blob: a95a1c1814a9745ec132f6be7aa8b68ab9c03374 [file] [log] [blame]
Reid Spencer361e5132004-11-12 20:37:43 +00001//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12// Specifically, this:
13// * Merges global variables between the two modules
14// * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15// * Merges functions between two modules
16//
17//===----------------------------------------------------------------------===//
18
Reid Spencer9b0ddbb2004-11-14 23:27:04 +000019#include "llvm/Linker.h"
Reid Spencer361e5132004-11-12 20:37:43 +000020#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/SymbolTable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/System/Path.h"
27#include <iostream>
28#include <sstream>
29using namespace llvm;
30
31// Error - Simple wrapper function to conditionally assign to E and return true.
32// This just makes error return conditions a little bit simpler...
33//
34static inline bool Error(std::string *E, const std::string &Message) {
35 if (E) *E = Message;
36 return true;
37}
38
39static std::string ToStr(const Type *Ty, const Module *M) {
40 std::ostringstream OS;
41 WriteTypeSymbolic(OS, Ty, M);
42 return OS.str();
43}
44
45//
46// Function: ResolveTypes()
47//
48// Description:
49// Attempt to link the two specified types together.
50//
51// Inputs:
52// DestTy - The type to which we wish to resolve.
53// SrcTy - The original type which we want to resolve.
54// Name - The name of the type.
55//
56// Outputs:
57// DestST - The symbol table in which the new type should be placed.
58//
59// Return value:
60// true - There is an error and the types cannot yet be linked.
61// false - No errors.
62//
63static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
64 SymbolTable *DestST, const std::string &Name) {
65 if (DestTy == SrcTy) return false; // If already equal, noop
66
67 // Does the type already exist in the module?
68 if (DestTy && !isa<OpaqueType>(DestTy)) { // Yup, the type already exists...
69 if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
70 const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
71 } else {
72 return true; // Cannot link types... neither is opaque and not-equal
73 }
74 } else { // Type not in dest module. Add it now.
75 if (DestTy) // Type _is_ in module, just opaque...
76 const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
77 ->refineAbstractTypeTo(SrcTy);
78 else if (!Name.empty())
79 DestST->insert(Name, const_cast<Type*>(SrcTy));
80 }
81 return false;
82}
83
84static const FunctionType *getFT(const PATypeHolder &TH) {
85 return cast<FunctionType>(TH.get());
86}
87static const StructType *getST(const PATypeHolder &TH) {
88 return cast<StructType>(TH.get());
89}
90
91// RecursiveResolveTypes - This is just like ResolveTypes, except that it
92// recurses down into derived types, merging the used types if the parent types
93// are compatible.
94//
95static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
96 const PATypeHolder &SrcTy,
97 SymbolTable *DestST, const std::string &Name,
98 std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
99 const Type *SrcTyT = SrcTy.get();
100 const Type *DestTyT = DestTy.get();
101 if (DestTyT == SrcTyT) return false; // If already equal, noop
102
103 // If we found our opaque type, resolve it now!
104 if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
105 return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
106
107 // Two types cannot be resolved together if they are of different primitive
108 // type. For example, we cannot resolve an int to a float.
109 if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
110
111 // Otherwise, resolve the used type used by this derived type...
112 switch (DestTyT->getTypeID()) {
113 case Type::FunctionTyID: {
114 if (cast<FunctionType>(DestTyT)->isVarArg() !=
115 cast<FunctionType>(SrcTyT)->isVarArg() ||
116 cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
117 cast<FunctionType>(SrcTyT)->getNumContainedTypes())
118 return true;
119 for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
120 if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
121 getFT(SrcTy)->getContainedType(i), DestST, "",
122 Pointers))
123 return true;
124 return false;
125 }
126 case Type::StructTyID: {
127 if (getST(DestTy)->getNumContainedTypes() !=
128 getST(SrcTy)->getNumContainedTypes()) return 1;
129 for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
130 if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
131 getST(SrcTy)->getContainedType(i), DestST, "",
132 Pointers))
133 return true;
134 return false;
135 }
136 case Type::ArrayTyID: {
137 const ArrayType *DAT = cast<ArrayType>(DestTy.get());
138 const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
139 if (DAT->getNumElements() != SAT->getNumElements()) return true;
140 return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
141 DestST, "", Pointers);
142 }
143 case Type::PointerTyID: {
144 // If this is a pointer type, check to see if we have already seen it. If
145 // so, we are in a recursive branch. Cut off the search now. We cannot use
146 // an associative container for this search, because the type pointers (keys
147 // in the container) change whenever types get resolved...
