blob: a6f4014f4e4da1bd610b89cf92cc5bbf20270c05 [file] [log] [blame]
Michael Kruse138a3fb2017-08-04 22:51:23 +00001//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Derive information about array elements between statements ("Zones").
11//
12// The algorithms here work on the scatter space - the image space of the
13// schedule returned by Scop::getSchedule(). We call an element in that space a
14// "timepoint". Timepoints are lexicographically ordered such that we can
15// defined ranges in the scatter space. We use two flavors of such ranges:
16// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
17// space and is directly stored as isl_set.
18//
19// Zones are used to describe the space between timepoints as open sets, i.e.
20// they do not contain the extrema. Using isl rational sets to express these
21// would be overkill. We also cannot store them as the integer timepoints they
22// contain; the (nonempty) zone between 1 and 2 would be empty and
23// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
24// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
25// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
26// Instead, we store the "half-open" integer extrema, including the lower bound,
27// but excluding the upper bound. Examples:
28//
29// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
30// integer points 1 and 2, but not 0 or 3)
31//
32// * { [1] } represents the zone ]0,1[
33//
34// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
35//
36// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
37// speaking the integer points never belong to the zone. However, depending an
38// the interpretation, one might want to include them. Part of the
39// interpretation may not be known when the zone is constructed.
40//
41// Reads are assumed to always take place before writes, hence we can think of
42// reads taking place at the beginning of a timepoint and writes at the end.
43//
44// Let's assume that the zone represents the lifetime of a variable. That is,
45// the zone begins with a write that defines the value during its lifetime and
46// ends with the last read of that value. In the following we consider whether a
47// read/write at the beginning/ending of the lifetime zone should be within the
48// zone or outside of it.
49//
50// * A read at the timepoint that starts the live-range loads the previous
51// value. Hence, exclude the timepoint starting the zone.
52//
53// * A write at the timepoint that starts the live-range is not defined whether
54// it occurs before or after the write that starts the lifetime. We do not
55// allow this situation to occur. Hence, we include the timepoint starting the
56// zone to determine whether they are conflicting.
57//
58// * A read at the timepoint that ends the live-range reads the same variable.
59// We include the timepoint at the end of the zone to include that read into
60// the live-range. Doing otherwise would mean that the two reads access
61// different values, which would mean that the value they read are both alive
62// at the same time but occupy the same variable.
63//
64// * A write at the timepoint that ends the live-range starts a new live-range.
65// It must not be included in the live-range of the previous definition.
66//
67// All combinations of reads and writes at the endpoints are possible, but most
68// of the time only the write->read (for instance, a live-range from definition
69// to last use) and read->write (for instance, an unused range from last use to
70// overwrite) and combinations are interesting (half-open ranges). write->write
71// zones might be useful as well in some context to represent
72// output-dependencies.
73//
74// @see convertZoneToTimepoints
75//
76//
77// The code makes use of maps and sets in many different spaces. To not loose
78// track in which space a set or map is expected to be in, variables holding an
79// isl reference are usually annotated in the comments. They roughly follow isl
80// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
81// meaning as follows:
82//
83// * Space[] - An unspecified tuple. Used for function parameters such that the
84// function caller can use it for anything they like.
85//
86// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
87// isl_id_get_name: Stmt_<NameOfBasicBlock>
88// isl_id_get_user: Pointer to ScopStmt
89//
90// * Element[] - An array element as in the range part of
91// MemoryAccess::getAccessRelation()
92// isl_id_get_name: MemRef_<NameOfArrayVariable>
93// isl_id_get_user: Pointer to ScopArrayInfo
94//
95// * Scatter[] - Scatter space or space of timepoints
96// Has no tuple id
97//
98// * Zone[] - Range between timepoints as described above
99// Has no tuple id
100//
101// * ValInst[] - An llvm::Value as defined at a specific timepoint.
102//
103// A ValInst[] itself can be structured as one of:
104//
105// * [] - An unknown value.
106// Always zero dimensions
107// Has no tuple id
108//
109// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
110// runtime content does not depend on the timepoint.
