Florian Hahn | 09e516c | 2018-11-14 13:11:49 +0000 | [diff] [blame] | 1 | //===- VPlanSLP.cpp - SLP Analysis based on VPlan -------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// This file implements SLP analysis based on VPlan. The analysis is based on |
| 10 | /// the ideas described in |
| 11 | /// |
| 12 | /// Look-ahead SLP: auto-vectorization in the presence of commutative |
| 13 | /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, |
| 14 | /// Luís F. W. Góes |
| 15 | /// |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "VPlan.h" |
| 19 | #include "llvm/ADT/DepthFirstIterator.h" |
| 20 | #include "llvm/ADT/PostOrderIterator.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/Twine.h" |
| 23 | #include "llvm/Analysis/LoopInfo.h" |
| 24 | #include "llvm/Analysis/VectorUtils.h" |
| 25 | #include "llvm/IR/BasicBlock.h" |
| 26 | #include "llvm/IR/CFG.h" |
| 27 | #include "llvm/IR/Dominators.h" |
| 28 | #include "llvm/IR/InstrTypes.h" |
| 29 | #include "llvm/IR/Instruction.h" |
| 30 | #include "llvm/IR/Instructions.h" |
| 31 | #include "llvm/IR/Type.h" |
| 32 | #include "llvm/IR/Value.h" |
| 33 | #include "llvm/Support/Casting.h" |
| 34 | #include "llvm/Support/Debug.h" |
| 35 | #include "llvm/Support/ErrorHandling.h" |
| 36 | #include "llvm/Support/GraphWriter.h" |
| 37 | #include "llvm/Support/raw_ostream.h" |
| 38 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 39 | #include <cassert> |
| 40 | #include <iterator> |
| 41 | #include <string> |
| 42 | #include <vector> |
| 43 | |
| 44 | using namespace llvm; |
| 45 | |
| 46 | #define DEBUG_TYPE "vplan-slp" |
| 47 | |
| 48 | // Number of levels to look ahead when re-ordering multi node operands. |
| 49 | static unsigned LookaheadMaxDepth = 5; |
| 50 | |
| 51 | VPInstruction *VPlanSlp::markFailed() { |
| 52 | // FIXME: Currently this is used to signal we hit instructions we cannot |
| 53 | // trivially SLP'ize. |
| 54 | CompletelySLP = false; |
| 55 | return nullptr; |
| 56 | } |
| 57 | |
| 58 | void VPlanSlp::addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New) { |
| 59 | if (all_of(Operands, [](VPValue *V) { |
| 60 | return cast<VPInstruction>(V)->getUnderlyingInstr(); |
| 61 | })) { |
| 62 | unsigned BundleSize = 0; |
| 63 | for (VPValue *V : Operands) { |
| 64 | Type *T = cast<VPInstruction>(V)->getUnderlyingInstr()->getType(); |
| 65 | assert(!T->isVectorTy() && "Only scalar types supported for now"); |
| 66 | BundleSize += T->getScalarSizeInBits(); |
| 67 | } |
| 68 | WidestBundleBits = std::max(WidestBundleBits, BundleSize); |
| 69 | } |
| 70 | |
| 71 | auto Res = BundleToCombined.try_emplace(to_vector<4>(Operands), New); |
| 72 | assert(Res.second && |
| 73 | "Already created a combined instruction for the operand bundle"); |
| 74 | (void)Res; |
| 75 | } |
| 76 | |
| 77 | bool VPlanSlp::areVectorizable(ArrayRef<VPValue *> Operands) const { |
| 78 | // Currently we only support VPInstructions. |
| 79 | if (!all_of(Operands, [](VPValue *Op) { |
| 80 | return Op && isa<VPInstruction>(Op) && |
| 81 | cast<VPInstruction>(Op)->getUnderlyingInstr(); |
