blob: 3e74dffb00e23a63bbd67a7e3c99d70247410333 [file] [log] [blame]
Renato Golin33f973a2014-04-01 09:51:49 +00001==============================
2TableGen Language Introduction
3==============================
4
5.. contents::
6 :local:
7
8.. warning::
9 This document is extremely rough. If you find something lacking, please
10 fix it, file a documentation bug, or ask about it on llvmdev.
11
12Introduction
13============
14
15This document is not meant to be a normative spec about the TableGen language
16in and of itself (i.e. how to understand a given construct in terms of how
17it affects the final set of records represented by the TableGen file). For
18the formal language specification, see :doc:`LangRef`.
19
20TableGen syntax
21===============
22
23TableGen doesn't care about the meaning of data (that is up to the backend to
24define), but it does care about syntax, and it enforces a simple type system.
25This section describes the syntax and the constructs allowed in a TableGen file.
26
27TableGen primitives
28-------------------
29
30TableGen comments
31^^^^^^^^^^^^^^^^^
32
33TableGen supports C++ style "``//``" comments, which run to the end of the
34line, and it also supports **nestable** "``/* */``" comments.
35
36.. _TableGen type:
37
38The TableGen type system
39^^^^^^^^^^^^^^^^^^^^^^^^
40
41TableGen files are strongly typed, in a simple (but complete) type-system.
42These types are used to perform automatic conversions, check for errors, and to
43help interface designers constrain the input that they allow. Every `value
44definition`_ is required to have an associated type.
45
46TableGen supports a mixture of very low-level types (such as ``bit``) and very
47high-level types (such as ``dag``). This flexibility is what allows it to
48describe a wide range of information conveniently and compactly. The TableGen
49types are:
50
51``bit``
52 A 'bit' is a boolean value that can hold either 0 or 1.
53
54``int``
55 The 'int' type represents a simple 32-bit integer value, such as 5.
56
57``string``
58 The 'string' type represents an ordered sequence of characters of arbitrary
59 length.
60
61``bits<n>``
62 A 'bits' type is an arbitrary, but fixed, size integer that is broken up
63 into individual bits. This type is useful because it can handle some bits
64 being defined while others are undefined.
65
66``list<ty>``
67 This type represents a list whose elements are some other type. The
68 contained type is arbitrary: it can even be another list type.
69
70Class type
71 Specifying a class name in a type context means that the defined value must
72 be a subclass of the specified class. This is useful in conjunction with
73 the ``list`` type, for example, to constrain the elements of the list to a
74 common base class (e.g., a ``list<Register>`` can only contain definitions
75 derived from the "``Register``" class).
76
77``dag``
78 This type represents a nestable directed graph of elements.
79
80To date, these types have been sufficient for describing things that TableGen
81has been used for, but it is straight-forward to extend this list if needed.
82
83.. _TableGen expressions:
84
85TableGen values and expressions
86^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
87
88TableGen allows for a pretty reasonable number of different expression forms
89when building up values. These forms allow the TableGen file to be written in a
90natural syntax and flavor for the application. The current expression forms
91supported include:
92
93``?``
94 uninitialized field
95
96``0b1001011``
97 binary integer value
98
99``07654321``
100 octal integer value (indicated by a leading 0)
101
102``7``
103 decimal integer value
104
105``0x7F``
106 hexadecimal integer value
107
108``"foo"``
109 string value
110
111``[{ ... }]``
112 usually called a "code fragment", but is just a multiline string literal
113
114``[ X, Y, Z ]<type>``
115 list value. <type> is the type of the list element and is usually optional.
116 In rare cases, TableGen is unable to deduce the element type in which case
117 the user must specify it explicitly.
118
119``{ a, b, c }``
120 initializer for a "bits<3>" value
121
122``value``
123 value reference
124
125``value{17}``
126 access to one bit of a value
127
128``value{15-17}``
129 access to multiple bits of a value
130
131``DEF``
132 reference to a record definition
133
134``CLASS<val list>``
135 reference to a new anonymous definition of CLASS with the specified template
136 arguments.
