Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1 | //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains the AArch64 addressing mode implementation stuff. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
Benjamin Kramer | a7c40ef | 2014-08-13 16:26:38 +0000 | [diff] [blame] | 14 | #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H |
| 15 | #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 16 | |
| 17 | #include "llvm/ADT/APFloat.h" |
| 18 | #include "llvm/ADT/APInt.h" |
| 19 | #include "llvm/Support/ErrorHandling.h" |
| 20 | #include "llvm/Support/MathExtras.h" |
| 21 | #include <cassert> |
| 22 | |
| 23 | namespace llvm { |
| 24 | |
| 25 | /// AArch64_AM - AArch64 Addressing Mode Stuff |
| 26 | namespace AArch64_AM { |
| 27 | |
| 28 | //===----------------------------------------------------------------------===// |
| 29 | // Shifts |
| 30 | // |
| 31 | |
| 32 | enum ShiftExtendType { |
| 33 | InvalidShiftExtend = -1, |
| 34 | LSL = 0, |
| 35 | LSR, |
| 36 | ASR, |
| 37 | ROR, |
| 38 | MSL, |
| 39 | |
| 40 | UXTB, |
| 41 | UXTH, |
| 42 | UXTW, |
| 43 | UXTX, |
| 44 | |
| 45 | SXTB, |
| 46 | SXTH, |
| 47 | SXTW, |
| 48 | SXTX, |
| 49 | }; |
| 50 | |
| 51 | /// getShiftName - Get the string encoding for the shift type. |
| 52 | static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) { |
| 53 | switch (ST) { |
Craig Topper | d3c02f1 | 2015-01-05 10:15:49 +0000 | [diff] [blame] | 54 | default: llvm_unreachable("unhandled shift type!"); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 55 | case AArch64_AM::LSL: return "lsl"; |
| 56 | case AArch64_AM::LSR: return "lsr"; |
| 57 | case AArch64_AM::ASR: return "asr"; |
| 58 | case AArch64_AM::ROR: return "ror"; |
| 59 | case AArch64_AM::MSL: return "msl"; |
| 60 | case AArch64_AM::UXTB: return "uxtb"; |
| 61 | case AArch64_AM::UXTH: return "uxth"; |
| 62 | case AArch64_AM::UXTW: return "uxtw"; |
| 63 | case AArch64_AM::UXTX: return "uxtx"; |
| 64 | case AArch64_AM::SXTB: return "sxtb"; |
| 65 | case AArch64_AM::SXTH: return "sxth"; |
| 66 | case AArch64_AM::SXTW: return "sxtw"; |
| 67 | case AArch64_AM::SXTX: return "sxtx"; |
| 68 | } |
| 69 | return nullptr; |
| 70 | } |
| 71 | |
| 72 | /// getShiftType - Extract the shift type. |
| 73 | static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) { |
| 74 | switch ((Imm >> 6) & 0x7) { |
| 75 | default: return AArch64_AM::InvalidShiftExtend; |
| 76 | case 0: return AArch64_AM::LSL; |
| 77 | case 1: return AArch64_AM::LSR; |
| 78 | case 2: return AArch64_AM::ASR; |
| 79 | case 3: return AArch64_AM::ROR; |
| 80 | case 4: return AArch64_AM::MSL; |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | /// getShiftValue - Extract the shift value. |
| 85 | static inline unsigned getShiftValue(unsigned Imm) { |
| 86 | return Imm & 0x3f; |
| 87 | } |
| 88 | |
| 89 | /// getShifterImm - Encode the shift type and amount: |
| 90 | /// imm: 6-bit shift amount |
| 91 | /// shifter: 000 ==> lsl |
| 92 | /// 001 ==> lsr |
| 93 | /// 010 ==> asr |
| 94 | /// 011 ==> ror |
| 95 | /// 100 ==> msl |
| 96 | /// {8-6} = shifter |
| 97 | /// {5-0} = imm |
| 98 | static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST, |
| 99 | unsigned Imm) { |
| 100 | assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!"); |
| 101 | unsigned STEnc = 0; |
| 102 | switch (ST) { |
| 103 | default: llvm_unreachable("Invalid shift requested"); |
| 104 | case AArch64_AM::LSL: STEnc = 0; break; |
| 105 | case AArch64_AM::LSR: STEnc = 1; break; |
| 106 | case AArch64_AM::ASR: STEnc = 2; break; |
| 107 | case AArch64_AM::ROR: STEnc = 3; break; |
| 108 | case AArch64_AM::MSL: STEnc = 4; break; |
| 109 | } |
| 110 | return (STEnc << 6) | (Imm & 0x3f); |
| 111 | } |
| 112 | |
| 113 | //===----------------------------------------------------------------------===// |
| 114 | // Extends |
| 115 | // |
| 116 | |
| 117 | /// getArithShiftValue - get the arithmetic shift value. |
| 118 | static inline unsigned getArithShiftValue(unsigned Imm) { |
| 119 | return Imm & 0x7; |
| 120 | } |
| 121 | |
| 122 | /// getExtendType - Extract the extend type for operands of arithmetic ops. |
| 123 | static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) { |