| 82 | })) { |
| 83 | LLVM_DEBUG(dbgs() << "VPSLP: not all operands are VPInstructions\n"); |
| 84 | return false; |
| 85 | } |
| 86 | |
| 87 | // Check if opcodes and type width agree for all instructions in the bundle. |
| 88 | // FIXME: Differing widths/opcodes can be handled by inserting additional |
| 89 | // instructions. |
| 90 | // FIXME: Deal with non-primitive types. |
| 91 | const Instruction *OriginalInstr = |
| 92 | cast<VPInstruction>(Operands[0])->getUnderlyingInstr(); |
| 93 | unsigned Opcode = OriginalInstr->getOpcode(); |
| 94 | unsigned Width = OriginalInstr->getType()->getPrimitiveSizeInBits(); |
| 95 | if (!all_of(Operands, [Opcode, Width](VPValue *Op) { |
| 96 | const Instruction *I = cast<VPInstruction>(Op)->getUnderlyingInstr(); |
| 97 | return I->getOpcode() == Opcode && |
| 98 | I->getType()->getPrimitiveSizeInBits() == Width; |
| 99 | })) { |
| 100 | LLVM_DEBUG(dbgs() << "VPSLP: Opcodes do not agree \n"); |
| 101 | return false; |
| 102 | } |
| 103 | |
| 104 | // For now, all operands must be defined in the same BB. |
| 105 | if (any_of(Operands, [this](VPValue *Op) { |
| 106 | return cast<VPInstruction>(Op)->getParent() != &this->BB; |
| 107 | })) { |
| 108 | LLVM_DEBUG(dbgs() << "VPSLP: operands in different BBs\n"); |
| 109 | return false; |
| 110 | } |
| 111 | |
| 112 | if (any_of(Operands, |
| 113 | [](VPValue *Op) { return Op->hasMoreThanOneUniqueUser(); })) { |
| 114 | LLVM_DEBUG(dbgs() << "VPSLP: Some operands have multiple users.\n"); |
| 115 | return false; |
| 116 | } |
| 117 | |
| 118 | // For loads, check that there are no instructions writing to memory in |
| 119 | // between them. |
| 120 | // TODO: we only have to forbid instructions writing to memory that could |
| 121 | // interfere with any of the loads in the bundle |
| 122 | if (Opcode == Instruction::Load) { |
| 123 | unsigned LoadsSeen = 0; |
| 124 | VPBasicBlock *Parent = cast<VPInstruction>(Operands[0])->getParent(); |
| 125 | for (auto &I : *Parent) { |
| 126 | auto *VPI = cast<VPInstruction>(&I); |
| 127 | if (VPI->getOpcode() == Instruction::Load && |
| 128 | std::find(Operands.begin(), Operands.end(), VPI) != Operands.end()) |
| 129 | LoadsSeen++; |
| 130 | |
| 131 | if (LoadsSeen == Operands.size()) |
| 132 | break; |
| 133 | if (LoadsSeen > 0 && VPI->mayWriteToMemory()) { |
| 134 | LLVM_DEBUG( |
| 135 | dbgs() << "VPSLP: instruction modifying memory between loads\n"); |
| 136 | return false; |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | if (!all_of(Operands, [](VPValue *Op) { |
| 141 | return cast<LoadInst>(cast<VPInstruction>(Op)->getUnderlyingInstr()) |
| 142 | ->isSimple(); |
| 143 | })) { |
| 144 | LLVM_DEBUG(dbgs() << "VPSLP: only simple loads are supported.\n"); |
| 145 | return false; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | if (Opcode == Instruction::Store) |
| 150 | if (!all_of(Operands, [](VPValue *Op) { |
| 151 | return cast<StoreInst>(cast<VPInstruction>(Op)->getUnderlyingInstr()) |
| 152 | ->isSimple(); |
| 153 | })) { |
