blob: c6e2771f817abe1368c53007f908eef7e38a53d6 [file] [log] [blame]
Michael Kruse138a3fb2017-08-04 22:51:23 +00001//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Derive information about array elements between statements ("Zones").
11//
12// The algorithms here work on the scatter space - the image space of the
13// schedule returned by Scop::getSchedule(). We call an element in that space a
14// "timepoint". Timepoints are lexicographically ordered such that we can
15// defined ranges in the scatter space. We use two flavors of such ranges:
16// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
17// space and is directly stored as isl_set.
18//
19// Zones are used to describe the space between timepoints as open sets, i.e.
20// they do not contain the extrema. Using isl rational sets to express these
21// would be overkill. We also cannot store them as the integer timepoints they
22// contain; the (nonempty) zone between 1 and 2 would be empty and
23// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
24// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
25// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
26// Instead, we store the "half-open" integer extrema, including the lower bound,
27// but excluding the upper bound. Examples:
28//
29// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
30// integer points 1 and 2, but not 0 or 3)
31//
32// * { [1] } represents the zone ]0,1[
33//
34// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
35//
36// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
37// speaking the integer points never belong to the zone. However, depending an
38// the interpretation, one might want to include them. Part of the
39// interpretation may not be known when the zone is constructed.
40//
41// Reads are assumed to always take place before writes, hence we can think of
42// reads taking place at the beginning of a timepoint and writes at the end.
43//
44// Let's assume that the zone represents the lifetime of a variable. That is,
45// the zone begins with a write that defines the value during its lifetime and
46// ends with the last read of that value. In the following we consider whether a
47// read/write at the beginning/ending of the lifetime zone should be within the
48// zone or outside of it.
49//
50// * A read at the timepoint that starts the live-range loads the previous
51// value. Hence, exclude the timepoint starting the zone.
52//
53// * A write at the timepoint that starts the live-range is not defined whether
54// it occurs before or after the write that starts the lifetime. We do not
55// allow this situation to occur. Hence, we include the timepoint starting the
56// zone to determine whether they are conflicting.
57//
58// * A read at the timepoint that ends the live-range reads the same variable.
59// We include the timepoint at the end of the zone to include that read into
60// the live-range. Doing otherwise would mean that the two reads access
61// different values, which would mean that the value they read are both alive
62// at the same time but occupy the same variable.
63//
64// * A write at the timepoint that ends the live-range starts a new live-range.
65// It must not be included in the live-range of the previous definition.
66//
67// All combinations of reads and writes at the endpoints are possible, but most
68// of the time only the write->read (for instance, a live-range from definition
69// to last use) and read->write (for instance, an unused range from last use to
70// overwrite) and combinations are interesting (half-open ranges). write->write
71// zones might be useful as well in some context to represent
72// output-dependencies.
73//
74// @see convertZoneToTimepoints
75//
76//
77// The code makes use of maps and sets in many different spaces. To not loose
78// track in which space a set or map is expected to be in, variables holding an
79// isl reference are usually annotated in the comments. They roughly follow isl
80// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
81// meaning as follows:
82//
83// * Space[] - An unspecified tuple. Used for function parameters such that the
84// function caller can use it for anything they like.
85//
86// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
87// isl_id_get_name: Stmt_<NameOfBasicBlock>
88// isl_id_get_user: Pointer to ScopStmt
89//
90// * Element[] - An array element as in the range part of
91// MemoryAccess::getAccessRelation()
92// isl_id_get_name: MemRef_<NameOfArrayVariable>
93// isl_id_get_user: Pointer to ScopArrayInfo
94//
95// * Scatter[] - Scatter space or space of timepoints
96// Has no tuple id
97//
98// * Zone[] - Range between timepoints as described above
99// Has no tuple id
100//
101// * ValInst[] - An llvm::Value as defined at a specific timepoint.
102//
103// A ValInst[] itself can be structured as one of:
104//
105// * [] - An unknown value.
106// Always zero dimensions
107// Has no tuple id
108//
109// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
110// runtime content does not depend on the timepoint.
