Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1 | //===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Created by Greg Clayton on 6/25/07. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #if defined (__arm__) |
| 15 | |
| 16 | #include "MacOSX/arm/DNBArchImpl.h" |
| 17 | #include "MacOSX/MachProcess.h" |
| 18 | #include "MacOSX/MachThread.h" |
| 19 | #include "DNBBreakpoint.h" |
| 20 | #include "DNBLog.h" |
| 21 | #include "DNBRegisterInfo.h" |
| 22 | #include "DNB.h" |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 23 | #include "ARM_GCC_Registers.h" |
| 24 | #include "ARM_DWARF_Registers.h" |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 25 | |
| 26 | #include <sys/sysctl.h> |
| 27 | |
| 28 | // BCR address match type |
| 29 | #define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21)) |
| 30 | #define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21)) |
| 31 | #define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21)) |
| 32 | #define BCR_M_RESERVED ((uint32_t)(3u << 21)) |
| 33 | |
| 34 | // Link a BVR/BCR or WVR/WCR pair to another |
| 35 | #define E_ENABLE_LINKING ((uint32_t)(1u << 20)) |
| 36 | |
| 37 | // Byte Address Select |
| 38 | #define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5)) |
| 39 | #define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6)) |
| 40 | #define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7)) |
| 41 | #define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8)) |
| 42 | #define BAS_IMVA_0_1 ((uint32_t)(3u << 5)) |
| 43 | #define BAS_IMVA_2_3 ((uint32_t)(3u << 7)) |
| 44 | #define BAS_IMVA_ALL ((uint32_t)(0xfu << 5)) |
| 45 | |
| 46 | // Break only in priveleged or user mode |
| 47 | #define S_RSVD ((uint32_t)(0u << 1)) |
| 48 | #define S_PRIV ((uint32_t)(1u << 1)) |
| 49 | #define S_USER ((uint32_t)(2u << 1)) |
| 50 | #define S_PRIV_USER ((S_PRIV) | (S_USER)) |
| 51 | |
| 52 | #define BCR_ENABLE ((uint32_t)(1u)) |
| 53 | #define WCR_ENABLE ((uint32_t)(1u)) |
| 54 | |
| 55 | // Watchpoint load/store |
| 56 | #define WCR_LOAD ((uint32_t)(1u << 3)) |
| 57 | #define WCR_STORE ((uint32_t)(1u << 4)) |
| 58 | |
| 59 | //#define DNB_ARCH_MACH_ARM_DEBUG_SW_STEP 1 |
| 60 | |
| 61 | static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 }; |
| 62 | static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE }; |
| 63 | |
| 64 | // ARM constants used during decoding |
| 65 | #define REG_RD 0 |
| 66 | #define LDM_REGLIST 1 |
| 67 | #define PC_REG 15 |
| 68 | #define PC_REGLIST_BIT 0x8000 |
| 69 | |
| 70 | // ARM conditions |
| 71 | #define COND_EQ 0x0 |
| 72 | #define COND_NE 0x1 |
| 73 | #define COND_CS 0x2 |
| 74 | #define COND_HS 0x2 |
| 75 | #define COND_CC 0x3 |
| 76 | #define COND_LO 0x3 |
| 77 | #define COND_MI 0x4 |
| 78 | #define COND_PL 0x5 |
| 79 | #define COND_VS 0x6 |
| 80 | #define COND_VC 0x7 |
| 81 | #define COND_HI 0x8 |
| 82 | #define COND_LS 0x9 |
| 83 | #define COND_GE 0xA |
| 84 | #define COND_LT 0xB |
| 85 | #define COND_GT 0xC |
| 86 | #define COND_LE 0xD |
| 87 | #define COND_AL 0xE |
| 88 | #define COND_UNCOND 0xF |
| 89 | |
| 90 | #define MASK_CPSR_T (1u << 5) |
| 91 | #define MASK_CPSR_J (1u << 24) |
| 92 | |
| 93 | #define MNEMONIC_STRING_SIZE 32 |
| 94 | #define OPERAND_STRING_SIZE 128 |
| 95 | |
| 96 | const uint8_t * const |
| 97 | DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size) |
| 98 | { |
| 99 | switch (byte_size) |
| 100 | { |
| 101 | case 2: return g_thumb_breakpooint_opcode; |
| 102 | case 4: return g_arm_breakpoint_opcode; |
| 103 | } |
| 104 | return NULL; |
| 105 | } |
| 106 | |
| 107 | uint32_t |
| 108 | DNBArchMachARM::GetCPUType() |
| 109 | { |
| 110 | return CPU_TYPE_ARM; |
| 111 | } |
| 112 | |
| 113 | uint64_t |
| 114 | DNBArchMachARM::GetPC(uint64_t failValue) |
| 115 | { |
| 116 | // Get program counter |
| 117 | if (GetGPRState(false) == KERN_SUCCESS) |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 118 | return m_state.context.gpr.__pc; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 119 | return failValue; |
| 120 | } |
| 121 | |
| 122 | kern_return_t |
| 123 | DNBArchMachARM::SetPC(uint64_t value) |
| 124 | { |
| 125 | // Get program counter |
| 126 | kern_return_t err = GetGPRState(false); |
| 127 | if (err == KERN_SUCCESS) |
| 128 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 129 | m_state.context.gpr.__pc = value; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 130 | err = SetGPRState(); |
| 131 | } |
| 132 | return err == KERN_SUCCESS; |
| 133 | } |
| 134 | |
| 135 | uint64_t |
| 136 | DNBArchMachARM::GetSP(uint64_t failValue) |
| 137 | { |
| 138 | // Get stack pointer |
| 139 | if (GetGPRState(false) == KERN_SUCCESS) |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 140 | return m_state.context.gpr.__sp; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 141 | return failValue; |
| 142 | } |
| 143 | |
| 144 | kern_return_t |
| 145 | DNBArchMachARM::GetGPRState(bool force) |
| 146 | { |
| 147 | int set = e_regSetGPR; |
| 148 | // Check if we have valid cached registers |
| 149 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 150 | return KERN_SUCCESS; |
| 151 | |
| 152 | // Read the registers from our thread |
| 153 | mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 154 | kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count); |
| 155 | uint32_t *r = &m_state.context.gpr.__r[0]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 156 | DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x", m_thread->ThreadID(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT, kret, |
| 157 | r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7], r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15], r[16]); |
| 158 | m_state.SetError(set, Read, kret); |
| 159 | return kret; |
| 160 | } |
| 161 | |
| 162 | kern_return_t |
| 163 | DNBArchMachARM::GetVFPState(bool force) |
| 164 | { |
| 165 | int set = e_regSetVFP; |
| 166 | // Check if we have valid cached registers |
| 167 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 168 | return KERN_SUCCESS; |
| 169 | |
| 170 | // Read the registers from our thread |
| 171 | mach_msg_type_number_t count = ARM_VFP_STATE_COUNT; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 172 | kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 173 | m_state.SetError(set, Read, kret); |
| 174 | return kret; |
| 175 | } |
| 176 | |
| 177 | kern_return_t |
| 178 | DNBArchMachARM::GetEXCState(bool force) |
| 179 | { |
| 180 | int set = e_regSetEXC; |
| 181 | // Check if we have valid cached registers |
| 182 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 183 | return KERN_SUCCESS; |
| 184 | |
| 185 | // Read the registers from our thread |
| 186 | mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 187 | kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 188 | m_state.SetError(set, Read, kret); |
| 189 | return kret; |
| 190 | } |
| 191 | |
| 192 | static void |
| 193 | DumpDBGState(const arm_debug_state_t& dbg) |
| 194 | { |
| 195 | uint32_t i = 0; |
| 196 | for (i=0; i<16; i++) |
| 197 | DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }", |
| 198 | i, i, dbg.__bvr[i], dbg.__bcr[i], |
| 199 | i, i, dbg.__wvr[i], dbg.__wcr[i]); |
| 200 | } |
| 201 | |
| 202 | kern_return_t |
| 203 | DNBArchMachARM::GetDBGState(bool force) |
| 204 | { |
| 205 | int set = e_regSetDBG; |
| 206 | |
| 207 | // Check if we have valid cached registers |
| 208 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 209 | return KERN_SUCCESS; |
| 210 | |
| 211 | // Read the registers from our thread |
| 212 | mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT; |
| 213 | kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count); |
| 214 | m_state.SetError(set, Read, kret); |
| 215 | return kret; |
| 216 | } |
| 217 | |
| 218 | kern_return_t |
| 219 | DNBArchMachARM::SetGPRState() |
| 220 | { |
| 221 | int set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 222 | kern_return_t kret = ::thread_set_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 223 | m_state.SetError(set, Write, kret); // Set the current write error for this register set |
| 224 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently |
| 225 | return kret; // Return the error code |
| 226 | } |
| 227 | |
| 228 | kern_return_t |
| 229 | DNBArchMachARM::SetVFPState() |
| 230 | { |
| 231 | int set = e_regSetVFP; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 232 | kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, ARM_VFP_STATE_COUNT); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 233 | m_state.SetError(set, Write, kret); // Set the current write error for this register set |
| 234 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently |
| 235 | return kret; // Return the error code |
| 236 | } |
| 237 | |
| 238 | kern_return_t |
| 239 | DNBArchMachARM::SetEXCState() |
| 240 | { |
| 241 | int set = e_regSetEXC; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 242 | kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 243 | m_state.SetError(set, Write, kret); // Set the current write error for this register set |
| 244 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently |
| 245 | return kret; // Return the error code |
| 246 | } |
| 247 | |
| 248 | kern_return_t |
| 249 | DNBArchMachARM::SetDBGState() |
| 250 | { |
| 251 | int set = e_regSetDBG; |
| 252 | kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT); |
| 253 | m_state.SetError(set, Write, kret); // Set the current write error for this register set |
| 254 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently |
| 255 | return kret; // Return the error code |
| 256 | } |
| 257 | |
| 258 | void |
| 259 | DNBArchMachARM::ThreadWillResume() |
| 260 | { |
| 261 | // Do we need to step this thread? If so, let the mach thread tell us so. |
| 262 | if (m_thread->IsStepping()) |
| 263 | { |
| 264 | bool step_handled = false; |
| 265 | // This is the primary thread, let the arch do anything it needs |
| 266 | if (NumSupportedHardwareBreakpoints() > 0) |
| 267 | { |
| 268 | #if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP) |
| 269 | bool half_step = m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS; |
| 270 | #endif |
| 271 | step_handled = EnableHardwareSingleStep(true) == KERN_SUCCESS; |
| 272 | #if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP) |
| 273 | if (!half_step) |
| 274 | step_handled = false; |
| 275 | #endif |
| 276 | } |
| 277 | |
| 278 | if (!step_handled) |
| 279 | { |
| 280 | SetSingleStepSoftwareBreakpoints(); |
| 281 | } |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | bool |
| 286 | DNBArchMachARM::ThreadDidStop() |
| 287 | { |
| 288 | bool success = true; |
| 289 | |
| 290 | m_state.InvalidateRegisterSetState (e_regSetALL); |
| 291 | |
| 292 | // Are we stepping a single instruction? |
| 293 | if (GetGPRState(true) == KERN_SUCCESS) |
| 294 | { |
| 295 | // We are single stepping, was this the primary thread? |
| 296 | if (m_thread->IsStepping()) |
| 297 | { |
| 298 | #if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP) |
| 299 | success = EnableHardwareSingleStep(false) == KERN_SUCCESS; |
| 300 | // Hardware single step must work if we are going to test software |
| 301 | // single step functionality |
| 302 | assert(success); |
| 303 | if (m_hw_single_chained_step_addr == INVALID_NUB_ADDRESS && m_sw_single_step_next_pc != INVALID_NUB_ADDRESS) |
| 304 | { |
| 305 | uint32_t sw_step_next_pc = m_sw_single_step_next_pc & 0xFFFFFFFEu; |
| 306 | bool sw_step_next_pc_is_thumb = (m_sw_single_step_next_pc & 1) != 0; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 307 | bool actual_next_pc_is_thumb = (m_state.context.gpr.__cpsr & 0x20) != 0; |
| 308 | if (m_state.context.gpr.__pc != sw_step_next_pc) |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 309 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 310 | DNBLogError("curr pc = 0x%8.8x - calculated single step target PC was incorrect: 0x%8.8x != 0x%8.8x", m_state.context.gpr.__pc, sw_step_next_pc, m_state.context.gpr.__pc); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 311 | exit(1); |
| 312 | } |
| 313 | if (actual_next_pc_is_thumb != sw_step_next_pc_is_thumb) |
| 314 | { |
| 315 | DNBLogError("curr pc = 0x%8.8x - calculated single step calculated mode mismatch: sw single mode = %s != %s", |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 316 | m_state.context.gpr.__pc, |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 317 | actual_next_pc_is_thumb ? "Thumb" : "ARM", |
| 318 | sw_step_next_pc_is_thumb ? "Thumb" : "ARM"); |
| 319 | exit(1); |
| 320 | } |
| 321 | m_sw_single_step_next_pc = INVALID_NUB_ADDRESS; |
| 322 | } |
| 323 | #else |
| 324 | // Are we software single stepping? |
| 325 | if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id) || m_sw_single_step_itblock_break_count) |
| 326 | { |
| 327 | // Remove any software single stepping breakpoints that we have set |
| 328 | |
| 329 | // Do we have a normal software single step breakpoint? |
| 330 | if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id)) |
| 331 | { |
| 332 | DNBLogThreadedIf(LOG_STEP, "%s: removing software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_break_id); |
| 333 | success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_break_id, true); |
| 334 | m_sw_single_step_break_id = INVALID_NUB_BREAK_ID; |
| 335 | } |
| 336 | |
| 337 | // Do we have any Thumb IT breakpoints? |
| 338 | if (m_sw_single_step_itblock_break_count > 0) |
| 339 | { |
| 340 | // See if we hit one of our Thumb IT breakpoints? |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 341 | DNBBreakpoint *step_bp = m_thread->Process()->Breakpoints().FindByAddress(m_state.context.gpr.__pc); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 342 | |
| 343 | if (step_bp) |
| 344 | { |
| 345 | // We did hit our breakpoint, tell the breakpoint it was |
| 346 | // hit so that it can run its callback routine and fixup |
| 347 | // the PC. |
| 348 | DNBLogThreadedIf(LOG_STEP, "%s: IT software single step breakpoint hit (breakID=%u)", __FUNCTION__, step_bp->GetID()); |
| 349 | step_bp->BreakpointHit(m_thread->Process()->ProcessID(), m_thread->ThreadID()); |
| 350 | } |
| 351 | |
| 352 | // Remove all Thumb IT breakpoints |
| 353 | for (int i = 0; i < m_sw_single_step_itblock_break_count; i++) |
