blob: 72a111bab2cd3cef70b93df5d493ee5273642753 [file] [log] [blame]
Chris Lattner30fdc8d2010-06-08 16:52:24 +00001//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <signal.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <sys/resource.h>
19#include <sys/stat.h>
20#include <sys/types.h>
21#include <sys/wait.h>
22#include <unistd.h>
23#include <sys/sysctl.h>
24#include <map>
25#include <vector>
26
27#include "MacOSX/MachProcess.h"
28#include "MacOSX/MachTask.h"
29#include "CFString.h"
30#include "DNBLog.h"
31#include "DNBDataRef.h"
32#include "DNBThreadResumeActions.h"
33#include "DNBTimer.h"
34
35typedef std::tr1::shared_ptr<MachProcess> MachProcessSP;
36typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
37typedef ProcessMap::iterator ProcessMapIter;
38typedef ProcessMap::const_iterator ProcessMapConstIter;
39
40static size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos);
41static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
42
43//----------------------------------------------------------------------
44// A Thread safe singleton to get a process map pointer.
45//
46// Returns a pointer to the existing process map, or a pointer to a
47// newly created process map if CAN_CREATE is non-zero.
48//----------------------------------------------------------------------
49static ProcessMap*
50GetProcessMap(bool can_create)
51{
52 static ProcessMap* g_process_map_ptr = NULL;
53
54 if (can_create && g_process_map_ptr == NULL)
55 {
56 static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
57 PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
58 if (g_process_map_ptr == NULL)
59 g_process_map_ptr = new ProcessMap;
60 }
61 return g_process_map_ptr;
62}
63
64//----------------------------------------------------------------------
65// Add PID to the shared process pointer map.
66//
67// Return non-zero value if we succeed in adding the process to the map.
68// The only time this should fail is if we run out of memory and can't
69// allocate a ProcessMap.
70//----------------------------------------------------------------------
71static nub_bool_t
72AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
73{
74 ProcessMap* process_map = GetProcessMap(true);
75 if (process_map)
76 {
77 process_map->insert(std::make_pair(pid, procSP));
78 return true;
79 }
80 return false;
81}
82
83//----------------------------------------------------------------------
84// Remove the shared pointer for PID from the process map.
85//
86// Returns the number of items removed from the process map.
87//----------------------------------------------------------------------
88static size_t
89RemoveProcessFromMap (nub_process_t pid)
90{
91 ProcessMap* process_map = GetProcessMap(false);
92 if (process_map)
93 {
94 return process_map->erase(pid);
95 }
96 return 0;
97}
98
99//----------------------------------------------------------------------
100// Get the shared pointer for PID from the existing process map.
101//
102// Returns true if we successfully find a shared pointer to a
103// MachProcess object.
104//----------------------------------------------------------------------
105static nub_bool_t
106GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
107{
108 ProcessMap* process_map = GetProcessMap(false);
109 if (process_map != NULL)
110 {
111 ProcessMapIter pos = process_map->find(pid);
112 if (pos != process_map->end())
113 {
114 procSP = pos->second;
115 return true;
116 }
117 }
118 procSP.reset();
119 return false;
120}
121
122
123static void *
124waitpid_thread (void *arg)
125{
126 const pid_t pid = (pid_t)(intptr_t)arg;
127 int status;
128 while (1)
129 {
130 pid_t child_pid = waitpid(pid, &status, 0);
131 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
132
133 if (child_pid < 0)
134 {
135 if (errno == EINTR)
136 continue;
137 break;
138 }
139 else
140 {
141 if (WIFSTOPPED(status))
142 {
143 continue;
144 }
145 else// if (WIFEXITED(status) || WIFSIGNALED(status))
146 {
147 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
148 DNBProcessSetExitStatus (child_pid, status);
149 return NULL;
150 }
151 }
152 }
153
154 // We should never exit as long as our child process is alive, so if we
155 // do something else went wrong and we should exit...
156 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
157 DNBProcessSetExitStatus (pid, -1);
158 return NULL;
159}
160
161static bool
162spawn_waitpid_thread (pid_t pid)
163{
164 pthread_t thread = THREAD_NULL;
165 ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
166 if (thread != THREAD_NULL)
167 {
168 ::pthread_detach (thread);
169 return true;
170 }
171 return false;
172}
173
174nub_process_t
175DNBProcessLaunch (const char *path,
176 char const *argv[],
177 const char *envp[],
178 const char *stdio_path,
179 nub_launch_flavor_t launch_flavor,
180 char *err_str,
181 size_t err_len)
182{
183 DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, launch_flavor = %u, err = %p, err_len = %zu) called...", __FUNCTION__, path, argv, envp, launch_flavor, err_str, err_len);
184
185 if (err_str && err_len > 0)
186 err_str[0] = '\0';
187 struct stat path_stat;
188 if (::stat(path, &path_stat) == -1)
189 {
190 char stat_error[256];
191 ::strerror_r (errno, stat_error, sizeof(stat_error));
192 snprintf(err_str, err_len, "%s (%s)", stat_error, path);
193 return INVALID_NUB_PROCESS;
194 }
195
196 MachProcessSP processSP (new MachProcess);
197 if (processSP.get())
198 {
199 DNBError launch_err;
200 pid_t pid = processSP->LaunchForDebug(path, argv, envp, stdio_path, launch_flavor, launch_err);
201 if (err_str)
202 {
203 *err_str = '\0';
204 if (launch_err.Fail())
205 {
206 const char *launch_err_str = launch_err.AsString();
207 if (launch_err_str)
208 {
209 strncpy(err_str, launch_err_str, err_len-1);
210 err_str[err_len-1] = '\0'; // Make sure the error string is terminated
211 }
212 }
213 }
214
215 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
216
217 if (pid != INVALID_NUB_PROCESS)
218 {
219 // Spawn a thread to reap our child inferior process...
220 spawn_waitpid_thread (pid);
221
222 if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
223 {
224 // We failed to get the task for our process ID which is bad.