| 154 | LLVM_DEBUG(dbgs() << "VPSLP: only simple stores are supported.\n"); |
| 155 | return false; |
| 156 | } |
| 157 | |
| 158 | return true; |
| 159 | } |
| 160 | |
| 161 | static SmallVector<VPValue *, 4> getOperands(ArrayRef<VPValue *> Values, |
| 162 | unsigned OperandIndex) { |
| 163 | SmallVector<VPValue *, 4> Operands; |
| 164 | for (VPValue *V : Values) { |
| 165 | auto *U = cast<VPUser>(V); |
| 166 | Operands.push_back(U->getOperand(OperandIndex)); |
| 167 | } |
| 168 | return Operands; |
| 169 | } |
| 170 | |
| 171 | static bool areCommutative(ArrayRef<VPValue *> Values) { |
| 172 | return Instruction::isCommutative( |
| 173 | cast<VPInstruction>(Values[0])->getOpcode()); |
| 174 | } |
| 175 | |
| 176 | static SmallVector<SmallVector<VPValue *, 4>, 4> |
| 177 | getOperands(ArrayRef<VPValue *> Values) { |
| 178 | SmallVector<SmallVector<VPValue *, 4>, 4> Result; |
| 179 | auto *VPI = cast<VPInstruction>(Values[0]); |
| 180 | |
| 181 | switch (VPI->getOpcode()) { |
| 182 | case Instruction::Load: |
| 183 | llvm_unreachable("Loads terminate a tree, no need to get operands"); |
| 184 | case Instruction::Store: |
| 185 | Result.push_back(getOperands(Values, 0)); |
| 186 | break; |
| 187 | default: |
| 188 | for (unsigned I = 0, NumOps = VPI->getNumOperands(); I < NumOps; ++I) |
| 189 | Result.push_back(getOperands(Values, I)); |
| 190 | break; |
| 191 | } |
| 192 | |
| 193 | return Result; |
| 194 | } |
| 195 | |
| 196 | /// Returns the opcode of Values or ~0 if they do not all agree. |
| 197 | static Optional<unsigned> getOpcode(ArrayRef<VPValue *> Values) { |
| 198 | unsigned Opcode = cast<VPInstruction>(Values[0])->getOpcode(); |
| 199 | if (any_of(Values, [Opcode](VPValue *V) { |
| 200 | return cast<VPInstruction>(V)->getOpcode() != Opcode; |
| 201 | })) |
| 202 | return None; |
| 203 | return {Opcode}; |
| 204 | } |
| 205 | |
| 206 | /// Returns true if A and B access sequential memory if they are loads or |
| 207 | /// stores or if they have identical opcodes otherwise. |
| 208 | static bool areConsecutiveOrMatch(VPInstruction *A, VPInstruction *B, |
| 209 | VPInterleavedAccessInfo &IAI) { |
| 210 | if (A->getOpcode() != B->getOpcode()) |
| 211 | return false; |
| 212 | |
| 213 | if (A->getOpcode() != Instruction::Load && |
| 214 | A->getOpcode() != Instruction::Store) |
| 215 | return true; |
| 216 | auto *GA = IAI.getInterleaveGroup(A); |
| 217 | auto *GB = IAI.getInterleaveGroup(B); |
| 218 | |
| 219 | return GA && GB && GA == GB && GA->getIndex(A) + 1 == GB->getIndex(B); |
| 220 | } |
| 221 | |
| 222 | /// Implements getLAScore from Listing 7 in the paper. |
| 223 | /// Traverses and compares operands of V1 and V2 to MaxLevel. |
| 224 | static unsigned getLAScore(VPValue *V1, VPValue *V2, unsigned MaxLevel, |
| 225 | VPInterleavedAccessInfo &IAI) { |
| 226 | if (!isa<VPInstruction>(V1) || !isa<VPInstruction>(V2)) |
| 227 | return 0; |
| 228 | |
| 229 | if (MaxLevel == 0) |
| 230 | return (unsigned)areConsecutiveOrMatch(cast<VPInstruction>(V1), |
| 231 | cast<VPInstruction>(V2), IAI); |
| 232 | |
| 233 | unsigned Score = 0; |