148 //
149 for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
150 if (Pointers[i].first == DestTy)
151 return Pointers[i].second != SrcTy;
152
153 // Otherwise, add the current pointers to the vector to stop recursion on
154 // this pair.
155 Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
156 bool Result =
157 RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
158 cast<PointerType>(SrcTy.get())->getElementType(),
159 DestST, "", Pointers);
160 Pointers.pop_back();
161 return Result;
162 }
163 default: assert(0 && "Unexpected type!"); return true;
164 }
165}
166
167static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
168 const PATypeHolder &SrcTy,
169 SymbolTable *DestST, const std::string &Name){
170 std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
171 return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
172}
173
174
175// LinkTypes - Go through the symbol table of the Src module and see if any
176// types are named in the src module that are not named in the Dst module.
177// Make sure there are no type name conflicts.
178//
179static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
180 SymbolTable *DestST = &Dest->getSymbolTable();
181 const SymbolTable *SrcST = &Src->getSymbolTable();
182
183 // Look for a type plane for Type's...
184 SymbolTable::type_const_iterator TI = SrcST->type_begin();
185 SymbolTable::type_const_iterator TE = SrcST->type_end();
186 if (TI == TE) return false; // No named types, do nothing.
187
188 // Some types cannot be resolved immediately because they depend on other
189 // types being resolved to each other first. This contains a list of types we
190 // are waiting to recheck.
191 std::vector<std::string> DelayedTypesToResolve;
192
193 for ( ; TI != TE; ++TI ) {
194 const std::string &Name = TI->first;
195 const Type *RHS = TI->second;
196
197 // Check to see if this type name is already in the dest module...
198 Type *Entry = DestST->lookupType(Name);
199
200 if (ResolveTypes(Entry, RHS, DestST, Name)) {
201 // They look different, save the types 'till later to resolve.
202 DelayedTypesToResolve.push_back(Name);
203 }
204 }
205
206 // Iteratively resolve types while we can...
207 while (!DelayedTypesToResolve.empty()) {
208 // Loop over all of the types, attempting to resolve them if possible...
209 unsigned OldSize = DelayedTypesToResolve.size();
210
211 // Try direct resolution by name...
212 for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
213 const std::string &Name = DelayedTypesToResolve[i];
214 Type *T1 = SrcST->lookupType(Name);
215 Type *T2 = DestST->lookupType(Name);
216 if (!ResolveTypes(T2, T1, DestST, Name)) {
217 // We are making progress!
218 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
219 --i;
220 }
221 }
222
223 // Did we not eliminate any types?
224 if (DelayedTypesToResolve.size() == OldSize) {
225 // Attempt to resolve subelements of types. This allows us to merge these
226 // two types: { int* } and { opaque* }
227 for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
228 const std::string &Name = DelayedTypesToResolve[i];
229 PATypeHolder T1(SrcST->lookupType(Name));
230 PATypeHolder T2(DestST->lookupType(Name));
231
232 if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
233 // We are making progress!
234 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
235
236 // Go back to the main loop, perhaps we can resolve directly by name
237 // now...
238 break;
239 }
240 }
241
242 // If we STILL cannot resolve the types, then there is something wrong.
243 // Report the warning and delete one of the names.
244 if (DelayedTypesToResolve.size() == OldSize) {
245 const std::string &Name = DelayedTypesToResolve.back();
246
247 const Type *T1 = SrcST->lookupType(Name);
248 const Type *T2 = DestST->lookupType(Name);
249 std::cerr << "WARNING: Type conflict between types named '" << Name
250 << "'.\n Src='";
251 WriteTypeSymbolic(std::cerr, T1, Src);
252 std::cerr << "'.\n Dest='";
253 WriteTypeSymbolic(std::cerr, T2, Dest);
254 std::cerr << "'\n";
255
256 // Remove the symbol name from the destination.