111// Always zero dimensions
112// isl_id_get_name: Val_<NameOfValue>
113// isl_id_get_user: A pointer to an llvm::Value
114//
115// * SCEV[...] - A synthesizable llvm::SCEV Expression.
116// In contrast to a Value[] is has at least one dimension per
117// SCEVAddRecExpr in the SCEV.
118//
119// * [Domain[] -> Value[]] - An llvm::Value that may change during the
120// Scop's execution.
121// The tuple itself has no id, but it wraps a map space holding a
122// statement instance which defines the llvm::Value as the map's domain
123// and llvm::Value itself as range.
124//
125// @see makeValInst()
126//
127// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
128// statement instance to a timepoint, aka a schedule. There is only one scatter
129// space, but most of the time multiple statements are processed in one set.
130// This is why most of the time isl_union_map has to be used.
131//
132// The basic algorithm works as follows:
133// At first we verify that the SCoP is compatible with this technique. For
134// instance, two writes cannot write to the same location at the same statement
135// instance because we cannot determine within the polyhedral model which one
136// comes first. Once this was verified, we compute zones at which an array
137// element is unused. This computation can fail if it takes too long. Then the
138// main algorithm is executed. Because every store potentially trails an unused
139// zone, we start at stores. We search for a scalar (MemoryKind::Value or
140// MemoryKind::PHI) that we can map to the array element overwritten by the
141// store, preferably one that is used by the store or at least the ScopStmt.
142// When it does not conflict with the lifetime of the values in the array
143// element, the map is applied and the unused zone updated as it is now used. We
144// continue to try to map scalars to the array element until there are no more
145// candidates to map. The algorithm is greedy in the sense that the first scalar
146// not conflicting will be mapped. Other scalars processed later that could have
147// fit the same unused zone will be rejected. As such the result depends on the
148// processing order.
149//
150//===----------------------------------------------------------------------===//
151
152#include "polly/ZoneAlgo.h"
153#include "polly/ScopInfo.h"
154#include "polly/Support/GICHelper.h"
155#include "polly/Support/ISLTools.h"
156#include "polly/Support/VirtualInstruction.h"
157
158#define DEBUG_TYPE "polly-zone"
159
160using namespace polly;
161using namespace llvm;
162
163static isl::union_map computeReachingDefinition(isl::union_map Schedule,
164 isl::union_map Writes,
165 bool InclDef, bool InclRedef) {
166 return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
167}
168
169/// Compute the reaching definition of a scalar.
170///
171/// Compared to computeReachingDefinition, there is just one element which is
172/// accessed and therefore only a set if instances that accesses that element is
173/// required.
174///
175/// @param Schedule { DomainWrite[] -> Scatter[] }
176/// @param Writes { DomainWrite[] }
177/// @param InclDef Include the timepoint of the definition to the result.
178/// @param InclRedef Include the timepoint of the overwrite into the result.
179///
180/// @return { Scatter[] -> DomainWrite[] }
181static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
182 isl::union_set Writes,
183 bool InclDef,
184 bool InclRedef) {
185
186 // { DomainWrite[] -> Element[] }
187 auto Defs = give(isl_union_map_from_domain(Writes.take()));
188
189 // { [Element[] -> Scatter[]] -> DomainWrite[] }
190 auto ReachDefs =
191 computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
192
193 // { Scatter[] -> DomainWrite[] }
194 return give(isl_union_set_unwrap(
195 isl_union_map_range(isl_union_map_curry(ReachDefs.take()))));
196}
197
198/// Compute the reaching definition of a scalar.
199///
200/// This overload accepts only a single writing statement as an isl_map,
201/// consequently the result also is only a single isl_map.
202///
203/// @param Schedule { DomainWrite[] -> Scatter[] }
204/// @param Writes { DomainWrite[] }
205/// @param InclDef Include the timepoint of the definition to the result.
206/// @param InclRedef Include the timepoint of the overwrite into the result.