| 234 | for (unsigned I = 0, EV1 = cast<VPUser>(V1)->getNumOperands(); I < EV1; ++I) |
| 235 | for (unsigned J = 0, EV2 = cast<VPUser>(V2)->getNumOperands(); J < EV2; ++J) |
| 236 | Score += getLAScore(cast<VPUser>(V1)->getOperand(I), |
| 237 | cast<VPUser>(V2)->getOperand(J), MaxLevel - 1, IAI); |
| 238 | return Score; |
| 239 | } |
| 240 | |
| 241 | std::pair<VPlanSlp::OpMode, VPValue *> |
| 242 | VPlanSlp::getBest(OpMode Mode, VPValue *Last, |
| 243 | SmallVectorImpl<VPValue *> &Candidates, |
| 244 | VPInterleavedAccessInfo &IAI) { |
| 245 | LLVM_DEBUG(dbgs() << " getBest\n"); |
| 246 | VPValue *Best = Candidates[0]; |
| 247 | SmallVector<VPValue *, 4> BestCandidates; |
| 248 | |
| 249 | LLVM_DEBUG(dbgs() << " Candidates for " |
| 250 | << *cast<VPInstruction>(Last)->getUnderlyingInstr() << " "); |
| 251 | for (auto *Candidate : Candidates) { |
| 252 | auto *LastI = cast<VPInstruction>(Last); |
| 253 | auto *CandidateI = cast<VPInstruction>(Candidate); |
| 254 | if (areConsecutiveOrMatch(LastI, CandidateI, IAI)) { |
| 255 | LLVM_DEBUG(dbgs() << *cast<VPInstruction>(Candidate)->getUnderlyingInstr() |
| 256 | << " "); |
| 257 | BestCandidates.push_back(Candidate); |
| 258 | } |
| 259 | } |
| 260 | LLVM_DEBUG(dbgs() << "\n"); |
| 261 | |
| 262 | if (BestCandidates.empty()) |
| 263 | return {OpMode::Failed, nullptr}; |
| 264 | |
| 265 | if (BestCandidates.size() == 1) |
| 266 | return {Mode, BestCandidates[0]}; |
| 267 | |
| 268 | if (Mode == OpMode::Opcode) { |
| 269 | unsigned BestScore = 0; |
| 270 | for (unsigned Depth = 1; Depth < LookaheadMaxDepth; Depth++) { |
| 271 | unsigned PrevScore = ~0u; |
| 272 | bool AllSame = true; |
| 273 | |
| 274 | // FIXME: Avoid visiting the same operands multiple times. |
| 275 | for (auto *Candidate : BestCandidates) { |
| 276 | unsigned Score = getLAScore(Last, Candidate, Depth, IAI); |
| 277 | if (PrevScore == ~0u) |
| 278 | PrevScore = Score; |
| 279 | if (PrevScore != Score) |
| 280 | AllSame = false; |
| 281 | PrevScore = Score; |
| 282 | |
| 283 | if (Score > BestScore) { |
| 284 | BestScore = Score; |
| 285 | Best = Candidate; |
| 286 | } |
| 287 | } |
| 288 | if (!AllSame) |
| 289 | break; |
| 290 | } |
| 291 | } |
| 292 | LLVM_DEBUG(dbgs() << "Found best " |
| 293 | << *cast<VPInstruction>(Best)->getUnderlyingInstr() |
| 294 | << "\n"); |
| 295 | std::remove(Candidates.begin(), Candidates.end(), Best); |
| 296 | |
| 297 | return {Mode, Best}; |
| 298 | } |
| 299 | |
| 300 | SmallVector<VPlanSlp::MultiNodeOpTy, 4> VPlanSlp::reorderMultiNodeOps() { |
| 301 | SmallVector<MultiNodeOpTy, 4> FinalOrder; |
| 302 | SmallVector<OpMode, 4> Mode; |
| 303 | FinalOrder.reserve(MultiNodeOps.size()); |
| 304 | Mode.reserve(MultiNodeOps.size()); |
| 305 | |
| 306 | LLVM_DEBUG(dbgs() << "Reordering multinode\n"); |
| 307 | |
| 308 | for (auto &Operands : MultiNodeOps) { |
| 309 | FinalOrder.push_back({Operands.first, {Operands.second[0]}}); |
| 310 | if (cast<VPInstruction>(Operands.second[0])->getOpcode() == |
| 311 | Instruction::Load) |
| 312 | Mode.push_back(OpMode::Load); |
| 313 | else |