225 if (err_str && err_len > 0)
226 {
227 if (launch_err.AsString())
228 {
229 ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
230 }
231 else
232 {
233 ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
234 }
235 }
236 }
237 else
238 {
239 assert(AddProcessToMap(pid, processSP));
240 return pid;
241 }
242 }
243 }
244 return INVALID_NUB_PROCESS;
245}
246
247nub_process_t
248DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
249{
250 if (err_str && err_len > 0)
251 err_str[0] = '\0';
252 std::vector<struct kinfo_proc> matching_proc_infos;
253 size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
254 if (num_matching_proc_infos == 0)
255 {
256 DNBLogError ("error: no processes match '%s'\n", name);
257 return INVALID_NUB_PROCESS;
258 }
259 else if (num_matching_proc_infos > 1)
260 {
261 DNBLogError ("error: %u processes match '%s':\n", num_matching_proc_infos, name);
262 size_t i;
263 for (i=0; i<num_matching_proc_infos; ++i)
264 DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
265 return INVALID_NUB_PROCESS;
266 }
267 else
268 {
269 return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
270 }
271}
272
273nub_process_t
274DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
275{
276 if (err_str && err_len > 0)
277 err_str[0] = '\0';
278
279 pid_t pid;
280 MachProcessSP processSP(new MachProcess);
281 if (processSP.get())
282 {
283 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
284 pid = processSP->AttachForDebug (attach_pid, err_str, err_len);
285
286 if (pid != INVALID_NUB_PROCESS)
287 {
288 assert(AddProcessToMap(pid, processSP));
289 spawn_waitpid_thread(pid);
290 }
291 }
292
293 while (pid != INVALID_NUB_PROCESS)
294 {
295 // Wait for process to start up and hit entry point
296 DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged "
297 "| eEventProcessStoppedStateChanged, true, INFINITE)...",
298 __FUNCTION__, pid);
299 nub_event_t set_events = DNBProcessWaitForEvents (pid,
300 eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
301 true, timeout);
302 DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged "
303 "| eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
304 __FUNCTION__, pid, set_events);
305
306 if (set_events == 0)
307 {
308 if (err_str && err_len > 0)
309 snprintf(err_str, err_len, "operation timed out");
310 pid = INVALID_NUB_PROCESS;
311 }
312 else
313 {
314 if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
315 {
316 nub_state_t pid_state = DNBProcessGetState (pid);
317 DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
318 __FUNCTION__, pid, DNBStateAsString(pid_state));
319
320 switch (pid_state)
321 {
322 default:
323 case eStateInvalid:
324 case eStateUnloaded:
325 case eStateAttaching:
326 case eStateLaunching:
327 case eStateSuspended:
328 break; // Ignore
329
330 case eStateRunning:
331 case eStateStepping:
332 // Still waiting to stop at entry point...
333 break;
334
335 case eStateStopped:
336 case eStateCrashed:
337 return pid;
338 case eStateDetached:
339 case eStateExited:
340 if (err_str && err_len > 0)
341 snprintf(err_str, err_len, "process exited");
342 return INVALID_NUB_PROCESS;
343 }
344 }
345
346 DNBProcessResetEvents(pid, set_events);
347 }
348 }
349
350 return INVALID_NUB_PROCESS;
351}
352
353static size_t
354GetAllInfos(std::vector<struct kinfo_proc>& proc_infos)
355{
356 size_t size;
357 int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
358 u_int namelen = sizeof(name)/sizeof(int);
359 int err;
360
361 // Try to find out how many processes are around so we can
362 // size the buffer appropriately. sysctl's man page specifically suggests
363 // this approach, and says it returns a bit larger size than needed to
364 // handle any new processes created between then and now.
365
366 err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
367
368 if ((err < 0) && (err != ENOMEM))
369 {
370 proc_infos.clear();
371 perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
372 return 0;
373 }
374
375
376 // Increase the size of the buffer by a few processes in case more have
377 // been spawned
378 proc_infos.resize (size / sizeof(struct kinfo_proc));
379 size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize...
380 err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
381 if (err < 0)
382 {
383 proc_infos.clear();
384 return 0;
385 }
386
387 // Trim down our array to fit what we actually got back
388 proc_infos.resize(size / sizeof(struct kinfo_proc));
389 return proc_infos.size();
390}
391
392
393static size_t
394GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
395{
396
397 matching_proc_infos.clear();
398 if (full_process_name && full_process_name[0])
399 {
400 // We only get the process name, not the full path, from the proc_info. So just take the
401 // base name of the process name...
402 const char *process_name;
403 process_name = strrchr (full_process_name, '/');
404 if (process_name == NULL)
405 process_name = full_process_name;
406 else
407 process_name++;
408
409 std::vector<struct kinfo_proc> proc_infos;
410 const size_t num_proc_infos = GetAllInfos(proc_infos);
411 if (num_proc_infos > 0)
412 {
413 uint32_t i;
414 for (i=0; i<num_proc_infos; i++)
415 {
416 // Skip zombie processes and processes with unset status
417 if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
418 continue;
419
420 // Check for process by name. We only check the first MAXCOMLEN
421 // chars as that is all that kp_proc.p_comm holds.
422 if (::strncasecmp(proc_infos[i].kp_proc.p_comm, process_name, MAXCOMLEN) == 0)
423 {
424 // We found a matching process, add it to our list
425 matching_proc_infos.push_back(proc_infos[i]);
426 }
427 }
428 }
429 }
430 // return the newly added matches.
431 return matching_proc_infos.size();
432}
433
434nub_process_t
435DNBProcessAttachWait (const char *waitfor_process_name, nub_launch_flavor_t launch_flavor,
436 struct timespec *timeout_abstime, useconds_t waitfor_interval,
437 char *err_str, size_t err_len,
438 DNBShouldCancelCallback should_cancel_callback,
439 void *callback_data)
440{
441 DNBError prepare_error;
442 std::vector<struct kinfo_proc> exclude_proc_infos;
443 size_t num_exclude_proc_infos;
444
445 // If the PrepareForAttach returns a valid token, use MachProcess to check
446 // for the process, otherwise scan the process table.
447
448 const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
449
450 if (prepare_error.Fail())
451 {
452 DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
453 return INVALID_NUB_PROCESS;
454 }
455
456 if (attach_token == NULL)
457 num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
458
459 DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
460
461 // Loop and try to find the process by name
462 nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
463
464 while (waitfor_pid == INVALID_NUB_PROCESS)
465 {
466 if (attach_token != NULL)
467 {
468 nub_process_t pid;
469 pid = MachProcess::CheckForProcess(attach_token);
470 if (pid != INVALID_NUB_PROCESS)
471 {
472 waitfor_pid = pid;
473 break;
474 }
475 }
476 else
477 {
478
479 // Get the current process list, and check for matches that
480 // aren't in our original list. If anyone wants to attach
481 // to an existing process by name, they should do it with
482 // --attach=PROCNAME. Else we will wait for the first matching
483 // process that wasn't in our exclusion list.
484 std::vector<struct kinfo_proc> proc_infos;
485 const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
486 for (size_t i=0; i<num_proc_infos; i++)
487 {
488 nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
489 for (size_t j=0; j<num_exclude_proc_infos; j++)
490 {
491 if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
492 {
493 // This process was in our exclusion list, don't use it.