111// Always zero dimensions
112// isl_id_get_name: Val_<NameOfValue>
113// isl_id_get_user: A pointer to an llvm::Value
114//
115// * SCEV[...] - A synthesizable llvm::SCEV Expression.
116// In contrast to a Value[] is has at least one dimension per
117// SCEVAddRecExpr in the SCEV.
118//
119// * [Domain[] -> Value[]] - An llvm::Value that may change during the
120// Scop's execution.
121// The tuple itself has no id, but it wraps a map space holding a
122// statement instance which defines the llvm::Value as the map's domain
123// and llvm::Value itself as range.
124//
125// @see makeValInst()
126//
127// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
128// statement instance to a timepoint, aka a schedule. There is only one scatter
129// space, but most of the time multiple statements are processed in one set.
130// This is why most of the time isl_union_map has to be used.
131//
132// The basic algorithm works as follows:
133// At first we verify that the SCoP is compatible with this technique. For
134// instance, two writes cannot write to the same location at the same statement
135// instance because we cannot determine within the polyhedral model which one
136// comes first. Once this was verified, we compute zones at which an array
137// element is unused. This computation can fail if it takes too long. Then the
138// main algorithm is executed. Because every store potentially trails an unused
139// zone, we start at stores. We search for a scalar (MemoryKind::Value or
140// MemoryKind::PHI) that we can map to the array element overwritten by the
141// store, preferably one that is used by the store or at least the ScopStmt.
142// When it does not conflict with the lifetime of the values in the array
143// element, the map is applied and the unused zone updated as it is now used. We
144// continue to try to map scalars to the array element until there are no more
145// candidates to map. The algorithm is greedy in the sense that the first scalar
146// not conflicting will be mapped. Other scalars processed later that could have
147// fit the same unused zone will be rejected. As such the result depends on the
148// processing order.
149//
150//===----------------------------------------------------------------------===//
151
152#include "polly/ZoneAlgo.h"
153#include "polly/ScopInfo.h"
154#include "polly/Support/GICHelper.h"
155#include "polly/Support/ISLTools.h"
156#include "polly/Support/VirtualInstruction.h"
157
158#define DEBUG_TYPE "polly-zone"
159
160using namespace polly;
161using namespace llvm;
162
163static isl::union_map computeReachingDefinition(isl::union_map Schedule,
164 isl::union_map Writes,
165 bool InclDef, bool InclRedef) {
166 return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
167}
168
169/// Compute the reaching definition of a scalar.
170///
171/// Compared to computeReachingDefinition, there is just one element which is
172/// accessed and therefore only a set if instances that accesses that element is
173/// required.
174///
175/// @param Schedule { DomainWrite[] -> Scatter[] }
176/// @param Writes { DomainWrite[] }
177/// @param InclDef Include the timepoint of the definition to the result.
178/// @param InclRedef Include the timepoint of the overwrite into the result.
179///
180/// @return { Scatter[] -> DomainWrite[] }
181static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
182 isl::union_set Writes,
183 bool InclDef,
184 bool InclRedef) {
185
186 // { DomainWrite[] -> Element[] }
187 auto Defs = give(isl_union_map_from_domain(Writes.take()));
188
189 // { [Element[] -> Scatter[]] -> DomainWrite[] }
190 auto ReachDefs =
191 computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
192
193 // { Scatter[] -> DomainWrite[] }
194 return give(isl_union_set_unwrap(
195 isl_union_map_range(isl_union_map_curry(ReachDefs.take()))));
196}
197
198/// Compute the reaching definition of a scalar.
199///
200/// This overload accepts only a single writing statement as an isl_map,
201/// consequently the result also is only a single isl_map.
202///
203/// @param Schedule { DomainWrite[] -> Scatter[] }
204/// @param Writes { DomainWrite[] }
205/// @param InclDef Include the timepoint of the definition to the result.
206/// @param InclRedef Include the timepoint of the overwrite into the result.