| 124 | assert((Imm & 0x7) == Imm && "invalid immediate!"); |
| 125 | switch (Imm) { |
| 126 | default: llvm_unreachable("Compiler bug!"); |
| 127 | case 0: return AArch64_AM::UXTB; |
| 128 | case 1: return AArch64_AM::UXTH; |
| 129 | case 2: return AArch64_AM::UXTW; |
| 130 | case 3: return AArch64_AM::UXTX; |
| 131 | case 4: return AArch64_AM::SXTB; |
| 132 | case 5: return AArch64_AM::SXTH; |
| 133 | case 6: return AArch64_AM::SXTW; |
| 134 | case 7: return AArch64_AM::SXTX; |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) { |
| 139 | return getExtendType((Imm >> 3) & 0x7); |
| 140 | } |
| 141 | |
| 142 | /// Mapping from extend bits to required operation: |
| 143 | /// shifter: 000 ==> uxtb |
| 144 | /// 001 ==> uxth |
| 145 | /// 010 ==> uxtw |
| 146 | /// 011 ==> uxtx |
| 147 | /// 100 ==> sxtb |
| 148 | /// 101 ==> sxth |
| 149 | /// 110 ==> sxtw |
| 150 | /// 111 ==> sxtx |
| 151 | inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) { |
| 152 | switch (ET) { |
| 153 | default: llvm_unreachable("Invalid extend type requested"); |
| 154 | case AArch64_AM::UXTB: return 0; break; |
| 155 | case AArch64_AM::UXTH: return 1; break; |
| 156 | case AArch64_AM::UXTW: return 2; break; |
| 157 | case AArch64_AM::UXTX: return 3; break; |
| 158 | case AArch64_AM::SXTB: return 4; break; |
| 159 | case AArch64_AM::SXTH: return 5; break; |
| 160 | case AArch64_AM::SXTW: return 6; break; |
| 161 | case AArch64_AM::SXTX: return 7; break; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | /// getArithExtendImm - Encode the extend type and shift amount for an |
| 166 | /// arithmetic instruction: |
| 167 | /// imm: 3-bit extend amount |
| 168 | /// {5-3} = shifter |
| 169 | /// {2-0} = imm3 |
| 170 | static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET, |
| 171 | unsigned Imm) { |
| 172 | assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!"); |
| 173 | return (getExtendEncoding(ET) << 3) | (Imm & 0x7); |
| 174 | } |
| 175 | |
| 176 | /// getMemDoShift - Extract the "do shift" flag value for load/store |
| 177 | /// instructions. |
| 178 | static inline bool getMemDoShift(unsigned Imm) { |
| 179 | return (Imm & 0x1) != 0; |
| 180 | } |
| 181 | |
| 182 | /// getExtendType - Extract the extend type for the offset operand of |
| 183 | /// loads/stores. |
| 184 | static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) { |
| 185 | return getExtendType((Imm >> 1) & 0x7); |
| 186 | } |
| 187 | |
| 188 | /// getExtendImm - Encode the extend type and amount for a load/store inst: |
| 189 | /// doshift: should the offset be scaled by the access size |
| 190 | /// shifter: 000 ==> uxtb |
| 191 | /// 001 ==> uxth |
| 192 | /// 010 ==> uxtw |
| 193 | /// 011 ==> uxtx |
| 194 | /// 100 ==> sxtb |
| 195 | /// 101 ==> sxth |
| 196 | /// 110 ==> sxtw |
| 197 | /// 111 ==> sxtx |
| 198 | /// {3-1} = shifter |
| 199 | /// {0} = doshift |
| 200 | static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET, |
| 201 | bool DoShift) { |
| 202 | return (getExtendEncoding(ET) << 1) | unsigned(DoShift); |
| 203 | } |
| 204 | |
| 205 | static inline uint64_t ror(uint64_t elt, unsigned size) { |
| 206 | return ((elt & 1) << (size-1)) | (elt >> 1); |
| 207 | } |
| 208 | |
| 209 | /// processLogicalImmediate - Determine if an immediate value can be encoded |
| 210 | /// as the immediate operand of a logical instruction for the given register |
| 211 | /// size. If so, return true with "encoding" set to the encoded value in |
| 212 | /// the form N:immr:imms. |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 213 | static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize, |
| 214 | uint64_t &Encoding) { |
| 215 | if (Imm == 0ULL || Imm == ~0ULL || |
| 216 | (RegSize != 64 && (Imm >> RegSize != 0 || Imm == ~0U))) |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 217 | return false; |
| 218 | |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 219 | // First, determine the element size. |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 220 | unsigned Size = RegSize; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 221 | |
Akira Hatanaka | 9ee2c26 | 2014-11-03 23:06:31 +0000 | [diff] [blame] | 222 | do { |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 223 | Size /= 2; |