494 curr_pid = INVALID_NUB_PROCESS;
495 break;
496 }
497 }
498
499 // If we didn't find CURR_PID in our exclusion list, then use it.
500 if (curr_pid != INVALID_NUB_PROCESS)
501 {
502 // We found our process!
503 waitfor_pid = curr_pid;
504 break;
505 }
506 }
507 }
508
509 // If we haven't found our process yet, check for a timeout
510 // and then sleep for a bit until we poll again.
511 if (waitfor_pid == INVALID_NUB_PROCESS)
512 {
513 if (timeout_abstime != NULL)
514 {
515 // Check to see if we have a waitfor-duration option that
516 // has timed out?
517 if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
518 {
519 if (err_str && err_len > 0)
520 snprintf(err_str, err_len, "operation timed out");
521 DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
522 return INVALID_NUB_PROCESS;
523 }
524 }
525
526 // Call the should cancel callback as well...
527
528 if (should_cancel_callback != NULL
529 && should_cancel_callback (callback_data))
530 {
531 DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
532 waitfor_pid = INVALID_NUB_PROCESS;
533 break;
534 }
535
536 ::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again
537 }
538 }
539
540 if (waitfor_pid != INVALID_NUB_PROCESS)
541 {
542 DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
543 waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
544 }
545
546 bool success = waitfor_pid != INVALID_NUB_PROCESS;
547 MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
548
549 return waitfor_pid;
550}
551
552nub_bool_t
553DNBProcessDetach (nub_process_t pid)
554{
555 MachProcessSP procSP;
556 if (GetProcessSP (pid, procSP))
557 {
558 return procSP->Detach();
559 }
560 return false;
561}
562
563nub_bool_t
564DNBProcessKill (nub_process_t pid)
565{
566 MachProcessSP procSP;
567 if (GetProcessSP (pid, procSP))
568 {
569 return procSP->Kill ();
570 }
571 return false;
572}
573
574nub_bool_t
575DNBProcessSignal (nub_process_t pid, int signal)
576{
577 MachProcessSP procSP;
578 if (GetProcessSP (pid, procSP))
579 {
580 return procSP->Signal (signal);
581 }
582 return false;
583}
584
585
586nub_bool_t
587DNBProcessIsAlive (nub_process_t pid)
588{
589 MachProcessSP procSP;
590 if (GetProcessSP (pid, procSP))
591 {
592 return MachTask::IsValid (procSP->Task().TaskPort());
593 }
594 return eStateInvalid;
595}
596
597//----------------------------------------------------------------------
598// Process and Thread state information
599//----------------------------------------------------------------------
600nub_state_t
601DNBProcessGetState (nub_process_t pid)
602{
603 MachProcessSP procSP;
604 if (GetProcessSP (pid, procSP))
605 {
606 return procSP->GetState();
607 }
608 return eStateInvalid;
609}
610
611//----------------------------------------------------------------------
612// Process and Thread state information
613//----------------------------------------------------------------------
614nub_bool_t
615DNBProcessGetExitStatus (nub_process_t pid, int* status)
616{
617 MachProcessSP procSP;
618 if (GetProcessSP (pid, procSP))
619 {
620 return procSP->GetExitStatus(status);
621 }
622 return false;
623}
624
625nub_bool_t
626DNBProcessSetExitStatus (nub_process_t pid, int status)
627{
628 MachProcessSP procSP;
629 if (GetProcessSP (pid, procSP))
630 {
631 procSP->SetExitStatus(status);
632 return true;
633 }
634 return false;
635}
636
637
638const char *
639DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
640{
641 MachProcessSP procSP;
642 if (GetProcessSP (pid, procSP))
643 return procSP->ThreadGetName(tid);
644 return NULL;
645}
646
647
648nub_bool_t
649DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
650{
651 MachProcessSP procSP;
652 if (GetProcessSP (pid, procSP))
653 return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
654 return false;
655}
656
657nub_state_t
658DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
659{
660 MachProcessSP procSP;
661 if (GetProcessSP (pid, procSP))
662 {
663 return procSP->ThreadGetState(tid);
664 }
665 return eStateInvalid;
666}
667
668const char *
669DNBStateAsString(nub_state_t state)
670{
671 switch (state)
672 {
673 case eStateUnloaded: return "Unloaded";
674 case eStateAttaching: return "Attaching";
675 case eStateLaunching: return "Launching";
676 case eStateStopped: return "Stopped";
677 case eStateRunning: return "Running";
678 case eStateStepping: return "Stepping";
679 case eStateCrashed: return "Crashed";
680 case eStateDetached: return "Detached";
681 case eStateExited: return "Exited";
682 case eStateSuspended: return "Suspended";
683 }
684 return "nub_state_t ???";
685}
686
687const char *
688DNBProcessGetExecutablePath (nub_process_t pid)
689{
690 MachProcessSP procSP;
691 if (GetProcessSP (pid, procSP))
692 {
693 return procSP->Path();
694 }
695 return NULL;
696}
697
698nub_size_t
699DNBProcessGetArgumentCount (nub_process_t pid)
700{
701 MachProcessSP procSP;
702 if (GetProcessSP (pid, procSP))
703 {
704 return procSP->ArgumentCount();
705 }
706 return 0;
707}
708
709const char *
710DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
711{
712 MachProcessSP procSP;
713 if (GetProcessSP (pid, procSP))
714 {
715 return procSP->ArgumentAtIndex (idx);
716 }
717 return NULL;
718}
719
720
721//----------------------------------------------------------------------
722// Execution control
723//----------------------------------------------------------------------
724nub_bool_t
725DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
726{
727 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
728 MachProcessSP procSP;
729 if (GetProcessSP (pid, procSP))
730 {
731 DNBThreadResumeActions thread_actions (actions, num_actions);
732
733 // Below we add a default thread plan just in case one wasn't
734 // provided so all threads always know what they were supposed to do
735 if (thread_actions.IsEmpty())
736 {
737 // No thread plans were given, so the default it to run all threads
738 thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
739 }
740 else
741 {
742 // Some thread plans were given which means anything that wasn't
743 // specified should remain stopped.
