Colin LeMahieu | 7cd0892 | 2015-11-09 04:07:48 +0000 | [diff] [blame] | 1 | //===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements the checking of insns inside a bundle according to the |
| 11 | // packet constraint rules of the Hexagon ISA. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "HexagonMCChecker.h" |
| 16 | |
| 17 | #include "HexagonBaseInfo.h" |
| 18 | |
Colin LeMahieu | 7cd0892 | 2015-11-09 04:07:48 +0000 | [diff] [blame] | 19 | #include "llvm/MC/MCInstrDesc.h" |
| 20 | #include "llvm/MC/MCInstrInfo.h" |
| 21 | #include "llvm/Support/CommandLine.h" |
| 22 | #include "llvm/Support/Debug.h" |
| 23 | #include "llvm/Support/raw_ostream.h" |
| 24 | |
| 25 | using namespace llvm; |
| 26 | |
| 27 | static cl::opt<bool> RelaxNVChecks("relax-nv-checks", cl::init(false), |
| 28 | cl::ZeroOrMore, cl::Hidden, cl::desc("Relax checks of new-value validity")); |
| 29 | |
| 30 | const HexagonMCChecker::PredSense |
| 31 | HexagonMCChecker::Unconditional(Hexagon::NoRegister, false); |
| 32 | |
| 33 | void HexagonMCChecker::init() { |
| 34 | // Initialize read-only registers set. |
| 35 | ReadOnly.insert(Hexagon::PC); |
| 36 | |
| 37 | // Figure out the loop-registers definitions. |
| 38 | if (HexagonMCInstrInfo::isInnerLoop(MCB)) { |
| 39 | Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0? |
| 40 | Defs[Hexagon::LC0].insert(Unconditional); |
| 41 | } |
| 42 | if (HexagonMCInstrInfo::isOuterLoop(MCB)) { |
| 43 | Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0? |
| 44 | Defs[Hexagon::LC1].insert(Unconditional); |
| 45 | } |
| 46 | |
| 47 | if (HexagonMCInstrInfo::isBundle(MCB)) |
| 48 | // Unfurl a bundle. |
| 49 | for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) { |
| 50 | init(*I.getInst()); |
| 51 | } |
| 52 | else |
| 53 | init(MCB); |
| 54 | } |
| 55 | |
| 56 | void HexagonMCChecker::init(MCInst const& MCI) { |
| 57 | const MCInstrDesc& MCID = HexagonMCInstrInfo::getDesc(MCII, MCI); |
| 58 | unsigned PredReg = Hexagon::NoRegister; |
| 59 | bool isTrue = false; |
| 60 | |
| 61 | // Get used registers. |
| 62 | for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) |
| 63 | if (MCI.getOperand(i).isReg()) { |
| 64 | unsigned R = MCI.getOperand(i).getReg(); |
| 65 | |
| 66 | if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) { |
| 67 | // Note an used predicate register. |
| 68 | PredReg = R; |
| 69 | isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI); |
| 70 | |
| 71 | // Note use of new predicate register. |
| 72 | if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) |
| 73 | NewPreds.insert(PredReg); |
| 74 | } |
| 75 | else |
| 76 | // Note register use. Super-registers are not tracked directly, |
| 77 | // but their components. |
| 78 | for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); |
| 79 | SRI.isValid(); |
| 80 | ++SRI) |
| 81 | if (!MCSubRegIterator(*SRI, &RI).isValid()) |
| 82 | // Skip super-registers used indirectly. |
| 83 | Uses.insert(*SRI); |
| 84 | } |
| 85 | |
| 86 | // Get implicit register definitions. |
Craig Topper | 5c32279 | 2015-12-05 17:34:07 +0000 | [diff] [blame] | 87 | if (const MCPhysReg *ImpDef = MCID.getImplicitDefs()) |
| 88 | for (; *ImpDef; ++ImpDef) { |
| 89 | unsigned R = *ImpDef; |
Colin LeMahieu | 7cd0892 | 2015-11-09 04:07:48 +0000 | [diff] [blame] | 90 | |
Craig Topper | 5c32279 | 2015-12-05 17:34:07 +0000 | [diff] [blame] | 91 | if (Hexagon::R31 != R && MCID.isCall()) |
| 92 | // Any register other than the LR and the PC are actually volatile ones |
| 93 | // as defined by the ABI, not modified implicitly by the call insn. |
| 94 | continue; |
| 95 | if (Hexagon::PC == R) |
| 96 | // Branches are the only insns that can change the PC, |
| 97 | // otherwise a read-only register. |
| 98 | continue; |
Colin LeMahieu | 7cd0892 | 2015-11-09 04:07:48 +0000 | [diff] [blame] | 99 | |
Craig Topper | 5c32279 | 2015-12-05 17:34:07 +0000 | [diff] [blame] | 100 | if (Hexagon::USR_OVF == R) |