| 354 | { |
| 355 | if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i])) |
| 356 | { |
| 357 | DNBLogThreadedIf(LOG_STEP, "%s: removing IT software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_itblock_break_id[i]); |
| 358 | success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_itblock_break_id[i], true); |
| 359 | m_sw_single_step_itblock_break_id[i] = INVALID_NUB_BREAK_ID; |
| 360 | } |
| 361 | } |
| 362 | m_sw_single_step_itblock_break_count = 0; |
| 363 | |
| 364 | // Decode instructions up to the current PC to ensure the internal decoder state is valid for the IT block |
| 365 | // The decoder has to decode each instruction in the IT block even if it is not executed so that |
| 366 | // the fields are correctly updated |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 367 | DecodeITBlockInstructions(m_state.context.gpr.__pc); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 368 | } |
| 369 | |
| 370 | } |
| 371 | else |
| 372 | success = EnableHardwareSingleStep(false) == KERN_SUCCESS; |
| 373 | #endif |
| 374 | } |
| 375 | else |
| 376 | { |
| 377 | // The MachThread will automatically restore the suspend count |
| 378 | // in ThreadDidStop(), so we don't need to do anything here if |
| 379 | // we weren't the primary thread the last time |
| 380 | } |
| 381 | } |
| 382 | return success; |
| 383 | } |
| 384 | |
| 385 | bool |
| 386 | DNBArchMachARM::StepNotComplete () |
| 387 | { |
| 388 | if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS) |
| 389 | { |
| 390 | kern_return_t kret = KERN_INVALID_ARGUMENT; |
| 391 | kret = GetGPRState(false); |
| 392 | if (kret == KERN_SUCCESS) |
| 393 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 394 | if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr) |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 395 | { |
| 396 | DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr); |
| 397 | return true; |
| 398 | } |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS; |
| 403 | return false; |
| 404 | } |
| 405 | |
| 406 | |
| 407 | void |
| 408 | DNBArchMachARM::DecodeITBlockInstructions(nub_addr_t curr_pc) |
| 409 | |
| 410 | { |
| 411 | uint16_t opcode16; |
| 412 | uint32_t opcode32; |
| 413 | nub_addr_t next_pc_in_itblock; |
| 414 | nub_addr_t pc_in_itblock = m_last_decode_pc; |
| 415 | |
| 416 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc); |
| 417 | |
| 418 | // Decode IT block instruction from the instruction following the m_last_decoded_instruction at |
| 419 | // PC m_last_decode_pc upto and including the instruction at curr_pc |
| 420 | if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2) |
| 421 | { |
| 422 | opcode32 = opcode16; |
| 423 | pc_in_itblock += 2; |
| 424 | // Check for 32 bit thumb opcode and read the upper 16 bits if needed |
| 425 | if (((opcode32 & 0xE000) == 0xE000) && opcode32 & 0x1800) |
| 426 | { |
| 427 | // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for |
| 428 | // a 32 bit Thumb opcode |
| 429 | // Read bits 31:16 of a 32 bit Thumb opcode |
| 430 | if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2) |
| 431 | { |
| 432 | pc_in_itblock += 2; |
| 433 | // 32 bit thumb opcode |
| 434 | opcode32 = (opcode32 << 16) | opcode16; |
| 435 | } |
| 436 | else |
| 437 | { |
| 438 | DNBLogError("%s: Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8lx", __FUNCTION__, pc_in_itblock); |
| 439 | } |
| 440 | } |
| 441 | } |
| 442 | else |
| 443 | { |
| 444 | DNBLogError("%s: Error reading 16-bit Thumb instruction at pc=0x%8.8x", __FUNCTION__, pc_in_itblock); |
| 445 | } |
| 446 | |
| 447 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc_in_itblock=0x%8.8x, curr_pc=0x%8.8x", __FUNCTION__, pc_in_itblock, curr_pc); |
| 448 | |
| 449 | next_pc_in_itblock = pc_in_itblock; |
| 450 | while (next_pc_in_itblock <= curr_pc) |
| 451 | { |
| 452 | arm_error_t decodeError; |
| 453 | |
| 454 | m_last_decode_pc = pc_in_itblock; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 455 | decodeError = DecodeInstructionUsingDisassembler(pc_in_itblock, m_state.context.gpr.__cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc_in_itblock); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 456 | |
| 457 | pc_in_itblock = next_pc_in_itblock; |
| 458 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: next_pc_in_itblock=0x%8.8x", __FUNCTION__, next_pc_in_itblock); |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | |
| 463 | // Set the single step bit in the processor status register. |
| 464 | kern_return_t |
| 465 | DNBArchMachARM::EnableHardwareSingleStep (bool enable) |
| 466 | { |
| 467 | DNBError err; |
| 468 | DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable); |
| 469 | |
| 470 | err = GetGPRState(false); |
| 471 | |
| 472 | if (err.Fail()) |
| 473 | { |
| 474 | err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__); |
| 475 | return err.Error(); |
| 476 | } |
| 477 | |
| 478 | err = GetDBGState(false); |
| 479 | |
| 480 | if (err.Fail()) |
| 481 | { |
| 482 | err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__); |
| 483 | return err.Error(); |
| 484 | } |
| 485 | |
| 486 | const uint32_t i = 0; |
| 487 | if (enable) |
| 488 | { |
| 489 | m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS; |
| 490 | |
| 491 | // Save our previous state |
| 492 | m_dbg_save = m_state.dbg; |
| 493 | // Set a breakpoint that will stop when the PC doesn't match the current one! |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 494 | m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu; // Set the current PC as the breakpoint address |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 495 | m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch |
| 496 | S_USER | // Stop only in user mode |
| 497 | BCR_ENABLE; // Enable this breakpoint |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 498 | if (m_state.context.gpr.__cpsr & 0x20) |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 499 | { |
| 500 | // Thumb breakpoint |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 501 | if (m_state.context.gpr.__pc & 2) |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 502 | m_state.dbg.__bcr[i] |= BAS_IMVA_2_3; |
| 503 | else |
| 504 | m_state.dbg.__bcr[i] |= BAS_IMVA_0_1; |
| 505 | |
| 506 | uint16_t opcode; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 507 | if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode)) |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 508 | { |
| 509 | if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800) |
| 510 | { |
| 511 | // 32 bit thumb opcode... |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 512 | if (m_state.context.gpr.__pc & 2) |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 513 | { |
| 514 | // We can't take care of a 32 bit thumb instruction single step |
| 515 | // with just IVA mismatching. We will need to chain an extra |
| 516 | // hardware single step in order to complete this single step... |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 517 | m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 518 | } |
| 519 | else |
| 520 | { |
| 521 | // Extend the number of bits to ignore for the mismatch |
| 522 | m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; |
| 523 | } |
| 524 | } |
| 525 | } |
| 526 | } |
| 527 | else |
| 528 | { |
| 529 | // ARM breakpoint |
| 530 | m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change |
| 531 | } |
| 532 | |
| 533 | DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]); |
| 534 | |
| 535 | for (uint32_t j=i+1; j<16; ++j) |
| 536 | { |
| 537 | // Disable all others |
| 538 | m_state.dbg.__bvr[j] = 0; |
| 539 | m_state.dbg.__bcr[j] = 0; |
| 540 | } |
| 541 | } |
| 542 | else |
| 543 | { |
| 544 | // Just restore the state we had before we did single stepping |
| 545 | m_state.dbg = m_dbg_save; |
| 546 | } |
| 547 | |
| 548 | return SetDBGState(); |
| 549 | } |
| 550 | |
| 551 | // return 1 if bit "BIT" is set in "value" |
| 552 | static inline uint32_t bit(uint32_t value, uint32_t bit) |
| 553 | { |
| 554 | return (value >> bit) & 1u; |
| 555 | } |
| 556 | |
| 557 | // return the bitfield "value[msbit:lsbit]". |
| 558 | static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit) |
| 559 | { |
| 560 | assert(msbit >= lsbit); |
| 561 | uint32_t shift_left = sizeof(value) * 8 - 1 - msbit; |
| 562 | value <<= shift_left; // shift anything above the msbit off of the unsigned edge |
| 563 | value >>= shift_left + lsbit; // shift it back again down to the lsbit (including undoing any shift from above) |
| 564 | return value; // return our result |
| 565 | } |
| 566 | |
| 567 | bool |
| 568 | DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr) |
| 569 | { |
| 570 | uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag |
| 571 | uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag |
| 572 | uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag |
| 573 | uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag |
| 574 | |
| 575 | switch (condition) { |
| 576 | case COND_EQ: // (0x0) |
| 577 | if (cpsr_z == 1) return true; |
| 578 | break; |
| 579 | case COND_NE: // (0x1) |
| 580 | if (cpsr_z == 0) return true; |
| 581 | break; |
| 582 | case COND_CS: // (0x2) |
| 583 | if (cpsr_c == 1) return true; |
| 584 | break; |
| 585 | case COND_CC: // (0x3) |
| 586 | if (cpsr_c == 0) return true; |
| 587 | break; |
| 588 | case COND_MI: // (0x4) |
| 589 | if (cpsr_n == 1) return true; |
| 590 | break; |
| 591 | case COND_PL: // (0x5) |
| 592 | if (cpsr_n == 0) return true; |
| 593 | break; |
| 594 | case COND_VS: // (0x6) |
| 595 | if (cpsr_v == 1) return true; |
| 596 | break; |
| 597 | case COND_VC: // (0x7) |
| 598 | if (cpsr_v == 0) return true; |
| 599 | break; |
| 600 | case COND_HI: // (0x8) |
| 601 | if ((cpsr_c == 1) && (cpsr_z == 0)) return true; |
| 602 | break; |
| 603 | case COND_LS: // (0x9) |
| 604 | if ((cpsr_c == 0) || (cpsr_z == 1)) return true; |
| 605 | break; |
| 606 | case COND_GE: // (0xA) |
| 607 | if (cpsr_n == cpsr_v) return true; |
| 608 | break; |
| 609 | case COND_LT: // (0xB) |
| 610 | if (cpsr_n != cpsr_v) return true; |
| 611 | break; |
| 612 | case COND_GT: // (0xC) |
| 613 | if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true; |
| 614 | break; |
| 615 | case COND_LE: // (0xD) |
| 616 | if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true; |
| 617 | break; |
| 618 | default: |
| 619 | return true; |
| 620 | break; |
| 621 | } |
| 622 | |
| 623 | return false; |
| 624 | } |
| 625 | |
| 626 | bool |
| 627 | DNBArchMachARM::ComputeNextPC(nub_addr_t currentPC, arm_decoded_instruction_t decodedInstruction, bool currentPCIsThumb, nub_addr_t *targetPC) |
| 628 | { |
| 629 | nub_addr_t myTargetPC, addressWherePCLives; |
| 630 | pid_t mypid; |
| 631 | |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 632 | uint32_t cpsr_c = bit(m_state.context.gpr.__cpsr, 29); // Carry condition code flag |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 633 | |
| 634 | uint32_t firstOperand=0, secondOperand=0, shiftAmount=0, secondOperandAfterShift=0, immediateValue=0; |
| 635 | uint32_t halfwords=0, baseAddress=0, immediateOffset=0, addressOffsetFromRegister=0, addressOffsetFromRegisterAfterShift; |
| 636 | uint32_t baseAddressIndex=INVALID_NUB_HW_INDEX; |
| 637 | uint32_t firstOperandIndex=INVALID_NUB_HW_INDEX; |
| 638 | uint32_t secondOperandIndex=INVALID_NUB_HW_INDEX; |
| 639 | uint32_t addressOffsetFromRegisterIndex=INVALID_NUB_HW_INDEX; |
| 640 | uint32_t shiftRegisterIndex=INVALID_NUB_HW_INDEX; |
| 641 | uint16_t registerList16, registerList16NoPC; |
| 642 | uint8_t registerList8; |
| 643 | uint32_t numRegistersToLoad=0; |
| 644 | |
| 645 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: instruction->code=%d", __FUNCTION__, decodedInstruction.instruction->code); |
| 646 | |
| 647 | // Get the following in this switch statement: |
| 648 | // - firstOperand, secondOperand, immediateValue, shiftAmount: For arithmetic, logical and move instructions |
| 649 | // - baseAddress, immediateOffset, shiftAmount: For LDR |
| 650 | // - numRegistersToLoad: For LDM and POP instructions |
| 651 | switch (decodedInstruction.instruction->code) |
| 652 | { |
| 653 | // Arithmetic operations that can change the PC |
| 654 | case ARM_INST_ADC: |
| 655 | case ARM_INST_ADCS: |
| 656 | case ARM_INST_ADD: |
| 657 | case ARM_INST_ADDS: |
| 658 | case ARM_INST_AND: |
| 659 | case ARM_INST_ANDS: |
| 660 | case ARM_INST_ASR: |
| 661 | case ARM_INST_ASRS: |
| 662 | case ARM_INST_BIC: |
| 663 | case ARM_INST_BICS: |
| 664 | case ARM_INST_EOR: |
| 665 | case ARM_INST_EORS: |
| 666 | case ARM_INST_ORR: |
| 667 | case ARM_INST_ORRS: |
| 668 | case ARM_INST_RSB: |
| 669 | case ARM_INST_RSBS: |
| 670 | case ARM_INST_RSC: |
| 671 | case ARM_INST_RSCS: |
| 672 | case ARM_INST_SBC: |
| 673 | case ARM_INST_SBCS: |
| 674 | case ARM_INST_SUB: |
| 675 | case ARM_INST_SUBS: |
| 676 | switch (decodedInstruction.addressMode) |
| 677 | { |
| 678 | case ARM_ADDR_DATA_IMM: |
| 679 | if (decodedInstruction.numOperands != 3) |
| 680 | { |
| 681 | DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 682 | return false; |
| 683 | } |
| 684 | |
| 685 | if (decodedInstruction.op[0].value != PC_REG) |
| 686 | { |
| 687 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 688 | return false; |
| 689 | } |
| 690 | |
| 691 | // Get firstOperand register value (at index=1) |
| 692 | firstOperandIndex = decodedInstruction.op[1].value; // first operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 693 | firstOperand = m_state.context.gpr.__r[firstOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 694 | |
| 695 | // Get immediateValue (at index=2) |
| 696 | immediateValue = decodedInstruction.op[2].value; |
| 697 | |
| 698 | break; |
| 699 | |
| 700 | case ARM_ADDR_DATA_REG: |
| 701 | if (decodedInstruction.numOperands != 3) |
| 702 | { |
| 703 | DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 704 | return false; |
| 705 | } |
| 706 | |
| 707 | if (decodedInstruction.op[0].value != PC_REG) |
| 708 | { |
| 709 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 710 | return false; |
| 711 | } |
| 712 | |
| 713 | // Get firstOperand register value (at index=1) |
| 714 | firstOperandIndex = decodedInstruction.op[1].value; // first operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 715 | firstOperand = m_state.context.gpr.__r[firstOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 716 | |