207///
208/// @return { Scatter[] -> DomainWrite[] }
209static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
210 isl::set Writes, bool InclDef,
211 bool InclRedef) {
212 auto DomainSpace = give(isl_set_get_space(Writes.keep()));
213 auto ScatterSpace = getScatterSpace(Schedule);
214
215 // { Scatter[] -> DomainWrite[] }
216 auto UMap = computeScalarReachingDefinition(
217 Schedule, give(isl_union_set_from_set(Writes.take())), InclDef,
218 InclRedef);
219
220 auto ResultSpace = give(isl_space_map_from_domain_and_range(
221 ScatterSpace.take(), DomainSpace.take()));
222 return singleton(UMap, ResultSpace);
223}
224
225isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
226 return give(isl_union_map_from_domain(Domain.take()));
227}
228
229/// Create a domain-to-unknown value mapping.
230///
231/// @see makeUnknownForDomain(isl::union_set)
232///
233/// @param Domain { Domain[] }
234///
235/// @return { Domain[] -> ValInst[] }
236static isl::map makeUnknownForDomain(isl::set Domain) {
237 return give(isl_map_from_domain(Domain.take()));
238}
239
240static std::string printInstruction(Instruction *Instr,
241 bool IsForDebug = false) {
242 std::string Result;
243 raw_string_ostream OS(Result);
244 Instr->print(OS, IsForDebug);
245 OS.flush();
246 size_t i = 0;
247 while (i < Result.size() && Result[i] == ' ')
248 i += 1;
249 return Result.substr(i);
250}
251
252ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
253 : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
254 Schedule(give(S->getSchedule())) {
255 auto Domains = give(S->getDomains());
256
257 Schedule =
258 give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
259 ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
260 ScatterSpace = getScatterSpace(Schedule);
261}
262
263bool ZoneAlgorithm::isCompatibleStmt(ScopStmt *Stmt) {
264 auto Stores = makeEmptyUnionMap();
265 auto Loads = makeEmptyUnionMap();
266
267 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
268 // order.
269 for (auto *MA : *Stmt) {
270 if (!MA->isLatestArrayKind())
271 continue;
272
273 auto AccRel = give(isl_union_map_from_map(getAccessRelationFor(MA).take()));
274
275 if (MA->isRead()) {
276 // Reject load after store to same location.
277 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
278 OptimizationRemarkMissed R(PassName, "LoadAfterStore",
279 MA->getAccessInstruction());
280 R << "load after store of same element in same statement";
281 R << " (previous stores: " << Stores;
282 R << ", loading: " << AccRel << ")";
283 S->getFunction().getContext().diagnose(R);
284 return false;
285 }
286
287 Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
288
289 continue;
290 }
291
292 if (!isa<StoreInst>(MA->getAccessInstruction())) {
293 DEBUG(dbgs() << "WRITE that is not a StoreInst not supported\n");
294 OptimizationRemarkMissed R(PassName, "UnusualStore",
295 MA->getAccessInstruction());
296 R << "encountered write that is not a StoreInst: "
297 << printInstruction(MA->getAccessInstruction());
298 S->getFunction().getContext().diagnose(R);
299 return false;
300 }
301
302 // In region statements the order is less clear, eg. the load and store
303 // might be in a boxed loop.
304 if (Stmt->isRegionStmt() &&
305 !isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
306 OptimizationRemarkMissed R(PassName, "StoreInSubregion",
307 MA->getAccessInstruction());
308 R << "store is in a non-affine subregion";
309 S->getFunction().getContext().diagnose(R);
310 return false;
311 }
312
313 // Do not allow more than one store to the same location.