207///
208/// @return { Scatter[] -> DomainWrite[] }
209static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
210 isl::set Writes, bool InclDef,
211 bool InclRedef) {
212 auto DomainSpace = give(isl_set_get_space(Writes.keep()));
213 auto ScatterSpace = getScatterSpace(Schedule);
214
215 // { Scatter[] -> DomainWrite[] }
216 auto UMap = computeScalarReachingDefinition(
217 Schedule, give(isl_union_set_from_set(Writes.take())), InclDef,
218 InclRedef);
219
220 auto ResultSpace = give(isl_space_map_from_domain_and_range(
221 ScatterSpace.take(), DomainSpace.take()));
222 return singleton(UMap, ResultSpace);
223}
224
225isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
226 return give(isl_union_map_from_domain(Domain.take()));
227}
228
229/// Create a domain-to-unknown value mapping.
230///
231/// @see makeUnknownForDomain(isl::union_set)
232///
233/// @param Domain { Domain[] }
234///
235/// @return { Domain[] -> ValInst[] }
236static isl::map makeUnknownForDomain(isl::set Domain) {
237 return give(isl_map_from_domain(Domain.take()));
238}
239
Michael Kruse70af4f52017-08-07 18:40:29 +0000240/// Return whether @p Map maps to an unknown value.
241///
242/// @param { [] -> ValInst[] }
243static bool isMapToUnknown(const isl::map &Map) {
244 isl::space Space = Map.get_space().range();
245 return Space.has_tuple_id(isl::dim::set).is_false() &&
246 Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
247}
248
249/// Return only the mappings that map to known values.
250///
251/// @param UMap { [] -> ValInst[] }
252///
253/// @return { [] -> ValInst[] }
254static isl::union_map filterKnownValInst(const isl::union_map &UMap) {
255 isl::union_map Result = isl::union_map::empty(UMap.get_space());
256 UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
257 if (!isMapToUnknown(Map))
258 Result = Result.add_map(Map);
259 return isl::stat::ok;
260 });
261 return Result;
262}
263
Michael Kruse138a3fb2017-08-04 22:51:23 +0000264static std::string printInstruction(Instruction *Instr,
265 bool IsForDebug = false) {
266 std::string Result;
267 raw_string_ostream OS(Result);
268 Instr->print(OS, IsForDebug);
269 OS.flush();
270 size_t i = 0;
271 while (i < Result.size() && Result[i] == ' ')
272 i += 1;
273 return Result.substr(i);
274}
275
276ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
277 : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
Tobias Grosser61bd3a42017-08-06 21:42:38 +0000278 Schedule(S->getSchedule()) {
Tobias Grosser31df6f32017-08-06 21:42:25 +0000279 auto Domains = S->getDomains();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000280
281 Schedule =
282 give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
283 ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
284 ScatterSpace = getScatterSpace(Schedule);
285}
286
287bool ZoneAlgorithm::isCompatibleStmt(ScopStmt *Stmt) {
288 auto Stores = makeEmptyUnionMap();
289 auto Loads = makeEmptyUnionMap();
290
291 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
292 // order.
293 for (auto *MA : *Stmt) {
294 if (!MA->isLatestArrayKind())
295 continue;
296
297 auto AccRel = give(isl_union_map_from_map(getAccessRelationFor(MA).take()));
298
299 if (MA->isRead()) {
300 // Reject load after store to same location.
301 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
302 OptimizationRemarkMissed R(PassName, "LoadAfterStore",
303 MA->getAccessInstruction());
304 R << "load after store of same element in same statement";
305 R << " (previous stores: " << Stores;
306 R << ", loading: " << AccRel << ")";
307 S->getFunction().getContext().diagnose(R);
308 return false;
309 }
310
311 Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
312
313 continue;
314 }
315
316 if (!isa<StoreInst>(MA->getAccessInstruction())) {
317 DEBUG(dbgs() << "WRITE that is not a StoreInst not supported\n");
318 OptimizationRemarkMissed R(PassName, "UnusualStore",
319 MA->getAccessInstruction());
320 R << "encountered write that is not a StoreInst: "
321 << printInstruction(MA->getAccessInstruction());
322 S->getFunction().getContext().diagnose(R);
323 return false;
324 }
325
326 // In region statements the order is less clear, eg. the load and store
327 // might be in a boxed loop.