| 224 | uint64_t Mask = (1ULL << Size) - 1; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 225 | |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 226 | if ((Imm & Mask) != ((Imm >> Size) & Mask)) { |
| 227 | Size *= 2; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 228 | break; |
| 229 | } |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 230 | } while (Size > 2); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 231 | |
| 232 | // Second, determine the rotation to make the element be: 0^m 1^n. |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 233 | uint32_t CTO, I; |
| 234 | uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size); |
| 235 | Imm &= Mask; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 236 | |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 237 | if (isShiftedMask_64(Imm)) { |
| 238 | I = countTrailingZeros(Imm); |
Michael Ilseman | addddc4 | 2014-12-15 18:48:43 +0000 | [diff] [blame] | 239 | assert(I < 64 && "undefined behavior"); |
Benjamin Kramer | 5f6a907 | 2015-02-12 15:35:40 +0000 | [diff] [blame] | 240 | CTO = countTrailingOnes(Imm >> I); |
Akira Hatanaka | 9ee2c26 | 2014-11-03 23:06:31 +0000 | [diff] [blame] | 241 | } else { |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 242 | Imm |= ~Mask; |
| 243 | if (!isShiftedMask_64(~Imm)) |
Akira Hatanaka | 9ee2c26 | 2014-11-03 23:06:31 +0000 | [diff] [blame] | 244 | return false; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 245 | |
Benjamin Kramer | 5f6a907 | 2015-02-12 15:35:40 +0000 | [diff] [blame] | 246 | unsigned CLO = countLeadingOnes(Imm); |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 247 | I = 64 - CLO; |
Benjamin Kramer | 5f6a907 | 2015-02-12 15:35:40 +0000 | [diff] [blame] | 248 | CTO = CLO + countTrailingOnes(Imm) - (64 - Size); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 249 | } |
| 250 | |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 251 | // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n |
Akira Hatanaka | 107d13c | 2014-12-01 06:14:52 +0000 | [diff] [blame] | 252 | // to our target value, where I is the number of RORs to go the opposite |
Akira Hatanaka | 9ee2c26 | 2014-11-03 23:06:31 +0000 | [diff] [blame] | 253 | // direction. |
Akira Hatanaka | 107d13c | 2014-12-01 06:14:52 +0000 | [diff] [blame] | 254 | assert(Size > I && "I should be smaller than element size"); |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 255 | unsigned Immr = (Size - I) & (Size - 1); |
Akira Hatanaka | 9ee2c26 | 2014-11-03 23:06:31 +0000 | [diff] [blame] | 256 | |
| 257 | // If size has a 1 in the n'th bit, create a value that has zeroes in |
| 258 | // bits [0, n] and ones above that. |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 259 | uint64_t NImms = ~(Size-1) << 1; |
Akira Hatanaka | 9ee2c26 | 2014-11-03 23:06:31 +0000 | [diff] [blame] | 260 | |
| 261 | // Or the CTO value into the low bits, which must be below the Nth bit |
| 262 | // bit mentioned above. |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 263 | NImms |= (CTO-1); |
Akira Hatanaka | 9ee2c26 | 2014-11-03 23:06:31 +0000 | [diff] [blame] | 264 | |
| 265 | // Extract the seventh bit and toggle it to create the N field. |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 266 | unsigned N = ((NImms >> 6) & 1) ^ 1; |
Akira Hatanaka | 9ee2c26 | 2014-11-03 23:06:31 +0000 | [diff] [blame] | 267 | |
Akira Hatanaka | bc950d5 | 2014-11-03 23:24:10 +0000 | [diff] [blame] | 268 | Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f); |
Akira Hatanaka | 9ee2c26 | 2014-11-03 23:06:31 +0000 | [diff] [blame] | 269 | return true; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 270 | } |
| 271 | |
| 272 | /// isLogicalImmediate - Return true if the immediate is valid for a logical |
| 273 | /// immediate instruction of the given register size. Return false otherwise. |
| 274 | static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) { |
| 275 | uint64_t encoding; |
| 276 | return processLogicalImmediate(imm, regSize, encoding); |
| 277 | } |
| 278 | |
| 279 | /// encodeLogicalImmediate - Return the encoded immediate value for a logical |
| 280 | /// immediate instruction of the given register size. |