314 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
315 OptimizationRemarkMissed R(PassName, "StoreAfterStore",
316 MA->getAccessInstruction());
317 R << "store after store of same element in same statement";
318 R << " (previous stores: " << Stores;
319 R << ", storing: " << AccRel << ")";
320 S->getFunction().getContext().diagnose(R);
321 return false;
322 }
323
324 Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
325 }
326
327 return true;
328}
329
330void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
331 assert(MA->isLatestArrayKind());
332 assert(MA->isRead());
333
334 // { DomainRead[] -> Element[] }
335 auto AccRel = getAccessRelationFor(MA);
336 AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
337}
338
339void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
340 assert(MA->isLatestArrayKind());
341 assert(MA->isWrite());
342 auto *Stmt = MA->getStatement();
343
344 // { Domain[] -> Element[] }
345 auto AccRel = getAccessRelationFor(MA);
346
347 if (MA->isMustWrite())
348 AllMustWrites =
349 give(isl_union_map_add_map(AllMustWrites.take(), AccRel.copy()));
350
351 if (MA->isMayWrite())
352 AllMayWrites =
353 give(isl_union_map_add_map(AllMayWrites.take(), AccRel.copy()));
354
355 // { Domain[] -> ValInst[] }
356 auto WriteValInstance =
357 makeValInst(MA->getAccessValue(), Stmt,
358 LI->getLoopFor(MA->getAccessInstruction()->getParent()),
359 MA->isMustWrite());
360
361 // { Domain[] -> [Element[] -> Domain[]] }
362 auto IncludeElement = give(isl_map_curry(isl_map_domain_map(AccRel.copy())));
363
364 // { [Element[] -> DomainWrite[]] -> ValInst[] }
365 auto EltWriteValInst = give(
366 isl_map_apply_domain(WriteValInstance.take(), IncludeElement.take()));
367
368 AllWriteValInst = give(
369 isl_union_map_add_map(AllWriteValInst.take(), EltWriteValInst.take()));
370}
371
372isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
373 return give(isl_union_set_empty(ParamSpace.copy()));
374}
375
376isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
377 return give(isl_union_map_empty(ParamSpace.copy()));
378}
379
380bool ZoneAlgorithm::isCompatibleScop() {
381 for (auto &Stmt : *S) {
382 if (!isCompatibleStmt(&Stmt))
383 return false;
384 }
385 return true;
386}
387
388isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000389 isl::space ResultSpace = give(isl_space_map_from_domain_and_range(
390 Stmt->getDomainSpace().release(), ScatterSpace.copy()));
Michael Kruse138a3fb2017-08-04 22:51:23 +0000391 return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
392}
393
394isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
395 return getScatterFor(MA->getStatement());
396}
397
398isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
399 return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
400}
401
402isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
403 auto ResultSpace = give(isl_space_map_from_domain_and_range(
404 isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
405 auto UDomain = give(isl_union_set_from_set(Domain.copy()));
406 auto UResult = getScatterFor(std::move(UDomain));
407 auto Result = singleton(std::move(UResult), std::move(ResultSpace));
408 assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
409 Domain.keep()) == isl_bool_true);
410 return Result;
411}
412
413isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000414 return Stmt->getDomain().remove_redundancies();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000415}
416
417isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
418 return getDomainFor(MA->getStatement());
419}
420
421isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
422 auto Domain = getDomainFor(MA);
423 auto AccRel = MA->getLatestAccessRelation();
424 return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
425}
426
427isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
428 auto &Result = ScalarReachDefZone[Stmt];
429 if (Result)
430 return Result;
431
432 auto Domain = getDomainFor(Stmt);
433 Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
434 simplify(Result);
435
436 return Result;
437}
438
439isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
440 auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
441 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
442
443 auto StmtResult = getScalarReachingDefinition(Stmt);
444
445 return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
446}
447
448isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
449 return ::makeUnknownForDomain(getDomainFor(Stmt));
450}
451
452isl::id ZoneAlgorithm::makeValueId(Value *V) {
453 if (!V)
454 return nullptr;
455
456 auto &Id = ValueIds[V];
457 if (Id.is_null()) {
458 auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
459 std::string(), UseInstructionNames);
460 Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
461 }
462 return Id;
463}
464
465isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
466 auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
467 return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
468 makeValueId(V).take()));
469}
470
471isl::set ZoneAlgorithm::makeValueSet(Value *V) {
472 auto Space = makeValueSpace(V);
473 return give(isl_set_universe(Space.take()));
474}
475
476isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
477 bool IsCertain) {
478 // If the definition/write is conditional, the value at the location could
479 // be either the written value or the old value. Since we cannot know which
480 // one, consider the value to be unknown.
