Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1 | //===--- HexagonLoopIdiomRecognition.cpp ----------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #define DEBUG_TYPE "hexagon-lir" |
| 11 | |
| 12 | #include "llvm/ADT/SetVector.h" |
| 13 | #include "llvm/ADT/SmallSet.h" |
| 14 | #include "llvm/Analysis/AliasAnalysis.h" |
| 15 | #include "llvm/Analysis/InstructionSimplify.h" |
| 16 | #include "llvm/Analysis/LoopPass.h" |
| 17 | #include "llvm/Analysis/ScalarEvolution.h" |
| 18 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| 19 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 20 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 21 | #include "llvm/Analysis/ValueTracking.h" |
| 22 | #include "llvm/IR/DataLayout.h" |
| 23 | #include "llvm/IR/Dominators.h" |
| 24 | #include "llvm/IR/IRBuilder.h" |
| 25 | #include "llvm/IR/PatternMatch.h" |
| 26 | #include "llvm/Transforms/Scalar.h" |
| 27 | #include "llvm/Transforms/Utils/Local.h" |
| 28 | #include "llvm/Support/Debug.h" |
| 29 | #include "llvm/Support/raw_ostream.h" |
| 30 | |
| 31 | #include <algorithm> |
| 32 | #include <array> |
| 33 | |
| 34 | using namespace llvm; |
| 35 | |
| 36 | static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom", |
| 37 | cl::Hidden, cl::init(false), |
| 38 | cl::desc("Disable generation of memcpy in loop idiom recognition")); |
| 39 | |
| 40 | static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom", |
| 41 | cl::Hidden, cl::init(false), |
| 42 | cl::desc("Disable generation of memmove in loop idiom recognition")); |
| 43 | |
| 44 | static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold", |
| 45 | cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime " |
| 46 | "check guarding the memmove.")); |
| 47 | |
| 48 | static cl::opt<unsigned> CompileTimeMemSizeThreshold( |
| 49 | "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64), |
| 50 | cl::desc("Threshold (in bytes) to perform the transformation, if the " |
| 51 | "runtime loop count (mem transfer size) is known at compile-time.")); |
| 52 | |
| 53 | static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom", |
| 54 | cl::Hidden, cl::init(true), |
| 55 | cl::desc("Only enable generating memmove in non-nested loops")); |
| 56 | |
| 57 | cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy", |
| 58 | cl::Hidden, cl::init(false), |
| 59 | cl::desc("Enable Hexagon-specific memcpy for volatile destination.")); |
| 60 | |
| 61 | static const char *HexagonVolatileMemcpyName |
| 62 | = "hexagon_memcpy_forward_vp4cp4n2"; |
| 63 | |
| 64 | |
| 65 | namespace llvm { |
| 66 | void initializeHexagonLoopIdiomRecognizePass(PassRegistry&); |
| 67 | Pass *createHexagonLoopIdiomPass(); |
| 68 | } |
| 69 | |
| 70 | namespace { |
| 71 | class HexagonLoopIdiomRecognize : public LoopPass { |
| 72 | public: |
| 73 | static char ID; |
| 74 | explicit HexagonLoopIdiomRecognize() : LoopPass(ID) { |
| 75 | initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); |
| 76 | } |
| 77 | StringRef getPassName() const override { |
| 78 | return "Recognize Hexagon-specific loop idioms"; |
| 79 | } |
| 80 | |
| 81 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 82 | AU.addRequired<LoopInfoWrapperPass>(); |
| 83 | AU.addRequiredID(LoopSimplifyID); |
| 84 | AU.addRequiredID(LCSSAID); |
| 85 | AU.addRequired<AAResultsWrapperPass>(); |
| 86 | AU.addPreserved<AAResultsWrapperPass>(); |
| 87 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