257 DelayedTypesToResolve.pop_back();
258 }
259 }
260 }
261
262
263 return false;
264}
265
266static void PrintMap(const std::map<const Value*, Value*> &M) {
267 for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
268 I != E; ++I) {
269 std::cerr << " Fr: " << (void*)I->first << " ";
270 I->first->dump();
271 std::cerr << " To: " << (void*)I->second << " ";
272 I->second->dump();
273 std::cerr << "\n";
274 }
275}
276
277
278// RemapOperand - Use LocalMap and GlobalMap to convert references from one
279// module to another. This is somewhat sophisticated in that it can
280// automatically handle constant references correctly as well...
281//
282static Value *RemapOperand(const Value *In,
283 std::map<const Value*, Value*> &LocalMap,
284 std::map<const Value*, Value*> *GlobalMap) {
285 std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
286 if (I != LocalMap.end()) return I->second;
287
288 if (GlobalMap) {
289 I = GlobalMap->find(In);
290 if (I != GlobalMap->end()) return I->second;
291 }
292
293 // Check to see if it's a constant that we are interesting in transforming...
294 if (const Constant *CPV = dyn_cast<Constant>(In)) {
295 if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
296 isa<ConstantAggregateZero>(CPV))
297 return const_cast<Constant*>(CPV); // Simple constants stay identical...
298
299 Constant *Result = 0;
300
301 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
302 std::vector<Constant*> Operands(CPA->getNumOperands());
303 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
304 Operands[i] =
305 cast<Constant>(RemapOperand(CPA->getOperand(i), LocalMap, GlobalMap));
306 Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
307 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
308 std::vector<Constant*> Operands(CPS->getNumOperands());
309 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
310 Operands[i] =
311 cast<Constant>(RemapOperand(CPS->getOperand(i), LocalMap, GlobalMap));
312 Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
313 } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
314 Result = const_cast<Constant*>(CPV);
315 } else if (isa<GlobalValue>(CPV)) {
316 Result = cast<Constant>(RemapOperand(CPV, LocalMap, GlobalMap));
317 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
318 if (CE->getOpcode() == Instruction::GetElementPtr) {
319 Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
320 std::vector<Constant*> Indices;
321 Indices.reserve(CE->getNumOperands()-1);
322 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
323 Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
324 LocalMap, GlobalMap)));
325
326 Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
327 } else if (CE->getNumOperands() == 1) {
328 // Cast instruction
329 assert(CE->getOpcode() == Instruction::Cast);
330 Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
331 Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
332 } else if (CE->getNumOperands() == 3) {
333 // Select instruction
334 assert(CE->getOpcode() == Instruction::Select);
335 Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
336 Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
337 Value *V3 = RemapOperand(CE->getOperand(2), LocalMap, GlobalMap);
338 Result = ConstantExpr::getSelect(cast<Constant>(V1), cast<Constant>(V2),
339 cast<Constant>(V3));
340 } else if (CE->getNumOperands() == 2) {
341 // Binary operator...
342 Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
343 Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
344
345 Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
346 cast<Constant>(V2));
347 } else {
348 assert(0 && "Unknown constant expr type!");
349 }
350
351 } else {
352 assert(0 && "Unknown type of derived type constant value!");
353 }
354
355 // Cache the mapping in our local map structure...
356 if (GlobalMap)
357 GlobalMap->insert(std::make_pair(In, Result));
358 else
359 LocalMap.insert(std::make_pair(In, Result));
360 return Result;
361 }
362
363 std::cerr << "XXX LocalMap: \n";
364 PrintMap(LocalMap);
365
366 if (GlobalMap) {
367 std::cerr << "XXX GlobalMap: \n";
368 PrintMap(*GlobalMap);
369 }
370
371 std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
372 assert(0 && "Couldn't remap value!");
373 return 0;
374}
375
376/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
377/// in the symbol table. This is good for all clients except for us. Go
378/// through the trouble to force this back.
379static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
380 assert(GV->getName() != Name && "Can't force rename to self");
381 SymbolTable &ST = GV->getParent()->getSymbolTable();
382
383 // If there is a conflict, rename the conflict.
