blob: 3e5ef4df47060b754192d9593a579bce5e32dd7f [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the AArch64 addressing mode implementation stuff.
11//
12//===----------------------------------------------------------------------===//
13
Benjamin Kramera7c40ef2014-08-13 16:26:38 +000014#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
15#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
Tim Northover3b0846e2014-05-24 12:50:23 +000016
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/APInt.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22
23namespace llvm {
24
25/// AArch64_AM - AArch64 Addressing Mode Stuff
26namespace AArch64_AM {
27
28//===----------------------------------------------------------------------===//
29// Shifts
30//
31
32enum ShiftExtendType {
33 InvalidShiftExtend = -1,
34 LSL = 0,
35 LSR,
36 ASR,
37 ROR,
38 MSL,
39
40 UXTB,
41 UXTH,
42 UXTW,
43 UXTX,
44
45 SXTB,
46 SXTH,
47 SXTW,
48 SXTX,
49};
50
51/// getShiftName - Get the string encoding for the shift type.
52static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53 switch (ST) {
Craig Topperd3c02f12015-01-05 10:15:49 +000054 default: llvm_unreachable("unhandled shift type!");
Tim Northover3b0846e2014-05-24 12:50:23 +000055 case AArch64_AM::LSL: return "lsl";
56 case AArch64_AM::LSR: return "lsr";
57 case AArch64_AM::ASR: return "asr";
58 case AArch64_AM::ROR: return "ror";
59 case AArch64_AM::MSL: return "msl";
60 case AArch64_AM::UXTB: return "uxtb";
61 case AArch64_AM::UXTH: return "uxth";
62 case AArch64_AM::UXTW: return "uxtw";
63 case AArch64_AM::UXTX: return "uxtx";
64 case AArch64_AM::SXTB: return "sxtb";
65 case AArch64_AM::SXTH: return "sxth";
66 case AArch64_AM::SXTW: return "sxtw";
67 case AArch64_AM::SXTX: return "sxtx";
68 }
69 return nullptr;
70}
71
72/// getShiftType - Extract the shift type.
73static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74 switch ((Imm >> 6) & 0x7) {
75 default: return AArch64_AM::InvalidShiftExtend;
76 case 0: return AArch64_AM::LSL;
77 case 1: return AArch64_AM::LSR;
78 case 2: return AArch64_AM::ASR;
79 case 3: return AArch64_AM::ROR;
80 case 4: return AArch64_AM::MSL;
81 }
82}
83
84/// getShiftValue - Extract the shift value.
85static inline unsigned getShiftValue(unsigned Imm) {
86 return Imm & 0x3f;
87}
88
89/// getShifterImm - Encode the shift type and amount:
90/// imm: 6-bit shift amount
91/// shifter: 000 ==> lsl
92/// 001 ==> lsr
93/// 010 ==> asr
94/// 011 ==> ror
95/// 100 ==> msl
96/// {8-6} = shifter
97/// {5-0} = imm
98static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
99 unsigned Imm) {
100 assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
101 unsigned STEnc = 0;
102 switch (ST) {
103 default: llvm_unreachable("Invalid shift requested");
104 case AArch64_AM::LSL: STEnc = 0; break;
105 case AArch64_AM::LSR: STEnc = 1; break;
106 case AArch64_AM::ASR: STEnc = 2; break;
107 case AArch64_AM::ROR: STEnc = 3; break;
108 case AArch64_AM::MSL: STEnc = 4; break;
109 }
110 return (STEnc << 6) | (Imm & 0x3f);
111}
112
113//===----------------------------------------------------------------------===//
114// Extends
115//
116
117/// getArithShiftValue - get the arithmetic shift value.
118static inline unsigned getArithShiftValue(unsigned Imm) {
119 return Imm & 0x7;
120}
121
122/// getExtendType - Extract the extend type for operands of arithmetic ops.