| 88 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 89 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 90 | AU.addPreserved<TargetLibraryInfoWrapperPass>(); |
| 91 | } |
| 92 | |
| 93 | bool runOnLoop(Loop *L, LPPassManager &LPM) override; |
| 94 | |
| 95 | private: |
| 96 | unsigned getStoreSizeInBytes(StoreInst *SI); |
| 97 | int getSCEVStride(const SCEVAddRecExpr *StoreEv); |
| 98 | bool isLegalStore(Loop *CurLoop, StoreInst *SI); |
| 99 | void collectStores(Loop *CurLoop, BasicBlock *BB, |
| 100 | SmallVectorImpl<StoreInst*> &Stores); |
| 101 | bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount); |
| 102 | bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const; |
| 103 | bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount, |
| 104 | SmallVectorImpl<BasicBlock*> &ExitBlocks); |
| 105 | bool runOnCountableLoop(Loop *L); |
| 106 | |
| 107 | AliasAnalysis *AA; |
| 108 | const DataLayout *DL; |
| 109 | DominatorTree *DT; |
| 110 | LoopInfo *LF; |
| 111 | const TargetLibraryInfo *TLI; |
| 112 | ScalarEvolution *SE; |
| 113 | bool HasMemcpy, HasMemmove; |
| 114 | }; |
| 115 | } |
| 116 | |
| 117 | char HexagonLoopIdiomRecognize::ID = 0; |
| 118 | |
| 119 | INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", |
| 120 | "Recognize Hexagon-specific loop idioms", false, false) |
| 121 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 122 | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| 123 | INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) |
| 124 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| 125 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 126 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 127 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 128 | INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", |
| 129 | "Recognize Hexagon-specific loop idioms", false, false) |
| 130 | |
| 131 | |
| 132 | //===----------------------------------------------------------------------===// |
| 133 | // |
| 134 | // Implementation of PolynomialMultiplyRecognize |
| 135 | // |
| 136 | //===----------------------------------------------------------------------===// |
| 137 | |
| 138 | namespace { |
| 139 | class PolynomialMultiplyRecognize { |
| 140 | public: |
| 141 | explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl, |
| 142 | const DominatorTree &dt, const TargetLibraryInfo &tli, |
| 143 | ScalarEvolution &se) |
| 144 | : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {} |
| 145 | |
| 146 | bool recognize(); |
| 147 | private: |
| 148 | typedef SetVector<Value*> ValueSeq; |
| 149 | |
| 150 | Value *getCountIV(BasicBlock *BB); |
| 151 | bool findCycle(Value *Out, Value *In, ValueSeq &Cycle); |
| 152 | void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early, |
| 153 | ValueSeq &Late); |
| 154 | bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late); |
| 155 | bool commutesWithShift(Instruction *I); |
| 156 | bool highBitsAreZero(Value *V, unsigned IterCount); |
| 157 | bool keepsHighBitsZero(Value *V, unsigned IterCount); |
| 158 | bool isOperandShifted(Instruction *I, Value *Op); |
| 159 | bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB, |
| 160 | unsigned IterCount); |
| 161 | void cleanupLoopBody(BasicBlock *LoopB); |
| 162 | |
| 163 | struct ParsedValues { |
| 164 | ParsedValues() : M(nullptr), P(nullptr), Q(nullptr), R(nullptr), |
| 165 | X(nullptr), Res(nullptr), IterCount(0), Left(false), Inv(false) {} |