384 Value *ConflictVal = ST.lookup(GV->getType(), Name);
385 assert(ConflictVal&&"Why do we have to force rename if there is no conflic?");
386 GlobalValue *ConflictGV = cast<GlobalValue>(ConflictVal);
387 assert(ConflictGV->hasInternalLinkage() &&
388 "Not conflicting with a static global, should link instead!");
389
390 ConflictGV->setName(""); // Eliminate the conflict
391 GV->setName(Name); // Force the name back
392 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
393 assert(GV->getName() == Name && ConflictGV->getName() != Name &&
394 "ForceRenaming didn't work");
395}
396
397
398// LinkGlobals - Loop through the global variables in the src module and merge
399// them into the dest module.
400//
401static bool LinkGlobals(Module *Dest, const Module *Src,
402 std::map<const Value*, Value*> &ValueMap,
403 std::multimap<std::string, GlobalVariable *> &AppendingVars,
404 std::map<std::string, GlobalValue*> &GlobalsByName,
405 std::string *Err) {
406 // We will need a module level symbol table if the src module has a module
407 // level symbol table...
408 SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
409
410 // Loop over all of the globals in the src module, mapping them over as we go
411 //
412 for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
413 const GlobalVariable *SGV = I;
414 GlobalVariable *DGV = 0;
415 // Check to see if may have to link the global.
416 if (SGV->hasName() && !SGV->hasInternalLinkage())
417 if (!(DGV = Dest->getGlobalVariable(SGV->getName(),
418 SGV->getType()->getElementType()))) {
419 std::map<std::string, GlobalValue*>::iterator EGV =
420 GlobalsByName.find(SGV->getName());
421 if (EGV != GlobalsByName.end())
422 DGV = dyn_cast<GlobalVariable>(EGV->second);
423 if (DGV && RecursiveResolveTypes(SGV->getType(), DGV->getType(), ST, ""))
424 DGV = 0; // FIXME: gross.
425 }
426
427 assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
428 "Global must either be external or have an initializer!");
429
430 bool SGExtern = SGV->isExternal();
431 bool DGExtern = DGV ? DGV->isExternal() : false;
432
433 if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
434 // No linking to be performed, simply create an identical version of the
435 // symbol over in the dest module... the initializer will be filled in
436 // later by LinkGlobalInits...
437 //
438 GlobalVariable *NewDGV =
439 new GlobalVariable(SGV->getType()->getElementType(),
440 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
441 SGV->getName(), Dest);
442
443 // If the LLVM runtime renamed the global, but it is an externally visible
444 // symbol, DGV must be an existing global with internal linkage. Rename
445 // it.
446 if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
447 ForceRenaming(NewDGV, SGV->getName());
448
449 // Make sure to remember this mapping...
450 ValueMap.insert(std::make_pair(SGV, NewDGV));
451 if (SGV->hasAppendingLinkage())
452 // Keep track that this is an appending variable...
453 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
454
455 } else if (SGV->isExternal()) {
456 // If SGV is external or if both SGV & DGV are external.. Just link the
457 // external globals, we aren't adding anything.
458 ValueMap.insert(std::make_pair(SGV, DGV));
459
460 // Inherit 'const' information.
461 if (SGV->isConstant()) DGV->setConstant(true);
462
463 } else if (DGV->isExternal()) { // If DGV is external but SGV is not...
464 ValueMap.insert(std::make_pair(SGV, DGV));
465 DGV->setLinkage(SGV->getLinkage()); // Inherit linkage!
466
467 if (DGV->isConstant() && !SGV->isConstant())
468 return Error(Err, "Linking globals named '" + SGV->getName() +
469 "': declaration is const but definition is not!");
470
471 // Inherit 'const' information.
472 if (SGV->isConstant()) DGV->setConstant(true);
473
474 } else if (SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) {
475 // At this point we know that DGV has LinkOnce, Appending, Weak, or
476 // External linkage. If DGV is Appending, this is an error.
477 if (DGV->hasAppendingLinkage())
478 return Error(Err, "Linking globals named '" + SGV->getName() +
479 "' with 'weak' and 'appending' linkage is not allowed!");
480
481 if (SGV->isConstant() != DGV->isConstant())
482 return Error(Err, "Global Variable Collision on '" +
483 ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
484 "' - Global variables differ in const'ness");
485
486 // Otherwise, just perform the link.