123static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124 assert((Imm & 0x7) == Imm && "invalid immediate!");
125 switch (Imm) {
126 default: llvm_unreachable("Compiler bug!");
127 case 0: return AArch64_AM::UXTB;
128 case 1: return AArch64_AM::UXTH;
129 case 2: return AArch64_AM::UXTW;
130 case 3: return AArch64_AM::UXTX;
131 case 4: return AArch64_AM::SXTB;
132 case 5: return AArch64_AM::SXTH;
133 case 6: return AArch64_AM::SXTW;
134 case 7: return AArch64_AM::SXTX;
135 }
136}
137
138static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
139 return getExtendType((Imm >> 3) & 0x7);
140}
141
142/// Mapping from extend bits to required operation:
143/// shifter: 000 ==> uxtb
144/// 001 ==> uxth
145/// 010 ==> uxtw
146/// 011 ==> uxtx
147/// 100 ==> sxtb
148/// 101 ==> sxth
149/// 110 ==> sxtw
150/// 111 ==> sxtx
151inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
152 switch (ET) {
153 default: llvm_unreachable("Invalid extend type requested");
154 case AArch64_AM::UXTB: return 0; break;
155 case AArch64_AM::UXTH: return 1; break;
156 case AArch64_AM::UXTW: return 2; break;
157 case AArch64_AM::UXTX: return 3; break;
158 case AArch64_AM::SXTB: return 4; break;
159 case AArch64_AM::SXTH: return 5; break;
160 case AArch64_AM::SXTW: return 6; break;
161 case AArch64_AM::SXTX: return 7; break;
162 }
163}
164
165/// getArithExtendImm - Encode the extend type and shift amount for an
166/// arithmetic instruction:
167/// imm: 3-bit extend amount
168/// {5-3} = shifter
169/// {2-0} = imm3
170static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
171 unsigned Imm) {
172 assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
173 return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
174}
175
176/// getMemDoShift - Extract the "do shift" flag value for load/store
177/// instructions.
178static inline bool getMemDoShift(unsigned Imm) {
179 return (Imm & 0x1) != 0;
180}
181
182/// getExtendType - Extract the extend type for the offset operand of
183/// loads/stores.
184static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
185 return getExtendType((Imm >> 1) & 0x7);
186}
187
188/// getExtendImm - Encode the extend type and amount for a load/store inst:
189/// doshift: should the offset be scaled by the access size
190/// shifter: 000 ==> uxtb
191/// 001 ==> uxth
192/// 010 ==> uxtw
193/// 011 ==> uxtx
194/// 100 ==> sxtb
195/// 101 ==> sxth
196/// 110 ==> sxtw
197/// 111 ==> sxtx
198/// {3-1} = shifter
199/// {0} = doshift
200static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
201 bool DoShift) {
202 return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
203}
204
205static inline uint64_t ror(uint64_t elt, unsigned size) {
206 return ((elt & 1) << (size-1)) | (elt >> 1);
207}
208
209/// processLogicalImmediate - Determine if an immediate value can be encoded
210/// as the immediate operand of a logical instruction for the given register
211/// size. If so, return true with "encoding" set to the encoded value in
212/// the form N:immr:imms.
Akira Hatanakabc950d52014-11-03 23:24:10 +0000213static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
214 uint64_t &Encoding) {
215 if (Imm == 0ULL || Imm == ~0ULL ||
216 (RegSize != 64 && (Imm >> RegSize != 0 || Imm == ~0U)))
Tim Northover3b0846e2014-05-24 12:50:23 +0000217 return false;
218
Tim Northover3b0846e2014-05-24 12:50:23 +0000219 // First, determine the element size.
Akira Hatanakabc950d52014-11-03 23:24:10 +0000220 unsigned Size = RegSize;
Tim Northover3b0846e2014-05-24 12:50:23 +0000221
Akira Hatanaka9ee2c262014-11-03 23:06:31 +0000222 do {
Akira Hatanakabc950d52014-11-03 23:24:10 +0000223 Size /= 2;
224 uint64_t Mask = (1ULL << Size) - 1;
Tim Northover3b0846e2014-05-24 12:50:23 +0000225
Akira Hatanakabc950d52014-11-03 23:24:10 +0000226 if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
227 Size *= 2;
Tim Northover3b0846e2014-05-24 12:50:23 +0000228 break;
229 }
Akira Hatanakabc950d52014-11-03 23:24:10 +0000230 } while (Size > 2);
Tim Northover3b0846e2014-05-24 12:50:23 +0000231
232 // Second, determine the rotation to make the element be: 0^m 1^n.