| 166 | Value *M, *P, *Q, *R, *X; |
| 167 | Instruction *Res; |
| 168 | unsigned IterCount; |
| 169 | bool Left, Inv; |
| 170 | }; |
| 171 | |
| 172 | bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV); |
| 173 | bool matchRightShift(SelectInst *SelI, ParsedValues &PV); |
| 174 | bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB, |
| 175 | Value *CIV, ParsedValues &PV, bool PreScan); |
| 176 | unsigned getInverseMxN(unsigned QP); |
| 177 | Value *generate(BasicBlock::iterator At, ParsedValues &PV); |
| 178 | |
| 179 | Loop *CurLoop; |
| 180 | const DataLayout &DL; |
| 181 | const DominatorTree &DT; |
| 182 | const TargetLibraryInfo &TLI; |
| 183 | ScalarEvolution &SE; |
| 184 | }; |
| 185 | } |
| 186 | |
| 187 | |
| 188 | Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) { |
| 189 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| 190 | if (std::distance(PI, PE) != 2) |
| 191 | return nullptr; |
| 192 | BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI; |
| 193 | |
| 194 | for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) { |
| 195 | auto *PN = cast<PHINode>(I); |
| 196 | Value *InitV = PN->getIncomingValueForBlock(PB); |
| 197 | if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero()) |
| 198 | continue; |
| 199 | Value *IterV = PN->getIncomingValueForBlock(BB); |
| 200 | if (!isa<BinaryOperator>(IterV)) |
| 201 | continue; |
| 202 | auto *BO = dyn_cast<BinaryOperator>(IterV); |
| 203 | if (BO->getOpcode() != Instruction::Add) |
| 204 | continue; |
| 205 | Value *IncV = nullptr; |
| 206 | if (BO->getOperand(0) == PN) |
| 207 | IncV = BO->getOperand(1); |
| 208 | else if (BO->getOperand(1) == PN) |
| 209 | IncV = BO->getOperand(0); |
| 210 | if (IncV == nullptr) |
| 211 | continue; |
| 212 | |
| 213 | if (auto *T = dyn_cast<ConstantInt>(IncV)) |
| 214 | if (T->getZExtValue() == 1) |
| 215 | return PN; |
| 216 | } |
| 217 | return nullptr; |
| 218 | } |
| 219 | |
| 220 | |
| 221 | static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) { |
| 222 | for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) { |
| 223 | Use &TheUse = UI.getUse(); |
| 224 | ++UI; |
| 225 | if (auto *II = dyn_cast<Instruction>(TheUse.getUser())) |
| 226 | if (BB == II->getParent()) |
| 227 | II->replaceUsesOfWith(I, J); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | |
| 232 | bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI, |
| 233 | Value *CIV, ParsedValues &PV) { |
| 234 | // Match the following: |
| 235 | // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R |
| 236 | // select (X & (1 << i)) == 0 ? R : R ^ (Q << i) |
| 237 | // The condition may also check for equality with the masked value, i.e |
| 238 | // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R |
| 239 | // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i); |
| 240 | |
| 241 | Value *CondV = SelI->getCondition(); |
| 242 | Value *TrueV = SelI->getTrueValue(); |
| 243 | Value *FalseV = SelI->getFalseValue(); |
| 244 | |
| 245 | using namespace PatternMatch; |
| 246 | |
| 247 | CmpInst::Predicate P; |
| 248 | Value *A = nullptr, *B = nullptr, *C = nullptr; |
| 249 | |
| 250 | if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) && |
| 251 | !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B))))) |
| 252 | return false; |
| 253 | if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) |
| 254 | return false; |
| 255 | // Matched: select (A & B) == C ? ... : ... |