137
138``X.Y``
139 reference to the subfield of a value
140
141``list[4-7,17,2-3]``
142 A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
143 Elements may be included multiple times.
144
145``foreach <var> = [ <list> ] in { <body> }``
146
147``foreach <var> = [ <list> ] in <def>``
148 Replicate <body> or <def>, replacing instances of <var> with each value
149 in <list>. <var> is scoped at the level of the ``foreach`` loop and must
150 not conflict with any other object introduced in <body> or <def>. Currently
151 only ``def``\s are expanded within <body>.
152
153``foreach <var> = 0-15 in ...``
154
155``foreach <var> = {0-15,32-47} in ...``
156 Loop over ranges of integers. The braces are required for multiple ranges.
157
158``(DEF a, b)``
159 a dag value. The first element is required to be a record definition, the
160 remaining elements in the list may be arbitrary other values, including
161 nested ```dag``' values.
162
Daniel Sanders314e80e2014-05-07 10:13:19 +0000163``!listconcat(a, b, ...)``
164 A list value that is the result of concatenating the 'a' and 'b' lists.
165 The lists must have the same element type.
166 More than two arguments are accepted with the result being the concatenation
167 of all the lists given.
168
Daniel Sanders6ef0a2f2014-05-02 19:25:52 +0000169``!strconcat(a, b, ...)``
Renato Golin33f973a2014-04-01 09:51:49 +0000170 A string value that is the result of concatenating the 'a' and 'b' strings.
Daniel Sanders6ef0a2f2014-05-02 19:25:52 +0000171 More than two arguments are accepted with the result being the concatenation
172 of all the strings given.
Renato Golin33f973a2014-04-01 09:51:49 +0000173
174``str1#str2``
175 "#" (paste) is a shorthand for !strconcat. It may concatenate things that
176 are not quoted strings, in which case an implicit !cast<string> is done on
177 the operand of the paste.
178
179``!cast<type>(a)``
180 A symbol of type *type* obtained by looking up the string 'a' in the symbol
181 table. If the type of 'a' does not match *type*, TableGen aborts with an
182 error. !cast<string> is a special case in that the argument must be an
183 object defined by a 'def' construct.
184
185``!subst(a, b, c)``
186 If 'a' and 'b' are of string type or are symbol references, substitute 'b'
187 for 'a' in 'c.' This operation is analogous to $(subst) in GNU make.
188
189``!foreach(a, b, c)``
190 For each member 'b' of dag or list 'a' apply operator 'c.' 'b' is a dummy
191 variable that should be declared as a member variable of an instantiated
192 class. This operation is analogous to $(foreach) in GNU make.
193
194``!head(a)``
195 The first element of list 'a.'
196
197``!tail(a)``
198 The 2nd-N elements of list 'a.'
199
200``!empty(a)``
201 An integer {0,1} indicating whether list 'a' is empty.
202
203``!if(a,b,c)``
204 'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.
205
206``!eq(a,b)``
207 'bit 1' if string a is equal to string b, 0 otherwise. This only operates
208 on string, int and bit objects. Use !cast<string> to compare other types of
209 objects.
210
211Note that all of the values have rules specifying how they convert to values
212for different types. These rules allow you to assign a value like "``7``"
213to a "``bits<4>``" value, for example.
214
215Classes and definitions
216-----------------------
217
218As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
219'records') in TableGen are the main high-level unit of information that TableGen
220collects. Records are defined with a ``def`` or ``class`` keyword, the record
221name, and an optional list of "`template arguments`_". If the record has
222superclasses, they are specified as a comma separated list that starts with a
223colon character ("``:``"). If `value definitions`_ or `let expressions`_ are
224needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
225the record ends with a semicolon.