| 314 | Mode.push_back(OpMode::Opcode); |
| 315 | } |
| 316 | |
| 317 | for (unsigned Lane = 1, E = MultiNodeOps[0].second.size(); Lane < E; ++Lane) { |
| 318 | LLVM_DEBUG(dbgs() << " Finding best value for lane " << Lane << "\n"); |
| 319 | SmallVector<VPValue *, 4> Candidates; |
| 320 | Candidates.reserve(MultiNodeOps.size()); |
| 321 | LLVM_DEBUG(dbgs() << " Candidates "); |
| 322 | for (auto Ops : MultiNodeOps) { |
| 323 | LLVM_DEBUG( |
| 324 | dbgs() << *cast<VPInstruction>(Ops.second[Lane])->getUnderlyingInstr() |
| 325 | << " "); |
| 326 | Candidates.push_back(Ops.second[Lane]); |
| 327 | } |
| 328 | LLVM_DEBUG(dbgs() << "\n"); |
| 329 | |
| 330 | for (unsigned Op = 0, E = MultiNodeOps.size(); Op < E; ++Op) { |
| 331 | LLVM_DEBUG(dbgs() << " Checking " << Op << "\n"); |
| 332 | if (Mode[Op] == OpMode::Failed) |
| 333 | continue; |
| 334 | |
| 335 | VPValue *Last = FinalOrder[Op].second[Lane - 1]; |
| 336 | std::pair<OpMode, VPValue *> Res = |
| 337 | getBest(Mode[Op], Last, Candidates, IAI); |
| 338 | if (Res.second) |
| 339 | FinalOrder[Op].second.push_back(Res.second); |
| 340 | else |
| 341 | // TODO: handle this case |
| 342 | FinalOrder[Op].second.push_back(markFailed()); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | return FinalOrder; |
| 347 | } |
| 348 | |
| 349 | void VPlanSlp::dumpBundle(ArrayRef<VPValue *> Values) { |
| 350 | LLVM_DEBUG(dbgs() << " Ops: "); |
| 351 | for (auto Op : Values) |
| 352 | if (auto *Instr = cast_or_null<VPInstruction>(Op)->getUnderlyingInstr()) |
| 353 | LLVM_DEBUG(dbgs() << *Instr << " | "); |
| 354 | else |
| 355 | LLVM_DEBUG(dbgs() << " nullptr | "); |
| 356 | LLVM_DEBUG(dbgs() << "\n"); |
| 357 | } |
| 358 | |
| 359 | VPInstruction *VPlanSlp::buildGraph(ArrayRef<VPValue *> Values) { |
| 360 | assert(!Values.empty() && "Need some operands!"); |
| 361 | |
| 362 | // If we already visited this instruction bundle, re-use the existing node |
| 363 | auto I = BundleToCombined.find(to_vector<4>(Values)); |
| 364 | if (I != BundleToCombined.end()) { |
Florian Hahn | 2eca372 | 2018-11-14 13:21:26 +0000 | [diff] [blame^] | 365 | #ifndef NDEBUG |
Florian Hahn | 09e516c | 2018-11-14 13:11:49 +0000 | [diff] [blame] | 366 | // Check that the resulting graph is a tree. If we re-use a node, this means |
| 367 | // its values have multiple users. We only allow this, if all users of each |
| 368 | // value are the same instruction. |
| 369 | for (auto *V : Values) { |
| 370 | auto UI = V->user_begin(); |
| 371 | auto *FirstUser = *UI++; |
Florian Hahn | 2eca372 | 2018-11-14 13:21:26 +0000 | [diff] [blame^] | 372 | while (UI != V->user_end()) { |
Florian Hahn | 09e516c | 2018-11-14 13:11:49 +0000 | [diff] [blame] | 373 | assert(*UI == FirstUser && "Currently we only support SLP trees."); |
| 374 | UI++; |
| 375 | } |
| 376 | } |
| 377 | #endif |
| 378 | return I->second; |
| 379 | } |
| 380 | |
| 381 | // Dump inputs |
| 382 | LLVM_DEBUG({ |
| 383 | dbgs() << "buildGraph: "; |
| 384 | dumpBundle(Values); |
| 385 | }); |
| 386 | |
| 387 | if (!areVectorizable(Values)) |