744 thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
745 }
746 return procSP->Resume (thread_actions);
747 }
748 return false;
749}
750
751nub_bool_t
752DNBProcessHalt (nub_process_t pid)
753{
754 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
755 MachProcessSP procSP;
756 if (GetProcessSP (pid, procSP))
757 return procSP->Signal (SIGSTOP);
758 return false;
759}
760//
761//nub_bool_t
762//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
763//{
764// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
765// MachProcessSP procSP;
766// if (GetProcessSP (pid, procSP))
767// {
768// return procSP->Resume(tid, step, 0);
769// }
770// return false;
771//}
772//
773//nub_bool_t
774//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
775//{
776// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
777// MachProcessSP procSP;
778// if (GetProcessSP (pid, procSP))
779// {
780// return procSP->Resume(tid, step, signal);
781// }
782// return false;
783//}
784
785nub_event_t
786DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
787{
788 nub_event_t result = 0;
789 MachProcessSP procSP;
790 if (GetProcessSP (pid, procSP))
791 {
792 if (wait_for_set)
793 result = procSP->Events().WaitForSetEvents(event_mask, timeout);
794 else
795 result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
796 }
797 return result;
798}
799
800void
801DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
802{
803 MachProcessSP procSP;
804 if (GetProcessSP (pid, procSP))
805 procSP->Events().ResetEvents(event_mask);
806}
807
808void
809DNBProcessInterruptEvents (nub_process_t pid)
810{
811 MachProcessSP procSP;
812 if (GetProcessSP (pid, procSP))
813 procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
814}
815
816
817// Breakpoints
818nub_break_t
819DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
820{
821 MachProcessSP procSP;
822 if (GetProcessSP (pid, procSP))
823 {
824 return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
825 }
826 return INVALID_NUB_BREAK_ID;
827}
828
829nub_bool_t
830DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
831{
832 if (NUB_BREAK_ID_IS_VALID(breakID))
833 {
834 MachProcessSP procSP;
835 if (GetProcessSP (pid, procSP))
836 {
837 return procSP->DisableBreakpoint(breakID, true);
838 }
839 }
840 return false; // Failed
841}
842
843nub_ssize_t
844DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
845{
846 if (NUB_BREAK_ID_IS_VALID(breakID))
847 {
848 MachProcessSP procSP;
849 if (GetProcessSP (pid, procSP))
850 {
851 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
852 if (bp)
853 return bp->GetHitCount();
854 }
855 }
856 return 0;
857}
858
859nub_ssize_t
860DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
861{
862 if (NUB_BREAK_ID_IS_VALID(breakID))
863 {
864 MachProcessSP procSP;
865 if (GetProcessSP (pid, procSP))
866 {
867 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
868 if (bp)
869 return bp->GetIgnoreCount();
870 }
871 }
872 return 0;
873}
874
875nub_bool_t
876DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
877{
878 if (NUB_BREAK_ID_IS_VALID(breakID))
879 {
880 MachProcessSP procSP;
881 if (GetProcessSP (pid, procSP))
882 {
883 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
884 if (bp)
885 {
886 bp->SetIgnoreCount(ignore_count);
887 return true;
888 }
889 }
890 }
891 return false;
892}
893
894// Set the callback function for a given breakpoint. The callback function will
895// get called as soon as the breakpoint is hit. The function will be called
896// with the process ID, thread ID, breakpoint ID and the baton, and can return
897//
898nub_bool_t
899DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
900{
901 if (NUB_BREAK_ID_IS_VALID(breakID))
902 {
903 MachProcessSP procSP;
904 if (GetProcessSP (pid, procSP))
905 {
906 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
907 if (bp)
908 {
909 bp->SetCallback(callback, baton);
910 return true;
911 }
912 }
913 }
914 return false;
915}
916
917//----------------------------------------------------------------------
918// Dump the breakpoints stats for process PID for a breakpoint by ID.
919//----------------------------------------------------------------------
920void
921DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
922{
923 MachProcessSP procSP;
924 if (GetProcessSP (pid, procSP))
925 procSP->DumpBreakpoint(breakID);
926}
927
928//----------------------------------------------------------------------
929// Watchpoints
930//----------------------------------------------------------------------
931nub_watch_t
932DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
933{
934 MachProcessSP procSP;
935 if (GetProcessSP (pid, procSP))
936 {
937 return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
938 }
939 return INVALID_NUB_BREAK_ID;
940}
941
942nub_bool_t
943DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
944{
945 if (NUB_BREAK_ID_IS_VALID(watchID))
946 {
947 MachProcessSP procSP;
948 if (GetProcessSP (pid, procSP))
949 {
950 return procSP->DisableWatchpoint(watchID, true);
951 }
952 }
953 return false; // Failed
954}
955
956nub_ssize_t
957DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
958{
959 if (NUB_BREAK_ID_IS_VALID(watchID))
960 {
961 MachProcessSP procSP;
962 if (GetProcessSP (pid, procSP))
963 {
964 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
965 if (bp)
966 return bp->GetHitCount();
967 }
968 }
969 return 0;
970}
971
972nub_ssize_t
973DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
974{
975 if (NUB_BREAK_ID_IS_VALID(watchID))
976 {
977 MachProcessSP procSP;
978 if (GetProcessSP (pid, procSP))
979 {
980 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
981 if (bp)
982 return bp->GetIgnoreCount();
983 }
984 }
985 return 0;
986}
987
988nub_bool_t
989DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
990{
991 if (NUB_BREAK_ID_IS_VALID(watchID))
992 {
993 MachProcessSP procSP;
994 if (GetProcessSP (pid, procSP))
995 {
996 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
997 if (bp)
998 {
999 bp->SetIgnoreCount(ignore_count);
1000 return true;
1001 }
1002 }
1003 }
1004 return false;
1005}
1006
1007// Set the callback function for a given watchpoint. The callback function will
1008// get called as soon as the watchpoint is hit. The function will be called
1009// with the process ID, thread ID, watchpoint ID and the baton, and can return
1010//
1011nub_bool_t
1012DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1013{
1014 if (NUB_BREAK_ID_IS_VALID(watchID))
1015 {
1016 MachProcessSP procSP;
1017 if (GetProcessSP (pid, procSP))
1018 {
1019 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1020 if (bp)
1021 {
1022 bp->SetCallback(callback, baton);
1023 return true;
1024 }
1025 }
1026 }
1027 return false;
1028}
1029
1030//----------------------------------------------------------------------
1031// Dump the watchpoints stats for process PID for a watchpoint by ID.
1032//----------------------------------------------------------------------
1033void
1034DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1035{
1036 MachProcessSP procSP;
1037 if (GetProcessSP (pid, procSP))
1038 procSP->DumpWatchpoint(watchID);
1039}
1040
1041//----------------------------------------------------------------------
1042// Read memory in the address space of process PID. This call will take
1043// care of setting and restoring permissions and breaking up the memory
1044// read into multiple chunks as required.