| 101 | // Many insns change the USR implicitly, but only one or another flag. |
| 102 | // The instruction table models the USR.OVF flag, which can be implicitly |
| 103 | // modified more than once, but cannot be modified in the same packet |
| 104 | // with an instruction that modifies is explicitly. Deal with such situ- |
| 105 | // ations individually. |
| 106 | SoftDefs.insert(R); |
| 107 | else if (isPredicateRegister(R) && |
| 108 | HexagonMCInstrInfo::isPredicateLate(MCII, MCI)) |
| 109 | // Include implicit late predicates. |
| 110 | LatePreds.insert(R); |
| 111 | else |
| 112 | Defs[R].insert(PredSense(PredReg, isTrue)); |
| 113 | } |
Colin LeMahieu | 7cd0892 | 2015-11-09 04:07:48 +0000 | [diff] [blame] | 114 | |
| 115 | // Figure out explicit register definitions. |
| 116 | for (unsigned i = 0; i < MCID.getNumDefs(); ++i) { |
| 117 | unsigned R = MCI.getOperand(i).getReg(), |
| 118 | S = Hexagon::NoRegister; |
Krzysztof Parzyszek | 96bb4fe | 2016-05-28 01:51:16 +0000 | [diff] [blame] | 119 | // USR has subregisters (while C8 does not for technical reasons), so |
| 120 | // reset R to USR, since we know how to handle multiple defs of USR, |
| 121 | // taking into account its subregisters. |
| 122 | if (R == Hexagon::C8) |
| 123 | R = Hexagon::USR; |
Colin LeMahieu | 7cd0892 | 2015-11-09 04:07:48 +0000 | [diff] [blame] | 124 | |
| 125 | // Note register definitions, direct ones as well as indirect side-effects. |
| 126 | // Super-registers are not tracked directly, but their components. |
| 127 | for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); |
| 128 | SRI.isValid(); |
| 129 | ++SRI) { |
| 130 | if (MCSubRegIterator(*SRI, &RI).isValid()) |
| 131 | // Skip super-registers defined indirectly. |
| 132 | continue; |
| 133 | |
| 134 | if (R == *SRI) { |
| 135 | if (S == R) |
| 136 | // Avoid scoring the defined register multiple times. |
| 137 | continue; |
| 138 | else |
| 139 | // Note that the defined register has already been scored. |
| 140 | S = R; |
| 141 | } |
| 142 | |
| 143 | if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI) |
| 144 | // P3:0 is a special case, since multiple predicate register definitions |
| 145 | // in a packet is allowed as the equivalent of their logical "and". |
| 146 | // Only an explicit definition of P3:0 is noted as such; if a |
| 147 | // side-effect, then note as a soft definition. |
| 148 | SoftDefs.insert(*SRI); |
| 149 | else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) && isPredicateRegister(*SRI)) |
| 150 | // Some insns produce predicates too late to be used in the same packet. |
| 151 | LatePreds.insert(*SRI); |
| 152 | else if (i == 0 && llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_CUR_LD) |
| 153 | // Current loads should be used in the same packet. |
| 154 | // TODO: relies on the impossibility of a current and a temporary loads |
| 155 | // in the same packet. |
| 156 | CurDefs.insert(*SRI), Defs[*SRI].insert(PredSense(PredReg, isTrue)); |
| 157 | else if (i == 0 && llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_TMP_LD) |
| 158 | // Temporary loads should be used in the same packet, but don't commit |
| 159 | // results, so it should be disregarded if another insn changes the same |
| 160 | // register. |
| 161 | // TODO: relies on the impossibility of a current and a temporary loads |
| 162 | // in the same packet. |
| 163 | TmpDefs.insert(*SRI); |
| 164 | else if (i <= 1 && llvm::HexagonMCInstrInfo::hasNewValue2(MCII, MCI) ) |
| 165 | // vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and |
| 166 | // destination registers with this instruction. same for vdeal(Vx,Vy,Rx) |
| 167 | Uses.insert(*SRI); |
| 168 | else |
| 169 | Defs[*SRI].insert(PredSense(PredReg, isTrue)); |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | // Figure out register definitions that produce new values. |
| 174 | if (HexagonMCInstrInfo::hasNewValue(MCII, MCI)) { |