| 717 | // Get secondOperand register value (at index=2) |
| 718 | secondOperandIndex = decodedInstruction.op[2].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 719 | secondOperand = m_state.context.gpr.__r[secondOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 720 | |
| 721 | break; |
| 722 | |
| 723 | case ARM_ADDR_DATA_SCALED_IMM: |
| 724 | if (decodedInstruction.numOperands != 4) |
| 725 | { |
| 726 | DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 727 | return false; |
| 728 | } |
| 729 | |
| 730 | if (decodedInstruction.op[0].value != PC_REG) |
| 731 | { |
| 732 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 733 | return false; |
| 734 | } |
| 735 | |
| 736 | // Get firstOperand register value (at index=1) |
| 737 | firstOperandIndex = decodedInstruction.op[1].value; // first operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 738 | firstOperand = m_state.context.gpr.__r[firstOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 739 | |
| 740 | // Get secondOperand register value (at index=2) |
| 741 | secondOperandIndex = decodedInstruction.op[2].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 742 | secondOperand = m_state.context.gpr.__r[secondOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 743 | |
| 744 | // Get shiftAmount as immediate value (at index=3) |
| 745 | shiftAmount = decodedInstruction.op[3].value; |
| 746 | |
| 747 | break; |
| 748 | |
| 749 | |
| 750 | case ARM_ADDR_DATA_SCALED_REG: |
| 751 | if (decodedInstruction.numOperands != 4) |
| 752 | { |
| 753 | DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 754 | return false; |
| 755 | } |
| 756 | |
| 757 | if (decodedInstruction.op[0].value != PC_REG) |
| 758 | { |
| 759 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 760 | return false; |
| 761 | } |
| 762 | |
| 763 | // Get firstOperand register value (at index=1) |
| 764 | firstOperandIndex = decodedInstruction.op[1].value; // first operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 765 | firstOperand = m_state.context.gpr.__r[firstOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 766 | |
| 767 | // Get secondOperand register value (at index=2) |
| 768 | secondOperandIndex = decodedInstruction.op[2].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 769 | secondOperand = m_state.context.gpr.__r[secondOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 770 | |
| 771 | // Get shiftAmount from register (at index=3) |
| 772 | shiftRegisterIndex = decodedInstruction.op[3].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 773 | shiftAmount = m_state.context.gpr.__r[shiftRegisterIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 774 | |
| 775 | break; |
| 776 | |
| 777 | case THUMB_ADDR_HR_HR: |
| 778 | if (decodedInstruction.numOperands != 2) |
| 779 | { |
| 780 | DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 781 | return false; |
| 782 | } |
| 783 | |
| 784 | if (decodedInstruction.op[0].value != PC_REG) |
| 785 | { |
| 786 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 787 | return false; |
| 788 | } |
| 789 | |
| 790 | // Get firstOperand register value (at index=0) |
| 791 | firstOperandIndex = decodedInstruction.op[0].value; // first operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 792 | firstOperand = m_state.context.gpr.__r[firstOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 793 | |
| 794 | // Get secondOperand register value (at index=1) |
| 795 | secondOperandIndex = decodedInstruction.op[1].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 796 | secondOperand = m_state.context.gpr.__r[secondOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 797 | |
| 798 | break; |
| 799 | |
| 800 | default: |
| 801 | break; |
| 802 | } |
| 803 | break; |
| 804 | |
| 805 | // Logical shifts and move operations that can change the PC |
| 806 | case ARM_INST_LSL: |
| 807 | case ARM_INST_LSLS: |
| 808 | case ARM_INST_LSR: |
| 809 | case ARM_INST_LSRS: |
| 810 | case ARM_INST_MOV: |
| 811 | case ARM_INST_MOVS: |
| 812 | case ARM_INST_MVN: |
| 813 | case ARM_INST_MVNS: |
| 814 | case ARM_INST_ROR: |
| 815 | case ARM_INST_RORS: |
| 816 | case ARM_INST_RRX: |
| 817 | case ARM_INST_RRXS: |
| 818 | // In these cases, the firstOperand is always 0, as if it does not exist |
| 819 | switch (decodedInstruction.addressMode) |
| 820 | { |
| 821 | case ARM_ADDR_DATA_IMM: |
| 822 | if (decodedInstruction.numOperands != 2) |
| 823 | { |
| 824 | DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 825 | return false; |
| 826 | } |
| 827 | |
| 828 | if (decodedInstruction.op[0].value != PC_REG) |
| 829 | { |
| 830 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 831 | return false; |
| 832 | } |
| 833 | |
| 834 | // Get immediateValue (at index=1) |
| 835 | immediateValue = decodedInstruction.op[1].value; |
| 836 | |
| 837 | break; |
| 838 | |
| 839 | case ARM_ADDR_DATA_REG: |
| 840 | if (decodedInstruction.numOperands != 2) |
| 841 | { |
| 842 | DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 843 | return false; |
| 844 | } |
| 845 | |
| 846 | if (decodedInstruction.op[0].value != PC_REG) |
| 847 | { |
| 848 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 849 | return false; |
| 850 | } |
| 851 | |
| 852 | // Get secondOperand register value (at index=1) |
| 853 | secondOperandIndex = decodedInstruction.op[1].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 854 | secondOperand = m_state.context.gpr.__r[secondOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 855 | |
| 856 | break; |
| 857 | |
| 858 | case ARM_ADDR_DATA_SCALED_IMM: |
| 859 | if (decodedInstruction.numOperands != 3) |
| 860 | { |
| 861 | DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 862 | return false; |
| 863 | } |
| 864 | |
| 865 | if (decodedInstruction.op[0].value != PC_REG) |
| 866 | { |
| 867 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 868 | return false; |
| 869 | } |
| 870 | |
| 871 | // Get secondOperand register value (at index=1) |
| 872 | secondOperandIndex = decodedInstruction.op[2].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 873 | secondOperand = m_state.context.gpr.__r[secondOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 874 | |
| 875 | // Get shiftAmount as immediate value (at index=2) |
| 876 | shiftAmount = decodedInstruction.op[2].value; |
| 877 | |
| 878 | break; |
| 879 | |
| 880 | |
| 881 | case ARM_ADDR_DATA_SCALED_REG: |
| 882 | if (decodedInstruction.numOperands != 3) |
| 883 | { |
| 884 | DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 885 | return false; |
| 886 | } |
| 887 | |
| 888 | if (decodedInstruction.op[0].value != PC_REG) |
| 889 | { |
| 890 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 891 | return false; |
| 892 | } |
| 893 | |
| 894 | // Get secondOperand register value (at index=1) |
| 895 | secondOperandIndex = decodedInstruction.op[1].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 896 | secondOperand = m_state.context.gpr.__r[secondOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 897 | |
| 898 | // Get shiftAmount from register (at index=2) |
| 899 | shiftRegisterIndex = decodedInstruction.op[2].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 900 | shiftAmount = m_state.context.gpr.__r[shiftRegisterIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 901 | |
| 902 | break; |
| 903 | |
| 904 | case THUMB_ADDR_HR_HR: |
| 905 | if (decodedInstruction.numOperands != 2) |
| 906 | { |
| 907 | DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 908 | return false; |
| 909 | } |
| 910 | |
| 911 | if (decodedInstruction.op[0].value != PC_REG) |
| 912 | { |
| 913 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 914 | return false; |
| 915 | } |
| 916 | |
| 917 | // Get secondOperand register value (at index=1) |
| 918 | secondOperandIndex = decodedInstruction.op[1].value; // second operand register index |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 919 | secondOperand = m_state.context.gpr.__r[secondOperandIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 920 | |
| 921 | break; |
| 922 | |
| 923 | default: |
| 924 | break; |
| 925 | } |
| 926 | |
| 927 | break; |
| 928 | |
| 929 | // Simple branches, used to hop around within a routine |
| 930 | case ARM_INST_B: |
| 931 | *targetPC = decodedInstruction.targetPC; // Known targetPC |
| 932 | return true; |
| 933 | break; |
| 934 | |
| 935 | // Branch-and-link, used to call ARM subroutines |
| 936 | case ARM_INST_BL: |
| 937 | *targetPC = decodedInstruction.targetPC; // Known targetPC |
| 938 | return true; |
| 939 | break; |
| 940 | |
| 941 | // Branch-and-link with exchange, used to call opposite-mode subroutines |
| 942 | case ARM_INST_BLX: |
| 943 | if ((decodedInstruction.addressMode == ARM_ADDR_BRANCH_IMM) || |
| 944 | (decodedInstruction.addressMode == THUMB_ADDR_UNCOND)) |
| 945 | { |
| 946 | *targetPC = decodedInstruction.targetPC; // Known targetPC |
| 947 | return true; |
| 948 | } |
| 949 | else // addressMode == ARM_ADDR_BRANCH_REG |
| 950 | { |
| 951 | // Unknown target unless we're branching to the PC itself, |
| 952 | // although this may not work properly with BLX |
| 953 | if (decodedInstruction.op[REG_RD].value == PC_REG) |
| 954 | { |
| 955 | // this should (almost) never happen |
| 956 | *targetPC = decodedInstruction.targetPC; // Known targetPC |
| 957 | return true; |
| 958 | } |
| 959 | |
| 960 | // Get the branch address and return |
| 961 | if (decodedInstruction.numOperands != 1) |
| 962 | { |
| 963 | DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 964 | return false; |
| 965 | } |
| 966 | |
| 967 | // Get branch address in register (at index=0) |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 968 | *targetPC = m_state.context.gpr.__r[decodedInstruction.op[0].value]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 969 | return true; |
| 970 | } |
| 971 | break; |
| 972 | |
| 973 | // Branch with exchange, used to hop to opposite-mode code |
| 974 | // Branch to Jazelle code, used to execute Java; included here since it |
| 975 | // acts just like BX unless the Jazelle unit is active and JPC is |
| 976 | // already loaded into it. |
| 977 | case ARM_INST_BX: |
| 978 | case ARM_INST_BXJ: |
| 979 | // Unknown target unless we're branching to the PC itself, |
| 980 | // although this can never switch to Thumb mode and is |
| 981 | // therefore pretty much useless |
| 982 | if (decodedInstruction.op[REG_RD].value == PC_REG) |
| 983 | { |
| 984 | // this should (almost) never happen |
| 985 | *targetPC = decodedInstruction.targetPC; // Known targetPC |
| 986 | return true; |
| 987 | } |
| 988 | |
| 989 | // Get the branch address and return |
| 990 | if (decodedInstruction.numOperands != 1) |
| 991 | { |
| 992 | DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 993 | return false; |
| 994 | } |
| 995 | |
| 996 | // Get branch address in register (at index=0) |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 997 | *targetPC = m_state.context.gpr.__r[decodedInstruction.op[0].value]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 998 | return true; |
| 999 | break; |
| 1000 | |
| 1001 | // Compare and branch on zero/non-zero (Thumb-16 only) |
| 1002 | // Unusual condition check built into the instruction |
| 1003 | case ARM_INST_CBZ: |
| 1004 | case ARM_INST_CBNZ: |
| 1005 | // Branch address is known at compile time |
| 1006 | // Get the branch address and return |
| 1007 | if (decodedInstruction.numOperands != 2) |
| 1008 | { |
| 1009 | DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 1010 | return false; |
| 1011 | } |
| 1012 | |
| 1013 | // Get branch address as an immediate value (at index=1) |
| 1014 | *targetPC = decodedInstruction.op[1].value; |
| 1015 | return true; |
| 1016 | break; |
| 1017 | |
| 1018 | // Load register can be used to load PC, usually with a function pointer |
| 1019 | case ARM_INST_LDR: |
| 1020 | if (decodedInstruction.op[REG_RD].value != PC_REG) |
| 1021 | { |
| 1022 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 1023 | return false; |
| 1024 | } |
| 1025 | switch (decodedInstruction.addressMode) |
| 1026 | { |
| 1027 | case ARM_ADDR_LSWUB_IMM: |
| 1028 | case ARM_ADDR_LSWUB_IMM_PRE: |
| 1029 | case ARM_ADDR_LSWUB_IMM_POST: |
| 1030 | if (decodedInstruction.numOperands != 3) |
| 1031 | { |
| 1032 | DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 1033 | return false; |
| 1034 | } |
| 1035 | |
| 1036 | // Get baseAddress from register (at index=1) |
| 1037 | baseAddressIndex = decodedInstruction.op[1].value; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1038 | baseAddress = m_state.context.gpr.__r[baseAddressIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1039 | |
| 1040 | // Get immediateOffset (at index=2) |
| 1041 | immediateOffset = decodedInstruction.op[2].value; |
| 1042 | break; |
| 1043 | |
| 1044 | case ARM_ADDR_LSWUB_REG: |
| 1045 | case ARM_ADDR_LSWUB_REG_PRE: |
| 1046 | case ARM_ADDR_LSWUB_REG_POST: |
| 1047 | if (decodedInstruction.numOperands != 3) |
| 1048 | { |
| 1049 | DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 1050 | return false; |
| 1051 | } |
| 1052 | |
| 1053 | // Get baseAddress from register (at index=1) |
| 1054 | baseAddressIndex = decodedInstruction.op[1].value; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1055 | baseAddress = m_state.context.gpr.__r[baseAddressIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1056 | |
| 1057 | // Get immediateOffset from register (at index=2) |
| 1058 | addressOffsetFromRegisterIndex = decodedInstruction.op[2].value; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1059 | addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1060 | |
| 1061 | break; |
| 1062 | |
| 1063 | case ARM_ADDR_LSWUB_SCALED: |
| 1064 | case ARM_ADDR_LSWUB_SCALED_PRE: |
| 1065 | case ARM_ADDR_LSWUB_SCALED_POST: |
| 1066 | if (decodedInstruction.numOperands != 4) |
| 1067 | { |
| 1068 | DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 1069 | return false; |
| 1070 | } |
| 1071 | |
| 1072 | // Get baseAddress from register (at index=1) |
| 1073 | baseAddressIndex = decodedInstruction.op[1].value; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1074 | baseAddress = m_state.context.gpr.__r[baseAddressIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1075 | |