| 256 | // select (A & B) != C ? ... : ... |
| 257 | |
| 258 | Value *X = nullptr, *Sh1 = nullptr; |
| 259 | // Check (A & B) for (X & (1 << i)): |
| 260 | if (match(A, m_Shl(m_One(), m_Specific(CIV)))) { |
| 261 | Sh1 = A; |
| 262 | X = B; |
| 263 | } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) { |
| 264 | Sh1 = B; |
| 265 | X = A; |
| 266 | } else { |
| 267 | // TODO: Could also check for an induction variable containing single |
| 268 | // bit shifted left by 1 in each iteration. |
| 269 | return false; |
| 270 | } |
| 271 | |
| 272 | bool TrueIfZero; |
| 273 | |
| 274 | // Check C against the possible values for comparison: 0 and (1 << i): |
| 275 | if (match(C, m_Zero())) |
| 276 | TrueIfZero = (P == CmpInst::ICMP_EQ); |
| 277 | else if (C == Sh1) |
| 278 | TrueIfZero = (P == CmpInst::ICMP_NE); |
| 279 | else |
| 280 | return false; |
| 281 | |
| 282 | // So far, matched: |
| 283 | // select (X & (1 << i)) ? ... : ... |
| 284 | // including variations of the check against zero/non-zero value. |
| 285 | |
| 286 | Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr; |
| 287 | if (TrueIfZero) { |
| 288 | ShouldSameV = TrueV; |
| 289 | ShouldXoredV = FalseV; |
| 290 | } else { |
| 291 | ShouldSameV = FalseV; |
| 292 | ShouldXoredV = TrueV; |
| 293 | } |
| 294 | |
| 295 | Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr; |
| 296 | Value *T = nullptr; |
| 297 | if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) { |
| 298 | // Matched: select +++ ? ... : Y ^ Z |
| 299 | // select +++ ? Y ^ Z : ... |
| 300 | // where +++ denotes previously checked matches. |
| 301 | if (ShouldSameV == Y) |
| 302 | T = Z; |
| 303 | else if (ShouldSameV == Z) |
| 304 | T = Y; |
| 305 | else |
| 306 | return false; |
| 307 | R = ShouldSameV; |
| 308 | // Matched: select +++ ? R : R ^ T |
| 309 | // select +++ ? R ^ T : R |
| 310 | // depending on TrueIfZero. |
| 311 | |
| 312 | } else if (match(ShouldSameV, m_Zero())) { |
| 313 | // Matched: select +++ ? 0 : ... |
| 314 | // select +++ ? ... : 0 |
| 315 | if (!SelI->hasOneUse()) |
| 316 | return false; |
| 317 | T = ShouldXoredV; |
| 318 | // Matched: select +++ ? 0 : T |
| 319 | // select +++ ? T : 0 |
| 320 | |
| 321 | Value *U = *SelI->user_begin(); |
| 322 | if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) && |
| 323 | !match(U, m_Xor(m_Value(R), m_Specific(SelI)))) |
| 324 | return false; |
| 325 | // Matched: xor (select +++ ? 0 : T), R |
| 326 | // xor (select +++ ? T : 0), R |
| 327 | } else |
| 328 | return false; |
| 329 | |
| 330 | // The xor input value T is isolated into its own match so that it could |
| 331 | // be checked against an induction variable containing a shifted bit |
| 332 | // (todo). |
| 333 | // For now, check against (Q << i). |
| 334 | if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) && |
| 335 | !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV))))) |
| 336 | return false; |
| 337 | // Matched: select +++ ? R : R ^ (Q << i) |
| 338 | // select +++ ? R ^ (Q << i) : R |
| 339 | |
| 340 | PV.X = X; |
| 341 | PV.Q = Q; |
| 342 | PV.R = R; |
| 343 | PV.Left = true; |
| 344 | return true; |
| 345 | } |
| 346 | |
| 347 | |
| 348 | bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI, |
| 349 | ParsedValues &PV) { |
| 350 | // Match the following: |
| 351 | // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1) |
| 352 | // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q |
| 353 | // The condition may also check for equality with the masked value, i.e |