| 175 | unsigned R = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg(); |
| 176 | |
| 177 | if (HexagonMCInstrInfo::isCompound(MCII, MCI)) |
| 178 | compoundRegisterMap(R); // Compound insns have a limited register range. |
| 179 | |
| 180 | for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); |
| 181 | SRI.isValid(); |
| 182 | ++SRI) |
| 183 | if (!MCSubRegIterator(*SRI, &RI).isValid()) |
| 184 | // No super-registers defined indirectly. |
| 185 | NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI), |
| 186 | HexagonMCInstrInfo::isFloat(MCII, MCI))); |
| 187 | |
| 188 | // For fairly unique 2-dot-new producers, example: |
| 189 | // vdeal(V1, V9, R0) V1.new and V9.new can be used by consumers. |
| 190 | if (HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) { |
| 191 | unsigned R2 = HexagonMCInstrInfo::getNewValueOperand2(MCII, MCI).getReg(); |
| 192 | |
| 193 | for(MCRegAliasIterator SRI(R2, &RI, !MCSubRegIterator(R2, &RI).isValid()); |
| 194 | SRI.isValid(); |
| 195 | ++SRI) |
| 196 | if (!MCSubRegIterator(*SRI, &RI).isValid()) |
| 197 | NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI), |
| 198 | HexagonMCInstrInfo::isFloat(MCII, MCI))); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | // Figure out definitions of new predicate registers. |
| 203 | if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) |
| 204 | for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) |
| 205 | if (MCI.getOperand(i).isReg()) { |
| 206 | unsigned P = MCI.getOperand(i).getReg(); |
| 207 | |
| 208 | if (isPredicateRegister(P)) |
| 209 | NewPreds.insert(P); |
| 210 | } |
| 211 | |
| 212 | // Figure out uses of new values. |
| 213 | if (HexagonMCInstrInfo::isNewValue(MCII, MCI)) { |
| 214 | unsigned N = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg(); |
| 215 | |
| 216 | if (!MCSubRegIterator(N, &RI).isValid()) { |
| 217 | // Super-registers cannot use new values. |
| 218 | if (MCID.isBranch()) |
| 219 | NewUses[N] = NewSense::Jmp(llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV); |
| 220 | else |
| 221 | NewUses[N] = NewSense::Use(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI)); |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | HexagonMCChecker::HexagonMCChecker(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst &mcb, MCInst &mcbdx, |
| 227 | MCRegisterInfo const &ri) |
| 228 | : MCB(mcb), MCBDX(mcbdx), RI(ri), MCII(MCII), STI(STI), |
| 229 | bLoadErrInfo(false) { |
| 230 | init(); |
| 231 | } |
| 232 | |
| 233 | bool HexagonMCChecker::check() { |
| 234 | bool chkB = checkBranches(); |
| 235 | bool chkP = checkPredicates(); |
| 236 | bool chkNV = checkNewValues(); |
| 237 | bool chkR = checkRegisters(); |
| 238 | bool chkS = checkSolo(); |
| 239 | bool chkSh = checkShuffle(); |
| 240 | bool chkSl = checkSlots(); |
| 241 | bool chk = chkB && chkP && chkNV && chkR && chkS && chkSh && chkSl; |
| 242 | |
| 243 | return chk; |
| 244 | } |
| 245 | |
| 246 | bool HexagonMCChecker::checkSlots() |
| 247 | |
| 248 | { |
| 249 | unsigned slotsUsed = 0; |
| 250 | for (auto HMI: HexagonMCInstrInfo::bundleInstructions(MCBDX)) { |
| 251 | MCInst const& MCI = *HMI.getInst(); |
| 252 | if (HexagonMCInstrInfo::isImmext(MCI)) |
| 253 | continue; |
| 254 | if (HexagonMCInstrInfo::isDuplex(MCII, MCI)) |
| 255 | slotsUsed += 2; |
| 256 | else |
| 257 | ++slotsUsed; |
| 258 | } |
| 259 | |
| 260 | if (slotsUsed > HEXAGON_PACKET_SIZE) { |
| 261 | HexagonMCErrInfo errInfo; |
| 262 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NOSLOTS); |
| 263 | addErrInfo(errInfo); |
| 264 | return false; |
| 265 | } |
| 266 | return true; |
| 267 | } |
| 268 | |
| 269 | // Check legal use of branches. |
| 270 | bool HexagonMCChecker::checkBranches() { |
| 271 | HexagonMCErrInfo errInfo; |
| 272 | if (HexagonMCInstrInfo::isBundle(MCB)) { |
| 273 | bool hasConditional = false; |
| 274 | unsigned Branches = 0, Returns = 0, NewIndirectBranches = 0, |