226
227Here is a simple TableGen file:
228
229.. code-block:: llvm
230
231 class C { bit V = 1; }
232 def X : C;
233 def Y : C {
234 string Greeting = "hello";
235 }
236
237This example defines two definitions, ``X`` and ``Y``, both of which derive from
238the ``C`` class. Because of this, they both get the ``V`` bit value. The ``Y``
239definition also gets the Greeting member as well.
240
241In general, classes are useful for collecting together the commonality between a
242group of records and isolating it in a single place. Also, classes permit the
243specification of default values for their subclasses, allowing the subclasses to
244override them as they wish.
245
246.. _value definition:
247.. _value definitions:
248
249Value definitions
250^^^^^^^^^^^^^^^^^
251
252Value definitions define named entries in records. A value must be defined
253before it can be referred to as the operand for another value definition or
254before the value is reset with a `let expression`_. A value is defined by
255specifying a `TableGen type`_ and a name. If an initial value is available, it
256may be specified after the type with an equal sign. Value definitions require
257terminating semicolons.
258
259.. _let expression:
260.. _let expressions:
261.. _"let" expressions within a record:
262
263'let' expressions
264^^^^^^^^^^^^^^^^^
265
266A record-level let expression is used to change the value of a value definition
267in a record. This is primarily useful when a superclass defines a value that a
268derived class or definition wants to override. Let expressions consist of the
269'``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
270value. For example, a new class could be added to the example above, redefining
271the ``V`` field for all of its subclasses:
272
273.. code-block:: llvm
274
275 class D : C { let V = 0; }
276 def Z : D;
277
278In this case, the ``Z`` definition will have a zero value for its ``V`` value,
279despite the fact that it derives (indirectly) from the ``C`` class, because the
280``D`` class overrode its value.
281
282.. _template arguments:
283
284Class template arguments
285^^^^^^^^^^^^^^^^^^^^^^^^
286
287TableGen permits the definition of parameterized classes as well as normal
288concrete classes. Parameterized TableGen classes specify a list of variable
289bindings (which may optionally have defaults) that are bound when used. Here is
290a simple example:
291
292.. code-block:: llvm
293
294 class FPFormat<bits<3> val> {
295 bits<3> Value = val;
296 }
297 def NotFP : FPFormat<0>;
298 def ZeroArgFP : FPFormat<1>;
299 def OneArgFP : FPFormat<2>;
300 def OneArgFPRW : FPFormat<3>;
301 def TwoArgFP : FPFormat<4>;
302 def CompareFP : FPFormat<5>;
303 def CondMovFP : FPFormat<6>;
304 def SpecialFP : FPFormat<7>;
305
306In this case, template arguments are used as a space efficient way to specify a
307list of "enumeration values", each with a "``Value``" field set to the specified
308integer.
309
310The more esoteric forms of `TableGen expressions`_ are useful in conjunction
311with template arguments. As an example:
312
313.. code-block:: llvm
314
315 class ModRefVal<bits<2> val> {
316 bits<2> Value = val;
317 }
318
319 def None : ModRefVal<0>;
320 def Mod : ModRefVal<1>;
321 def Ref : ModRefVal<2>;
322 def ModRef : ModRefVal<3>;
323
324 class Value<ModRefVal MR> {
325 // Decode some information into a more convenient format, while providing
326 // a nice interface to the user of the "Value" class.
327 bit isMod = MR.Value{0};
328 bit isRef = MR.Value{1};
329
330 // other stuff...
331 }
332
333 // Example uses
334 def bork : Value<Mod>;
335 def zork : Value<Ref>;
336 def hork : Value<ModRef>;
337
338This is obviously a contrived example, but it shows how template arguments can
339be used to decouple the interface provided to the user of the class from the
340actual internal data representation expected by the class. In this case,
341running ``llvm-tblgen`` on the example prints the following definitions:
342
343.. code-block:: llvm
344
345 def bork { // Value
346 bit isMod = 1;
347 bit isRef = 0;
348 }
349 def hork { // Value
350 bit isMod = 1;
351 bit isRef = 1;
352 }
353 def zork { // Value
354 bit isMod = 0;
355 bit isRef = 1;
356 }
357
358This shows that TableGen was able to dig into the argument and extract a piece
359of information that was requested by the designer of the "Value" class. For
360more realistic examples, please see existing users of TableGen, such as the X86
361backend.