| 354 | // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1) |
| 355 | // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q |
| 356 | |
| 357 | Value *CondV = SelI->getCondition(); |
| 358 | Value *TrueV = SelI->getTrueValue(); |
| 359 | Value *FalseV = SelI->getFalseValue(); |
| 360 | |
| 361 | using namespace PatternMatch; |
| 362 | |
| 363 | Value *C = nullptr; |
| 364 | CmpInst::Predicate P; |
| 365 | bool TrueIfZero; |
| 366 | |
| 367 | if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) || |
| 368 | match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) { |
| 369 | if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) |
| 370 | return false; |
| 371 | // Matched: select C == 0 ? ... : ... |
| 372 | // select C != 0 ? ... : ... |
| 373 | TrueIfZero = (P == CmpInst::ICMP_EQ); |
| 374 | } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) || |
| 375 | match(CondV, m_ICmp(P, m_One(), m_Value(C)))) { |
| 376 | if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) |
| 377 | return false; |
| 378 | // Matched: select C == 1 ? ... : ... |
| 379 | // select C != 1 ? ... : ... |
| 380 | TrueIfZero = (P == CmpInst::ICMP_NE); |
| 381 | } else |
| 382 | return false; |
| 383 | |
| 384 | Value *X = nullptr; |
| 385 | if (!match(C, m_And(m_Value(X), m_One())) && |
| 386 | !match(C, m_And(m_One(), m_Value(X)))) |
| 387 | return false; |
| 388 | // Matched: select (X & 1) == +++ ? ... : ... |
| 389 | // select (X & 1) != +++ ? ... : ... |
| 390 | |
| 391 | Value *R = nullptr, *Q = nullptr; |
| 392 | if (TrueIfZero) { |
| 393 | // The select's condition is true if the tested bit is 0. |
| 394 | // TrueV must be the shift, FalseV must be the xor. |
| 395 | if (!match(TrueV, m_LShr(m_Value(R), m_One()))) |
| 396 | return false; |
| 397 | // Matched: select +++ ? (R >> 1) : ... |
| 398 | if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) && |
| 399 | !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV)))) |
| 400 | return false; |
| 401 | // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q |
| 402 | // with commuting ^. |
| 403 | } else { |
| 404 | // The select's condition is true if the tested bit is 1. |
| 405 | // TrueV must be the xor, FalseV must be the shift. |
| 406 | if (!match(FalseV, m_LShr(m_Value(R), m_One()))) |
| 407 | return false; |
| 408 | // Matched: select +++ ? ... : (R >> 1) |
| 409 | if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) && |
| 410 | !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV)))) |
| 411 | return false; |
| 412 | // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1) |
| 413 | // with commuting ^. |
| 414 | } |
| 415 | |
| 416 | PV.X = X; |
| 417 | PV.Q = Q; |
| 418 | PV.R = R; |
| 419 | PV.Left = false; |
| 420 | return true; |
| 421 | } |
| 422 | |
| 423 | |
| 424 | bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI, |
| 425 | BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV, |
| 426 | bool PreScan) { |
| 427 | using namespace PatternMatch; |
| 428 | |
| 429 | // The basic pattern for R = P.Q is: |
| 430 | // for i = 0..31 |
| 431 | // R = phi (0, R') |
| 432 | // if (P & (1 << i)) ; test-bit(P, i) |
| 433 | // R' = R ^ (Q << i) |
| 434 | // |
| 435 | // Similarly, the basic pattern for R = (P/Q).Q - P |
| 436 | // for i = 0..31 |
| 437 | // R = phi(P, R') |
| 438 | // if (R & (1 << i)) |
| 439 | // R' = R ^ (Q << i) |
| 440 | |
| 441 | // There exist idioms, where instead of Q being shifted left, P is shifted |