| 275 | NewValueBranches = 0, Conditional = HEXAGON_PRESHUFFLE_PACKET_SIZE, |
| 276 | Unconditional = HEXAGON_PRESHUFFLE_PACKET_SIZE; |
| 277 | |
| 278 | for (unsigned i = HexagonMCInstrInfo::bundleInstructionsOffset; |
| 279 | i < MCB.size(); ++i) { |
| 280 | MCInst const &MCI = *MCB.begin()[i].getInst(); |
| 281 | |
| 282 | if (HexagonMCInstrInfo::isImmext(MCI)) |
| 283 | continue; |
| 284 | if (HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch() || |
| 285 | HexagonMCInstrInfo::getDesc(MCII, MCI).isCall()) { |
| 286 | ++Branches; |
| 287 | if (HexagonMCInstrInfo::getDesc(MCII, MCI).isIndirectBranch() && |
| 288 | HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) |
| 289 | ++NewIndirectBranches; |
| 290 | if (HexagonMCInstrInfo::isNewValue(MCII, MCI)) |
| 291 | ++NewValueBranches; |
| 292 | |
| 293 | if (HexagonMCInstrInfo::isPredicated(MCII, MCI) || |
| 294 | HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) { |
| 295 | hasConditional = true; |
| 296 | Conditional = i; // Record the position of the conditional branch. |
| 297 | } else { |
| 298 | Unconditional = i; // Record the position of the unconditional branch. |
| 299 | } |
| 300 | } |
| 301 | if (HexagonMCInstrInfo::getDesc(MCII, MCI).isReturn() && |
| 302 | HexagonMCInstrInfo::getDesc(MCII, MCI).mayLoad()) |
| 303 | ++Returns; |
| 304 | } |
| 305 | |
| 306 | if (Branches) // FIXME: should "Defs.count(Hexagon::PC)" be here too? |
| 307 | if (HexagonMCInstrInfo::isInnerLoop(MCB) || |
| 308 | HexagonMCInstrInfo::isOuterLoop(MCB)) { |
| 309 | // Error out if there's any branch in a loop-end packet. |
| 310 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_ENDLOOP, Hexagon::PC); |
| 311 | addErrInfo(errInfo); |
| 312 | return false; |
| 313 | } |
| 314 | if (Branches > 1) |
| 315 | if (!hasConditional || Conditional > Unconditional) { |
| 316 | // Error out if more than one unconditional branch or |
| 317 | // the conditional branch appears after the unconditional one. |
| 318 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_BRANCHES); |
| 319 | addErrInfo(errInfo); |
| 320 | return false; |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | return true; |
| 325 | } |
| 326 | |
| 327 | // Check legal use of predicate registers. |
| 328 | bool HexagonMCChecker::checkPredicates() { |
| 329 | HexagonMCErrInfo errInfo; |
| 330 | // Check for proper use of new predicate registers. |
| 331 | for (const auto& I : NewPreds) { |
| 332 | unsigned P = I; |
| 333 | |
| 334 | if (!Defs.count(P) || LatePreds.count(P)) { |
| 335 | // Error out if the new predicate register is not defined, |
| 336 | // or defined "late" |
| 337 | // (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }"). |
| 338 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWP, P); |
| 339 | addErrInfo(errInfo); |
| 340 | return false; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | // Check for proper use of auto-anded of predicate registers. |
| 345 | for (const auto& I : LatePreds) { |
| 346 | unsigned P = I; |
| 347 | |
| 348 | if (LatePreds.count(P) > 1 || Defs.count(P)) { |
| 349 | // Error out if predicate register defined "late" multiple times or |
| 350 | // defined late and regularly defined |
| 351 | // (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }". |
| 352 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, P); |
| 353 | addErrInfo(errInfo); |
| 354 | return false; |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | return true; |
| 359 | } |
| 360 | |
| 361 | // Check legal use of new values. |
| 362 | bool HexagonMCChecker::checkNewValues() { |
| 363 | HexagonMCErrInfo errInfo; |
| 364 | memset(&errInfo, 0, sizeof(errInfo)); |
| 365 | for (auto& I : NewUses) { |
| 366 | unsigned R = I.first; |
| 367 | NewSense &US = I.second; |
| 368 | |
| 369 | if (!hasValidNewValueDef(US, NewDefs[R])) { |
| 370 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWV, R); |
| 371 | addErrInfo(errInfo); |