328 if (Stmt->isRegionStmt() &&
329 !isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
330 OptimizationRemarkMissed R(PassName, "StoreInSubregion",
331 MA->getAccessInstruction());
332 R << "store is in a non-affine subregion";
333 S->getFunction().getContext().diagnose(R);
334 return false;
335 }
336
337 // Do not allow more than one store to the same location.
338 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
339 OptimizationRemarkMissed R(PassName, "StoreAfterStore",
340 MA->getAccessInstruction());
341 R << "store after store of same element in same statement";
342 R << " (previous stores: " << Stores;
343 R << ", storing: " << AccRel << ")";
344 S->getFunction().getContext().diagnose(R);
345 return false;
346 }
347
348 Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
349 }
350
351 return true;
352}
353
354void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
355 assert(MA->isLatestArrayKind());
356 assert(MA->isRead());
Michael Kruse70af4f52017-08-07 18:40:29 +0000357 ScopStmt *Stmt = MA->getStatement();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000358
359 // { DomainRead[] -> Element[] }
360 auto AccRel = getAccessRelationFor(MA);
361 AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
Michael Kruse70af4f52017-08-07 18:40:29 +0000362
363 if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
364 // { DomainRead[] -> ValInst[] }
365 isl::map LoadValInst = makeValInst(
366 Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
367
368 // { DomainRead[] -> [Element[] -> DomainRead[]] }
369 isl::map IncludeElement =
370 give(isl_map_curry(isl_map_domain_map(AccRel.take())));
371
372 // { [Element[] -> DomainRead[]] -> ValInst[] }
373 isl::map EltLoadValInst =
374 give(isl_map_apply_domain(LoadValInst.take(), IncludeElement.take()));
375
376 AllReadValInst = give(
377 isl_union_map_add_map(AllReadValInst.take(), EltLoadValInst.take()));
378 }
Michael Kruse138a3fb2017-08-04 22:51:23 +0000379}
380
381void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
382 assert(MA->isLatestArrayKind());
383 assert(MA->isWrite());
384 auto *Stmt = MA->getStatement();
385
386 // { Domain[] -> Element[] }
387 auto AccRel = getAccessRelationFor(MA);
388
389 if (MA->isMustWrite())
390 AllMustWrites =
391 give(isl_union_map_add_map(AllMustWrites.take(), AccRel.copy()));
392
393 if (MA->isMayWrite())
394 AllMayWrites =
395 give(isl_union_map_add_map(AllMayWrites.take(), AccRel.copy()));
396
397 // { Domain[] -> ValInst[] }
398 auto WriteValInstance =
399 makeValInst(MA->getAccessValue(), Stmt,
400 LI->getLoopFor(MA->getAccessInstruction()->getParent()),
401 MA->isMustWrite());
402
403 // { Domain[] -> [Element[] -> Domain[]] }
404 auto IncludeElement = give(isl_map_curry(isl_map_domain_map(AccRel.copy())));
405
406 // { [Element[] -> DomainWrite[]] -> ValInst[] }
407 auto EltWriteValInst = give(
408 isl_map_apply_domain(WriteValInstance.take(), IncludeElement.take()));
409
410 AllWriteValInst = give(
411 isl_union_map_add_map(AllWriteValInst.take(), EltWriteValInst.take()));
412}
413
414isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
415 return give(isl_union_set_empty(ParamSpace.copy()));
416}
417
418isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
419 return give(isl_union_map_empty(ParamSpace.copy()));
420}
421
422bool ZoneAlgorithm::isCompatibleScop() {
423 for (auto &Stmt : *S) {
424 if (!isCompatibleStmt(&Stmt))
425 return false;
426 }
427 return true;
428}
429
430isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000431 isl::space ResultSpace = give(isl_space_map_from_domain_and_range(
432 Stmt->getDomainSpace().release(), ScatterSpace.copy()));
Michael Kruse138a3fb2017-08-04 22:51:23 +0000433 return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
434}
435
436isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
437 return getScatterFor(MA->getStatement());
438}
439
440isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
441 return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
442}
443
444isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
445 auto ResultSpace = give(isl_space_map_from_domain_and_range(
446 isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
447 auto UDomain = give(isl_union_set_from_set(Domain.copy()));
448 auto UResult = getScatterFor(std::move(UDomain));
449 auto Result = singleton(std::move(UResult), std::move(ResultSpace));