1045//
1046// RETURNS: number of bytes actually read
1047//----------------------------------------------------------------------
1048nub_size_t
1049DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1050{
1051 MachProcessSP procSP;
1052 if (GetProcessSP (pid, procSP))
1053 return procSP->ReadMemory(addr, size, buf);
1054 return 0;
1055}
1056
1057//----------------------------------------------------------------------
1058// Write memory to the address space of process PID. This call will take
1059// care of setting and restoring permissions and breaking up the memory
1060// write into multiple chunks as required.
1061//
1062// RETURNS: number of bytes actually written
1063//----------------------------------------------------------------------
1064nub_size_t
1065DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1066{
1067 MachProcessSP procSP;
1068 if (GetProcessSP (pid, procSP))
1069 return procSP->WriteMemory(addr, size, buf);
1070 return 0;
1071}
1072
1073nub_addr_t
1074DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1075{
1076 MachProcessSP procSP;
1077 if (GetProcessSP (pid, procSP))
1078 return procSP->Task().AllocateMemory (size, permissions);
1079 return 0;
1080}
1081
1082nub_bool_t
1083DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1084{
1085 MachProcessSP procSP;
1086 if (GetProcessSP (pid, procSP))
1087 return procSP->Task().DeallocateMemory (addr);
1088 return 0;
1089}
1090
1091
1092//----------------------------------------------------------------------
1093// Formatted output that uses memory and registers from process and
1094// thread in place of arguments.
1095//----------------------------------------------------------------------
1096nub_size_t
1097DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1098{
1099 if (file == NULL)
1100 return 0;
1101 enum printf_flags
1102 {
1103 alternate_form = (1 << 0),
1104 zero_padding = (1 << 1),
1105 negative_field_width = (1 << 2),
1106 blank_space = (1 << 3),
1107 show_sign = (1 << 4),
1108 show_thousands_separator= (1 << 5),
1109 };
1110
1111 enum printf_length_modifiers
1112 {
1113 length_mod_h = (1 << 0),
1114 length_mod_hh = (1 << 1),
1115 length_mod_l = (1 << 2),
1116 length_mod_ll = (1 << 3),
1117 length_mod_L = (1 << 4),
1118 length_mod_j = (1 << 5),
1119 length_mod_t = (1 << 6),
1120 length_mod_z = (1 << 7),
1121 length_mod_q = (1 << 8),
1122 };
1123
1124 nub_addr_t addr = base_addr;
1125 char *end_format = (char*)format + strlen(format);
1126 char *end = NULL; // For strtoXXXX calls;
1127 std::basic_string<uint8_t> buf;
1128 nub_size_t total_bytes_read = 0;
1129 DNBDataRef data;
1130 const char *f;
1131 for (f = format; *f != '\0' && f < end_format; f++)
1132 {
1133 char ch = *f;
1134 switch (ch)
1135 {
1136 case '%':
1137 {
1138 f++; // Skip the '%' character
1139 int min_field_width = 0;
1140 int precision = 0;
1141 uint32_t flags = 0;
1142 uint32_t length_modifiers = 0;
1143 uint32_t byte_size = 0;
1144 uint32_t actual_byte_size = 0;
1145 bool is_string = false;
1146 bool is_register = false;
1147 DNBRegisterValue register_value;
1148 int64_t register_offset = 0;
1149 nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1150
1151 // Create the format string to use for this conversion specification
1152 // so we can remove and mprintf specific flags and formatters.
1153 std::string fprintf_format("%");
1154
1155 // Decode any flags
1156 switch (*f)
1157 {
1158 case '#': fprintf_format += *f++; flags |= alternate_form; break;
1159 case '0': fprintf_format += *f++; flags |= zero_padding; break;
1160 case '-': fprintf_format += *f++; flags |= negative_field_width; break;
1161 case ' ': fprintf_format += *f++; flags |= blank_space; break;
1162 case '+': fprintf_format += *f++; flags |= show_sign; break;
1163 case ',': fprintf_format += *f++; flags |= show_thousands_separator;break;
1164 case '{':
1165 case '[':
1166 {
1167 // We have a register name specification that can take two forms:
1168 // ${regname} or ${regname+offset}
1169 // The action is to read the register value and add the signed offset
1170 // (if any) and use that as the value to format.
1171 // $[regname] or $[regname+offset]
1172 // The action is to read the register value and add the signed offset
1173 // (if any) and use the result as an address to dereference. The size
1174 // of what is dereferenced is specified by the actual byte size that
1175 // follows the minimum field width and precision (see comments below).
1176 switch (*f)
1177 {
1178 case '{':
1179 case '[':
1180 {
1181 char open_scope_ch = *f;
1182 f++;
1183 const char *reg_name = f;
1184 size_t reg_name_length = strcspn(f, "+-}]");
1185 if (reg_name_length > 0)
1186 {
1187 std::string register_name(reg_name, reg_name_length);
1188 f += reg_name_length;
1189 register_offset = strtoll(f, &end, 0);
1190 if (f < end)
1191 f = end;
1192 if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1193 {
1194 fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1195 return total_bytes_read;
1196 }
1197 else
1198 {
1199 f++;
1200 if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1201 {
1202 // Set the address to dereference using the register value plus the offset
1203 switch (register_value.info.size)
1204 {
1205 default:
1206 case 0:
1207 fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1208 return total_bytes_read;
1209
1210 case 1: register_addr = register_value.value.uint8 + register_offset; break;
1211 case 2: register_addr = register_value.value.uint16 + register_offset; break;
1212 case 4: register_addr = register_value.value.uint32 + register_offset; break;
1213 case 8: register_addr = register_value.value.uint64 + register_offset; break;
1214 case 16:
1215 if (open_scope_ch == '[')
1216 {
1217 fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1218 return total_bytes_read;
1219 }
1220 break;
1221 }
1222
1223 if (open_scope_ch == '{')
1224 {
1225 byte_size = register_value.info.size;
1226 is_register = true; // value is in a register
1227
1228 }
1229 else
1230 {
1231 addr = register_addr; // Use register value and offset as the address
1232 }
1233 }
1234 else
1235 {
1236 fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.4x\n", register_name.c_str(), pid, tid);
1237 return total_bytes_read;
1238 }
1239 }
1240 }
1241 }
1242 break;
1243
1244 default:
1245 fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1246 return total_bytes_read;
1247 }
1248 }
1249 break;
1250 }
1251
1252 // Check for a minimum field width
1253 if (isdigit(*f))
1254 {
1255 min_field_width = strtoul(f, &end, 10);
1256 if (end > f)
1257 {
1258 fprintf_format.append(f, end - f);
1259 f = end;
1260 }
1261 }
1262
1263
1264 // Check for a precision
1265 if (*f == '.')