362
363Multiclass definitions and instances
364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
365
366While classes with template arguments are a good way to factor commonality
367between two instances of a definition, multiclasses allow a convenient notation
368for defining multiple definitions at once (instances of implicitly constructed
369classes). For example, consider an 3-address instruction set whose instructions
370come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
371(e.g. SPARC). In this case, you'd like to specify in one place that this
372commonality exists, then in a separate place indicate what all the ops are.
373
374Here is an example TableGen fragment that shows this idea:
375
376.. code-block:: llvm
377
378 def ops;
379 def GPR;
380 def Imm;
381 class inst<int opc, string asmstr, dag operandlist>;
382
383 multiclass ri_inst<int opc, string asmstr> {
384 def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
385 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
386 def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
387 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
388 }
389
390 // Instantiations of the ri_inst multiclass.
391 defm ADD : ri_inst<0b111, "add">;
392 defm SUB : ri_inst<0b101, "sub">;
393 defm MUL : ri_inst<0b100, "mul">;
394 ...
395
396The name of the resultant definitions has the multidef fragment names appended
397to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc. A defm may
398inherit from multiple multiclasses, instantiating definitions from each
399multiclass. Using a multiclass this way is exactly equivalent to instantiating
400the classes multiple times yourself, e.g. by writing:
401
402.. code-block:: llvm
403
404 def ops;
405 def GPR;
406 def Imm;
407 class inst<int opc, string asmstr, dag operandlist>;
408
409 class rrinst<int opc, string asmstr>
410 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
411 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
412
413 class riinst<int opc, string asmstr>
414 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
415 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
416
417 // Instantiations of the ri_inst multiclass.
418 def ADD_rr : rrinst<0b111, "add">;
419 def ADD_ri : riinst<0b111, "add">;
420 def SUB_rr : rrinst<0b101, "sub">;
421 def SUB_ri : riinst<0b101, "sub">;
422 def MUL_rr : rrinst<0b100, "mul">;
423 def MUL_ri : riinst<0b100, "mul">;
424 ...
425
426A ``defm`` can also be used inside a multiclass providing several levels of
427multiclass instantiations.
428
429.. code-block:: llvm
430
431 class Instruction<bits<4> opc, string Name> {
432 bits<4> opcode = opc;
433 string name = Name;
434 }
435
436 multiclass basic_r<bits<4> opc> {
437 def rr : Instruction<opc, "rr">;
438 def rm : Instruction<opc, "rm">;
439 }
440
441 multiclass basic_s<bits<4> opc> {
442 defm SS : basic_r<opc>;
443 defm SD : basic_r<opc>;
444 def X : Instruction<opc, "x">;
445 }
446
447 multiclass basic_p<bits<4> opc> {
448 defm PS : basic_r<opc>;
449 defm PD : basic_r<opc>;
450 def Y : Instruction<opc, "y">;
451 }
452
453 defm ADD : basic_s<0xf>, basic_p<0xf>;
454 ...
455
456 // Results
457 def ADDPDrm { ...
458 def ADDPDrr { ...
459 def ADDPSrm { ...
460 def ADDPSrr { ...
461 def ADDSDrm { ...
462 def ADDSDrr { ...
463 def ADDY { ...
464 def ADDX { ...
465
466``defm`` declarations can inherit from classes too, the rule to follow is that
467the class list must start after the last multiclass, and there must be at least
468one multiclass before them.
