ReturnNodes[EN];
826 RetNode->getInstList().insert(RetNode->end()-1, Destroy);
827 }
828 }
829
830 // Insert the entry node code into the entry block...
831 F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
832 EntryNodeInsts.begin(),
833 EntryNodeInsts.end());
Chris Lattner175f37c2002-03-29 03:40:59 +0000834}
835
836
Chris Lattner175f37c2002-03-29 03:40:59 +0000837// addPoolPrototypes - Add prototypes for the pool methods to the specified
838// module and update the Pool* instance variables to point to them.
839//
840void PoolAllocate::addPoolPrototypes(Module *M) {
Chris Lattnere0618ca2002-03-29 05:50:20 +0000841 // Get PoolInit function...
842 vector<const Type*> Args;
843 Args.push_back(PoolTy); // Pool to initialize
844 Args.push_back(Type::UIntTy); // Num bytes per element
845 FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, false);
846 PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
Chris Lattner175f37c2002-03-29 03:40:59 +0000847
Chris Lattnere0618ca2002-03-29 05:50:20 +0000848 // Get pooldestroy function...
849 Args.pop_back(); // Only takes a pool...
850 FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, false);
851 PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
852
853 const Type *PtrVoid = PointerType::get(Type::SByteTy);
854
855 // Get the poolalloc function...
856 FunctionType *PoolAllocTy = FunctionType::get(PtrVoid, Args, false);
857 PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
858
859 // Get the poolfree function...
860 Args.push_back(PtrVoid);
861 FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, false);
862 PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
863
864 // Add the %PoolTy type to the symbol table of the module...
865 M->addTypeName("PoolTy", PoolTy->getElementType());
Chris Lattner175f37c2002-03-29 03:40:59 +0000866}
867
868
869bool PoolAllocate::run(Module *M) {
870 addPoolPrototypes(M);
871 CurModule = M;
872
873 DS = &getAnalysis<DataStructure>();
874 bool Changed = false;
Chris Lattner291a1b12002-03-29 19:05:48 +0000875
876 // We cannot use an iterator here because it will get invalidated when we add
877 // functions to the module later...
878 for (unsigned i = 0; i != M->size(); ++i)
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000879 if (!M->getFunctionList()[i]->isExternal()) {
Chris Lattner291a1b12002-03-29 19:05:48 +0000880 Changed |= processFunction(M->getFunctionList()[i]);
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000881 if (Changed) {
882 cerr << "Only processing one function\n";
883 break;
884 }
885 }
Chris Lattner175f37c2002-03-29 03:40:59 +0000886
887 CurModule = 0;
888 DS = 0;
889 return false;
890}
891
892
893// createPoolAllocatePass - Global function to access the functionality of this
894// pass...
895//
Chris Lattner64fd9352002-03-28 18:08:31 +0000896Pass *createPoolAllocatePass() { return new PoolAllocate(); }