1266 {
1267 f++;
1268 if (isdigit(*f))
1269 {
1270 fprintf_format += '.';
1271 precision = strtoul(f, &end, 10);
1272 if (end > f)
1273 {
1274 fprintf_format.append(f, end - f);
1275 f = end;
1276 }
1277 }
1278 }
1279
1280
1281 // mprintf specific: read the optional actual byte size (abs)
1282 // after the standard minimum field width (mfw) and precision (prec).
1283 // Standard printf calls you can have "mfw.prec" or ".prec", but
1284 // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1285 // for strings that may be in a fixed size buffer, but may not use all bytes
1286 // in that buffer for printable characters.
1287 if (*f == '.')
1288 {
1289 f++;
1290 actual_byte_size = strtoul(f, &end, 10);
1291 if (end > f)
1292 {
1293 byte_size = actual_byte_size;
1294 f = end;
1295 }
1296 }
1297
1298 // Decode the length modifiers
1299 switch (*f)
1300 {
1301 case 'h': // h and hh length modifiers
1302 fprintf_format += *f++;
1303 length_modifiers |= length_mod_h;
1304 if (*f == 'h')
1305 {
1306 fprintf_format += *f++;
1307 length_modifiers |= length_mod_hh;
1308 }
1309 break;
1310
1311 case 'l': // l and ll length modifiers
1312 fprintf_format += *f++;
1313 length_modifiers |= length_mod_l;
1314 if (*f == 'h')
1315 {
1316 fprintf_format += *f++;
1317 length_modifiers |= length_mod_ll;
1318 }
1319 break;
1320
1321 case 'L': fprintf_format += *f++; length_modifiers |= length_mod_L; break;
1322 case 'j': fprintf_format += *f++; length_modifiers |= length_mod_j; break;
1323 case 't': fprintf_format += *f++; length_modifiers |= length_mod_t; break;
1324 case 'z': fprintf_format += *f++; length_modifiers |= length_mod_z; break;
1325 case 'q': fprintf_format += *f++; length_modifiers |= length_mod_q; break;
1326 }
1327
1328 // Decode the conversion specifier
1329 switch (*f)
1330 {
1331 case '_':
1332 // mprintf specific format items
1333 {
1334 ++f; // Skip the '_' character
1335 switch (*f)
1336 {
1337 case 'a': // Print the current address
1338 ++f;
1339 fprintf_format += "ll";
1340 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ax")
1341 fprintf (file, fprintf_format.c_str(), addr);
1342 break;
1343 case 'o': // offset from base address
1344 ++f;
1345 fprintf_format += "ll";
1346 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ox")
1347 fprintf(file, fprintf_format.c_str(), addr - base_addr);
1348 break;
1349 default:
1350 fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1351 break;
1352 }
1353 continue;
1354 }
1355 break;
1356
1357 case 'D':
1358 case 'O':
1359 case 'U':
1360 fprintf_format += *f;
1361 if (byte_size == 0)
1362 byte_size = sizeof(long int);
1363 break;
1364
1365 case 'd':
1366 case 'i':
1367 case 'o':
1368 case 'u':
1369 case 'x':
1370 case 'X':
1371 fprintf_format += *f;
1372 if (byte_size == 0)
1373 {
1374 if (length_modifiers & length_mod_hh)
1375 byte_size = sizeof(char);
1376 else if (length_modifiers & length_mod_h)
1377 byte_size = sizeof(short);
1378 if (length_modifiers & length_mod_ll)
1379 byte_size = sizeof(long long);
1380 else if (length_modifiers & length_mod_l)
1381 byte_size = sizeof(long);
1382 else
1383 byte_size = sizeof(int);
1384 }
1385 break;
1386
1387 case 'a':
1388 case 'A':
1389 case 'f':
1390 case 'F':
1391 case 'e':
1392 case 'E':
1393 case 'g':
1394 case 'G':
1395 fprintf_format += *f;
1396 if (byte_size == 0)
1397 {
1398 if (length_modifiers & length_mod_L)
1399 byte_size = sizeof(long double);
1400 else
1401 byte_size = sizeof(double);
1402 }
1403 break;
1404
1405 case 'c':
1406 if ((length_modifiers & length_mod_l) == 0)
1407 {
1408 fprintf_format += *f;
1409 if (byte_size == 0)
1410 byte_size = sizeof(char);
1411 break;
1412 }
1413 // Fall through to 'C' modifier below...
1414
1415 case 'C':
1416 fprintf_format += *f;
1417 if (byte_size == 0)
1418 byte_size = sizeof(wchar_t);
1419 break;
1420
1421 case 's':
1422 fprintf_format += *f;
1423 if (is_register || byte_size == 0)
1424 is_string = 1;
1425 break;
1426
1427 case 'p':
1428 fprintf_format += *f;
1429 if (byte_size == 0)
1430 byte_size = sizeof(void*);
1431 break;
1432 }
1433
1434 if (is_string)
1435 {
1436 std::string mem_string;
1437 const size_t string_buf_len = 4;
1438 char string_buf[string_buf_len+1];
1439 char *string_buf_end = string_buf + string_buf_len;
1440 string_buf[string_buf_len] = '\0';
1441 nub_size_t bytes_read;
1442 nub_addr_t str_addr = is_register ? register_addr : addr;
1443 while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1444 {
1445 // Did we get a NULL termination character yet?