Akira Hatanakabc950d52014-11-03 23:24:10 +0000233 uint32_t CTO, I;
234 uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
235 Imm &= Mask;
Tim Northover3b0846e2014-05-24 12:50:23 +0000236
Akira Hatanakabc950d52014-11-03 23:24:10 +0000237 if (isShiftedMask_64(Imm)) {
238 I = countTrailingZeros(Imm);
Michael Ilsemanaddddc42014-12-15 18:48:43 +0000239 assert(I < 64 && "undefined behavior");
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000240 CTO = countTrailingOnes(Imm >> I);
Akira Hatanaka9ee2c262014-11-03 23:06:31 +0000241 } else {
Akira Hatanakabc950d52014-11-03 23:24:10 +0000242 Imm |= ~Mask;
243 if (!isShiftedMask_64(~Imm))
Akira Hatanaka9ee2c262014-11-03 23:06:31 +0000244 return false;
Tim Northover3b0846e2014-05-24 12:50:23 +0000245
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000246 unsigned CLO = countLeadingOnes(Imm);
Akira Hatanakabc950d52014-11-03 23:24:10 +0000247 I = 64 - CLO;
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000248 CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
Tim Northover3b0846e2014-05-24 12:50:23 +0000249 }
250
Akira Hatanakabc950d52014-11-03 23:24:10 +0000251 // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
Akira Hatanaka107d13c2014-12-01 06:14:52 +0000252 // to our target value, where I is the number of RORs to go the opposite
Akira Hatanaka9ee2c262014-11-03 23:06:31 +0000253 // direction.
Akira Hatanaka107d13c2014-12-01 06:14:52 +0000254 assert(Size > I && "I should be smaller than element size");
Akira Hatanakabc950d52014-11-03 23:24:10 +0000255 unsigned Immr = (Size - I) & (Size - 1);
Akira Hatanaka9ee2c262014-11-03 23:06:31 +0000256
257 // If size has a 1 in the n'th bit, create a value that has zeroes in
258 // bits [0, n] and ones above that.
Akira Hatanakabc950d52014-11-03 23:24:10 +0000259 uint64_t NImms = ~(Size-1) << 1;
Akira Hatanaka9ee2c262014-11-03 23:06:31 +0000260
261 // Or the CTO value into the low bits, which must be below the Nth bit
262 // bit mentioned above.
Akira Hatanakabc950d52014-11-03 23:24:10 +0000263 NImms |= (CTO-1);
Akira Hatanaka9ee2c262014-11-03 23:06:31 +0000264
265 // Extract the seventh bit and toggle it to create the N field.
Akira Hatanakabc950d52014-11-03 23:24:10 +0000266 unsigned N = ((NImms >> 6) & 1) ^ 1;
Akira Hatanaka9ee2c262014-11-03 23:06:31 +0000267
Akira Hatanakabc950d52014-11-03 23:24:10 +0000268 Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
Akira Hatanaka9ee2c262014-11-03 23:06:31 +0000269 return true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000270}
271
272/// isLogicalImmediate - Return true if the immediate is valid for a logical
273/// immediate instruction of the given register size. Return false otherwise.
274static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
275 uint64_t encoding;
276 return processLogicalImmediate(imm, regSize, encoding);
277}
278
279/// encodeLogicalImmediate - Return the encoded immediate value for a logical
280/// immediate instruction of the given register size.
281static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
282 uint64_t encoding = 0;
283 bool res = processLogicalImmediate(imm, regSize, encoding);
284 assert(res && "invalid logical immediate");
285 (void)res;
286 return encoding;
287}
288
289/// decodeLogicalImmediate - Decode a logical immediate value in the form
290/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
291/// integer value it represents with regSize bits.
292static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
293 // Extract the N, imms, and immr fields.
294 unsigned N = (val >> 12) & 1;
295 unsigned immr = (val >> 6) & 0x3f;
296 unsigned imms = val & 0x3f;
297
298 assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
299 int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
300 assert(len >= 0 && "undefined logical immediate encoding");
301 unsigned size = (1 << len);
302 unsigned R = immr & (size - 1);
303 unsigned S = imms & (size - 1);
304 assert(S != size - 1 && "undefined logical immediate encoding");
305 uint64_t pattern = (1ULL << (S + 1)) - 1;
306 for (unsigned i = 0; i < R; ++i)
307 pattern = ror(pattern, size);
308
309 // Replicate the pattern to fill the regSize.
310 while (size != regSize) {
311 pattern |= (pattern << size);
312 size *= 2;
313 }
314 return pattern;
315}
316
317/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
318/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
319/// is a valid encoding for an integer value with regSize bits.