450 assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
451 Domain.keep()) == isl_bool_true);
452 return Result;
453}
454
455isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000456 return Stmt->getDomain().remove_redundancies();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000457}
458
459isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
460 return getDomainFor(MA->getStatement());
461}
462
463isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
464 auto Domain = getDomainFor(MA);
465 auto AccRel = MA->getLatestAccessRelation();
466 return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
467}
468
469isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
470 auto &Result = ScalarReachDefZone[Stmt];
471 if (Result)
472 return Result;
473
474 auto Domain = getDomainFor(Stmt);
475 Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
476 simplify(Result);
477
478 return Result;
479}
480
481isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
482 auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
483 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
484
485 auto StmtResult = getScalarReachingDefinition(Stmt);
486
487 return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
488}
489
490isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
491 return ::makeUnknownForDomain(getDomainFor(Stmt));
492}
493
494isl::id ZoneAlgorithm::makeValueId(Value *V) {
495 if (!V)
496 return nullptr;
497
498 auto &Id = ValueIds[V];
499 if (Id.is_null()) {
500 auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
501 std::string(), UseInstructionNames);
502 Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
503 }
504 return Id;
505}
506
507isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
508 auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
509 return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
510 makeValueId(V).take()));
511}
512
513isl::set ZoneAlgorithm::makeValueSet(Value *V) {
514 auto Space = makeValueSpace(V);
515 return give(isl_set_universe(Space.take()));
516}
517
518isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
519 bool IsCertain) {
520 // If the definition/write is conditional, the value at the location could
521 // be either the written value or the old value. Since we cannot know which
522 // one, consider the value to be unknown.
523 if (!IsCertain)
524 return makeUnknownForDomain(UserStmt);
525
526 auto DomainUse = getDomainFor(UserStmt);
527 auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
528 switch (VUse.getKind()) {
529 case VirtualUse::Constant:
530 case VirtualUse::Block:
531 case VirtualUse::Hoisted:
532 case VirtualUse::ReadOnly: {
533 // The definition does not depend on the statement which uses it.
534 auto ValSet = makeValueSet(Val);
535 return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
536 }
537
538 case VirtualUse::Synthesizable: {
539 auto *ScevExpr = VUse.getScevExpr();
540 auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
541
542 // Construct the SCEV space.
543 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
544 // expressions, not just all of them.
545 auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
546 const_cast<SCEV *>(ScevExpr)));
547 auto ScevSpace =
548 give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
549 ScevSpace = give(
550 isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
551
552 // { DomainUse[] -> ScevExpr[] }
553 auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
554 UseDomainSpace.copy(), ScevSpace.copy())));
555 return ValInst;
556 }
557
558 case VirtualUse::Intra: {
559 // Definition and use is in the same statement. We do not need to compute
560 // a reaching definition.
561
562 // { llvm::Value }
563 auto ValSet = makeValueSet(Val);
564
565 // { UserDomain[] -> llvm::Value }
566 auto ValInstSet =
567 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
568
569 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
570 auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
571 simplify(Result);
572 return Result;
573 }
574
575 case VirtualUse::Inter: {
576 // The value is defined in a different statement.
577
578 auto *Inst = cast<Instruction>(Val);
579 auto *ValStmt = S->getStmtFor(Inst);
580
581 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
582 // domain. We could use an arbitrary statement, but this could result in
583 // different ValInst[] for the same llvm::Value.