1446 if (strchr(string_buf, '\0') == string_buf_end)
1447 {
1448 // no NULL terminator yet, append as a std::string
1449 mem_string.append(string_buf, string_buf_len);
1450 str_addr += string_buf_len;
1451 }
1452 else
1453 {
1454 // yep
1455 break;
1456 }
1457 }
1458 // Append as a C-string so we don't get the extra NULL
1459 // characters in the temp buffer (since it was resized)
1460 mem_string += string_buf;
1461 size_t mem_string_len = mem_string.size() + 1;
1462 fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1463 if (mem_string_len > 0)
1464 {
1465 if (!is_register)
1466 {
1467 addr += mem_string_len;
1468 total_bytes_read += mem_string_len;
1469 }
1470 }
1471 else
1472 return total_bytes_read;
1473 }
1474 else
1475 if (byte_size > 0)
1476 {
1477 buf.resize(byte_size);
1478 nub_size_t bytes_read = 0;
1479 if (is_register)
1480 bytes_read = register_value.info.size;
1481 else
1482 bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1483 if (bytes_read > 0)
1484 {
1485 if (!is_register)
1486 total_bytes_read += bytes_read;
1487
1488 if (bytes_read == byte_size)
1489 {
1490 switch (*f)
1491 {
1492 case 'd':
1493 case 'i':
1494 case 'o':
1495 case 'u':
1496 case 'X':
1497 case 'x':
1498 case 'a':
1499 case 'A':
1500 case 'f':
1501 case 'F':
1502 case 'e':
1503 case 'E':
1504 case 'g':
1505 case 'G':
1506 case 'p':
1507 case 'c':
1508 case 'C':
1509 {
1510 if (is_register)
1511 data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1512 else
1513 data.SetData(&buf[0], bytes_read);
1514 DNBDataRef::offset_t data_offset = 0;
1515 if (byte_size <= 4)
1516 {
1517 uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1518 // Show the actual byte width when displaying hex
1519 fprintf(file, fprintf_format.c_str(), u32);
1520 }
1521 else if (byte_size <= 8)
1522 {
1523 uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1524 // Show the actual byte width when displaying hex
1525 fprintf(file, fprintf_format.c_str(), u64);
1526 }
1527 else
1528 {
1529 fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1530 }
1531 if (!is_register)
1532 addr += byte_size;
1533 }
1534 break;
1535
1536 case 's':
1537 fprintf(file, fprintf_format.c_str(), buf.c_str());
1538 addr += byte_size;
1539 break;
1540
1541 default:
1542 fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1543 break;
1544 }
1545 }
1546 }
1547 }
1548 else
1549 return total_bytes_read;
1550 }
1551 break;
1552
1553 case '\\':
1554 {
1555 f++;
1556 switch (*f)
1557 {
1558 case 'e': ch = '\e'; break;
1559 case 'a': ch = '\a'; break;
1560 case 'b': ch = '\b'; break;
1561 case 'f': ch = '\f'; break;
1562 case 'n': ch = '\n'; break;
1563 case 'r': ch = '\r'; break;
1564 case 't': ch = '\t'; break;
1565 case 'v': ch = '\v'; break;
1566 case '\'': ch = '\''; break;
1567 case '\\': ch = '\\'; break;
1568 case '0':
1569 case '1':
1570 case '2':
1571 case '3':
1572 case '4':
1573 case '5':
1574 case '6':
1575 case '7':
1576 ch = strtoul(f, &end, 8);
1577 f = end;
1578 break;
1579 default:
1580 ch = *f;
1581 break;
1582 }
1583 fputc(ch, file);
1584 }
1585 break;
1586
1587 default:
1588 fputc(ch, file);
1589 break;
1590 }
1591 }
1592 return total_bytes_read;
1593}
1594
1595
1596//----------------------------------------------------------------------
1597// Get the number of threads for the specified process.
1598//----------------------------------------------------------------------
1599nub_size_t
1600DNBProcessGetNumThreads (nub_process_t pid)
1601{
1602 MachProcessSP procSP;
1603 if (GetProcessSP (pid, procSP))
1604 return procSP->GetNumThreads();
1605 return 0;
1606}
1607
1608//----------------------------------------------------------------------
1609// Get the thread ID of the current thread.
1610//----------------------------------------------------------------------
1611nub_thread_t
1612DNBProcessGetCurrentThread (nub_process_t pid)
1613{
1614 MachProcessSP procSP;
1615 if (GetProcessSP (pid, procSP))
1616 return procSP->GetCurrentThread();
1617 return 0;
1618}
1619
1620//----------------------------------------------------------------------
1621// Change the current thread.
1622//----------------------------------------------------------------------
1623nub_thread_t
1624DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1625{
1626 MachProcessSP procSP;
1627 if (GetProcessSP (pid, procSP))
1628 return procSP->SetCurrentThread (tid);
1629 return INVALID_NUB_THREAD;
1630}
1631
1632
1633//----------------------------------------------------------------------
1634// Dump a string describing a thread's stop reason to the specified file
1635// handle
1636//----------------------------------------------------------------------
1637nub_bool_t
1638DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1639{
1640 MachProcessSP procSP;
1641 if (GetProcessSP (pid, procSP))
1642 return procSP->GetThreadStoppedReason (tid, stop_info);
1643 return false;
1644}
1645
1646//----------------------------------------------------------------------
1647// Return string description for the specified thread.
1648//
1649// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1650// string from a static buffer that must be copied prior to subsequent
1651// calls.
1652//----------------------------------------------------------------------
1653const char *
1654DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1655{
1656 MachProcessSP procSP;
1657 if (GetProcessSP (pid, procSP))
1658 return procSP->GetThreadInfo (tid);
1659 return NULL;
1660}
1661
1662//----------------------------------------------------------------------
1663// Get the thread ID given a thread index.
1664//----------------------------------------------------------------------
1665nub_thread_t
1666DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1667{
1668 MachProcessSP procSP;
1669 if (GetProcessSP (pid, procSP))
1670 return procSP->GetThreadAtIndex (thread_idx);
1671 return INVALID_NUB_THREAD;
1672}
1673
1674nub_addr_t
1675DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1676{
1677 MachProcessSP procSP;
1678 DNBError err;
1679 if (GetProcessSP (pid, procSP))
1680 return procSP->Task().GetDYLDAllImageInfosAddress (err);
1681 return INVALID_NUB_ADDRESS;
1682}
1683
1684
1685nub_bool_t
1686DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1687{
1688 MachProcessSP procSP;
1689 if (GetProcessSP (pid, procSP))
1690 {
1691 procSP->SharedLibrariesUpdated ();
1692 return true;
1693 }
1694 return false;
1695}
1696
1697//----------------------------------------------------------------------
1698// Get the current shared library information for a process. Only return
1699// the shared libraries that have changed since the last shared library
1700// state changed event if only_changed is non-zero.
1701//----------------------------------------------------------------------
1702nub_size_t
1703DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1704{
1705 MachProcessSP procSP;
1706 if (GetProcessSP (pid, procSP))
1707 return procSP->CopyImageInfos (image_infos, only_changed);
1708
1709 // If we have no process, then return NULL for the shared library info
1710 // and zero for shared library count
1711 *image_infos = NULL;
1712 return 0;
1713}
1714
1715//----------------------------------------------------------------------
1716// Get the register set information for a specific thread.
1717//----------------------------------------------------------------------
1718const DNBRegisterSetInfo *
1719DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1720{
1721 return DNBArch::GetRegisterSetInfo (num_reg_sets);
1722}
1723
1724
1725//----------------------------------------------------------------------
1726// Read a register value by register set and register index.