487 ValueMap.insert(std::make_pair(SGV, DGV));
488
489 // Linkonce+Weak = Weak
490 if (DGV->hasLinkOnceLinkage() && SGV->hasWeakLinkage())
491 DGV->setLinkage(SGV->getLinkage());
492
493 } else if (DGV->hasWeakLinkage() || DGV->hasLinkOnceLinkage()) {
494 // At this point we know that SGV has LinkOnce, Appending, or External
495 // linkage. If SGV is Appending, this is an error.
496 if (SGV->hasAppendingLinkage())
497 return Error(Err, "Linking globals named '" + SGV->getName() +
498 " ' with 'weak' and 'appending' linkage is not allowed!");
499
500 if (SGV->isConstant() != DGV->isConstant())
501 return Error(Err, "Global Variable Collision on '" +
502 ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
503 "' - Global variables differ in const'ness");
504
505 if (!SGV->hasLinkOnceLinkage())
506 DGV->setLinkage(SGV->getLinkage()); // Inherit linkage!
507 ValueMap.insert(std::make_pair(SGV, DGV));
508
509 } else if (SGV->getLinkage() != DGV->getLinkage()) {
510 return Error(Err, "Global variables named '" + SGV->getName() +
511 "' have different linkage specifiers!");
512 // Inherit 'const' information.
513 if (SGV->isConstant()) DGV->setConstant(true);
514
515 } else if (SGV->hasExternalLinkage()) {
516 // Allow linking two exactly identical external global variables...
517 if (SGV->isConstant() != DGV->isConstant())
518 return Error(Err, "Global Variable Collision on '" +
519 ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
520 "' - Global variables differ in const'ness");
521
522 if (SGV->getInitializer() != DGV->getInitializer())
523 return Error(Err, "Global Variable Collision on '" +
524 ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
525 "' - External linkage globals have different initializers");
526
527 ValueMap.insert(std::make_pair(SGV, DGV));
528 } else if (SGV->hasAppendingLinkage()) {
529 // No linking is performed yet. Just insert a new copy of the global, and
530 // keep track of the fact that it is an appending variable in the
531 // AppendingVars map. The name is cleared out so that no linkage is
532 // performed.
533 GlobalVariable *NewDGV =
534 new GlobalVariable(SGV->getType()->getElementType(),
535 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
536 "", Dest);
537
538 // Make sure to remember this mapping...
539 ValueMap.insert(std::make_pair(SGV, NewDGV));
540
541 // Keep track that this is an appending variable...
542 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
543 } else {
544 assert(0 && "Unknown linkage!");
545 }
546 }
547 return false;
548}
549
550
551// LinkGlobalInits - Update the initializers in the Dest module now that all
552// globals that may be referenced are in Dest.
553//
554static bool LinkGlobalInits(Module *Dest, const Module *Src,
555 std::map<const Value*, Value*> &ValueMap,
556 std::string *Err) {
557
558 // Loop over all of the globals in the src module, mapping them over as we go
559 //
560 for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
561 const GlobalVariable *SGV = I;
562
563 if (SGV->hasInitializer()) { // Only process initialized GV's
564 // Figure out what the initializer looks like in the dest module...
565 Constant *SInit =
566 cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
567
568 GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
569 if (DGV->hasInitializer()) {
570 if (SGV->hasExternalLinkage()) {
571 if (DGV->getInitializer() != SInit)
572 return Error(Err, "Global Variable Collision on '" +
573 ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
574 " - Global variables have different initializers");
575 } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
576 // Nothing is required, mapped values will take the new global
577 // automatically.
578 } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
579 // Nothing is required, mapped values will take the new global
580 // automatically.
581 } else if (DGV->hasAppendingLinkage()) {
582 assert(0 && "Appending linkage unimplemented!");
583 } else {
584 assert(0 && "Unknown linkage!");
585 }
586 } else {
587 // Copy the initializer over now...
588 DGV->setInitializer(SInit);
589 }
590 }
591 }
592 return false;
593}
594
595// LinkFunctionProtos - Link the functions together between the two modules,
596// without doing function bodies... this just adds external function prototypes
597// to the Dest function...