| 372 | return false; |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | return true; |
| 377 | } |
| 378 | |
| 379 | // Check for legal register uses and definitions. |
| 380 | bool HexagonMCChecker::checkRegisters() { |
| 381 | HexagonMCErrInfo errInfo; |
| 382 | // Check for proper register definitions. |
| 383 | for (const auto& I : Defs) { |
| 384 | unsigned R = I.first; |
| 385 | |
| 386 | if (ReadOnly.count(R)) { |
| 387 | // Error out for definitions of read-only registers. |
| 388 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_READONLY, R); |
| 389 | addErrInfo(errInfo); |
| 390 | return false; |
| 391 | } |
| 392 | if (isLoopRegister(R) && Defs.count(R) > 1 && |
| 393 | (HexagonMCInstrInfo::isInnerLoop(MCB) || |
| 394 | HexagonMCInstrInfo::isOuterLoop(MCB))) { |
| 395 | // Error out for definitions of loop registers at the end of a loop. |
| 396 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_LOOP, R); |
| 397 | addErrInfo(errInfo); |
| 398 | return false; |
| 399 | } |
| 400 | if (SoftDefs.count(R)) { |
| 401 | // Error out for explicit changes to registers also weakly defined |
| 402 | // (e.g., "{ usr = r0; r0 = sfadd(...) }"). |
| 403 | unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:. |
| 404 | unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R; |
| 405 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR); |
| 406 | addErrInfo(errInfo); |
| 407 | return false; |
| 408 | } |
| 409 | if (!isPredicateRegister(R) && Defs[R].size() > 1) { |
| 410 | // Check for multiple register definitions. |
| 411 | PredSet &PM = Defs[R]; |
| 412 | |
| 413 | // Check for multiple unconditional register definitions. |
| 414 | if (PM.count(Unconditional)) { |
| 415 | // Error out on an unconditional change when there are any other |
| 416 | // changes, conditional or not. |
| 417 | unsigned UsrR = Hexagon::USR; |
| 418 | unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R; |
| 419 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR); |
| 420 | addErrInfo(errInfo); |
| 421 | return false; |
| 422 | } |
| 423 | // Check for multiple conditional register definitions. |
| 424 | for (const auto& J : PM) { |
| 425 | PredSense P = J; |
| 426 | |
| 427 | // Check for multiple uses of the same condition. |
| 428 | if (PM.count(P) > 1) { |
| 429 | // Error out on conditional changes based on the same predicate |
| 430 | // (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }"). |
| 431 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R); |
| 432 | addErrInfo(errInfo); |
| 433 | return false; |
| 434 | } |
| 435 | // Check for the use of the complementary condition. |
| 436 | P.second = !P.second; |
| 437 | if (PM.count(P) && PM.size() > 2) { |
| 438 | // Error out on conditional changes based on the same predicate |
| 439 | // multiple times |
| 440 | // (e.g., "{ if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =... }"). |
| 441 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R); |
| 442 | addErrInfo(errInfo); |
| 443 | return false; |
| 444 | } |
| 445 | } |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | // Check for use of current definitions. |
| 450 | for (const auto& I : CurDefs) { |
| 451 | unsigned R = I; |
| 452 | |
| 453 | if (!Uses.count(R)) { |
| 454 | // Warn on an unused current definition. |
| 455 | errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_CURRENT, R); |
| 456 | addErrInfo(errInfo); |
| 457 | return true; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | // Check for use of temporary definitions. |
| 462 | for (const auto& I : TmpDefs) { |
| 463 | unsigned R = I; |
| 464 | |
| 465 | if (!Uses.count(R)) { |
| 466 | // special case for vhist |
| 467 | bool vHistFound = false; |
| 468 | for (auto const&HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) { |
| 469 | if(llvm::HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) == HexagonII::TypeCVI_HIST) { |