584 if (!ValStmt)
585 return ::makeUnknownForDomain(DomainUse);
586
587 // { DomainDef[] }
588 auto DomainDef = getDomainFor(ValStmt);
589
590 // { Scatter[] -> DomainDef[] }
591 auto ReachDef = getScalarReachingDefinition(DomainDef);
592
593 // { DomainUse[] -> Scatter[] }
594 auto UserSched = getScatterFor(DomainUse);
595
596 // { DomainUse[] -> DomainDef[] }
597 auto UsedInstance =
598 give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
599
600 // { llvm::Value }
601 auto ValSet = makeValueSet(Val);
602
603 // { DomainUse[] -> llvm::Value[] }
604 auto ValInstSet =
605 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
606
607 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
608 auto Result =
609 give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
610
611 simplify(Result);
612 return Result;
613 }
614 }
615 llvm_unreachable("Unhandled use type");
616}
617
618void ZoneAlgorithm::computeCommon() {
619 AllReads = makeEmptyUnionMap();
620 AllMayWrites = makeEmptyUnionMap();
621 AllMustWrites = makeEmptyUnionMap();
622 AllWriteValInst = makeEmptyUnionMap();
Michael Kruse70af4f52017-08-07 18:40:29 +0000623 AllReadValInst = makeEmptyUnionMap();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000624
625 for (auto &Stmt : *S) {
626 for (auto *MA : Stmt) {
627 if (!MA->isLatestArrayKind())
628 continue;
629
630 if (MA->isRead())
631 addArrayReadAccess(MA);
632
633 if (MA->isWrite())
634 addArrayWriteAccess(MA);
635 }
636 }
637
638 // { DomainWrite[] -> Element[] }
Michael Kruse70af4f52017-08-07 18:40:29 +0000639 AllWrites =
Michael Kruse138a3fb2017-08-04 22:51:23 +0000640 give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
641
642 // { [Element[] -> Zone[]] -> DomainWrite[] }
643 WriteReachDefZone =
644 computeReachingDefinition(Schedule, AllWrites, false, true);
645 simplify(WriteReachDefZone);
646}
647
648void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
649 OS.indent(Indent) << "After accesses {\n";
650 for (auto &Stmt : *S) {
651 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
652 for (auto *MA : Stmt)
653 MA->print(OS);
654 }
655 OS.indent(Indent) << "}\n";
656}
Michael Kruse70af4f52017-08-07 18:40:29 +0000657
658isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
659 // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
660 isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
661
662 // { [Element[] -> DomainWrite[]] -> ValInst[] }
663 isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
664
665 // { [Element[] -> Zone[]] -> ValInst[] }
666 return EltReachdDef.apply_range(AllKnownWriteValInst);
667}
668
669isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
670 // { Element[] }
671 isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
672
673 // { Element[] -> Scatter[] }
674 isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
675 AllAccessedElts, isl::set::universe(ScatterSpace));
676
677 // This assumes there are no "holes" in
678 // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
679 // before the first write or that are not written at all.
680 // { Element[] -> Scatter[] }
681 isl::union_set NonReachDef =
682 EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
683
684 // { [Element[] -> Zone[]] -> ReachDefId[] }
685 isl::union_map DefZone =
686 WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
687
688 // { [Element[] -> Scatter[]] -> Element[] }
689 isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
690
691 // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
692 isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
693
694 // { Element[] -> [Zone[] -> ReachDefId[]] }
695 isl::union_map EltDefZone = DefZone.curry();
696
697 // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
698 isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
699
700 // { [Element[] -> Scatter[]] -> DomainRead[] }
701 isl::union_map Reads = AllReads.range_product(Schedule).reverse();
702
703 // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
704 isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
705
706 // { [Element[] -> Scatter[]] -> ValInst[] }
707 isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
708
709 // { [Element[] -> ReachDefId[]] -> ValInst[] }
710 isl::union_map DefidKnown =
711 DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
712
713 // { [Element[] -> Zone[]] -> ValInst[] }
714 return DefZoneEltDefId.apply_range(DefidKnown);
715}
716
717isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
718 bool FromRead) const {
719 isl::union_map Result = makeEmptyUnionMap();
720
721 if (FromWrite)
722 Result = Result.unite(computeKnownFromMustWrites());
723
724 if (FromRead)
725 Result = Result.unite(computeKnownFromLoad());
726
727 simplify(Result);
728 return Result;
729}