598//
599static bool LinkFunctionProtos(Module *Dest, const Module *Src,
600 std::map<const Value*, Value*> &ValueMap,
601 std::map<std::string, GlobalValue*> &GlobalsByName,
602 std::string *Err) {
603 SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
604
605 // Loop over all of the functions in the src module, mapping them over as we
606 // go
607 //
608 for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
609 const Function *SF = I; // SrcFunction
610 Function *DF = 0;
611 if (SF->hasName() && !SF->hasInternalLinkage()) {
612 // Check to see if may have to link the function.
613 if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) {
614 std::map<std::string, GlobalValue*>::iterator EF =
615 GlobalsByName.find(SF->getName());
616 if (EF != GlobalsByName.end())
617 DF = dyn_cast<Function>(EF->second);
618 if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), ST, ""))
619 DF = 0; // FIXME: gross.
620 }
621 }
622
623 if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
624 // Function does not already exist, simply insert an function signature
625 // identical to SF into the dest module...
626 Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
627 SF->getName(), Dest);
628
629 // If the LLVM runtime renamed the function, but it is an externally
630 // visible symbol, DF must be an existing function with internal linkage.
631 // Rename it.
632 if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
633 ForceRenaming(NewDF, SF->getName());
634
635 // ... and remember this mapping...
636 ValueMap.insert(std::make_pair(SF, NewDF));
637 } else if (SF->isExternal()) {
638 // If SF is external or if both SF & DF are external.. Just link the
639 // external functions, we aren't adding anything.
640 ValueMap.insert(std::make_pair(SF, DF));
641 } else if (DF->isExternal()) { // If DF is external but SF is not...
642 // Link the external functions, update linkage qualifiers
643 ValueMap.insert(std::make_pair(SF, DF));
644 DF->setLinkage(SF->getLinkage());
645
646 } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
647 // At this point we know that DF has LinkOnce, Weak, or External linkage.
648 ValueMap.insert(std::make_pair(SF, DF));
649
650 // Linkonce+Weak = Weak
651 if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
652 DF->setLinkage(SF->getLinkage());
653
654 } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
655 // At this point we know that SF has LinkOnce or External linkage.
656 ValueMap.insert(std::make_pair(SF, DF));
657 if (!SF->hasLinkOnceLinkage()) // Don't inherit linkonce linkage
658 DF->setLinkage(SF->getLinkage());
659
660 } else if (SF->getLinkage() != DF->getLinkage()) {
661 return Error(Err, "Functions named '" + SF->getName() +
662 "' have different linkage specifiers!");
663 } else if (SF->hasExternalLinkage()) {
664 // The function is defined in both modules!!
665 return Error(Err, "Function '" +
666 ToStr(SF->getFunctionType(), Src) + "':\"" +
667 SF->getName() + "\" - Function is already defined!");
668 } else {
669 assert(0 && "Unknown linkage configuration found!");
670 }
671 }
672 return false;
673}
674
675// LinkFunctionBody - Copy the source function over into the dest function and
676// fix up references to values. At this point we know that Dest is an external
677// function, and that Src is not.
678//
Chris Lattner2f0557d2004-11-16 07:31:51 +0000679static bool LinkFunctionBody(Function *Dest, Function *Src,
Reid Spencer361e5132004-11-12 20:37:43 +0000680 std::map<const Value*, Value*> &GlobalMap,
681 std::string *Err) {
682 assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
683 std::map<const Value*, Value*> LocalMap; // Map for function local values
684
685 // Go through and convert function arguments over...
686 Function::aiterator DI = Dest->abegin();
Chris Lattner2f0557d2004-11-16 07:31:51 +0000687 for (Function::aiterator I = Src->abegin(), E = Src->aend();
Reid Spencer361e5132004-11-12 20:37:43 +0000688 I != E; ++I, ++DI) {
689 DI->setName(I->getName()); // Copy the name information over...
690
691 // Add a mapping to our local map
692 LocalMap.insert(std::make_pair(I, DI));
693 }
694
Chris Lattner2f0557d2004-11-16 07:31:51 +0000695 // Splice the body of the source function into the dest function.
696 Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
Reid Spencer361e5132004-11-12 20:37:43 +0000697
698 // At this point, all of the instructions and values of the function are now
699 // copied over. The only problem is that they are still referencing values in
700 // the Source function as operands. Loop through all of the operands of the
701 // functions and patch them up to point to the local versions...