| 1076 | // Get immediateOffset from register (at index=2) |
| 1077 | addressOffsetFromRegisterIndex = decodedInstruction.op[2].value; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1078 | addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1079 | |
| 1080 | // Get shiftAmount (at index=3) |
| 1081 | shiftAmount = decodedInstruction.op[3].value; |
| 1082 | |
| 1083 | break; |
| 1084 | |
| 1085 | default: |
| 1086 | break; |
| 1087 | } |
| 1088 | break; |
| 1089 | |
| 1090 | // 32b load multiple operations can load the PC along with everything else, |
| 1091 | // usually to return from a function call |
| 1092 | case ARM_INST_LDMDA: |
| 1093 | case ARM_INST_LDMDB: |
| 1094 | case ARM_INST_LDMIA: |
| 1095 | case ARM_INST_LDMIB: |
| 1096 | if (decodedInstruction.op[LDM_REGLIST].value & PC_REGLIST_BIT) |
| 1097 | { |
| 1098 | if (decodedInstruction.numOperands != 2) |
| 1099 | { |
| 1100 | DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands); |
| 1101 | return false; |
| 1102 | } |
| 1103 | |
| 1104 | // Get baseAddress from register (at index=0) |
| 1105 | baseAddressIndex = decodedInstruction.op[0].value; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1106 | baseAddress = m_state.context.gpr.__r[baseAddressIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1107 | |
| 1108 | // Get registerList from register (at index=1) |
| 1109 | registerList16 = (uint16_t)decodedInstruction.op[1].value; |
| 1110 | |
| 1111 | // Count number of registers to load in the multiple register list excluding the PC |
| 1112 | registerList16NoPC = registerList16&0x3FFF; // exclude the PC |
| 1113 | numRegistersToLoad=0; |
| 1114 | for (int i = 0; i < 16; i++) |
| 1115 | { |
| 1116 | if (registerList16NoPC & 0x1) numRegistersToLoad++; |
| 1117 | registerList16NoPC = registerList16NoPC >> 1; |
| 1118 | } |
| 1119 | } |
| 1120 | else |
| 1121 | { |
| 1122 | DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value); |
| 1123 | return false; |
| 1124 | } |
| 1125 | break; |
| 1126 | |
| 1127 | // Normal 16-bit LD multiple can't touch R15, but POP can |
| 1128 | case ARM_INST_POP: // Can also get the PC & updates SP |
| 1129 | // Get baseAddress from SP (at index=0) |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1130 | baseAddress = m_state.context.gpr.__sp; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1131 | |
| 1132 | if (decodedInstruction.thumb16b) |
| 1133 | { |
| 1134 | // Get registerList from register (at index=0) |
| 1135 | registerList8 = (uint8_t)decodedInstruction.op[0].value; |
| 1136 | |
| 1137 | // Count number of registers to load in the multiple register list |
| 1138 | numRegistersToLoad=0; |
| 1139 | for (int i = 0; i < 8; i++) |
| 1140 | { |
| 1141 | if (registerList8 & 0x1) numRegistersToLoad++; |
| 1142 | registerList8 = registerList8 >> 1; |
| 1143 | } |
| 1144 | } |
| 1145 | else |
| 1146 | { |
| 1147 | // Get registerList from register (at index=0) |
| 1148 | registerList16 = (uint16_t)decodedInstruction.op[0].value; |
| 1149 | |
| 1150 | // Count number of registers to load in the multiple register list excluding the PC |
| 1151 | registerList16NoPC = registerList16&0x3FFF; // exclude the PC |
| 1152 | numRegistersToLoad=0; |
| 1153 | for (int i = 0; i < 16; i++) |
| 1154 | { |
| 1155 | if (registerList16NoPC & 0x1) numRegistersToLoad++; |
| 1156 | registerList16NoPC = registerList16NoPC >> 1; |
| 1157 | } |
| 1158 | } |
| 1159 | break; |
| 1160 | |
| 1161 | // 16b TBB and TBH instructions load a jump address from a table |
| 1162 | case ARM_INST_TBB: |
| 1163 | case ARM_INST_TBH: |
| 1164 | // Get baseAddress from register (at index=0) |
| 1165 | baseAddressIndex = decodedInstruction.op[0].value; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1166 | baseAddress = m_state.context.gpr.__r[baseAddressIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1167 | |
| 1168 | // Get immediateOffset from register (at index=1) |
| 1169 | addressOffsetFromRegisterIndex = decodedInstruction.op[1].value; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1170 | addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1171 | break; |
| 1172 | |
| 1173 | // ThumbEE branch-to-handler instructions: Jump to handlers at some offset |
| 1174 | // from a special base pointer register (which is unknown at disassembly time) |
| 1175 | case ARM_INST_HB: |
| 1176 | case ARM_INST_HBP: |
| 1177 | // TODO: ARM_INST_HB, ARM_INST_HBP |
| 1178 | break; |
| 1179 | |
| 1180 | case ARM_INST_HBL: |
| 1181 | case ARM_INST_HBLP: |
| 1182 | // TODO: ARM_INST_HBL, ARM_INST_HBLP |
| 1183 | break; |
| 1184 | |
| 1185 | // Breakpoint and software interrupt jump to interrupt handler (always ARM) |
| 1186 | case ARM_INST_BKPT: |
| 1187 | case ARM_INST_SMC: |
| 1188 | case ARM_INST_SVC: |
| 1189 | |
| 1190 | // Return from exception, obviously modifies PC [interrupt only!] |
| 1191 | case ARM_INST_RFEDA: |
| 1192 | case ARM_INST_RFEDB: |
| 1193 | case ARM_INST_RFEIA: |
| 1194 | case ARM_INST_RFEIB: |
| 1195 | |
| 1196 | // Other instructions either can't change R15 or are "undefined" if you do, |
| 1197 | // so no sane compiler should ever generate them & we don't care here. |
| 1198 | // Also, R15 can only legally be used in a read-only manner for the |
| 1199 | // various ARM addressing mode (to get PC-relative addressing of constants), |
| 1200 | // but can NOT be used with any of the update modes. |
| 1201 | default: |
| 1202 | DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code); |
| 1203 | return false; |
| 1204 | break; |
| 1205 | } |
| 1206 | |
| 1207 | // Adjust PC if PC is one of the input operands |
| 1208 | if (baseAddressIndex == PC_REG) |
| 1209 | { |
| 1210 | if (currentPCIsThumb) |
| 1211 | baseAddress += 4; |
| 1212 | else |
| 1213 | baseAddress += 8; |
| 1214 | } |
| 1215 | |
| 1216 | if (firstOperandIndex == PC_REG) |
| 1217 | { |
| 1218 | if (currentPCIsThumb) |
| 1219 | firstOperand += 4; |
| 1220 | else |
| 1221 | firstOperand += 8; |
| 1222 | } |
| 1223 | |
| 1224 | if (secondOperandIndex == PC_REG) |
| 1225 | { |
| 1226 | if (currentPCIsThumb) |
| 1227 | secondOperand += 4; |
| 1228 | else |
| 1229 | secondOperand += 8; |
| 1230 | } |
| 1231 | |
| 1232 | if (addressOffsetFromRegisterIndex == PC_REG) |
| 1233 | { |
| 1234 | if (currentPCIsThumb) |
| 1235 | addressOffsetFromRegister += 4; |
| 1236 | else |
| 1237 | addressOffsetFromRegister += 8; |
| 1238 | } |
| 1239 | |
| 1240 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, |
| 1241 | "%s: firstOperand=%8.8x, secondOperand=%8.8x, immediateValue = %d, shiftAmount = %d, baseAddress = %8.8x, addressOffsetFromRegister = %8.8x, immediateOffset = %d, numRegistersToLoad = %d", |
| 1242 | __FUNCTION__, |
| 1243 | firstOperand, |
| 1244 | secondOperand, |
| 1245 | immediateValue, |
| 1246 | shiftAmount, |
| 1247 | baseAddress, |
| 1248 | addressOffsetFromRegister, |
| 1249 | immediateOffset, |
| 1250 | numRegistersToLoad); |
| 1251 | |
| 1252 | |
| 1253 | // Calculate following values after applying shiftAmount: |
| 1254 | // - immediateOffsetAfterShift, secondOperandAfterShift |
| 1255 | |
| 1256 | switch (decodedInstruction.scaleMode) |
| 1257 | { |
| 1258 | case ARM_SCALE_NONE: |
| 1259 | addressOffsetFromRegisterAfterShift = addressOffsetFromRegister; |
| 1260 | secondOperandAfterShift = secondOperand; |
| 1261 | break; |
| 1262 | |
| 1263 | case ARM_SCALE_LSL: // Logical shift left |
| 1264 | addressOffsetFromRegisterAfterShift = addressOffsetFromRegister << shiftAmount; |
| 1265 | secondOperandAfterShift = secondOperand << shiftAmount; |
| 1266 | break; |
| 1267 | |
| 1268 | case ARM_SCALE_LSR: // Logical shift right |
| 1269 | addressOffsetFromRegisterAfterShift = addressOffsetFromRegister >> shiftAmount; |
| 1270 | secondOperandAfterShift = secondOperand >> shiftAmount; |
| 1271 | break; |
| 1272 | |
| 1273 | case ARM_SCALE_ASR: // Arithmetic shift right |
| 1274 | asm("mov %0, %1, asr %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount)); |
| 1275 | asm("mov %0, %1, asr %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount)); |
| 1276 | break; |
| 1277 | |
| 1278 | case ARM_SCALE_ROR: // Rotate right |
| 1279 | asm("mov %0, %1, ror %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount)); |
| 1280 | asm("mov %0, %1, ror %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount)); |
| 1281 | break; |
| 1282 | |
| 1283 | case ARM_SCALE_RRX: // Rotate right, pulling in carry (1-bit shift only) |
| 1284 | asm("mov %0, %1, rrx" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister)); |
| 1285 | asm("mov %0, %1, rrx" : "=r" (secondOperandAfterShift) : "r" (secondOperand)); |
| 1286 | break; |
| 1287 | } |
| 1288 | |
| 1289 | // Emulate instruction to calculate targetPC |
| 1290 | // All branches are already handled in the first switch statement. A branch should not reach this switch |
| 1291 | switch (decodedInstruction.instruction->code) |
| 1292 | { |
| 1293 | // Arithmetic operations that can change the PC |
| 1294 | case ARM_INST_ADC: |
| 1295 | case ARM_INST_ADCS: |
| 1296 | // Add with Carry |
| 1297 | *targetPC = firstOperand + (secondOperandAfterShift + immediateValue) + cpsr_c; |
| 1298 | break; |
| 1299 | |
| 1300 | case ARM_INST_ADD: |
| 1301 | case ARM_INST_ADDS: |
| 1302 | *targetPC = firstOperand + (secondOperandAfterShift + immediateValue); |
| 1303 | break; |
| 1304 | |
| 1305 | case ARM_INST_AND: |
| 1306 | case ARM_INST_ANDS: |
| 1307 | *targetPC = firstOperand & (secondOperandAfterShift + immediateValue); |
| 1308 | break; |
| 1309 | |
| 1310 | case ARM_INST_ASR: |
| 1311 | case ARM_INST_ASRS: |
| 1312 | asm("mov %0, %1, asr %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue)); |
| 1313 | *targetPC = myTargetPC; |
| 1314 | break; |
| 1315 | |
| 1316 | case ARM_INST_BIC: |
| 1317 | case ARM_INST_BICS: |
| 1318 | asm("bic %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue)); |
| 1319 | *targetPC = myTargetPC; |
| 1320 | break; |
| 1321 | |
| 1322 | case ARM_INST_EOR: |
| 1323 | case ARM_INST_EORS: |
| 1324 | asm("eor %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue)); |
| 1325 | *targetPC = myTargetPC; |
| 1326 | break; |
| 1327 | |
| 1328 | case ARM_INST_ORR: |
| 1329 | case ARM_INST_ORRS: |
| 1330 | asm("orr %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue)); |
| 1331 | *targetPC = myTargetPC; |
| 1332 | break; |
| 1333 | |
| 1334 | case ARM_INST_RSB: |
| 1335 | case ARM_INST_RSBS: |
| 1336 | asm("rsb %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue)); |
| 1337 | *targetPC = myTargetPC; |
| 1338 | break; |
| 1339 | |
| 1340 | case ARM_INST_RSC: |
| 1341 | case ARM_INST_RSCS: |
| 1342 | myTargetPC = secondOperandAfterShift - (firstOperand + !cpsr_c); |
| 1343 | *targetPC = myTargetPC; |
| 1344 | break; |
| 1345 | |
| 1346 | case ARM_INST_SBC: |
| 1347 | case ARM_INST_SBCS: |
| 1348 | asm("sbc %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue + !cpsr_c)); |
| 1349 | *targetPC = myTargetPC; |
| 1350 | break; |
| 1351 | |
| 1352 | case ARM_INST_SUB: |
| 1353 | case ARM_INST_SUBS: |
| 1354 | asm("sub %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue)); |
| 1355 | *targetPC = myTargetPC; |
| 1356 | break; |
| 1357 | |
| 1358 | // Logical shifts and move operations that can change the PC |
| 1359 | case ARM_INST_LSL: |
| 1360 | case ARM_INST_LSLS: |
| 1361 | case ARM_INST_LSR: |
| 1362 | case ARM_INST_LSRS: |
| 1363 | case ARM_INST_MOV: |
| 1364 | case ARM_INST_MOVS: |
| 1365 | case ARM_INST_ROR: |
| 1366 | case ARM_INST_RORS: |
| 1367 | case ARM_INST_RRX: |
| 1368 | case ARM_INST_RRXS: |
| 1369 | myTargetPC = secondOperandAfterShift + immediateValue; |
| 1370 | *targetPC = myTargetPC; |
| 1371 | break; |
| 1372 | |
| 1373 | case ARM_INST_MVN: |
| 1374 | case ARM_INST_MVNS: |
| 1375 | myTargetPC = !(secondOperandAfterShift + immediateValue); |
| 1376 | *targetPC = myTargetPC; |
| 1377 | break; |
| 1378 | |
| 1379 | // Load register can be used to load PC, usually with a function pointer |
| 1380 | case ARM_INST_LDR: |
| 1381 | switch (decodedInstruction.addressMode) { |
| 1382 | case ARM_ADDR_LSWUB_IMM_POST: |
| 1383 | case ARM_ADDR_LSWUB_REG_POST: |
| 1384 | case ARM_ADDR_LSWUB_SCALED_POST: |
| 1385 | addressWherePCLives = baseAddress; |
| 1386 | break; |
| 1387 | |
| 1388 | case ARM_ADDR_LSWUB_IMM: |
| 1389 | case ARM_ADDR_LSWUB_REG: |
| 1390 | case ARM_ADDR_LSWUB_SCALED: |
| 1391 | case ARM_ADDR_LSWUB_IMM_PRE: |
| 1392 | case ARM_ADDR_LSWUB_REG_PRE: |
| 1393 | case ARM_ADDR_LSWUB_SCALED_PRE: |
| 1394 | addressWherePCLives = baseAddress + (addressOffsetFromRegisterAfterShift + immediateOffset); |
| 1395 | break; |
| 1396 | |
| 1397 | default: |
| 1398 | break; |
| 1399 | } |
| 1400 | |
| 1401 | mypid = m_thread->ProcessID(); |
| 1402 | if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t)) |
| 1403 | { |
| 1404 | DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives); |
| 1405 | return false; |
| 1406 | } |
| 1407 | |
| 1408 | *targetPC = myTargetPC; |
| 1409 | break; |
| 1410 | |
| 1411 | // 32b load multiple operations can load the PC along with everything else, |
| 1412 | // usually to return from a function call |
| 1413 | case ARM_INST_LDMDA: |
| 1414 | mypid = m_thread->ProcessID(); |
| 1415 | addressWherePCLives = baseAddress; |
| 1416 | if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t)) |
| 1417 | { |
| 1418 | DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives); |
| 1419 | return false; |
| 1420 | } |
| 1421 | |
| 1422 | *targetPC = myTargetPC; |
| 1423 | break; |
| 1424 | |
| 1425 | case ARM_INST_LDMDB: |
| 1426 | mypid = m_thread->ProcessID(); |
| 1427 | addressWherePCLives = baseAddress - 4; |
| 1428 | if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t)) |
| 1429 | { |
| 1430 | DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives); |
| 1431 | return false; |
| 1432 | } |
| 1433 | |
| 1434 | *targetPC = myTargetPC; |
| 1435 | break; |
| 1436 | |
| 1437 | case ARM_INST_LDMIB: |
| 1438 | mypid = m_thread->ProcessID(); |
| 1439 | addressWherePCLives = baseAddress + numRegistersToLoad*4 + 4; |
| 1440 | if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t)) |
| 1441 | { |
| 1442 | DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives); |
| 1443 | return false; |
| 1444 | } |
| 1445 | |
| 1446 | *targetPC = myTargetPC; |
| 1447 | break; |