320static inline bool isValidDecodeLogicalImmediate(uint64_t val,
321 unsigned regSize) {
322 // Extract the N and imms fields needed for checking.
323 unsigned N = (val >> 12) & 1;
324 unsigned imms = val & 0x3f;
325
326 if (regSize == 32 && N != 0) // undefined logical immediate encoding
327 return false;
328 int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
329 if (len < 0) // undefined logical immediate encoding
330 return false;
331 unsigned size = (1 << len);
332 unsigned S = imms & (size - 1);
333 if (S == size - 1) // undefined logical immediate encoding
334 return false;
335
336 return true;
337}
338
339//===----------------------------------------------------------------------===//
340// Floating-point Immediates
341//
342static inline float getFPImmFloat(unsigned Imm) {
343 // We expect an 8-bit binary encoding of a floating-point number here.
344 union {
345 uint32_t I;
346 float F;
347 } FPUnion;
348
349 uint8_t Sign = (Imm >> 7) & 0x1;
350 uint8_t Exp = (Imm >> 4) & 0x7;
351 uint8_t Mantissa = Imm & 0xf;
352
353 // 8-bit FP iEEEE Float Encoding
354 // abcd efgh aBbbbbbc defgh000 00000000 00000000
355 //
356 // where B = NOT(b);
357
358 FPUnion.I = 0;
359 FPUnion.I |= Sign << 31;
360 FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
361 FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
362 FPUnion.I |= (Exp & 0x3) << 23;
363 FPUnion.I |= Mantissa << 19;
364 return FPUnion.F;
365}
366
Oliver Stannardb25914e2015-11-27 13:04:48 +0000367/// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
368/// floating-point value. If the value cannot be represented as an 8-bit
369/// floating-point value, then return -1.
370static inline int getFP16Imm(const APInt &Imm) {
371 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
372 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
373 int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
374
375 // We can handle 4 bits of mantissa.
376 // mantissa = (16+UInt(e:f:g:h))/16.
377 if (Mantissa & 0x3f)
378 return -1;
379 Mantissa >>= 6;
380
381 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
382 if (Exp < -3 || Exp > 4)
383 return -1;
384 Exp = ((Exp+3) & 0x7) ^ 4;
385
386 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
387}
388
389static inline int getFP16Imm(const APFloat &FPImm) {
390 return getFP16Imm(FPImm.bitcastToAPInt());
391}
392
Tim Northover3b0846e2014-05-24 12:50:23 +0000393/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
394/// floating-point value. If the value cannot be represented as an 8-bit
395/// floating-point value, then return -1.
396static inline int getFP32Imm(const APInt &Imm) {
397 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
398 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
399 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
400
401 // We can handle 4 bits of mantissa.
402 // mantissa = (16+UInt(e:f:g:h))/16.
403 if (Mantissa & 0x7ffff)
404 return -1;
405 Mantissa >>= 19;
406 if ((Mantissa & 0xf) != Mantissa)
407 return -1;
408
409 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
410 if (Exp < -3 || Exp > 4)
411 return -1;
412 Exp = ((Exp+3) & 0x7) ^ 4;
413
414 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
415}
416
417static inline int getFP32Imm(const APFloat &FPImm) {
418 return getFP32Imm(FPImm.bitcastToAPInt());
419}
420
421/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
422/// floating-point value. If the value cannot be represented as an 8-bit
423/// floating-point value, then return -1.
424static inline int getFP64Imm(const APInt &Imm) {
425 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
426 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
427 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
428
429 // We can handle 4 bits of mantissa.
430 // mantissa = (16+UInt(e:f:g:h))/16.