| 281 | static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) { |
| 282 | uint64_t encoding = 0; |
| 283 | bool res = processLogicalImmediate(imm, regSize, encoding); |
| 284 | assert(res && "invalid logical immediate"); |
| 285 | (void)res; |
| 286 | return encoding; |
| 287 | } |
| 288 | |
| 289 | /// decodeLogicalImmediate - Decode a logical immediate value in the form |
| 290 | /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the |
| 291 | /// integer value it represents with regSize bits. |
| 292 | static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) { |
| 293 | // Extract the N, imms, and immr fields. |
| 294 | unsigned N = (val >> 12) & 1; |
| 295 | unsigned immr = (val >> 6) & 0x3f; |
| 296 | unsigned imms = val & 0x3f; |
| 297 | |
| 298 | assert((regSize == 64 || N == 0) && "undefined logical immediate encoding"); |
| 299 | int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); |
| 300 | assert(len >= 0 && "undefined logical immediate encoding"); |
| 301 | unsigned size = (1 << len); |
| 302 | unsigned R = immr & (size - 1); |
| 303 | unsigned S = imms & (size - 1); |
| 304 | assert(S != size - 1 && "undefined logical immediate encoding"); |
| 305 | uint64_t pattern = (1ULL << (S + 1)) - 1; |
| 306 | for (unsigned i = 0; i < R; ++i) |
| 307 | pattern = ror(pattern, size); |
| 308 | |
| 309 | // Replicate the pattern to fill the regSize. |
| 310 | while (size != regSize) { |
| 311 | pattern |= (pattern << size); |
| 312 | size *= 2; |
| 313 | } |
| 314 | return pattern; |
| 315 | } |
| 316 | |
| 317 | /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value |
| 318 | /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits) |
| 319 | /// is a valid encoding for an integer value with regSize bits. |
| 320 | static inline bool isValidDecodeLogicalImmediate(uint64_t val, |
| 321 | unsigned regSize) { |
| 322 | // Extract the N and imms fields needed for checking. |
| 323 | unsigned N = (val >> 12) & 1; |
| 324 | unsigned imms = val & 0x3f; |
| 325 | |
| 326 | if (regSize == 32 && N != 0) // undefined logical immediate encoding |
| 327 | return false; |
| 328 | int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); |
| 329 | if (len < 0) // undefined logical immediate encoding |
| 330 | return false; |
| 331 | unsigned size = (1 << len); |
| 332 | unsigned S = imms & (size - 1); |
| 333 | if (S == size - 1) // undefined logical immediate encoding |
| 334 | return false; |
| 335 | |
| 336 | return true; |
| 337 | } |
| 338 | |
| 339 | //===----------------------------------------------------------------------===// |
| 340 | // Floating-point Immediates |
| 341 | // |
| 342 | static inline float getFPImmFloat(unsigned Imm) { |
| 343 | // We expect an 8-bit binary encoding of a floating-point number here. |
| 344 | union { |
| 345 | uint32_t I; |
| 346 | float F; |
| 347 | } FPUnion; |
| 348 | |
| 349 | uint8_t Sign = (Imm >> 7) & 0x1; |
| 350 | uint8_t Exp = (Imm >> 4) & 0x7; |
| 351 | uint8_t Mantissa = Imm & 0xf; |
| 352 | |
| 353 | // 8-bit FP iEEEE Float Encoding |
| 354 | // abcd efgh aBbbbbbc defgh000 00000000 00000000 |
| 355 | // |
| 356 | // where B = NOT(b); |
| 357 | |
| 358 | FPUnion.I = 0; |
| 359 | FPUnion.I |= Sign << 31; |
| 360 | FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; |
| 361 | FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; |
| 362 | FPUnion.I |= (Exp & 0x3) << 23; |
| 363 | FPUnion.I |= Mantissa << 19; |
| 364 | return FPUnion.F; |
| 365 | } |
| 366 | |
Oliver Stannard | b25914e | 2015-11-27 13:04:48 +0000 | [diff] [blame] | 367 | /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit |
| 368 | /// floating-point value. If the value cannot be represented as an 8-bit |
| 369 | /// floating-point value, then return -1. |
| 370 | static inline int getFP16Imm(const APInt &Imm) { |
| 371 | uint32_t Sign = Imm.lshr(15).getZExtValue() & 1; |
| 372 | int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15 |
| 373 | int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits |
| 374 | |
| 375 | // We can handle 4 bits of mantissa. |
| 376 | // mantissa = (16+UInt(e:f:g:h))/16. |
| 377 | if (Mantissa & 0x3f) |
| 378 | return -1; |
| 379 | Mantissa >>= 6; |
| 380 | |
| 381 | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| 382 | if (Exp < -3 || Exp > 4) |