| 1448 | |
| 1449 | case ARM_INST_LDMIA: // same as pop |
| 1450 | // Normal 16-bit LD multiple can't touch R15, but POP can |
| 1451 | case ARM_INST_POP: // Can also get the PC & updates SP |
| 1452 | mypid = m_thread->ProcessID(); |
| 1453 | addressWherePCLives = baseAddress + numRegistersToLoad*4; |
| 1454 | if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t)) |
| 1455 | { |
| 1456 | DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives); |
| 1457 | return false; |
| 1458 | } |
| 1459 | |
| 1460 | *targetPC = myTargetPC; |
| 1461 | break; |
| 1462 | |
| 1463 | // 16b TBB and TBH instructions load a jump address from a table |
| 1464 | case ARM_INST_TBB: |
| 1465 | mypid = m_thread->ProcessID(); |
| 1466 | addressWherePCLives = baseAddress + addressOffsetFromRegisterAfterShift; |
| 1467 | if (DNBProcessMemoryRead(mypid, addressWherePCLives, 1, &halfwords) != 1) |
| 1468 | { |
| 1469 | DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBB instruction!", addressWherePCLives); |
| 1470 | return false; |
| 1471 | } |
| 1472 | // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords |
| 1473 | *targetPC = (currentPC + 4) + 2*halfwords; |
| 1474 | break; |
| 1475 | |
| 1476 | case ARM_INST_TBH: |
| 1477 | mypid = m_thread->ProcessID(); |
| 1478 | addressWherePCLives = ((baseAddress + (addressOffsetFromRegisterAfterShift << 1)) & ~0x1); |
| 1479 | if (DNBProcessMemoryRead(mypid, addressWherePCLives, 2, &halfwords) != 2) |
| 1480 | { |
| 1481 | DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBH instruction!", addressWherePCLives); |
| 1482 | return false; |
| 1483 | } |
| 1484 | // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords |
| 1485 | *targetPC = (currentPC + 4) + 2*halfwords; |
| 1486 | break; |
| 1487 | |
| 1488 | // ThumbEE branch-to-handler instructions: Jump to handlers at some offset |
| 1489 | // from a special base pointer register (which is unknown at disassembly time) |
| 1490 | case ARM_INST_HB: |
| 1491 | case ARM_INST_HBP: |
| 1492 | // TODO: ARM_INST_HB, ARM_INST_HBP |
| 1493 | break; |
| 1494 | |
| 1495 | case ARM_INST_HBL: |
| 1496 | case ARM_INST_HBLP: |
| 1497 | // TODO: ARM_INST_HBL, ARM_INST_HBLP |
| 1498 | break; |
| 1499 | |
| 1500 | // Breakpoint and software interrupt jump to interrupt handler (always ARM) |
| 1501 | case ARM_INST_BKPT: |
| 1502 | case ARM_INST_SMC: |
| 1503 | case ARM_INST_SVC: |
| 1504 | // TODO: ARM_INST_BKPT, ARM_INST_SMC, ARM_INST_SVC |
| 1505 | break; |
| 1506 | |
| 1507 | // Return from exception, obviously modifies PC [interrupt only!] |
| 1508 | case ARM_INST_RFEDA: |
| 1509 | case ARM_INST_RFEDB: |
| 1510 | case ARM_INST_RFEIA: |
| 1511 | case ARM_INST_RFEIB: |
| 1512 | // TODO: ARM_INST_RFEDA, ARM_INST_RFEDB, ARM_INST_RFEIA, ARM_INST_RFEIB |
| 1513 | break; |
| 1514 | |
| 1515 | // Other instructions either can't change R15 or are "undefined" if you do, |
| 1516 | // so no sane compiler should ever generate them & we don't care here. |
| 1517 | // Also, R15 can only legally be used in a read-only manner for the |
| 1518 | // various ARM addressing mode (to get PC-relative addressing of constants), |
| 1519 | // but can NOT be used with any of the update modes. |
| 1520 | default: |
| 1521 | DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code); |
| 1522 | return false; |
| 1523 | break; |
| 1524 | } |
| 1525 | |
| 1526 | return true; |
| 1527 | } |
| 1528 | |
| 1529 | void |
| 1530 | DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup(nub_addr_t currentPC, uint32_t cpsr, bool currentPCIsThumb, nub_addr_t *nextPC, bool *nextPCIsThumb) |
| 1531 | { |
| 1532 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup() called"); |
| 1533 | |
| 1534 | nub_addr_t targetPC = INVALID_NUB_ADDRESS; |
| 1535 | uint32_t registerValue; |
| 1536 | arm_error_t decodeError; |
| 1537 | nub_addr_t currentPCInITBlock, nextPCInITBlock; |
| 1538 | int i; |
| 1539 | bool last_decoded_instruction_executes = true; |
| 1540 | |
| 1541 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: default nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM"); |
| 1542 | |
| 1543 | // Update *nextPC and *nextPCIsThumb for special cases |
| 1544 | if (m_last_decode_thumb.itBlockRemaining) // we are in an IT block |
| 1545 | { |
| 1546 | // Set the nextPC to the PC of the instruction which will execute in the IT block |
| 1547 | // If none of the instruction execute in the IT block based on the condition flags, |
| 1548 | // then point to the instruction immediately following the IT block |
| 1549 | const int itBlockRemaining = m_last_decode_thumb.itBlockRemaining; |
| 1550 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%8.8x", __FUNCTION__, itBlockRemaining); |
| 1551 | |
| 1552 | // Determine the PC at which the next instruction resides |
| 1553 | if (m_last_decode_arm.thumb16b) |
| 1554 | currentPCInITBlock = currentPC + 2; |
| 1555 | else |
| 1556 | currentPCInITBlock = currentPC + 4; |
| 1557 | |
| 1558 | for (i = 0; i < itBlockRemaining; i++) |
| 1559 | { |
| 1560 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: currentPCInITBlock=%8.8x", __FUNCTION__, currentPCInITBlock); |
| 1561 | decodeError = DecodeInstructionUsingDisassembler(currentPCInITBlock, cpsr, &m_last_decode_arm, &m_last_decode_thumb, &nextPCInITBlock); |
| 1562 | |
| 1563 | if (decodeError != ARM_SUCCESS) |
| 1564 | DNBLogError("unable to disassemble instruction at 0x%8.8lx", currentPCInITBlock); |
| 1565 | |
| 1566 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: condition=%d", __FUNCTION__, m_last_decode_arm.condition); |
| 1567 | if (ConditionPassed(m_last_decode_arm.condition, cpsr)) |
| 1568 | { |
| 1569 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes matched for instruction %d", __FUNCTION__, i); |
| 1570 | break; // break from the for loop |
| 1571 | } |
| 1572 | else |
| 1573 | { |
| 1574 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes DID NOT matched for instruction %d", __FUNCTION__, i); |
| 1575 | } |
| 1576 | |
| 1577 | // update currentPC and nextPCInITBlock |
| 1578 | currentPCInITBlock = nextPCInITBlock; |
| 1579 | } |
| 1580 | |
| 1581 | if (i == itBlockRemaining) // We came out of the IT block without executing any instructions |
| 1582 | last_decoded_instruction_executes = false; |
| 1583 | |
| 1584 | *nextPC = currentPCInITBlock; |
| 1585 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: After IT block step-through: *nextPC=%8.8x", __FUNCTION__, *nextPC); |
| 1586 | } |
| 1587 | |
| 1588 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, |
| 1589 | "%s: cpsr = %8.8x, thumb16b = %d, thumb = %d, branch = %d, conditional = %d, knownTarget = %d, links = %d, canSwitchMode = %d, doesSwitchMode = %d", |
| 1590 | __FUNCTION__, |
| 1591 | cpsr, |
| 1592 | m_last_decode_arm.thumb16b, |
| 1593 | m_last_decode_arm.thumb, |
| 1594 | m_last_decode_arm.branch, |
| 1595 | m_last_decode_arm.conditional, |
| 1596 | m_last_decode_arm.knownTarget, |
| 1597 | m_last_decode_arm.links, |
| 1598 | m_last_decode_arm.canSwitchMode, |
| 1599 | m_last_decode_arm.doesSwitchMode); |
| 1600 | |
| 1601 | |
| 1602 | if (last_decoded_instruction_executes && // Was this a conditional instruction that did execute? |
| 1603 | m_last_decode_arm.branch && // Can this instruction change the PC? |
| 1604 | (m_last_decode_arm.instruction->code != ARM_INST_SVC)) // If this instruction is not an SVC instruction |
| 1605 | { |
| 1606 | // Set targetPC. Compute if needed. |
| 1607 | if (m_last_decode_arm.knownTarget) |
| 1608 | { |
| 1609 | // Fixed, known PC-relative |
| 1610 | targetPC = m_last_decode_arm.targetPC; |
| 1611 | } |
| 1612 | else |
| 1613 | { |
| 1614 | // if targetPC is not known at compile time (PC-relative target), compute targetPC |
| 1615 | if (!ComputeNextPC(currentPC, m_last_decode_arm, currentPCIsThumb, &targetPC)) |
| 1616 | { |
| 1617 | DNBLogError("%s: Unable to compute targetPC for instruction at 0x%8.8lx", __FUNCTION__, currentPC); |
| 1618 | targetPC = INVALID_NUB_ADDRESS; |
| 1619 | } |
| 1620 | } |
| 1621 | |
| 1622 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: targetPC=0x%8.8x, cpsr=0x%8.8x, condition=0x%hhx", __FUNCTION__, targetPC, cpsr, m_last_decode_arm.condition); |
| 1623 | |
| 1624 | // Refine nextPC computation |
| 1625 | if ((m_last_decode_arm.instruction->code == ARM_INST_CBZ) || |
| 1626 | (m_last_decode_arm.instruction->code == ARM_INST_CBNZ)) |
| 1627 | { |
| 1628 | // Compare and branch on zero/non-zero (Thumb-16 only) |
| 1629 | // Unusual condition check built into the instruction |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1630 | registerValue = m_state.context.gpr.__r[m_last_decode_arm.op[REG_RD].value]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1631 | |
| 1632 | if (m_last_decode_arm.instruction->code == ARM_INST_CBZ) |
| 1633 | { |
| 1634 | if (registerValue == 0) |
| 1635 | *nextPC = targetPC; |
| 1636 | } |
| 1637 | else |
| 1638 | { |
| 1639 | if (registerValue != 0) |
| 1640 | *nextPC = targetPC; |
| 1641 | } |
| 1642 | } |
| 1643 | else if (m_last_decode_arm.conditional) // Is the change conditional on flag results? |
| 1644 | { |
| 1645 | if (ConditionPassed(m_last_decode_arm.condition, cpsr)) // conditions match |
| 1646 | { |
| 1647 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition matched!", __FUNCTION__); |
| 1648 | *nextPC = targetPC; |
| 1649 | } |
| 1650 | else |
| 1651 | { |
| 1652 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition did not match!", __FUNCTION__); |
| 1653 | } |
| 1654 | } |
| 1655 | else |
| 1656 | { |
| 1657 | *nextPC = targetPC; |
| 1658 | } |
| 1659 | |
| 1660 | // Refine nextPCIsThumb computation |
| 1661 | if (m_last_decode_arm.doesSwitchMode) |
| 1662 | { |
| 1663 | *nextPCIsThumb = !currentPCIsThumb; |
| 1664 | } |
| 1665 | else if (m_last_decode_arm.canSwitchMode) |
| 1666 | { |
| 1667 | // Legal to switch ARM <--> Thumb mode with this branch |
| 1668 | // dependent on bit[0] of targetPC |
| 1669 | *nextPCIsThumb = (*nextPC & 1u) != 0; |
| 1670 | } |
| 1671 | else |
| 1672 | { |
| 1673 | *nextPCIsThumb = currentPCIsThumb; |
| 1674 | } |
| 1675 | } |
| 1676 | |
| 1677 | DNBLogThreadedIf(LOG_STEP, "%s: calculated nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM"); |
| 1678 | } |
| 1679 | |
| 1680 | |
| 1681 | arm_error_t |
| 1682 | DNBArchMachARM::DecodeInstructionUsingDisassembler(nub_addr_t curr_pc, uint32_t curr_cpsr, arm_decoded_instruction_t *decodedInstruction, thumb_static_data_t *thumbStaticData, nub_addr_t *next_pc) |
| 1683 | { |
| 1684 | |
| 1685 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc=0x%8.8x, cpsr=0x%8.8x", __FUNCTION__, curr_pc, curr_cpsr); |
| 1686 | |
| 1687 | const uint32_t isetstate_mask = MASK_CPSR_T | MASK_CPSR_J; |
| 1688 | const uint32_t curr_isetstate = curr_cpsr & isetstate_mask; |
| 1689 | uint32_t opcode32; |
| 1690 | nub_addr_t nextPC = curr_pc; |
| 1691 | arm_error_t decodeReturnCode = ARM_SUCCESS; |
| 1692 | |
| 1693 | m_last_decode_pc = curr_pc; |
| 1694 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc); |
| 1695 | |
| 1696 | switch (curr_isetstate) { |
| 1697 | case 0x0: // ARM Instruction |
| 1698 | // Read the ARM opcode |
| 1699 | if (m_thread->Process()->Task().ReadMemory(curr_pc, 4, &opcode32) != 4) |
| 1700 | { |
| 1701 | DNBLogError("unable to read opcode bits 31:0 for an ARM opcode at 0x%8.8lx", curr_pc); |
| 1702 | decodeReturnCode = ARM_ERROR; |
| 1703 | } |
| 1704 | else |
| 1705 | { |
| 1706 | nextPC += 4; |
| 1707 | decodeReturnCode = ArmDisassembler((uint64_t)curr_pc, opcode32, false, decodedInstruction, NULL, 0, NULL, 0); |
| 1708 | |
| 1709 | if (decodeReturnCode != ARM_SUCCESS) |
| 1710 | DNBLogError("Unable to decode ARM instruction 0x%8.8x at 0x%8.8lx", opcode32, curr_pc); |
| 1711 | } |
| 1712 | break; |
| 1713 | |
| 1714 | case 0x20: // Thumb Instruction |
| 1715 | uint16_t opcode16; |
| 1716 | // Read the a 16 bit Thumb opcode |
| 1717 | if (m_thread->Process()->Task().ReadMemory(curr_pc, 2, &opcode16) != 2) |
| 1718 | { |
| 1719 | DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8lx", curr_pc); |
| 1720 | decodeReturnCode = ARM_ERROR; |
| 1721 | } |
| 1722 | else |
| 1723 | { |
| 1724 | nextPC += 2; |
| 1725 | opcode32 = opcode16; |
| 1726 | |
| 1727 | decodeReturnCode = ThumbDisassembler((uint64_t)curr_pc, opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0); |
| 1728 | |
| 1729 | switch (decodeReturnCode) { |
| 1730 | case ARM_SKIP: |
| 1731 | // 32 bit thumb opcode |
| 1732 | nextPC += 2; |
| 1733 | if (m_thread->Process()->Task().ReadMemory(curr_pc+2, 2, &opcode16) != 2) |
| 1734 | { |
| 1735 | DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8lx", curr_pc+2); |
| 1736 | } |
| 1737 | else |
| 1738 | { |
| 1739 | opcode32 = (opcode32 << 16) | opcode16; |
| 1740 | |
| 1741 | decodeReturnCode = ThumbDisassembler((uint64_t)(curr_pc+2), opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0); |
| 1742 | |
| 1743 | if (decodeReturnCode != ARM_SUCCESS) |
| 1744 | DNBLogError("Unable to decode 2nd half of Thumb instruction 0x%8.4hx at 0x%8.8lx", opcode16, curr_pc+2); |
| 1745 | break; |
| 1746 | } |
| 1747 | break; |
| 1748 | |
| 1749 | case ARM_SUCCESS: |
| 1750 | // 16 bit thumb opcode; at this point we are done decoding the opcode |
| 1751 | break; |
| 1752 | |
| 1753 | default: |
| 1754 | DNBLogError("Unable to decode Thumb instruction 0x%8.4hx at 0x%8.8lx", opcode16, curr_pc); |
| 1755 | decodeReturnCode = ARM_ERROR; |
| 1756 | break; |
| 1757 | } |
| 1758 | } |
| 1759 | break; |
| 1760 | |
| 1761 | default: |
| 1762 | break; |
| 1763 | } |
| 1764 | |
| 1765 | if (next_pc) |
| 1766 | *next_pc = nextPC; |
| 1767 | |
| 1768 | return decodeReturnCode; |
| 1769 | } |
| 1770 | |
| 1771 | nub_bool_t |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1772 | DNBArchMachARM::BreakpointHit (nub_process_t pid, nub_thread_t tid, nub_break_t breakID, void *baton) |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1773 | { |
| 1774 | nub_addr_t bkpt_pc = (nub_addr_t)baton; |
| 1775 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s(pid = %i, tid = %4.4x, breakID = %u, baton = %p): Setting PC to 0x%8.8x", __FUNCTION__, pid, tid, breakID, baton, bkpt_pc); |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1776 | |
| 1777 | DNBRegisterValue pc_value; |
| 1778 | DNBThreadGetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value); |