| 442 | // right. This produces a result that is shifted right by 32 bits (the |
| 443 | // non-shifted result is 64-bit). |
| 444 | // |
| 445 | // For R = P.Q, this would be: |
| 446 | // for i = 0..31 |
| 447 | // R = phi (0, R') |
| 448 | // if ((P >> i) & 1) |
| 449 | // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must |
| 450 | // else ; be shifted by 1, not i. |
| 451 | // R' = R >> 1 |
| 452 | // |
| 453 | // And for the inverse: |
| 454 | // for i = 0..31 |
| 455 | // R = phi (P, R') |
| 456 | // if (R & 1) |
| 457 | // R' = (R >> 1) ^ Q |
| 458 | // else |
| 459 | // R' = R >> 1 |
| 460 | |
| 461 | // The left-shifting idioms share the same pattern: |
| 462 | // select (X & (1 << i)) ? R ^ (Q << i) : R |
| 463 | // Similarly for right-shifting idioms: |
| 464 | // select (X & 1) ? (R >> 1) ^ Q |
| 465 | |
| 466 | if (matchLeftShift(SelI, CIV, PV)) { |
| 467 | // If this is a pre-scan, getting this far is sufficient. |
| 468 | if (PreScan) |
| 469 | return true; |
| 470 | |
| 471 | // Need to make sure that the SelI goes back into R. |
| 472 | auto *RPhi = dyn_cast<PHINode>(PV.R); |
| 473 | if (!RPhi) |
| 474 | return false; |
| 475 | if (SelI != RPhi->getIncomingValueForBlock(LoopB)) |
| 476 | return false; |
| 477 | PV.Res = SelI; |
| 478 | |
| 479 | // If X is loop invariant, it must be the input polynomial, and the |
| 480 | // idiom is the basic polynomial multiply. |
| 481 | if (CurLoop->isLoopInvariant(PV.X)) { |
| 482 | PV.P = PV.X; |
| 483 | PV.Inv = false; |
| 484 | } else { |
| 485 | // X is not loop invariant. If X == R, this is the inverse pmpy. |
| 486 | // Otherwise, check for an xor with an invariant value. If the |
| 487 | // variable argument to the xor is R, then this is still a valid |
| 488 | // inverse pmpy. |
| 489 | PV.Inv = true; |
| 490 | if (PV.X != PV.R) { |
| 491 | Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr; |
| 492 | if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2)))) |
| 493 | return false; |
| 494 | auto *I1 = dyn_cast<Instruction>(X1); |
| 495 | auto *I2 = dyn_cast<Instruction>(X2); |
| 496 | if (!I1 || I1->getParent() != LoopB) { |
| 497 | Var = X2; |
| 498 | Inv = X1; |
| 499 | } else if (!I2 || I2->getParent() != LoopB) { |
| 500 | Var = X1; |
| 501 | Inv = X2; |
| 502 | } else |
| 503 | return false; |
| 504 | if (Var != PV.R) |
| 505 | return false; |
| 506 | PV.M = Inv; |
| 507 | } |
| 508 | // The input polynomial P still needs to be determined. It will be |
| 509 | // the entry value of R. |
| 510 | Value *EntryP = RPhi->getIncomingValueForBlock(PrehB); |
| 511 | PV.P = EntryP; |
| 512 | } |
| 513 | |
| 514 | return true; |
| 515 | } |
| 516 | |
| 517 | if (matchRightShift(SelI, PV)) { |
| 518 | // If this is an inverse pattern, the Q polynomial must be known at |
| 519 | // compile time. |
| 520 | if (PV.Inv && !isa<ConstantInt>(PV.Q)) |
| 521 | return false; |
| 522 | if (PreScan) |
| 523 | return true; |
| 524 | // There is no exact matching of right-shift pmpy. |
| 525 | return false; |
| 526 | } |
| 527 | |
| 528 | return false; |
| 529 | } |
| 530 | |
| 531 | |
| 532 | bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In, |
| 533 | ValueSeq &Cycle) { |
| 534 | // Out = ..., In, ... |
| 535 | if (Out == In) |
| 536 | return true; |
| 537 | |
| 538 | auto *BB = cast<Instruction>(Out)->getParent(); |
| 539 | bool HadPhi = false; |
| 540 | |
| 541 | for (auto U : Out->users()) { |