| 383 | return -1; |
| 384 | Exp = ((Exp+3) & 0x7) ^ 4; |
| 385 | |
| 386 | return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| 387 | } |
| 388 | |
| 389 | static inline int getFP16Imm(const APFloat &FPImm) { |
| 390 | return getFP16Imm(FPImm.bitcastToAPInt()); |
| 391 | } |
| 392 | |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 393 | /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit |
| 394 | /// floating-point value. If the value cannot be represented as an 8-bit |
| 395 | /// floating-point value, then return -1. |
| 396 | static inline int getFP32Imm(const APInt &Imm) { |
| 397 | uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; |
| 398 | int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 |
| 399 | int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits |
| 400 | |
| 401 | // We can handle 4 bits of mantissa. |
| 402 | // mantissa = (16+UInt(e:f:g:h))/16. |
| 403 | if (Mantissa & 0x7ffff) |
| 404 | return -1; |
| 405 | Mantissa >>= 19; |
| 406 | if ((Mantissa & 0xf) != Mantissa) |
| 407 | return -1; |
| 408 | |
| 409 | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| 410 | if (Exp < -3 || Exp > 4) |
| 411 | return -1; |
| 412 | Exp = ((Exp+3) & 0x7) ^ 4; |
| 413 | |
| 414 | return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| 415 | } |
| 416 | |
| 417 | static inline int getFP32Imm(const APFloat &FPImm) { |
| 418 | return getFP32Imm(FPImm.bitcastToAPInt()); |
| 419 | } |
| 420 | |
| 421 | /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit |
| 422 | /// floating-point value. If the value cannot be represented as an 8-bit |
| 423 | /// floating-point value, then return -1. |
| 424 | static inline int getFP64Imm(const APInt &Imm) { |
| 425 | uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; |
| 426 | int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 |
| 427 | uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; |
| 428 | |
| 429 | // We can handle 4 bits of mantissa. |
| 430 | // mantissa = (16+UInt(e:f:g:h))/16. |
| 431 | if (Mantissa & 0xffffffffffffULL) |
| 432 | return -1; |
| 433 | Mantissa >>= 48; |
| 434 | if ((Mantissa & 0xf) != Mantissa) |
| 435 | return -1; |
| 436 | |
| 437 | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| 438 | if (Exp < -3 || Exp > 4) |
| 439 | return -1; |
| 440 | Exp = ((Exp+3) & 0x7) ^ 4; |
| 441 | |
| 442 | return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| 443 | } |
| 444 | |
| 445 | static inline int getFP64Imm(const APFloat &FPImm) { |
| 446 | return getFP64Imm(FPImm.bitcastToAPInt()); |
| 447 | } |
| 448 | |
| 449 | //===--------------------------------------------------------------------===// |
| 450 | // AdvSIMD Modified Immediates |
| 451 | //===--------------------------------------------------------------------===// |
| 452 | |
| 453 | // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh |
| 454 | static inline bool isAdvSIMDModImmType1(uint64_t Imm) { |
| 455 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 456 | ((Imm & 0xffffff00ffffff00ULL) == 0); |
| 457 | } |
| 458 | |
| 459 | static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) { |
| 460 | return (Imm & 0xffULL); |
| 461 | } |
| 462 | |
| 463 | static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) { |
| 464 | uint64_t EncVal = Imm; |
| 465 | return (EncVal << 32) | EncVal; |
| 466 | } |
| 467 | |
| 468 | // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 |
| 469 | static inline bool isAdvSIMDModImmType2(uint64_t Imm) { |
| 470 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 471 | ((Imm & 0xffff00ffffff00ffULL) == 0); |
| 472 | } |
| 473 | |
| 474 | static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) { |
| 475 | return (Imm & 0xff00ULL) >> 8; |
| 476 | } |
| 477 | |
| 478 | static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) { |
| 479 | uint64_t EncVal = Imm; |
| 480 | return (EncVal << 40) | (EncVal << 8); |
| 481 | } |
| 482 | |
| 483 | // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 |
| 484 | static inline bool isAdvSIMDModImmType3(uint64_t Imm) { |
| 485 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 486 | ((Imm & 0xff00ffffff00ffffULL) == 0); |
| 487 | } |
| 488 | |