702 //
703 for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
704 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
705 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
706 OI != OE; ++OI)
Chris Lattner2f0557d2004-11-16 07:31:51 +0000707 if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
708 *OI = RemapOperand(*OI, LocalMap, &GlobalMap);
Reid Spencer361e5132004-11-12 20:37:43 +0000709
710 return false;
711}
712
713
714// LinkFunctionBodies - Link in the function bodies that are defined in the
715// source module into the DestModule. This consists basically of copying the
716// function over and fixing up references to values.
717//
Chris Lattner2f0557d2004-11-16 07:31:51 +0000718static bool LinkFunctionBodies(Module *Dest, Module *Src,
Reid Spencer361e5132004-11-12 20:37:43 +0000719 std::map<const Value*, Value*> &ValueMap,
720 std::string *Err) {
721
722 // Loop over all of the functions in the src module, mapping them over as we
723 // go
724 //
Chris Lattner2f0557d2004-11-16 07:31:51 +0000725 for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
Reid Spencer361e5132004-11-12 20:37:43 +0000726 if (!SF->isExternal()) { // No body if function is external
727 Function *DF = cast<Function>(ValueMap[SF]); // Destination function
728
729 // DF not external SF external?
730 if (DF->isExternal()) {
731 // Only provide the function body if there isn't one already.
732 if (LinkFunctionBody(DF, SF, ValueMap, Err))
733 return true;
734 }
735 }
736 }
737 return false;
738}
739
740// LinkAppendingVars - If there were any appending global variables, link them
741// together now. Return true on error.
742//
743static bool LinkAppendingVars(Module *M,
744 std::multimap<std::string, GlobalVariable *> &AppendingVars,
745 std::string *ErrorMsg) {
746 if (AppendingVars.empty()) return false; // Nothing to do.
747
748 // Loop over the multimap of appending vars, processing any variables with the
749 // same name, forming a new appending global variable with both of the
750 // initializers merged together, then rewrite references to the old variables
751 // and delete them.
752 //
753 std::vector<Constant*> Inits;
754 while (AppendingVars.size() > 1) {
755 // Get the first two elements in the map...
756 std::multimap<std::string,
757 GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
758
759 // If the first two elements are for different names, there is no pair...
760 // Otherwise there is a pair, so link them together...
761 if (First->first == Second->first) {
762 GlobalVariable *G1 = First->second, *G2 = Second->second;
763 const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
764 const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
765
766 // Check to see that they two arrays agree on type...
767 if (T1->getElementType() != T2->getElementType())
768 return Error(ErrorMsg,
769 "Appending variables with different element types need to be linked!");
770 if (G1->isConstant() != G2->isConstant())
771 return Error(ErrorMsg,
772 "Appending variables linked with different const'ness!");
773
774 unsigned NewSize = T1->getNumElements() + T2->getNumElements();
775 ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
776
777 // Create the new global variable...
778 GlobalVariable *NG =
779 new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
780 /*init*/0, First->first, M);
781
782 // Merge the initializer...
783 Inits.reserve(NewSize);
784 if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
785 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
786 Inits.push_back(I->getOperand(i));
787 } else {
788 assert(isa<ConstantAggregateZero>(G1->getInitializer()));
789 Constant *CV = Constant::getNullValue(T1->getElementType());
790 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
791 Inits.push_back(CV);
792 }
793 if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
794 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
795 Inits.push_back(I->getOperand(i));
796 } else {
797 assert(isa<ConstantAggregateZero>(G2->getInitializer()));
798 Constant *CV = Constant::getNullValue(T2->getElementType());
799 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
800 Inits.push_back(CV);
801 }
802 NG->setInitializer(ConstantArray::get(NewType, Inits));
803 Inits.clear();
804
805 // Replace any uses of the two global variables with uses of the new
806 // global...
807
808 // FIXME: This should rewrite simple/straight-forward uses such as
809 // getelementptr instructions to not use the Cast!
810 G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType()));
811 G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType()));
812
813 // Remove the two globals from the module now...
814 M->getGlobalList().erase(G1);
815 M->getGlobalList().erase(G2);
816
817 // Put the new global into the AppendingVars map so that we can handle
818 // linking of more than two vars...