481 if (!IsCertain)
482 return makeUnknownForDomain(UserStmt);
483
484 auto DomainUse = getDomainFor(UserStmt);
485 auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
486 switch (VUse.getKind()) {
487 case VirtualUse::Constant:
488 case VirtualUse::Block:
489 case VirtualUse::Hoisted:
490 case VirtualUse::ReadOnly: {
491 // The definition does not depend on the statement which uses it.
492 auto ValSet = makeValueSet(Val);
493 return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
494 }
495
496 case VirtualUse::Synthesizable: {
497 auto *ScevExpr = VUse.getScevExpr();
498 auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
499
500 // Construct the SCEV space.
501 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
502 // expressions, not just all of them.
503 auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
504 const_cast<SCEV *>(ScevExpr)));
505 auto ScevSpace =
506 give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
507 ScevSpace = give(
508 isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
509
510 // { DomainUse[] -> ScevExpr[] }
511 auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
512 UseDomainSpace.copy(), ScevSpace.copy())));
513 return ValInst;
514 }
515
516 case VirtualUse::Intra: {
517 // Definition and use is in the same statement. We do not need to compute
518 // a reaching definition.
519
520 // { llvm::Value }
521 auto ValSet = makeValueSet(Val);
522
523 // { UserDomain[] -> llvm::Value }
524 auto ValInstSet =
525 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
526
527 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
528 auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
529 simplify(Result);
530 return Result;
531 }
532
533 case VirtualUse::Inter: {
534 // The value is defined in a different statement.
535
536 auto *Inst = cast<Instruction>(Val);
537 auto *ValStmt = S->getStmtFor(Inst);
538
539 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
540 // domain. We could use an arbitrary statement, but this could result in
541 // different ValInst[] for the same llvm::Value.
542 if (!ValStmt)
543 return ::makeUnknownForDomain(DomainUse);
544
545 // { DomainDef[] }
546 auto DomainDef = getDomainFor(ValStmt);
547
548 // { Scatter[] -> DomainDef[] }
549 auto ReachDef = getScalarReachingDefinition(DomainDef);
550
551 // { DomainUse[] -> Scatter[] }
552 auto UserSched = getScatterFor(DomainUse);
553
554 // { DomainUse[] -> DomainDef[] }
555 auto UsedInstance =
556 give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
557
558 // { llvm::Value }
559 auto ValSet = makeValueSet(Val);
560
561 // { DomainUse[] -> llvm::Value[] }
562 auto ValInstSet =
563 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
564
565 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
566 auto Result =
567 give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
568
569 simplify(Result);
570 return Result;
571 }
572 }
573 llvm_unreachable("Unhandled use type");
574}
575
576void ZoneAlgorithm::computeCommon() {
577 AllReads = makeEmptyUnionMap();
578 AllMayWrites = makeEmptyUnionMap();
579 AllMustWrites = makeEmptyUnionMap();
580 AllWriteValInst = makeEmptyUnionMap();
581
582 for (auto &Stmt : *S) {
583 for (auto *MA : Stmt) {
584 if (!MA->isLatestArrayKind())
585 continue;
586
587 if (MA->isRead())
588 addArrayReadAccess(MA);
589
590 if (MA->isWrite())
591 addArrayWriteAccess(MA);
592 }
593 }
594
595 // { DomainWrite[] -> Element[] }
596 auto AllWrites =
597 give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
598
599 // { [Element[] -> Zone[]] -> DomainWrite[] }
600 WriteReachDefZone =
601 computeReachingDefinition(Schedule, AllWrites, false, true);
602 simplify(WriteReachDefZone);
603}
604
605void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
606 OS.indent(Indent) << "After accesses {\n";
607 for (auto &Stmt : *S) {
608 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
609 for (auto *MA : Stmt)
610 MA->print(OS);
611 }
612 OS.indent(Indent) << "}\n";
613}