1727//----------------------------------------------------------------------
1728nub_bool_t
1729DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1730{
1731 MachProcessSP procSP;
1732 ::bzero (value, sizeof(DNBRegisterValue));
1733 if (GetProcessSP (pid, procSP))
1734 {
1735 if (tid != INVALID_NUB_THREAD)
1736 return procSP->GetRegisterValue (tid, set, reg, value);
1737 }
1738 return false;
1739}
1740
1741nub_bool_t
1742DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1743{
1744 if (tid != INVALID_NUB_THREAD)
1745 {
1746 MachProcessSP procSP;
1747 if (GetProcessSP (pid, procSP))
1748 return procSP->SetRegisterValue (tid, set, reg, value);
1749 }
1750 return false;
1751}
1752
1753nub_size_t
1754DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1755{
1756 MachProcessSP procSP;
1757 if (GetProcessSP (pid, procSP))
1758 {
1759 if (tid != INVALID_NUB_THREAD)
1760 return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1761 }
1762 ::bzero (buf, buf_len);
1763 return 0;
1764
1765}
1766
1767nub_size_t
1768DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1769{
1770 MachProcessSP procSP;
1771 if (GetProcessSP (pid, procSP))
1772 {
1773 if (tid != INVALID_NUB_THREAD)
1774 return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1775 }
1776 return 0;
1777}
1778
1779//----------------------------------------------------------------------
1780// Read a register value by name.
1781//----------------------------------------------------------------------
1782nub_bool_t
1783DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1784{
1785 MachProcessSP procSP;
1786 ::bzero (value, sizeof(DNBRegisterValue));
1787 if (GetProcessSP (pid, procSP))
1788 {
1789 const struct DNBRegisterSetInfo *set_info;
1790 nub_size_t num_reg_sets = 0;
1791 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1792 if (set_info)
1793 {
1794 uint32_t set = reg_set;
1795 uint32_t reg;
1796 if (set == REGISTER_SET_ALL)
1797 {
1798 for (set = 1; set < num_reg_sets; ++set)
1799 {
1800 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1801 {
1802 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1803 return procSP->GetRegisterValue (tid, set, reg, value);
1804 }
1805 }
1806 }
1807 else
1808 {
1809 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1810 {
1811 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1812 return procSP->GetRegisterValue (tid, set, reg, value);
1813 }
1814 }
1815 }
1816 }
1817 return false;
1818}
1819
1820
1821//----------------------------------------------------------------------
1822// Read a register set and register number from the register name.
1823//----------------------------------------------------------------------
1824nub_bool_t
1825DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1826{
1827 const struct DNBRegisterSetInfo *set_info;
1828 nub_size_t num_reg_sets = 0;
1829 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1830 if (set_info)
1831 {
1832 uint32_t set, reg;
1833 for (set = 1; set < num_reg_sets; ++set)
1834 {
1835 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1836 {
1837 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1838 {
1839 *info = set_info[set].registers[reg];
1840 return true;
1841 }
1842 }
1843 }
1844
1845 for (set = 1; set < num_reg_sets; ++set)
1846 {
1847 uint32_t reg;
1848 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1849 {
1850 if (set_info[set].registers[reg].alt == NULL)
1851 continue;
1852
1853 if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
1854 {
1855 *info = set_info[set].registers[reg];
1856 return true;
1857 }
1858 }
1859 }
1860 }
1861
1862 ::bzero (info, sizeof(DNBRegisterInfo));
1863 return false;
1864}
1865
1866
1867//----------------------------------------------------------------------
1868// Set the name to address callback function that this nub can use
1869// for any name to address lookups that are needed.
1870//----------------------------------------------------------------------
1871nub_bool_t
1872DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
1873{
1874 MachProcessSP procSP;
1875 if (GetProcessSP (pid, procSP))
1876 {
1877 procSP->SetNameToAddressCallback (callback, baton);
1878 return true;
1879 }
1880 return false;
1881}
1882
1883
1884//----------------------------------------------------------------------
1885// Set the name to address callback function that this nub can use
1886// for any name to address lookups that are needed.
1887//----------------------------------------------------------------------
1888nub_bool_t
1889DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton)
1890{
1891 MachProcessSP procSP;
1892 if (GetProcessSP (pid, procSP))
1893 {
1894 procSP->SetSharedLibraryInfoCallback (callback, baton);
1895 return true;
1896 }
1897 return false;
1898}
1899
1900nub_addr_t
1901DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
1902{
1903 MachProcessSP procSP;
1904 if (GetProcessSP (pid, procSP))
1905 {
1906 return procSP->LookupSymbol (name, shlib);
1907 }
1908 return INVALID_NUB_ADDRESS;
1909}
1910
1911
1912nub_size_t
1913DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
1914{
1915 MachProcessSP procSP;
1916 if (GetProcessSP (pid, procSP))
1917 return procSP->GetAvailableSTDOUT (buf, buf_size);
1918 return 0;
1919}
1920
1921nub_size_t
1922DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
1923{
1924 MachProcessSP procSP;
1925 if (GetProcessSP (pid, procSP))
1926 return procSP->GetAvailableSTDERR (buf, buf_size);
1927 return 0;
1928}
1929
1930nub_size_t
1931DNBProcessGetStopCount (nub_process_t pid)
1932{
1933 MachProcessSP procSP;
1934 if (GetProcessSP (pid, procSP))
1935 return procSP->StopCount();
1936 return 0;
1937}
1938
1939nub_bool_t
1940DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
1941{
1942 if (path == NULL || path[0] == '\0')
1943 return false;
1944
1945 char max_path[PATH_MAX];
1946 std::string result;
1947 CFString::GlobPath(path, result);
1948
1949 if (result.empty())
1950 result = path;
1951
1952 if (realpath(path, max_path))
1953 {
1954 // Found the path relatively...
1955 ::strncpy(resolved_path, max_path, resolved_path_size);
1956 return strlen(resolved_path) + 1 < resolved_path_size;
1957 }
1958 else
1959 {
1960 // Not a relative path, check the PATH environment variable if the
1961 const char *PATH = getenv("PATH");
1962 if (PATH)
1963 {
1964 const char *curr_path_start = PATH;
1965 const char *curr_path_end;
1966 while (curr_path_start && *curr_path_start)
1967 {
1968 curr_path_end = strchr(curr_path_start, ':');
1969 if (curr_path_end == NULL)
1970 {
1971 result.assign(curr_path_start);
1972 curr_path_start = NULL;
1973 }
1974 else if (curr_path_end > curr_path_start)
1975 {
1976 size_t len = curr_path_end - curr_path_start;
1977 result.assign(curr_path_start, len);
1978 curr_path_start += len + 1;
1979 }
1980 else
1981 break;
1982
1983 result += '/';
1984 result += path;
1985 struct stat s;
1986 if (stat(result.c_str(), &s) == 0)
1987 {
1988 ::strncpy(resolved_path, result.c_str(), resolved_path_size);
1989 return result.size() + 1 < resolved_path_size;
1990 }
1991 }
1992 }
1993 }
1994 return false;
1995}
1996