819 Second->second = NG;
820 }
821 AppendingVars.erase(First);
822 }
823
824 return false;
825}
826
827
828// LinkModules - This function links two modules together, with the resulting
829// left module modified to be the composite of the two input modules. If an
830// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
831// the problem. Upon failure, the Dest module could be in a modified state, and
832// shouldn't be relied on to be consistent.
Chris Lattnerf2e80842004-11-16 06:41:36 +0000833bool llvm::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
Reid Spencer361e5132004-11-12 20:37:43 +0000834 assert(Dest != 0 && "Invalid Destination module");
835 assert(Src != 0 && "Invalid Source Module");
836
837 if (Dest->getEndianness() == Module::AnyEndianness)
838 Dest->setEndianness(Src->getEndianness());
839 if (Dest->getPointerSize() == Module::AnyPointerSize)
840 Dest->setPointerSize(Src->getPointerSize());
841
842 if (Src->getEndianness() != Module::AnyEndianness &&
843 Dest->getEndianness() != Src->getEndianness())
844 std::cerr << "WARNING: Linking two modules of different endianness!\n";
845 if (Src->getPointerSize() != Module::AnyPointerSize &&
846 Dest->getPointerSize() != Src->getPointerSize())
847 std::cerr << "WARNING: Linking two modules of different pointer size!\n";
848
849 // Update the destination module's dependent libraries list with the libraries
850 // from the source module. There's no opportunity for duplicates here as the
851 // Module ensures that duplicate insertions are discarded.
852 Module::lib_iterator SI = Src->lib_begin();
853 Module::lib_iterator SE = Src->lib_end();
854 while ( SI != SE ) {
855 Dest->addLibrary(*SI);
856 ++SI;
857 }
858
859 // LinkTypes - Go through the symbol table of the Src module and see if any
860 // types are named in the src module that are not named in the Dst module.
861 // Make sure there are no type name conflicts.
862 //
863 if (LinkTypes(Dest, Src, ErrorMsg)) return true;
864
865 // ValueMap - Mapping of values from what they used to be in Src, to what they
866 // are now in Dest.
867 //
868 std::map<const Value*, Value*> ValueMap;
869
870 // AppendingVars - Keep track of global variables in the destination module
871 // with appending linkage. After the module is linked together, they are
872 // appended and the module is rewritten.
873 //
874 std::multimap<std::string, GlobalVariable *> AppendingVars;
875
876 // GlobalsByName - The LLVM SymbolTable class fights our best efforts at
877 // linking by separating globals by type. Until PR411 is fixed, we replicate
878 // it's functionality here.
879 std::map<std::string, GlobalValue*> GlobalsByName;
880
881 for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I) {
882 // Add all of the appending globals already in the Dest module to
883 // AppendingVars.
884 if (I->hasAppendingLinkage())
885 AppendingVars.insert(std::make_pair(I->getName(), I));
886
887 // Keep track of all globals by name.
888 if (!I->hasInternalLinkage() && I->hasName())
889 GlobalsByName[I->getName()] = I;
890 }
891
892 // Keep track of all globals by name.
893 for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I)
894 if (!I->hasInternalLinkage() && I->hasName())
895 GlobalsByName[I->getName()] = I;
896
897 // Insert all of the globals in src into the Dest module... without linking
898 // initializers (which could refer to functions not yet mapped over).
899 //
900 if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg))
901 return true;
902
903 // Link the functions together between the two modules, without doing function
904 // bodies... this just adds external function prototypes to the Dest
905 // function... We do this so that when we begin processing function bodies,
906 // all of the global values that may be referenced are available in our
907 // ValueMap.
908 //
909 if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg))
910 return true;
911
912 // Update the initializers in the Dest module now that all globals that may
913 // be referenced are in Dest.
914 //
915 if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
916
917 // Link in the function bodies that are defined in the source module into the
918 // DestModule. This consists basically of copying the function over and
919 // fixing up references to values.
920 //
921 if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
922
923 // If there were any appending global variables, link them together now.
924 //
925 if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
926
927 // If the source library's module id is in the dependent library list of the
928 // destination library, remove it since that module is now linked in.
929 sys::Path modId;
930 modId.setFile(Src->getModuleIdentifier());
931 if (!modId.isEmpty())
932 Dest->removeLibrary(modId.getBasename());
933
934 return false;
935}
936
937// vim: sw=2