| 1779 | pc_value.value.uint32 = bkpt_pc; |
| 1780 | return DNBThreadSetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1781 | } |
| 1782 | |
| 1783 | // Set the single step bit in the processor status register. |
| 1784 | kern_return_t |
| 1785 | DNBArchMachARM::SetSingleStepSoftwareBreakpoints() |
| 1786 | { |
| 1787 | DNBError err; |
| 1788 | err = GetGPRState(false); |
| 1789 | |
| 1790 | if (err.Fail()) |
| 1791 | { |
| 1792 | err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__); |
| 1793 | return err.Error(); |
| 1794 | } |
| 1795 | |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1796 | nub_addr_t curr_pc = m_state.context.gpr.__pc; |
| 1797 | uint32_t curr_cpsr = m_state.context.gpr.__cpsr; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1798 | nub_addr_t next_pc = curr_pc; |
| 1799 | |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1800 | bool curr_pc_is_thumb = (m_state.context.gpr.__cpsr & 0x20) != 0; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1801 | bool next_pc_is_thumb = curr_pc_is_thumb; |
| 1802 | |
| 1803 | uint32_t curr_itstate = ((curr_cpsr & 0x6000000) >> 25) | ((curr_cpsr & 0xFC00) >> 8); |
| 1804 | bool inITBlock = (curr_itstate & 0xF) ? 1 : 0; |
| 1805 | bool lastInITBlock = ((curr_itstate & 0xF) == 0x8) ? 1 : 0; |
| 1806 | |
| 1807 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: curr_pc=0x%8.8x (%s), curr_itstate=0x%x, inITBlock=%d, lastInITBlock=%d", __FUNCTION__, curr_pc, curr_pc_is_thumb ? "Thumb" : "ARM", curr_itstate, inITBlock, lastInITBlock); |
| 1808 | |
| 1809 | // If the instruction is not in the IT block, then decode using the Disassembler and compute next_pc |
| 1810 | if (!inITBlock) |
| 1811 | { |
| 1812 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Decoding an instruction NOT in the IT block", __FUNCTION__); |
| 1813 | |
| 1814 | arm_error_t decodeReturnCode = DecodeInstructionUsingDisassembler(curr_pc, curr_cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc); |
| 1815 | |
| 1816 | if (decodeReturnCode != ARM_SUCCESS) |
| 1817 | { |
| 1818 | err = KERN_INVALID_ARGUMENT; |
| 1819 | DNBLogError("DNBArchMachARM::SetSingleStepSoftwareBreakpoints: Unable to disassemble instruction at 0x%8.8lx", curr_pc); |
| 1820 | } |
| 1821 | } |
| 1822 | else |
| 1823 | { |
| 1824 | next_pc = curr_pc + ((m_last_decode_arm.thumb16b) ? 2 : 4); |
| 1825 | } |
| 1826 | |
| 1827 | // Instruction is NOT in the IT block OR |
| 1828 | if (!inITBlock) |
| 1829 | { |
| 1830 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: normal instruction", __FUNCTION__); |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1831 | EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1832 | } |
| 1833 | else if (inITBlock && !m_last_decode_arm.setsFlags) |
| 1834 | { |
| 1835 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that doesn't set flags", __FUNCTION__); |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1836 | EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1837 | } |
| 1838 | else if (lastInITBlock && m_last_decode_arm.branch) |
| 1839 | { |
| 1840 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction which last in the IT block and is a branch", __FUNCTION__); |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 1841 | EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 1842 | } |
| 1843 | else |
| 1844 | { |
| 1845 | // Instruction is in IT block and can modify the CPSR flags |
| 1846 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that sets flags", __FUNCTION__); |
| 1847 | |
| 1848 | // NOTE: When this point of code is reached, the instruction at curr_pc has already been decoded |
| 1849 | // inside the function ThreadDidStop(). Therefore m_last_decode_arm, m_last_decode_thumb |
| 1850 | // reflect the decoded instruction at curr_pc |
| 1851 | |
| 1852 | // If we find an instruction inside the IT block which will set/modify the condition flags (NZCV bits in CPSR), |
| 1853 | // we set breakpoints at all remaining instructions inside the IT block starting from the instruction immediately |
| 1854 | // following this one AND a breakpoint at the instruction immediately following the IT block. We do this because |
| 1855 | // we cannot determine the next_pc until the instruction at which we are currently stopped executes. Hence we |
| 1856 | // insert (m_last_decode_thumb.itBlockRemaining+1) 16-bit Thumb breakpoints at consecutive memory locations |
| 1857 | // starting at addrOfNextInstructionInITBlock. We record these breakpoints in class variable m_sw_single_step_itblock_break_id[], |
| 1858 | // and also record the total number of IT breakpoints set in the variable 'm_sw_single_step_itblock_break_count'. |
| 1859 | |
| 1860 | // The instructions inside the IT block, which are replaced by the 16-bit Thumb breakpoints (opcode=0xDEFE) |
| 1861 | // instructions, can be either Thumb-16 or Thumb-32. When a Thumb-32 instruction (say, inst#1) is replaced Thumb |
| 1862 | // by a 16-bit breakpoint (OS only supports 16-bit breakpoints in Thumb mode and 32-bit breakpoints in ARM mode), the |
| 1863 | // breakpoint for the next instruction (say instr#2) is saved in the upper half of this Thumb-32 (instr#1) |
| 1864 | // instruction. Hence if the execution stops at Breakpoint2 corresponding to instr#2, the PC is offset by 16-bits. |
| 1865 | // We therefore have to keep track of PC of each instruction in the IT block that is being replaced with the 16-bit |
| 1866 | // Thumb breakpoint, to ensure that when the breakpoint is hit, the PC is adjusted to the correct value. We save |
| 1867 | // the actual PC corresponding to each instruction in the IT block by associating a call back with each breakpoint |
| 1868 | // we set and passing it as a baton. When the breakpoint hits and the callback routine is called, the routine |
| 1869 | // adjusts the PC based on the baton that is passed to it. |
| 1870 | |
| 1871 | nub_addr_t addrOfNextInstructionInITBlock, pcInITBlock, nextPCInITBlock, bpAddressInITBlock; |
| 1872 | uint16_t opcode16; |
| 1873 | uint32_t opcode32; |
| 1874 | |
| 1875 | addrOfNextInstructionInITBlock = (m_last_decode_arm.thumb16b) ? curr_pc + 2 : curr_pc + 4; |
| 1876 | |
| 1877 | pcInITBlock = addrOfNextInstructionInITBlock; |
| 1878 | |
| 1879 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%d", __FUNCTION__, m_last_decode_thumb.itBlockRemaining); |
| 1880 | |
| 1881 | m_sw_single_step_itblock_break_count = 0; |
| 1882 | for (int i = 0; i <= m_last_decode_thumb.itBlockRemaining; i++) |
| 1883 | { |
| 1884 | if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i])) |
| 1885 | { |
| 1886 | DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Array m_sw_single_step_itblock_break_id should not contain any valid breakpoint IDs at this point. But found a valid breakID=%d at index=%d", m_sw_single_step_itblock_break_id[i], i); |
| 1887 | } |
| 1888 | else |
| 1889 | { |
| 1890 | nextPCInITBlock = pcInITBlock; |
| 1891 | // Compute nextPCInITBlock based on opcode present at pcInITBlock |
| 1892 | if (m_thread->Process()->Task().ReadMemory(pcInITBlock, 2, &opcode16) == 2) |
| 1893 | { |
| 1894 | opcode32 = opcode16; |
| 1895 | nextPCInITBlock += 2; |
| 1896 | |
| 1897 | // Check for 32 bit thumb opcode and read the upper 16 bits if needed |
| 1898 | if (((opcode32 & 0xE000) == 0xE000) && (opcode32 & 0x1800)) |
| 1899 | { |
| 1900 | // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for |
| 1901 | // a 32 bit Thumb opcode |
| 1902 | // Read bits 31:16 of a 32 bit Thumb opcode |
| 1903 | if (m_thread->Process()->Task().ReadMemory(pcInITBlock+2, 2, &opcode16) == 2) |
| 1904 | { |
| 1905 | // 32 bit thumb opcode |
| 1906 | opcode32 = (opcode32 << 16) | opcode16; |
| 1907 | nextPCInITBlock += 2; |
| 1908 | } |
| 1909 | else |
| 1910 | { |
| 1911 | DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8lx", nextPCInITBlock); |
| 1912 | } |
| 1913 | } |
| 1914 | } |
| 1915 | else |
| 1916 | { |
| 1917 | DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Error reading 16-bit Thumb instruction at pc=0x%8.8x", nextPCInITBlock); |
| 1918 | } |
| 1919 | |
| 1920 | |
| 1921 | // Set breakpoint and associate a callback function with it |
| 1922 | bpAddressInITBlock = addrOfNextInstructionInITBlock + 2*i; |
| 1923 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Setting IT breakpoint[%d] at address: 0x%8.8x", __FUNCTION__, i, bpAddressInITBlock); |
| 1924 | |
| 1925 | m_sw_single_step_itblock_break_id[i] = m_thread->Process()->CreateBreakpoint(bpAddressInITBlock, 2, false, m_thread->ThreadID()); |
| 1926 | if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i])) |
| 1927 | err = KERN_INVALID_ARGUMENT; |
| 1928 | else |
| 1929 | { |
| 1930 | DNBLogThreadedIf(LOG_STEP, "%s: Set IT breakpoint[%i]=%d set at 0x%8.8x for instruction at 0x%8.8x", __FUNCTION__, i, m_sw_single_step_itblock_break_id[i], bpAddressInITBlock, pcInITBlock); |
| 1931 | |
| 1932 | // Set the breakpoint callback for these special IT breakpoints |
| 1933 | // so that if one of these breakpoints gets hit, it knows to |
| 1934 | // update the PC to the original address of the conditional |
| 1935 | // IT instruction. |
| 1936 | DNBBreakpointSetCallback(m_thread->ProcessID(), m_sw_single_step_itblock_break_id[i], DNBArchMachARM::BreakpointHit, (void*)pcInITBlock); |
| 1937 | m_sw_single_step_itblock_break_count++; |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | pcInITBlock = nextPCInITBlock; |
| 1942 | } |
| 1943 | |
| 1944 | DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Set %u IT software single breakpoints.", __FUNCTION__, m_sw_single_step_itblock_break_count); |
| 1945 | |
| 1946 | } |
| 1947 | |
| 1948 | DNBLogThreadedIf(LOG_STEP, "%s: next_pc=0x%8.8x (%s)", __FUNCTION__, next_pc, next_pc_is_thumb ? "Thumb" : "ARM"); |
| 1949 | |
| 1950 | if (next_pc & 0x1) |
| 1951 | { |
| 1952 | assert(next_pc_is_thumb); |
| 1953 | } |
| 1954 | |
| 1955 | if (next_pc_is_thumb) |
| 1956 | { |
| 1957 | next_pc &= ~0x1; |
| 1958 | } |
| 1959 | else |
| 1960 | { |
| 1961 | assert((next_pc & 0x3) == 0); |
| 1962 | } |
| 1963 | |
| 1964 | if (!inITBlock || (inITBlock && !m_last_decode_arm.setsFlags) || (lastInITBlock && m_last_decode_arm.branch)) |
| 1965 | { |
| 1966 | err = KERN_SUCCESS; |
| 1967 | |
| 1968 | #if defined DNB_ARCH_MACH_ARM_DEBUG_SW_STEP |
| 1969 | m_sw_single_step_next_pc = next_pc; |
| 1970 | if (next_pc_is_thumb) |
| 1971 | m_sw_single_step_next_pc |= 1; // Set bit zero if the next PC is expected to be Thumb |
| 1972 | #else |
| 1973 | const DNBBreakpoint *bp = m_thread->Process()->Breakpoints().FindByAddress(next_pc); |
| 1974 | |
| 1975 | if (bp == NULL) |
| 1976 | { |
| 1977 | m_sw_single_step_break_id = m_thread->Process()->CreateBreakpoint(next_pc, next_pc_is_thumb ? 2 : 4, false, m_thread->ThreadID()); |
| 1978 | if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id)) |
| 1979 | err = KERN_INVALID_ARGUMENT; |
| 1980 | DNBLogThreadedIf(LOG_STEP, "%s: software single step breakpoint with breakID=%d set at 0x%8.8x", __FUNCTION__, m_sw_single_step_break_id, next_pc); |
| 1981 | } |
| 1982 | #endif |
| 1983 | } |
| 1984 | |
| 1985 | return err.Error(); |
| 1986 | } |
| 1987 | |
| 1988 | uint32_t |
| 1989 | DNBArchMachARM::NumSupportedHardwareBreakpoints() |
| 1990 | { |
| 1991 | // Set the init value to something that will let us know that we need to |
| 1992 | // autodetect how many breakpoints are supported dynamically... |
| 1993 | static uint32_t g_num_supported_hw_breakpoints = UINT_MAX; |
| 1994 | if (g_num_supported_hw_breakpoints == UINT_MAX) |
| 1995 | { |
| 1996 | // Set this to zero in case we can't tell if there are any HW breakpoints |
| 1997 | g_num_supported_hw_breakpoints = 0; |
| 1998 | |
| 1999 | // Read the DBGDIDR to get the number of available hardware breakpoints |
| 2000 | // However, in some of our current armv7 processors, hardware |
| 2001 | // breakpoints/watchpoints were not properly connected. So detect those |
| 2002 | // cases using a field in a sysctl. For now we are using "hw.cpusubtype" |
| 2003 | // field to distinguish CPU architectures. This is a hack until we can |
| 2004 | // get <rdar://problem/6372672> fixed, at which point we will switch to |
| 2005 | // using a different sysctl string that will tell us how many BRPs |
| 2006 | // are available to us directly without having to read DBGDIDR. |
| 2007 | uint32_t register_DBGDIDR; |
| 2008 | |
| 2009 | asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); |
| 2010 | uint32_t numBRPs = bits(register_DBGDIDR, 27, 24); |
| 2011 | // Zero is reserved for the BRP count, so don't increment it if it is zero |
| 2012 | if (numBRPs > 0) |
| 2013 | numBRPs++; |
| 2014 | DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs); |
| 2015 | |
| 2016 | if (numBRPs > 0) |
| 2017 | { |
| 2018 | uint32_t cpusubtype; |
| 2019 | size_t len; |
| 2020 | len = sizeof(cpusubtype); |
| 2021 | // TODO: remove this hack and change to using hw.optional.xx when implmented |
| 2022 | if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) |
| 2023 | { |
| 2024 | DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype); |
| 2025 | if (cpusubtype == CPU_SUBTYPE_ARM_V7) |
| 2026 | DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)"); |
| 2027 | else |
| 2028 | g_num_supported_hw_breakpoints = numBRPs; |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | } |
| 2033 | return g_num_supported_hw_breakpoints; |
| 2034 | } |
| 2035 | |
| 2036 | |
| 2037 | uint32_t |
| 2038 | DNBArchMachARM::NumSupportedHardwareWatchpoints() |
| 2039 | { |
| 2040 | // Set the init value to something that will let us know that we need to |
| 2041 | // autodetect how many watchpoints are supported dynamically... |
| 2042 | static uint32_t g_num_supported_hw_watchpoints = UINT_MAX; |
| 2043 | if (g_num_supported_hw_watchpoints == UINT_MAX) |
| 2044 | { |
| 2045 | // Set this to zero in case we can't tell if there are any HW breakpoints |
| 2046 | g_num_supported_hw_watchpoints = 0; |
| 2047 | // Read the DBGDIDR to get the number of available hardware breakpoints |
| 2048 | // However, in some of our current armv7 processors, hardware |
| 2049 | // breakpoints/watchpoints were not properly connected. So detect those |
| 2050 | // cases using a field in a sysctl. For now we are using "hw.cpusubtype" |
| 2051 | // field to distinguish CPU architectures. This is a hack until we can |