| 542 | auto *I = dyn_cast<Instruction>(&*U); |
| 543 | if (I == nullptr || I->getParent() != BB) |
| 544 | continue; |
| 545 | // Make sure that there are no multi-iteration cycles, e.g. |
| 546 | // p1 = phi(p2) |
| 547 | // p2 = phi(p1) |
| 548 | // The cycle p1->p2->p1 would span two loop iterations. |
| 549 | // Check that there is only one phi in the cycle. |
| 550 | bool IsPhi = isa<PHINode>(I); |
| 551 | if (IsPhi && HadPhi) |
| 552 | return false; |
| 553 | HadPhi |= IsPhi; |
| 554 | if (Cycle.count(I)) |
| 555 | return false; |
| 556 | Cycle.insert(I); |
| 557 | if (findCycle(I, In, Cycle)) |
| 558 | break; |
| 559 | Cycle.remove(I); |
| 560 | } |
| 561 | return !Cycle.empty(); |
| 562 | } |
| 563 | |
| 564 | |
| 565 | void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI, |
| 566 | ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) { |
| 567 | // All the values in the cycle that are between the phi node and the |
| 568 | // divider instruction will be classified as "early", all other values |
| 569 | // will be "late". |
| 570 | |
| 571 | bool IsE = true; |
| 572 | unsigned I, N = Cycle.size(); |
| 573 | for (I = 0; I < N; ++I) { |
| 574 | Value *V = Cycle[I]; |
| 575 | if (DivI == V) |
| 576 | IsE = false; |
| 577 | else if (!isa<PHINode>(V)) |
| 578 | continue; |
| 579 | // Stop if found either. |
| 580 | break; |
| 581 | } |
| 582 | // "I" is the index of either DivI or the phi node, whichever was first. |
| 583 | // "E" is "false" or "true" respectively. |
| 584 | ValueSeq &First = !IsE ? Early : Late; |
| 585 | for (unsigned J = 0; J < I; ++J) |
| 586 | First.insert(Cycle[J]); |
| 587 | |
| 588 | ValueSeq &Second = IsE ? Early : Late; |
| 589 | Second.insert(Cycle[I]); |
| 590 | for (++I; I < N; ++I) { |
| 591 | Value *V = Cycle[I]; |
| 592 | if (DivI == V || isa<PHINode>(V)) |
| 593 | break; |
| 594 | Second.insert(V); |
| 595 | } |
| 596 | |
| 597 | for (; I < N; ++I) |
| 598 | First.insert(Cycle[I]); |
| 599 | } |
| 600 | |
| 601 | |
| 602 | bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI, |
| 603 | ValueSeq &Early, ValueSeq &Late) { |
| 604 | // Select is an exception, since the condition value does not have to be |
| 605 | // classified in the same way as the true/false values. The true/false |
| 606 | // values do have to be both early or both late. |
| 607 | if (UseI->getOpcode() == Instruction::Select) { |
| 608 | Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2); |
| 609 | if (Early.count(TV) || Early.count(FV)) { |
| 610 | if (Late.count(TV) || Late.count(FV)) |
| 611 | return false; |
| 612 | Early.insert(UseI); |
| 613 | } else if (Late.count(TV) || Late.count(FV)) { |
| 614 | if (Early.count(TV) || Early.count(FV)) |
| 615 | return false; |
| 616 | Late.insert(UseI); |
| 617 | } |
| 618 | return true; |
| 619 | } |
| 620 | |
| 621 | // Not sure what would be the example of this, but the code below relies |
| 622 | // on having at least one operand. |
| 623 | if (UseI->getNumOperands() == 0) |
| 624 | return true; |
| 625 | |
| 626 | bool AE = true, AL = true; |
| 627 | for (auto &I : UseI->operands()) { |
| 628 | if (Early.count(&*I)) |
| 629 | AL = false; |
| 630 | else if (Late.count(&*I)) |
| 631 | AE = false; |
| 632 | } |
| 633 | // If the operands appear "all early" and "all late" at the same time, |
| 634 | // then it means that none of them are actually classified as either. |
| 635 | // This is harmless. |
| 636 | if (AE && AL) |
| 637 | return true; |