431 if (Mantissa & 0xffffffffffffULL)
432 return -1;
433 Mantissa >>= 48;
434 if ((Mantissa & 0xf) != Mantissa)
435 return -1;
436
437 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
438 if (Exp < -3 || Exp > 4)
439 return -1;
440 Exp = ((Exp+3) & 0x7) ^ 4;
441
442 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
443}
444
445static inline int getFP64Imm(const APFloat &FPImm) {
446 return getFP64Imm(FPImm.bitcastToAPInt());
447}
448
449//===--------------------------------------------------------------------===//
450// AdvSIMD Modified Immediates
451//===--------------------------------------------------------------------===//
452
453// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
454static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
455 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
456 ((Imm & 0xffffff00ffffff00ULL) == 0);
457}
458
459static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
460 return (Imm & 0xffULL);
461}
462
463static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
464 uint64_t EncVal = Imm;
465 return (EncVal << 32) | EncVal;
466}
467
468// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
469static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
470 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
471 ((Imm & 0xffff00ffffff00ffULL) == 0);
472}
473
474static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
475 return (Imm & 0xff00ULL) >> 8;
476}
477
478static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
479 uint64_t EncVal = Imm;
480 return (EncVal << 40) | (EncVal << 8);
481}
482
483// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
484static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
485 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
486 ((Imm & 0xff00ffffff00ffffULL) == 0);
487}
488
489static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
490 return (Imm & 0xff0000ULL) >> 16;
491}
492
493static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
494 uint64_t EncVal = Imm;
495 return (EncVal << 48) | (EncVal << 16);
496}
497
498// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
499static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
500 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
501 ((Imm & 0x00ffffff00ffffffULL) == 0);
502}
503
504static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
505 return (Imm & 0xff000000ULL) >> 24;
506}
507
508static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
509 uint64_t EncVal = Imm;
510 return (EncVal << 56) | (EncVal << 24);
511}
512
513// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
514static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
515 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
516 (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
517 ((Imm & 0xff00ff00ff00ff00ULL) == 0);
518}
519
520static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
521 return (Imm & 0xffULL);
522}
523
524static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
525 uint64_t EncVal = Imm;
526 return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
527}
528
529// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
530static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
531 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
532 (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
533 ((Imm & 0x00ff00ff00ff00ffULL) == 0);
534}
535
536static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
537 return (Imm & 0xff00ULL) >> 8;
538}
539
540static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
541 uint64_t EncVal = Imm;
542 return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
543}
544
545// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
546static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
547 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
548 ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
549}
550
551static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
552 return (Imm & 0xff00ULL) >> 8;
553}
554
555static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
556 uint64_t EncVal = Imm;
557 return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
558}
559
560// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
561static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
562 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
563 ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
564}
565
566static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
567 uint64_t EncVal = Imm;
568 return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
569}
570
571static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
572 return (Imm & 0x00ff0000ULL) >> 16;
573}
574
575// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
576static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
577 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
578 ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
579 ((Imm >> 56) == (Imm & 0x000000ffULL));
580}
581
582static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
583 return (Imm & 0xffULL);
584}
585
586static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
587 uint64_t EncVal = Imm;
588 EncVal |= (EncVal << 8);
589 EncVal |= (EncVal << 16);
590 EncVal |= (EncVal << 32);
591 return EncVal;
592}
593
594// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
595// cmode: 1110, op: 1
596static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
597 uint64_t ByteA = Imm & 0xff00000000000000ULL;
598 uint64_t ByteB = Imm & 0x00ff000000000000ULL;
599 uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
600 uint64_t ByteD = Imm & 0x000000ff00000000ULL;
601 uint64_t ByteE = Imm & 0x00000000ff000000ULL;
602 uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
603 uint64_t ByteG = Imm & 0x000000000000ff00ULL;
604 uint64_t ByteH = Imm & 0x00000000000000ffULL;
605
606 return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
607 (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
608 (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
609 (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
610 (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
611 (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