| 2052 | // get <rdar://problem/6372672> fixed, at which point we will switch to |
| 2053 | // using a different sysctl string that will tell us how many WRPs |
| 2054 | // are available to us directly without having to read DBGDIDR. |
| 2055 | |
| 2056 | uint32_t register_DBGDIDR; |
| 2057 | asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); |
| 2058 | uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1; |
| 2059 | DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs); |
| 2060 | |
| 2061 | if (numWRPs > 0) |
| 2062 | { |
| 2063 | uint32_t cpusubtype; |
| 2064 | size_t len; |
| 2065 | len = sizeof(cpusubtype); |
| 2066 | // TODO: remove this hack and change to using hw.optional.xx when implmented |
| 2067 | if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) |
| 2068 | { |
| 2069 | DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype); |
| 2070 | |
| 2071 | if (cpusubtype == CPU_SUBTYPE_ARM_V7) |
| 2072 | DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)"); |
| 2073 | else |
| 2074 | g_num_supported_hw_watchpoints = numWRPs; |
| 2075 | } |
| 2076 | } |
| 2077 | |
| 2078 | } |
| 2079 | return g_num_supported_hw_watchpoints; |
| 2080 | } |
| 2081 | |
| 2082 | |
| 2083 | uint32_t |
| 2084 | DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size) |
| 2085 | { |
| 2086 | // Make sure our address isn't bogus |
| 2087 | if (addr & 1) |
| 2088 | return INVALID_NUB_HW_INDEX; |
| 2089 | |
| 2090 | kern_return_t kret = GetDBGState(false); |
| 2091 | |
| 2092 | if (kret == KERN_SUCCESS) |
| 2093 | { |
| 2094 | const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints(); |
| 2095 | uint32_t i; |
| 2096 | for (i=0; i<num_hw_breakpoints; ++i) |
| 2097 | { |
| 2098 | if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0) |
| 2099 | break; // We found an available hw breakpoint slot (in i) |
| 2100 | } |
| 2101 | |
| 2102 | // See if we found an available hw breakpoint slot above |
| 2103 | if (i < num_hw_breakpoints) |
| 2104 | { |
| 2105 | // Make sure bits 1:0 are clear in our address |
| 2106 | m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3); |
| 2107 | |
| 2108 | if (size == 2 || addr & 2) |
| 2109 | { |
| 2110 | uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1; |
| 2111 | |
| 2112 | // We have a thumb breakpoint |
| 2113 | // We have an ARM breakpoint |
| 2114 | m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch |
| 2115 | byte_addr_select | // Set the correct byte address select so we only trigger on the correct opcode |
| 2116 | S_USER | // Which modes should this breakpoint stop in? |
| 2117 | BCR_ENABLE; // Enable this hardware breakpoint |
| 2118 | DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = %8.8p, size = %u ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)", |
| 2119 | addr, |
| 2120 | size, |
| 2121 | i, |
| 2122 | i, |
| 2123 | m_state.dbg.__bvr[i], |
| 2124 | m_state.dbg.__bcr[i]); |
| 2125 | } |
| 2126 | else if (size == 4) |
| 2127 | { |
| 2128 | // We have an ARM breakpoint |
| 2129 | m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch |
| 2130 | BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA |
| 2131 | S_USER | // Which modes should this breakpoint stop in? |
| 2132 | BCR_ENABLE; // Enable this hardware breakpoint |
| 2133 | DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = %8.8p, size = %u ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)", |
| 2134 | addr, |
| 2135 | size, |
| 2136 | i, |
| 2137 | i, |
| 2138 | m_state.dbg.__bvr[i], |
| 2139 | m_state.dbg.__bcr[i]); |
| 2140 | } |
| 2141 | |
| 2142 | kret = SetDBGState(); |
| 2143 | DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret); |
| 2144 | |
| 2145 | if (kret == KERN_SUCCESS) |
| 2146 | return i; |
| 2147 | } |
| 2148 | else |
| 2149 | { |
| 2150 | DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = %8.8p, size = %u) => all hardware breakpoint resources are being used.", addr, size); |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | return INVALID_NUB_HW_INDEX; |
| 2155 | } |
| 2156 | |
| 2157 | bool |
| 2158 | DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index) |
| 2159 | { |
| 2160 | kern_return_t kret = GetDBGState(false); |
| 2161 | |
| 2162 | const uint32_t num_hw_points = NumSupportedHardwareBreakpoints(); |
| 2163 | if (kret == KERN_SUCCESS) |
| 2164 | { |
| 2165 | if (hw_index < num_hw_points) |
| 2166 | { |
| 2167 | m_state.dbg.__bcr[hw_index] = 0; |
| 2168 | DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x BCR%u = 0x%8.8x", |
| 2169 | hw_index, |
| 2170 | hw_index, |
| 2171 | m_state.dbg.__bvr[hw_index], |
| 2172 | hw_index, |
| 2173 | m_state.dbg.__bcr[hw_index]); |
| 2174 | |
| 2175 | kret = SetDBGState(); |
| 2176 | |
| 2177 | if (kret == KERN_SUCCESS) |
| 2178 | return true; |
| 2179 | } |
| 2180 | } |
| 2181 | return false; |
| 2182 | } |
| 2183 | |
| 2184 | uint32_t |
| 2185 | DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write) |
| 2186 | { |
| 2187 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = %8.8p, size = %u, read = %u, write = %u)", addr, size, read, write); |
| 2188 | |
| 2189 | const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); |
| 2190 | |
| 2191 | // Can't watch zero bytes |
| 2192 | if (size == 0) |
| 2193 | return INVALID_NUB_HW_INDEX; |
| 2194 | |
| 2195 | // We must watch for either read or write |
| 2196 | if (read == false && write == false) |
| 2197 | return INVALID_NUB_HW_INDEX; |
| 2198 | |
| 2199 | // Can't watch more than 4 bytes per WVR/WCR pair |
| 2200 | if (size > 4) |
| 2201 | return INVALID_NUB_HW_INDEX; |
| 2202 | |
| 2203 | // We can only watch up to four bytes that follow a 4 byte aligned address |
| 2204 | // per watchpoint register pair. Since we have at most so we can only watch |
| 2205 | // until the next 4 byte boundary and we need to make sure we can properly |
| 2206 | // encode this. |
| 2207 | uint32_t addr_word_offset = addr % 4; |
| 2208 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset); |
| 2209 | |
| 2210 | uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset; |
| 2211 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask); |
| 2212 | if (byte_mask > 0xfu) |
| 2213 | return INVALID_NUB_HW_INDEX; |
| 2214 | |
| 2215 | // Read the debug state |
| 2216 | kern_return_t kret = GetDBGState(false); |
| 2217 | |
| 2218 | if (kret == KERN_SUCCESS) |
| 2219 | { |
| 2220 | // Check to make sure we have the needed hardware support |
| 2221 | uint32_t i = 0; |
| 2222 | |
| 2223 | for (i=0; i<num_hw_watchpoints; ++i) |
| 2224 | { |
| 2225 | if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0) |
| 2226 | break; // We found an available hw breakpoint slot (in i) |
| 2227 | } |
| 2228 | |
| 2229 | // See if we found an available hw breakpoint slot above |
| 2230 | if (i < num_hw_watchpoints) |
| 2231 | { |
| 2232 | // Make the byte_mask into a valid Byte Address Select mask |
| 2233 | uint32_t byte_address_select = byte_mask << 5; |
| 2234 | // Make sure bits 1:0 are clear in our address |
| 2235 | m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3); |
| 2236 | m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow the IMVA that we will watch |
| 2237 | S_USER | // Stop only in user mode |
| 2238 | (read ? WCR_LOAD : 0) | // Stop on read access? |
| 2239 | (write ? WCR_STORE : 0) | // Stop on write access? |
| 2240 | WCR_ENABLE; // Enable this watchpoint; |
| 2241 | |
| 2242 | kret = SetDBGState(); |
| 2243 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret); |
| 2244 | |
| 2245 | if (kret == KERN_SUCCESS) |
| 2246 | return i; |
| 2247 | } |
| 2248 | else |
| 2249 | { |
| 2250 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints); |
| 2251 | } |
| 2252 | } |
| 2253 | return INVALID_NUB_HW_INDEX; |
| 2254 | } |
| 2255 | |
| 2256 | bool |
| 2257 | DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index) |
| 2258 | { |
| 2259 | kern_return_t kret = GetDBGState(false); |
| 2260 | |
| 2261 | const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); |
| 2262 | if (kret == KERN_SUCCESS) |
| 2263 | { |
| 2264 | if (hw_index < num_hw_points) |
| 2265 | { |
| 2266 | m_state.dbg.__wcr[hw_index] = 0; |
| 2267 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ClearHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x WCR%u = 0x%8.8x", |
| 2268 | hw_index, |
| 2269 | hw_index, |
| 2270 | m_state.dbg.__wvr[hw_index], |
| 2271 | hw_index, |
| 2272 | m_state.dbg.__wcr[hw_index]); |
| 2273 | |
| 2274 | kret = SetDBGState(); |
| 2275 | |
| 2276 | if (kret == KERN_SUCCESS) |
| 2277 | return true; |
| 2278 | } |
| 2279 | } |
| 2280 | return false; |
| 2281 | } |
| 2282 | |
| 2283 | //---------------------------------------------------------------------- |
| 2284 | // Register information defintions for 32 bit ARMV6. |
| 2285 | //---------------------------------------------------------------------- |
| 2286 | enum gpr_regnums |
| 2287 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2288 | gpr_r0 = 0, |
| 2289 | gpr_r1, |
| 2290 | gpr_r2, |
| 2291 | gpr_r3, |
| 2292 | gpr_r4, |
| 2293 | gpr_r5, |
| 2294 | gpr_r6, |
| 2295 | gpr_r7, |
| 2296 | gpr_r8, |
| 2297 | gpr_r9, |
| 2298 | gpr_r10, |
| 2299 | gpr_r11, |
| 2300 | gpr_r12, |
| 2301 | gpr_sp, |
| 2302 | gpr_lr, |
| 2303 | gpr_pc, |
| 2304 | gpr_cpsr |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2305 | }; |
| 2306 | |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2307 | enum |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2308 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2309 | vfp_s0 = 0, |
| 2310 | vfp_s1, |
| 2311 | vfp_s2, |
| 2312 | vfp_s3, |
| 2313 | vfp_s4, |
| 2314 | vfp_s5, |
| 2315 | vfp_s6, |
| 2316 | vfp_s7, |
| 2317 | vfp_s8, |
| 2318 | vfp_s9, |
| 2319 | vfp_s10, |
| 2320 | vfp_s11, |
| 2321 | vfp_s12, |
| 2322 | vfp_s13, |
| 2323 | vfp_s14, |
| 2324 | vfp_s15, |
| 2325 | vfp_s16, |
| 2326 | vfp_s17, |
| 2327 | vfp_s18, |
| 2328 | vfp_s19, |
| 2329 | vfp_s20, |
| 2330 | vfp_s21, |
| 2331 | vfp_s22, |
| 2332 | vfp_s23, |
| 2333 | vfp_s24, |
| 2334 | vfp_s25, |
| 2335 | vfp_s26, |
| 2336 | vfp_s27, |
| 2337 | vfp_s28, |
| 2338 | vfp_s29, |
| 2339 | vfp_s30, |
| 2340 | vfp_s31, |
| 2341 | vfp_d16, |
| 2342 | vfp_d17, |
| 2343 | vfp_d18, |
| 2344 | vfp_d19, |
| 2345 | vfp_d20, |
| 2346 | vfp_d21, |
| 2347 | vfp_d22, |
| 2348 | vfp_d23, |
| 2349 | vfp_d24, |
| 2350 | vfp_d25, |
| 2351 | vfp_d26, |
| 2352 | vfp_d27, |
| 2353 | vfp_d28, |
| 2354 | vfp_d29, |
| 2355 | vfp_d30, |
| 2356 | vfp_d31, |
| 2357 | vfp_fpscr |
| 2358 | }; |
| 2359 | |
| 2360 | enum |
| 2361 | { |
| 2362 | exc_exception, |
| 2363 | exc_fsr, |
| 2364 | exc_far, |
| 2365 | }; |
| 2366 | |
| 2367 | enum |
| 2368 | { |
| 2369 | gdb_r0 = 0, |
| 2370 | gdb_r1, |
| 2371 | gdb_r2, |
| 2372 | gdb_r3, |
| 2373 | gdb_r4, |
| 2374 | gdb_r5, |
| 2375 | gdb_r6, |
| 2376 | gdb_r7, |
| 2377 | gdb_r8, |
| 2378 | gdb_r9, |
| 2379 | gdb_r10, |
| 2380 | gdb_r11, |
| 2381 | gdb_r12, |
| 2382 | gdb_sp, |
| 2383 | gdb_lr, |
| 2384 | gdb_pc, |
| 2385 | gdb_f0, |
| 2386 | gdb_f1, |
| 2387 | gdb_f2, |
| 2388 | gdb_f3, |
| 2389 | gdb_f4, |
| 2390 | gdb_f5, |
| 2391 | gdb_f6, |
| 2392 | gdb_f7, |
| 2393 | gdb_f8, |
| 2394 | gdb_cpsr, |
| 2395 | gdb_s0, |
| 2396 | gdb_s1, |
| 2397 | gdb_s2, |
| 2398 | gdb_s3, |
| 2399 | gdb_s4, |
| 2400 | gdb_s5, |
| 2401 | gdb_s6, |
| 2402 | gdb_s7, |
| 2403 | gdb_s8, |
| 2404 | gdb_s9, |
| 2405 | gdb_s10, |
| 2406 | gdb_s11, |
| 2407 | gdb_s12, |
| 2408 | gdb_s13, |
| 2409 | gdb_s14, |
| 2410 | gdb_s15, |
| 2411 | gdb_s16, |
| 2412 | gdb_s17, |
| 2413 | gdb_s18, |
| 2414 | gdb_s19, |
| 2415 | gdb_s20, |
| 2416 | gdb_s21, |
| 2417 | gdb_s22, |
| 2418 | gdb_s23, |
| 2419 | gdb_s24, |
| 2420 | gdb_s25, |
| 2421 | gdb_s26, |
| 2422 | gdb_s27, |
| 2423 | gdb_s28, |
| 2424 | gdb_s29, |
| 2425 | gdb_s30, |
| 2426 | gdb_s31, |
| 2427 | gdb_fpscr, |
| 2428 | gdb_d0, |
| 2429 | gdb_d1, |
| 2430 | gdb_d2, |
| 2431 | gdb_d3, |
| 2432 | gdb_d4, |
| 2433 | gdb_d5, |
| 2434 | gdb_d6, |
| 2435 | gdb_d7, |
| 2436 | gdb_d8, |
| 2437 | gdb_d9, |
| 2438 | gdb_d10, |
| 2439 | gdb_d11, |
| 2440 | gdb_d12, |
| 2441 | gdb_d13, |
| 2442 | gdb_d14, |
| 2443 | gdb_d15 |
| 2444 | }; |
| 2445 | |
| 2446 | #define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx])) |
| 2447 | #define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg)) |
| 2448 | #define VFP_S_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::FPU, __r[idx]) + offsetof (DNBArchMachARM::Context, vfp)) |
| 2449 | #define VFP_D_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX (32) + (((idx) - 16) * 8)) |
| 2450 | #define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp)) |
| 2451 | #define EXC_OFFSET(reg) (offsetof (DNBArchMachARM::EXC, __##reg) + offsetof (DNBArchMachARM::Context, exc)) |
| 2452 | |
| 2453 | // These macros will auto define the register name, alt name, register size, |
| 2454 | // register offset, encoding, format and native register. This ensures that |
| 2455 | // the register state structures are defined correctly and have the correct |
| 2456 | // sizes and offsets. |
| 2457 | #define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, gdb_##reg } |
| 2458 | #define DEFINE_GPR_NAME(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, gdb_##reg } |
| 2459 | |
| 2460 | #define DEFINE_VFP_S_IDX(idx) { e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, 4, Float, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, gdb_s##idx } |
| 2461 | #define DEFINE_VFP_D_IDX(idx) { e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, 8, Float, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, gdb_s##idx } |
| 2462 | |
| 2463 | // General purpose registers |
| 2464 | const DNBRegisterInfo |
| 2465 | DNBArchMachARM::g_gpr_registers[] = |
| 2466 | { |
| 2467 | DEFINE_GPR_IDX ( 0, r0, NULL, INVALID_NUB_REGNUM ), |
| 2468 | DEFINE_GPR_IDX ( 1, r1, NULL, INVALID_NUB_REGNUM ), |
| 2469 | DEFINE_GPR_IDX ( 2, r2, NULL, INVALID_NUB_REGNUM ), |
| 2470 | DEFINE_GPR_IDX ( 3, r3, NULL, INVALID_NUB_REGNUM ), |
| 2471 | DEFINE_GPR_IDX ( 4, r4, NULL, INVALID_NUB_REGNUM ), |
| 2472 | DEFINE_GPR_IDX ( 5, r5, NULL, INVALID_NUB_REGNUM ), |
| 2473 | DEFINE_GPR_IDX ( 6, r6, NULL, INVALID_NUB_REGNUM ), |
| 2474 | DEFINE_GPR_IDX ( 7, r7, NULL, GENERIC_REGNUM_FP ), |
| 2475 | DEFINE_GPR_IDX ( 8, r8, NULL, INVALID_NUB_REGNUM ), |