| 489 | static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) { |
| 490 | return (Imm & 0xff0000ULL) >> 16; |
| 491 | } |
| 492 | |
| 493 | static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) { |
| 494 | uint64_t EncVal = Imm; |
| 495 | return (EncVal << 48) | (EncVal << 16); |
| 496 | } |
| 497 | |
| 498 | // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 |
| 499 | static inline bool isAdvSIMDModImmType4(uint64_t Imm) { |
| 500 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 501 | ((Imm & 0x00ffffff00ffffffULL) == 0); |
| 502 | } |
| 503 | |
| 504 | static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) { |
| 505 | return (Imm & 0xff000000ULL) >> 24; |
| 506 | } |
| 507 | |
| 508 | static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) { |
| 509 | uint64_t EncVal = Imm; |
| 510 | return (EncVal << 56) | (EncVal << 24); |
| 511 | } |
| 512 | |
| 513 | // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh |
| 514 | static inline bool isAdvSIMDModImmType5(uint64_t Imm) { |
| 515 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 516 | (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) && |
| 517 | ((Imm & 0xff00ff00ff00ff00ULL) == 0); |
| 518 | } |
| 519 | |
| 520 | static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) { |
| 521 | return (Imm & 0xffULL); |
| 522 | } |
| 523 | |
| 524 | static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) { |
| 525 | uint64_t EncVal = Imm; |
| 526 | return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal; |
| 527 | } |
| 528 | |
| 529 | // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 |
| 530 | static inline bool isAdvSIMDModImmType6(uint64_t Imm) { |
| 531 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 532 | (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) && |
| 533 | ((Imm & 0x00ff00ff00ff00ffULL) == 0); |
| 534 | } |
| 535 | |
| 536 | static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) { |
| 537 | return (Imm & 0xff00ULL) >> 8; |
| 538 | } |
| 539 | |
| 540 | static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) { |
| 541 | uint64_t EncVal = Imm; |
| 542 | return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8); |
| 543 | } |
| 544 | |
| 545 | // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF |
| 546 | static inline bool isAdvSIMDModImmType7(uint64_t Imm) { |
| 547 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 548 | ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL); |
| 549 | } |
| 550 | |
| 551 | static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) { |
| 552 | return (Imm & 0xff00ULL) >> 8; |
| 553 | } |
| 554 | |
| 555 | static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) { |
| 556 | uint64_t EncVal = Imm; |
| 557 | return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL; |
| 558 | } |
| 559 | |
| 560 | // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF |
| 561 | static inline bool isAdvSIMDModImmType8(uint64_t Imm) { |
| 562 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 563 | ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL); |
| 564 | } |
| 565 | |
| 566 | static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) { |
| 567 | uint64_t EncVal = Imm; |
| 568 | return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL; |
| 569 | } |
| 570 | |
| 571 | static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) { |
| 572 | return (Imm & 0x00ff0000ULL) >> 16; |
| 573 | } |
| 574 | |
| 575 | // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh |
| 576 | static inline bool isAdvSIMDModImmType9(uint64_t Imm) { |
| 577 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 578 | ((Imm >> 48) == (Imm & 0x0000ffffULL)) && |
| 579 | ((Imm >> 56) == (Imm & 0x000000ffULL)); |
| 580 | } |
| 581 | |
| 582 | static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) { |
| 583 | return (Imm & 0xffULL); |
| 584 | } |
| 585 | |
| 586 | static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) { |
| 587 | uint64_t EncVal = Imm; |
| 588 | EncVal |= (EncVal << 8); |
| 589 | EncVal |= (EncVal << 16); |
| 590 | EncVal |= (EncVal << 32); |
| 591 | return EncVal; |
| 592 | } |
| 593 | |
| 594 | // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh |
| 595 | // cmode: 1110, op: 1 |
| 596 | static inline bool isAdvSIMDModImmType10(uint64_t Imm) { |
| 597 | uint64_t ByteA = Imm & 0xff00000000000000ULL; |
| 598 | uint64_t ByteB = Imm & 0x00ff000000000000ULL; |
| 599 | uint64_t ByteC = Imm & 0x0000ff0000000000ULL; |
| 600 | uint64_t ByteD = Imm & 0x000000ff00000000ULL; |
| 601 | uint64_t ByteE = Imm & 0x00000000ff000000ULL; |
| 602 | uint64_t ByteF = Imm & 0x0000000000ff0000ULL; |
| 603 | uint64_t ByteG = Imm & 0x000000000000ff00ULL; |
| 604 | uint64_t ByteH = Imm & 0x00000000000000ffULL; |
| 605 | |
| 606 | return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) && |
| 607 | (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) && |
| 608 | (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) && |
| 609 | (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) && |
| 610 | (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) && |
| 611 | (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) && |
| 612 | (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) && |
| 613 | (ByteH == 0ULL || ByteH == 0x00000000000000ffULL); |
| 614 | } |
| 615 | |
| 616 | static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) { |
| 617 | uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0; |
| 618 | uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0; |
| 619 | uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0; |
| 620 | uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0; |
| 621 | uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0; |
| 622 | uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0; |
| 623 | uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0; |
| 624 | uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0; |
| 625 | |
| 626 | uint8_t EncVal = BitA; |
| 627 | EncVal <<= 1; |
| 628 | EncVal |= BitB; |
| 629 | EncVal <<= 1; |
| 630 | EncVal |= BitC; |
| 631 | EncVal <<= 1; |
| 632 | EncVal |= BitD; |
| 633 | EncVal <<= 1; |
| 634 | EncVal |= BitE; |
| 635 | EncVal <<= 1; |
| 636 | EncVal |= BitF; |
| 637 | EncVal <<= 1; |
| 638 | EncVal |= BitG; |
| 639 | EncVal <<= 1; |
| 640 | EncVal |= BitH; |
| 641 | return EncVal; |
| 642 | } |
| 643 | |
| 644 | static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) { |
| 645 | uint64_t EncVal = 0; |
| 646 | if (Imm & 0x80) EncVal |= 0xff00000000000000ULL; |
| 647 | if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL; |
| 648 | if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL; |
| 649 | if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL; |
| 650 | if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL; |
| 651 | if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL; |
| 652 | if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL; |
| 653 | if (Imm & 0x01) EncVal |= 0x00000000000000ffULL; |
| 654 | return EncVal; |
| 655 | } |
| 656 | |
| 657 | // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00 |
| 658 | static inline bool isAdvSIMDModImmType11(uint64_t Imm) { |
| 659 | uint64_t BString = (Imm & 0x7E000000ULL) >> 25; |
| 660 | return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| 661 | (BString == 0x1f || BString == 0x20) && |
| 662 | ((Imm & 0x0007ffff0007ffffULL) == 0); |
| 663 | } |
| 664 | |
| 665 | static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) { |
| 666 | uint8_t BitA = (Imm & 0x80000000ULL) != 0; |
| 667 | uint8_t BitB = (Imm & 0x20000000ULL) != 0; |
| 668 | uint8_t BitC = (Imm & 0x01000000ULL) != 0; |
| 669 | uint8_t BitD = (Imm & 0x00800000ULL) != 0; |
| 670 | uint8_t BitE = (Imm & 0x00400000ULL) != 0; |
| 671 | uint8_t BitF = (Imm & 0x00200000ULL) != 0; |
| 672 | uint8_t BitG = (Imm & 0x00100000ULL) != 0; |
| 673 | uint8_t BitH = (Imm & 0x00080000ULL) != 0; |
| 674 | |
| 675 | uint8_t EncVal = BitA; |
| 676 | EncVal <<= 1; |
| 677 | EncVal |= BitB; |
| 678 | EncVal <<= 1; |
| 679 | EncVal |= BitC; |
| 680 | EncVal <<= 1; |
| 681 | EncVal |= BitD; |
| 682 | EncVal <<= 1; |
| 683 | EncVal |= BitE; |
| 684 | EncVal <<= 1; |
| 685 | EncVal |= BitF; |
| 686 | EncVal <<= 1; |
| 687 | EncVal |= BitG; |
| 688 | EncVal <<= 1; |
| 689 | EncVal |= BitH; |
| 690 | return EncVal; |
| 691 | } |
| 692 | |
| 693 | static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) { |