469
470.. code-block:: llvm
471
472 class XD { bits<4> Prefix = 11; }
473 class XS { bits<4> Prefix = 12; }
474
475 class I<bits<4> op> {
476 bits<4> opcode = op;
477 }
478
479 multiclass R {
480 def rr : I<4>;
481 def rm : I<2>;
482 }
483
484 multiclass Y {
485 defm SS : R, XD;
486 defm SD : R, XS;
487 }
488
489 defm Instr : Y;
490
491 // Results
492 def InstrSDrm {
493 bits<4> opcode = { 0, 0, 1, 0 };
494 bits<4> Prefix = { 1, 1, 0, 0 };
495 }
496 ...
497 def InstrSSrr {
498 bits<4> opcode = { 0, 1, 0, 0 };
499 bits<4> Prefix = { 1, 0, 1, 1 };
500 }
501
502File scope entities
503-------------------
504
505File inclusion
506^^^^^^^^^^^^^^
507
508TableGen supports the '``include``' token, which textually substitutes the
509specified file in place of the include directive. The filename should be
510specified as a double quoted string immediately after the '``include``' keyword.
511Example:
512
513.. code-block:: llvm
514
515 include "foo.td"
516
517'let' expressions
518^^^^^^^^^^^^^^^^^
519
520"Let" expressions at file scope are similar to `"let" expressions within a
521record`_, except they can specify a value binding for multiple records at a
522time, and may be useful in certain other cases. File-scope let expressions are
523really just another way that TableGen allows the end-user to factor out
524commonality from the records.
525
526File-scope "let" expressions take a comma-separated list of bindings to apply,
527and one or more records to bind the values in. Here are some examples:
528
529.. code-block:: llvm
530
531 let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
532 def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;
533
534 let isCall = 1 in
535 // All calls clobber the non-callee saved registers...
536 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
537 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
538 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
539 def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
540 "call\t${dst:call}", []>;
541 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
542 "call\t{*}$dst", [(X86call GR32:$dst)]>;
543 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
544 "call\t{*}$dst", []>;
545 }
546
547File-scope "let" expressions are often useful when a couple of definitions need
548to be added to several records, and the records do not otherwise need to be
549opened, as in the case with the ``CALL*`` instructions above.
550
551It's also possible to use "let" expressions inside multiclasses, providing more
552ways to factor out commonality from the records, specially if using several
553levels of multiclass instantiations. This also avoids the need of using "let"
554expressions within subsequent records inside a multiclass.
555
556.. code-block:: llvm
557
558 multiclass basic_r<bits<4> opc> {
559 let Predicates = [HasSSE2] in {
560 def rr : Instruction<opc, "rr">;
561 def rm : Instruction<opc, "rm">;
562 }
563 let Predicates = [HasSSE3] in
564 def rx : Instruction<opc, "rx">;
565 }
566
567 multiclass basic_ss<bits<4> opc> {
568 let IsDouble = 0 in
569 defm SS : basic_r<opc>;
570
571 let IsDouble = 1 in
572 defm SD : basic_r<opc>;
573 }
574
575 defm ADD : basic_ss<0xf>;
576
577Looping
578^^^^^^^
579
580TableGen supports the '``foreach``' block, which textually replicates the loop
581body, substituting iterator values for iterator references in the body.
582Example:
583
584.. code-block:: llvm
585
586 foreach i = [0, 1, 2, 3] in {
587 def R#i : Register<...>;
588 def F#i : Register<...>;
589 }
590
591This will create objects ``R0``, ``R1``, ``R2`` and ``R3``. ``foreach`` blocks
592may be nested. If there is only one item in the body the braces may be
593elided:
594
595.. code-block:: llvm
596
597 foreach i = [0, 1, 2, 3] in
598 def R#i : Register<...>;
599
600Code Generator backend info
601===========================
602
603Expressions used by code generator to describe instructions and isel patterns:
604
605``(implicit a)``
606 an implicitly defined physical register. This tells the dag instruction
607 selection emitter the input pattern's extra definitions matches implicit
608 physical register definitions.
609