| 470 | vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp |
| 471 | break; |
| 472 | } |
| 473 | } |
| 474 | // Warn on an unused temporary definition. |
| 475 | if (vHistFound == false) { |
| 476 | errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_TEMPORARY, R); |
| 477 | addErrInfo(errInfo); |
| 478 | return true; |
| 479 | } |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | return true; |
| 484 | } |
| 485 | |
| 486 | // Check for legal use of solo insns. |
| 487 | bool HexagonMCChecker::checkSolo() { |
| 488 | HexagonMCErrInfo errInfo; |
| 489 | if (HexagonMCInstrInfo::isBundle(MCB) && |
| 490 | HexagonMCInstrInfo::bundleSize(MCB) > 1) { |
| 491 | for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) { |
| 492 | if (llvm::HexagonMCInstrInfo::isSolo(MCII, *I.getInst())) { |
| 493 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SOLO); |
| 494 | addErrInfo(errInfo); |
| 495 | return false; |
| 496 | } |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | return true; |
| 501 | } |
| 502 | |
| 503 | bool HexagonMCChecker::checkShuffle() { |
| 504 | HexagonMCErrInfo errInfo; |
| 505 | // Branch info is lost when duplexing. The unduplexed insns must be |
| 506 | // checked and only branch errors matter for this case. |
| 507 | HexagonMCShuffler MCS(MCII, STI, MCB); |
| 508 | if (!MCS.check()) { |
| 509 | if (MCS.getError() == HexagonShuffler::SHUFFLE_ERROR_BRANCHES) { |
| 510 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE); |
| 511 | errInfo.setShuffleError(MCS.getError()); |
| 512 | addErrInfo(errInfo); |
| 513 | return false; |
| 514 | } |
| 515 | } |
| 516 | HexagonMCShuffler MCSDX(MCII, STI, MCBDX); |
| 517 | if (!MCSDX.check()) { |
| 518 | errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE); |
| 519 | errInfo.setShuffleError(MCSDX.getError()); |
| 520 | addErrInfo(errInfo); |
| 521 | return false; |
| 522 | } |
| 523 | return true; |
| 524 | } |
| 525 | |
| 526 | void HexagonMCChecker::compoundRegisterMap(unsigned& Register) { |
| 527 | switch (Register) { |
| 528 | default: |
| 529 | break; |
| 530 | case Hexagon::R15: |
| 531 | Register = Hexagon::R23; |
| 532 | break; |
| 533 | case Hexagon::R14: |
| 534 | Register = Hexagon::R22; |
| 535 | break; |
| 536 | case Hexagon::R13: |
| 537 | Register = Hexagon::R21; |
| 538 | break; |
| 539 | case Hexagon::R12: |
| 540 | Register = Hexagon::R20; |
| 541 | break; |
| 542 | case Hexagon::R11: |
| 543 | Register = Hexagon::R19; |
| 544 | break; |
| 545 | case Hexagon::R10: |
| 546 | Register = Hexagon::R18; |
| 547 | break; |
| 548 | case Hexagon::R9: |
| 549 | Register = Hexagon::R17; |
| 550 | break; |
| 551 | case Hexagon::R8: |
| 552 | Register = Hexagon::R16; |
| 553 | break; |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | bool HexagonMCChecker::hasValidNewValueDef(const NewSense &Use, |
| 558 | const NewSenseList &Defs) const { |
| 559 | bool Strict = !RelaxNVChecks; |
| 560 | |
| 561 | for (unsigned i = 0, n = Defs.size(); i < n; ++i) { |
| 562 | const NewSense &Def = Defs[i]; |
| 563 | // NVJ cannot use a new FP value [7.6.1] |
| 564 | if (Use.IsNVJ && (Def.IsFloat || Def.PredReg != 0)) |
| 565 | continue; |
| 566 | // If the definition was not predicated, then it does not matter if |
| 567 | // the use is. |
| 568 | if (Def.PredReg == 0) |
| 569 | return true; |
| 570 | // With the strict checks, both the definition and the use must be |
| 571 | // predicated on the same register and condition. |
| 572 | if (Strict) { |
| 573 | if (Def.PredReg == Use.PredReg && Def.Cond == Use.Cond) |
| 574 | return true; |
| 575 | } else { |
| 576 | // With the relaxed checks, if the definition was predicated, the only |
| 577 | // detectable violation is if the use is predicated on the opposing |
| 578 | // condition, otherwise, it's ok. |
| 579 | if (Def.PredReg != Use.PredReg || Def.Cond == Use.Cond) |
| 580 | return true; |
| 581 | } |
| 582 | } |
| 583 | return false; |
| 584 | } |
| 585 | |