612 (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
613 (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
614}
615
616static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
617 uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
618 uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
619 uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
620 uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
621 uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
622 uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
623 uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
624 uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
625
626 uint8_t EncVal = BitA;
627 EncVal <<= 1;
628 EncVal |= BitB;
629 EncVal <<= 1;
630 EncVal |= BitC;
631 EncVal <<= 1;
632 EncVal |= BitD;
633 EncVal <<= 1;
634 EncVal |= BitE;
635 EncVal <<= 1;
636 EncVal |= BitF;
637 EncVal <<= 1;
638 EncVal |= BitG;
639 EncVal <<= 1;
640 EncVal |= BitH;
641 return EncVal;
642}
643
644static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
645 uint64_t EncVal = 0;
646 if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
647 if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
648 if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
649 if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
650 if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
651 if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
652 if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
653 if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
654 return EncVal;
655}
656
657// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
658static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
659 uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
660 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
661 (BString == 0x1f || BString == 0x20) &&
662 ((Imm & 0x0007ffff0007ffffULL) == 0);
663}
664
665static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
666 uint8_t BitA = (Imm & 0x80000000ULL) != 0;
667 uint8_t BitB = (Imm & 0x20000000ULL) != 0;
668 uint8_t BitC = (Imm & 0x01000000ULL) != 0;
669 uint8_t BitD = (Imm & 0x00800000ULL) != 0;
670 uint8_t BitE = (Imm & 0x00400000ULL) != 0;
671 uint8_t BitF = (Imm & 0x00200000ULL) != 0;
672 uint8_t BitG = (Imm & 0x00100000ULL) != 0;
673 uint8_t BitH = (Imm & 0x00080000ULL) != 0;
674
675 uint8_t EncVal = BitA;
676 EncVal <<= 1;
677 EncVal |= BitB;
678 EncVal <<= 1;
679 EncVal |= BitC;
680 EncVal <<= 1;
681 EncVal |= BitD;
682 EncVal <<= 1;
683 EncVal |= BitE;
684 EncVal <<= 1;
685 EncVal |= BitF;
686 EncVal <<= 1;
687 EncVal |= BitG;
688 EncVal <<= 1;
689 EncVal |= BitH;
690 return EncVal;
691}
692
693static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
694 uint64_t EncVal = 0;
695 if (Imm & 0x80) EncVal |= 0x80000000ULL;
696 if (Imm & 0x40) EncVal |= 0x3e000000ULL;
697 else EncVal |= 0x40000000ULL;
698 if (Imm & 0x20) EncVal |= 0x01000000ULL;
699 if (Imm & 0x10) EncVal |= 0x00800000ULL;
700 if (Imm & 0x08) EncVal |= 0x00400000ULL;
701 if (Imm & 0x04) EncVal |= 0x00200000ULL;
702 if (Imm & 0x02) EncVal |= 0x00100000ULL;
703 if (Imm & 0x01) EncVal |= 0x00080000ULL;
704 return (EncVal << 32) | EncVal;
705}
706
707// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
708static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
709 uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
710 return ((BString == 0xff || BString == 0x100) &&
711 ((Imm & 0x0000ffffffffffffULL) == 0));
712}
713
714static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
715 uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
716 uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
717 uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
718 uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
719 uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
720 uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
721 uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
722 uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
723
724 uint8_t EncVal = BitA;
725 EncVal <<= 1;
726 EncVal |= BitB;
727 EncVal <<= 1;
728 EncVal |= BitC;
729 EncVal <<= 1;
730 EncVal |= BitD;
731 EncVal <<= 1;
732 EncVal |= BitE;
733 EncVal <<= 1;
734 EncVal |= BitF;
735 EncVal <<= 1;
736 EncVal |= BitG;
737 EncVal <<= 1;
738 EncVal |= BitH;
739 return EncVal;
740}
741
742static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
743 uint64_t EncVal = 0;
744 if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
745 if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
746 else EncVal |= 0x4000000000000000ULL;
747 if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
748 if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
749 if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
750 if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
751 if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
752 if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
753 return (EncVal << 32) | EncVal;
754}
755
Tim Northoverdaa1c012016-06-16 01:42:25 +0000756inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
757 for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
758 if ((Value & ~(0xffffULL << Shift)) == 0)
759 return true;
760
761 return false;
762}
763
764inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
765 if (RegWidth == 32)
766 Value &= 0xffffffffULL;
767
768 // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
769 if (Value == 0 && Shift != 0)
770 return false;
771
772 return (Value & ~(0xffffULL << Shift)) == 0;
773}
774
775inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
776 // MOVZ takes precedence over MOVN.
777 if (isAnyMOVZMovAlias(Value, RegWidth))
778 return false;
779
780 Value = ~Value;
781 if (RegWidth == 32)
782 Value &= 0xffffffffULL;
783
784 return isMOVZMovAlias(Value, Shift, RegWidth);
785}
786
787inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
788 if (isAnyMOVZMovAlias(Value, RegWidth))
789 return true;
790
791 // It's not a MOVZ, but it might be a MOVN.
792 Value = ~Value;
793 if (RegWidth == 32)
794 Value &= 0xffffffffULL;
795
796 return isAnyMOVZMovAlias(Value, RegWidth);
797}
798
Tim Northover3b0846e2014-05-24 12:50:23 +0000799} // end namespace AArch64_AM
800
801} // end namespace llvm
802
803#endif