| 694 | uint64_t EncVal = 0; |
| 695 | if (Imm & 0x80) EncVal |= 0x80000000ULL; |
| 696 | if (Imm & 0x40) EncVal |= 0x3e000000ULL; |
| 697 | else EncVal |= 0x40000000ULL; |
| 698 | if (Imm & 0x20) EncVal |= 0x01000000ULL; |
| 699 | if (Imm & 0x10) EncVal |= 0x00800000ULL; |
| 700 | if (Imm & 0x08) EncVal |= 0x00400000ULL; |
| 701 | if (Imm & 0x04) EncVal |= 0x00200000ULL; |
| 702 | if (Imm & 0x02) EncVal |= 0x00100000ULL; |
| 703 | if (Imm & 0x01) EncVal |= 0x00080000ULL; |
| 704 | return (EncVal << 32) | EncVal; |
| 705 | } |
| 706 | |
| 707 | // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00 |
| 708 | static inline bool isAdvSIMDModImmType12(uint64_t Imm) { |
| 709 | uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54; |
| 710 | return ((BString == 0xff || BString == 0x100) && |
| 711 | ((Imm & 0x0000ffffffffffffULL) == 0)); |
| 712 | } |
| 713 | |
| 714 | static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) { |
| 715 | uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0; |
| 716 | uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0; |
| 717 | uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0; |
| 718 | uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0; |
| 719 | uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0; |
| 720 | uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0; |
| 721 | uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0; |
| 722 | uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0; |
| 723 | |
| 724 | uint8_t EncVal = BitA; |
| 725 | EncVal <<= 1; |
| 726 | EncVal |= BitB; |
| 727 | EncVal <<= 1; |
| 728 | EncVal |= BitC; |
| 729 | EncVal <<= 1; |
| 730 | EncVal |= BitD; |
| 731 | EncVal <<= 1; |
| 732 | EncVal |= BitE; |
| 733 | EncVal <<= 1; |
| 734 | EncVal |= BitF; |
| 735 | EncVal <<= 1; |
| 736 | EncVal |= BitG; |
| 737 | EncVal <<= 1; |
| 738 | EncVal |= BitH; |
| 739 | return EncVal; |
| 740 | } |
| 741 | |
| 742 | static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) { |
| 743 | uint64_t EncVal = 0; |
| 744 | if (Imm & 0x80) EncVal |= 0x8000000000000000ULL; |
| 745 | if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL; |
| 746 | else EncVal |= 0x4000000000000000ULL; |
| 747 | if (Imm & 0x20) EncVal |= 0x0020000000000000ULL; |
| 748 | if (Imm & 0x10) EncVal |= 0x0010000000000000ULL; |
| 749 | if (Imm & 0x08) EncVal |= 0x0008000000000000ULL; |
| 750 | if (Imm & 0x04) EncVal |= 0x0004000000000000ULL; |
| 751 | if (Imm & 0x02) EncVal |= 0x0002000000000000ULL; |
| 752 | if (Imm & 0x01) EncVal |= 0x0001000000000000ULL; |
| 753 | return (EncVal << 32) | EncVal; |
| 754 | } |
| 755 | |
Tim Northover | daa1c01 | 2016-06-16 01:42:25 +0000 | [diff] [blame] | 756 | inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) { |
| 757 | for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16) |
| 758 | if ((Value & ~(0xffffULL << Shift)) == 0) |
| 759 | return true; |
| 760 | |
| 761 | return false; |
| 762 | } |
| 763 | |
| 764 | inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) { |
| 765 | if (RegWidth == 32) |
| 766 | Value &= 0xffffffffULL; |
| 767 | |
| 768 | // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0". |
| 769 | if (Value == 0 && Shift != 0) |
| 770 | return false; |
| 771 | |
| 772 | return (Value & ~(0xffffULL << Shift)) == 0; |
| 773 | } |
| 774 | |
| 775 | inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) { |
| 776 | // MOVZ takes precedence over MOVN. |
| 777 | if (isAnyMOVZMovAlias(Value, RegWidth)) |
| 778 | return false; |
| 779 | |
| 780 | Value = ~Value; |
| 781 | if (RegWidth == 32) |
| 782 | Value &= 0xffffffffULL; |
| 783 | |
| 784 | return isMOVZMovAlias(Value, Shift, RegWidth); |
| 785 | } |
| 786 | |
| 787 | inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) { |
| 788 | if (isAnyMOVZMovAlias(Value, RegWidth)) |
| 789 | return true; |
| 790 | |
| 791 | // It's not a MOVZ, but it might be a MOVN. |
| 792 | Value = ~Value; |
| 793 | if (RegWidth == 32) |
| 794 | Value &= 0xffffffffULL; |
| 795 | |
| 796 | return isAnyMOVZMovAlias(Value, RegWidth); |
| 797 | } |
| 798 | |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 799 | } // end namespace AArch64_AM |
| 800 | |
| 801 | } // end namespace llvm |
| 802 | |
| 803 | #endif |