| 388 | return markFailed(); |
| 389 | |
| 390 | assert(getOpcode(Values) && "Opcodes for all values must match"); |
| 391 | unsigned ValuesOpcode = getOpcode(Values).getValue(); |
| 392 | |
| 393 | SmallVector<VPValue *, 4> CombinedOperands; |
| 394 | if (areCommutative(Values)) { |
| 395 | bool MultiNodeRoot = !MultiNodeActive; |
| 396 | MultiNodeActive = true; |
| 397 | for (auto &Operands : getOperands(Values)) { |
| 398 | LLVM_DEBUG({ |
| 399 | dbgs() << " Visiting Commutative"; |
| 400 | dumpBundle(Operands); |
| 401 | }); |
| 402 | |
| 403 | auto OperandsOpcode = getOpcode(Operands); |
| 404 | if (OperandsOpcode && OperandsOpcode == getOpcode(Values)) { |
| 405 | LLVM_DEBUG(dbgs() << " Same opcode, continue building\n"); |
| 406 | CombinedOperands.push_back(buildGraph(Operands)); |
| 407 | } else { |
| 408 | LLVM_DEBUG(dbgs() << " Adding multinode Ops\n"); |
| 409 | // Create dummy VPInstruction, which will we replace later by the |
| 410 | // re-ordered operand. |
| 411 | VPInstruction *Op = new VPInstruction(0, {}); |
| 412 | CombinedOperands.push_back(Op); |
| 413 | MultiNodeOps.emplace_back(Op, Operands); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | if (MultiNodeRoot) { |
| 418 | LLVM_DEBUG(dbgs() << "Reorder \n"); |
| 419 | MultiNodeActive = false; |
| 420 | |
| 421 | auto FinalOrder = reorderMultiNodeOps(); |
| 422 | |
| 423 | MultiNodeOps.clear(); |
| 424 | for (auto &Ops : FinalOrder) { |
| 425 | VPInstruction *NewOp = buildGraph(Ops.second); |
| 426 | Ops.first->replaceAllUsesWith(NewOp); |
| 427 | for (unsigned i = 0; i < CombinedOperands.size(); i++) |
| 428 | if (CombinedOperands[i] == Ops.first) |
| 429 | CombinedOperands[i] = NewOp; |
| 430 | delete Ops.first; |
| 431 | Ops.first = NewOp; |
| 432 | } |
| 433 | LLVM_DEBUG(dbgs() << "Found final order\n"); |
| 434 | } |
| 435 | } else { |
| 436 | LLVM_DEBUG(dbgs() << " NonCommuntative\n"); |
| 437 | if (ValuesOpcode == Instruction::Load) |
| 438 | for (VPValue *V : Values) |
| 439 | CombinedOperands.push_back(cast<VPInstruction>(V)->getOperand(0)); |
| 440 | else |
| 441 | for (auto &Operands : getOperands(Values)) |
| 442 | CombinedOperands.push_back(buildGraph(Operands)); |
| 443 | } |
| 444 | |
| 445 | unsigned Opcode; |
| 446 | switch (ValuesOpcode) { |
| 447 | case Instruction::Load: |
| 448 | Opcode = VPInstruction::SLPLoad; |
| 449 | break; |
| 450 | case Instruction::Store: |
| 451 | Opcode = VPInstruction::SLPStore; |
| 452 | break; |
| 453 | default: |
| 454 | Opcode = ValuesOpcode; |
| 455 | break; |
| 456 | } |
| 457 | |
| 458 | if (!CompletelySLP) |
| 459 | return markFailed(); |
| 460 | |
| 461 | assert(CombinedOperands.size() > 0 && "Need more some operands"); |
| 462 | auto *VPI = new VPInstruction(Opcode, CombinedOperands); |
| 463 | VPI->setUnderlyingInstr(cast<VPInstruction>(Values[0])->getUnderlyingInstr()); |
| 464 | |
| 465 | LLVM_DEBUG(dbgs() << "Create VPInstruction "; VPI->print(dbgs()); |
| 466 | cast<VPInstruction>(Values[0])->print(dbgs()); dbgs() << "\n"); |
| 467 | addCombined(Values, VPI); |
| 468 | return VPI; |
| 469 | } |