| 2476 | DEFINE_GPR_IDX ( 9, r9, NULL, INVALID_NUB_REGNUM ), |
| 2477 | DEFINE_GPR_IDX (10, r10, NULL, INVALID_NUB_REGNUM ), |
| 2478 | DEFINE_GPR_IDX (11, r11, NULL, INVALID_NUB_REGNUM ), |
| 2479 | DEFINE_GPR_IDX (12, r12, NULL, INVALID_NUB_REGNUM ), |
| 2480 | DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP ), |
| 2481 | DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA ), |
| 2482 | DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC ), |
| 2483 | DEFINE_GPR_NAME (cpsr, NULL, GENERIC_REGNUM_FLAGS ) |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2484 | }; |
| 2485 | |
| 2486 | // Floating point registers |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2487 | const DNBRegisterInfo |
| 2488 | DNBArchMachARM::g_vfp_registers[] = |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2489 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2490 | DEFINE_VFP_S_IDX ( 0), |
| 2491 | DEFINE_VFP_S_IDX ( 1), |
| 2492 | DEFINE_VFP_S_IDX ( 2), |
| 2493 | DEFINE_VFP_S_IDX ( 3), |
| 2494 | DEFINE_VFP_S_IDX ( 4), |
| 2495 | DEFINE_VFP_S_IDX ( 5), |
| 2496 | DEFINE_VFP_S_IDX ( 6), |
| 2497 | DEFINE_VFP_S_IDX ( 7), |
| 2498 | DEFINE_VFP_S_IDX ( 8), |
| 2499 | DEFINE_VFP_S_IDX ( 9), |
| 2500 | DEFINE_VFP_S_IDX (10), |
| 2501 | DEFINE_VFP_S_IDX (11), |
| 2502 | DEFINE_VFP_S_IDX (12), |
| 2503 | DEFINE_VFP_S_IDX (13), |
| 2504 | DEFINE_VFP_S_IDX (14), |
| 2505 | DEFINE_VFP_S_IDX (15), |
| 2506 | DEFINE_VFP_S_IDX (16), |
| 2507 | DEFINE_VFP_S_IDX (17), |
| 2508 | DEFINE_VFP_S_IDX (18), |
| 2509 | DEFINE_VFP_S_IDX (19), |
| 2510 | DEFINE_VFP_S_IDX (20), |
| 2511 | DEFINE_VFP_S_IDX (21), |
| 2512 | DEFINE_VFP_S_IDX (22), |
| 2513 | DEFINE_VFP_S_IDX (23), |
| 2514 | DEFINE_VFP_S_IDX (24), |
| 2515 | DEFINE_VFP_S_IDX (25), |
| 2516 | DEFINE_VFP_S_IDX (26), |
| 2517 | DEFINE_VFP_S_IDX (27), |
| 2518 | DEFINE_VFP_S_IDX (28), |
| 2519 | DEFINE_VFP_S_IDX (29), |
| 2520 | DEFINE_VFP_S_IDX (30), |
| 2521 | DEFINE_VFP_S_IDX (31), |
| 2522 | DEFINE_VFP_D_IDX (16), |
| 2523 | DEFINE_VFP_D_IDX (17), |
| 2524 | DEFINE_VFP_D_IDX (18), |
| 2525 | DEFINE_VFP_D_IDX (19), |
| 2526 | DEFINE_VFP_D_IDX (20), |
| 2527 | DEFINE_VFP_D_IDX (21), |
| 2528 | DEFINE_VFP_D_IDX (22), |
| 2529 | DEFINE_VFP_D_IDX (23), |
| 2530 | DEFINE_VFP_D_IDX (24), |
| 2531 | DEFINE_VFP_D_IDX (25), |
| 2532 | DEFINE_VFP_D_IDX (26), |
| 2533 | DEFINE_VFP_D_IDX (27), |
| 2534 | DEFINE_VFP_D_IDX (28), |
| 2535 | DEFINE_VFP_D_IDX (29), |
| 2536 | DEFINE_VFP_D_IDX (30), |
| 2537 | DEFINE_VFP_D_IDX (31), |
| 2538 | { e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, 4, Hex, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, gdb_fpscr } |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2539 | }; |
| 2540 | |
| 2541 | // Exception registers |
| 2542 | |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2543 | const DNBRegisterInfo |
| 2544 | DNBArchMachARM::g_exc_registers[] = |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2545 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2546 | { e_regSetVFP, exc_exception , "exception" , NULL, Uint, 4, Hex, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }, |
| 2547 | { e_regSetVFP, exc_fsr , "fsr" , NULL, Uint, 4, Hex, EXC_OFFSET(fsr) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }, |
| 2548 | { e_regSetVFP, exc_far , "far" , NULL, Uint, 4, Hex, EXC_OFFSET(far) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM } |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2549 | }; |
| 2550 | |
| 2551 | // Number of registers in each register set |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2552 | const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo); |
| 2553 | const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo); |
| 2554 | const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo); |
| 2555 | const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2556 | |
| 2557 | //---------------------------------------------------------------------- |
| 2558 | // Register set definitions. The first definitions at register set index |
| 2559 | // of zero is for all registers, followed by other registers sets. The |
| 2560 | // register information for the all register set need not be filled in. |
| 2561 | //---------------------------------------------------------------------- |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2562 | const DNBRegisterSetInfo |
| 2563 | DNBArchMachARM::g_reg_sets[] = |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2564 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2565 | { "ARM Registers", NULL, k_num_all_registers }, |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2566 | { "General Purpose Registers", g_gpr_registers, k_num_gpr_registers }, |
| 2567 | { "Floating Point Registers", g_vfp_registers, k_num_vfp_registers }, |
| 2568 | { "Exception State Registers", g_exc_registers, k_num_exc_registers } |
| 2569 | }; |
| 2570 | // Total number of register sets for this architecture |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2571 | const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo); |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2572 | |
| 2573 | |
| 2574 | const DNBRegisterSetInfo * |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2575 | DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets) |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2576 | { |
| 2577 | *num_reg_sets = k_num_register_sets; |
| 2578 | return g_reg_sets; |
| 2579 | } |
| 2580 | |
| 2581 | bool |
| 2582 | DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value) |
| 2583 | { |
| 2584 | if (set == REGISTER_SET_GENERIC) |
| 2585 | { |
| 2586 | switch (reg) |
| 2587 | { |
| 2588 | case GENERIC_REGNUM_PC: // Program Counter |
| 2589 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2590 | reg = gpr_pc; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2591 | break; |
| 2592 | |
| 2593 | case GENERIC_REGNUM_SP: // Stack Pointer |
| 2594 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2595 | reg = gpr_sp; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2596 | break; |
| 2597 | |
| 2598 | case GENERIC_REGNUM_FP: // Frame Pointer |
| 2599 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2600 | reg = gpr_r7; // is this the right reg? |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2601 | break; |
| 2602 | |
| 2603 | case GENERIC_REGNUM_RA: // Return Address |
| 2604 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2605 | reg = gpr_lr; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2606 | break; |
| 2607 | |
| 2608 | case GENERIC_REGNUM_FLAGS: // Processor flags register |
| 2609 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2610 | reg = gpr_cpsr; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2611 | break; |
| 2612 | |
| 2613 | default: |
| 2614 | return false; |
| 2615 | } |
| 2616 | } |
| 2617 | |
| 2618 | if (GetRegisterState(set, false) != KERN_SUCCESS) |
| 2619 | return false; |
| 2620 | |
| 2621 | const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
| 2622 | if (regInfo) |
| 2623 | { |
| 2624 | value->info = *regInfo; |
| 2625 | switch (set) |
| 2626 | { |
| 2627 | case e_regSetGPR: |
| 2628 | if (reg < k_num_gpr_registers) |
| 2629 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2630 | value->value.uint32 = m_state.context.gpr.__r[reg]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2631 | return true; |
| 2632 | } |
| 2633 | break; |
| 2634 | |
| 2635 | case e_regSetVFP: |
| 2636 | if (reg < 32) |
| 2637 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2638 | value->value.uint32 = m_state.context.vfp.__r[reg]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2639 | return true; |
| 2640 | } |
| 2641 | else if (reg == 32) |
| 2642 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2643 | value->value.uint32 = m_state.context.vfp.__fpscr; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2644 | return true; |
| 2645 | } |
| 2646 | break; |
| 2647 | |
| 2648 | case e_regSetEXC: |
| 2649 | if (reg < k_num_exc_registers) |
| 2650 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2651 | value->value.uint32 = (&m_state.context.exc.__exception)[reg]; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2652 | return true; |
| 2653 | } |
| 2654 | break; |
| 2655 | } |
| 2656 | } |
| 2657 | return false; |
| 2658 | } |
| 2659 | |
| 2660 | bool |
| 2661 | DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value) |
| 2662 | { |
| 2663 | if (set == REGISTER_SET_GENERIC) |
| 2664 | { |
| 2665 | switch (reg) |
| 2666 | { |
| 2667 | case GENERIC_REGNUM_PC: // Program Counter |
| 2668 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2669 | reg = gpr_pc; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2670 | break; |
| 2671 | |
| 2672 | case GENERIC_REGNUM_SP: // Stack Pointer |
| 2673 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2674 | reg = gpr_sp; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2675 | break; |
| 2676 | |
| 2677 | case GENERIC_REGNUM_FP: // Frame Pointer |
| 2678 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2679 | reg = gpr_r7; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2680 | break; |
| 2681 | |
| 2682 | case GENERIC_REGNUM_RA: // Return Address |
| 2683 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2684 | reg = gpr_lr; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2685 | break; |
| 2686 | |
| 2687 | case GENERIC_REGNUM_FLAGS: // Processor flags register |
| 2688 | set = e_regSetGPR; |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2689 | reg = gpr_cpsr; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2690 | break; |
| 2691 | |
| 2692 | default: |
| 2693 | return false; |
| 2694 | } |
| 2695 | } |
| 2696 | |
| 2697 | if (GetRegisterState(set, false) != KERN_SUCCESS) |
| 2698 | return false; |
| 2699 | |
| 2700 | bool success = false; |
| 2701 | const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
| 2702 | if (regInfo) |
| 2703 | { |
| 2704 | switch (set) |
| 2705 | { |
| 2706 | case e_regSetGPR: |
| 2707 | if (reg < k_num_gpr_registers) |
| 2708 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2709 | m_state.context.gpr.__r[reg] = value->value.uint32; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2710 | success = true; |
| 2711 | } |
| 2712 | break; |
| 2713 | |
| 2714 | case e_regSetVFP: |
| 2715 | if (reg < 32) |
| 2716 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2717 | m_state.context.vfp.__r[reg] = value->value.float64; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2718 | success = true; |
| 2719 | } |
| 2720 | else if (reg == 32) |
| 2721 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2722 | m_state.context.vfp.__fpscr = value->value.uint32; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2723 | success = true; |
| 2724 | } |
| 2725 | break; |
| 2726 | |
| 2727 | case e_regSetEXC: |
| 2728 | if (reg < k_num_exc_registers) |
| 2729 | { |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2730 | (&m_state.context.exc.__exception)[reg] = value->value.uint32; |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2731 | success = true; |
| 2732 | } |
| 2733 | break; |
| 2734 | } |
| 2735 | |
| 2736 | } |
| 2737 | if (success) |
| 2738 | return SetRegisterState(set) == KERN_SUCCESS; |
| 2739 | return false; |
| 2740 | } |
| 2741 | |
| 2742 | kern_return_t |
| 2743 | DNBArchMachARM::GetRegisterState(int set, bool force) |
| 2744 | { |
| 2745 | switch (set) |
| 2746 | { |
| 2747 | case e_regSetALL: return GetGPRState(force) | |
| 2748 | GetVFPState(force) | |
| 2749 | GetEXCState(force) | |
| 2750 | GetDBGState(force); |
| 2751 | case e_regSetGPR: return GetGPRState(force); |
| 2752 | case e_regSetVFP: return GetVFPState(force); |
| 2753 | case e_regSetEXC: return GetEXCState(force); |
| 2754 | case e_regSetDBG: return GetDBGState(force); |
| 2755 | default: break; |
| 2756 | } |
| 2757 | return KERN_INVALID_ARGUMENT; |
| 2758 | } |
| 2759 | |
| 2760 | kern_return_t |
| 2761 | DNBArchMachARM::SetRegisterState(int set) |
| 2762 | { |
| 2763 | // Make sure we have a valid context to set. |
| 2764 | kern_return_t err = GetRegisterState(set, false); |
| 2765 | if (err != KERN_SUCCESS) |
| 2766 | return err; |
| 2767 | |
| 2768 | switch (set) |
| 2769 | { |
| 2770 | case e_regSetALL: return SetGPRState() | |
| 2771 | SetVFPState() | |
| 2772 | SetEXCState() | |
| 2773 | SetDBGState(); |
| 2774 | case e_regSetGPR: return SetGPRState(); |
| 2775 | case e_regSetVFP: return SetVFPState(); |
| 2776 | case e_regSetEXC: return SetEXCState(); |
| 2777 | case e_regSetDBG: return SetDBGState(); |
| 2778 | default: break; |
| 2779 | } |
| 2780 | return KERN_INVALID_ARGUMENT; |
| 2781 | } |
| 2782 | |
| 2783 | bool |
| 2784 | DNBArchMachARM::RegisterSetStateIsValid (int set) const |
| 2785 | { |
| 2786 | return m_state.RegsAreValid(set); |
| 2787 | } |
| 2788 | |
| 2789 | |
Greg Clayton | 6f35f5c | 2010-09-09 06:32:46 +0000 | [diff] [blame] | 2790 | nub_size_t |
| 2791 | DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len) |
| 2792 | { |
| 2793 | nub_size_t size = sizeof (m_state.context); |
| 2794 | |
| 2795 | if (buf && buf_len) |
| 2796 | { |
| 2797 | if (size > buf_len) |
| 2798 | size = buf_len; |
| 2799 | |
| 2800 | bool force = false; |
| 2801 | if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force)) |
| 2802 | return 0; |
| 2803 | ::memcpy (buf, &m_state.context, size); |
| 2804 | } |
| 2805 | DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size); |
| 2806 | // Return the size of the register context even if NULL was passed in |
| 2807 | return size; |
| 2808 | } |
| 2809 | |
| 2810 | nub_size_t |
| 2811 | DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len) |
| 2812 | { |
| 2813 | nub_size_t size = sizeof (m_state.context); |
| 2814 | if (buf == NULL || buf_len == 0) |
| 2815 | size = 0; |
| 2816 | |
| 2817 | if (size) |
| 2818 | { |
| 2819 | if (size > buf_len) |
| 2820 | size = buf_len; |
| 2821 | |
| 2822 | ::memcpy (&m_state.context, buf, size); |
| 2823 | SetGPRState(); |
| 2824 | SetVFPState(); |
| 2825 | SetEXCState(); |
| 2826 | } |
| 2827 | DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size); |
| 2828 | return size; |
| 2829 | } |
| 2830 | |
| 2831 | |
Chris Lattner | 30fdc8d | 2010-06-08 16:52:24 +0000 | [diff] [blame] | 2832 | #endif // #if defined (__arm__) |
| 2833 | |