| 638 | // Conversely, if they are neither "all early" nor "all late", then |
| 639 | // we have a mixture of early and late operands that is not a known |
| 640 | // exception. |
| 641 | if (!AE && !AL) |
| 642 | return false; |
| 643 | |
| 644 | // Check that we have covered the two special cases. |
| 645 | assert(AE != AL); |
| 646 | |
| 647 | if (AE) |
| 648 | Early.insert(UseI); |
| 649 | else |
| 650 | Late.insert(UseI); |
| 651 | return true; |
| 652 | } |
| 653 | |
| 654 | |
| 655 | bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) { |
| 656 | switch (I->getOpcode()) { |
| 657 | case Instruction::And: |
| 658 | case Instruction::Or: |
| 659 | case Instruction::Xor: |
| 660 | case Instruction::LShr: |
| 661 | case Instruction::Shl: |
| 662 | case Instruction::Select: |
| 663 | case Instruction::ICmp: |
| 664 | case Instruction::PHI: |
| 665 | break; |
| 666 | default: |
| 667 | return false; |
| 668 | } |
| 669 | return true; |
| 670 | } |
| 671 | |
| 672 | |
| 673 | bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V, |
| 674 | unsigned IterCount) { |
| 675 | auto *T = dyn_cast<IntegerType>(V->getType()); |
| 676 | if (!T) |
| 677 | return false; |
| 678 | |
| 679 | unsigned BW = T->getBitWidth(); |
| 680 | APInt K0(BW, 0), K1(BW, 0); |
| 681 | computeKnownBits(V, K0, K1, DL); |
| 682 | return K0.countLeadingOnes() >= IterCount; |
| 683 | } |
| 684 | |
| 685 | |
| 686 | bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V, |
| 687 | unsigned IterCount) { |
| 688 | // Assume that all inputs to the value have the high bits zero. |
| 689 | // Check if the value itself preserves the zeros in the high bits. |
| 690 | if (auto *C = dyn_cast<ConstantInt>(V)) |
| 691 | return C->getValue().countLeadingZeros() >= IterCount; |
| 692 | |
| 693 | if (auto *I = dyn_cast<Instruction>(V)) { |
| 694 | switch (I->getOpcode()) { |
| 695 | case Instruction::And: |
| 696 | case Instruction::Or: |
| 697 | case Instruction::Xor: |
| 698 | case Instruction::LShr: |
| 699 | case Instruction::Select: |
| 700 | case Instruction::ICmp: |
| 701 | case Instruction::PHI: |
| 702 | return true; |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | return false; |
| 707 | } |
| 708 | |
| 709 | |
| 710 | bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) { |
| 711 | unsigned Opc = I->getOpcode(); |
| 712 | if (Opc == Instruction::Shl || Opc == Instruction::LShr) |
| 713 | return Op != I->getOperand(1); |
| 714 | return true; |
| 715 | } |
| 716 | |
| 717 | |
| 718 | bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB, |
| 719 | BasicBlock *ExitB, unsigned IterCount) { |
| 720 | Value *CIV = getCountIV(LoopB); |
| 721 | if (CIV == nullptr) |
| 722 | return false; |
| 723 | auto *CIVTy = dyn_cast<IntegerType>(CIV->getType()); |
| 724 | if (CIVTy == nullptr) |
| 725 | return false; |
| 726 | |
| 727 | ValueSeq RShifts; |
| 728 | ValueSeq Early, Late, Cycled; |
| 729 | |
| 730 | // Find all value cycles that contain logical right shifts by 1. |
| 731 | for (Instruction &I : *LoopB) { |
| 732 | using namespace PatternMatch; |
| 733 | Value *V = nullptr; |
| 734 | if (!match(&I, m_LShr(m_Value(V), m_One()))) |
| 735 | continue; |
| 736 | ValueSeq C; |
| 737 | if (!findCycle(&I, V, C)) |
| 738 | continue; |
| 739 | |
| 740 | // Found a cycle. |
| 741 | C.insert(&I); |
| 742 | classifyCycle(&I, C, Early, Late); |
| 743 | Cycled.insert(C.begin(), C.end()); |
| 744 | RShifts.insert(&I); |
| 745 | } |
| 746 | |
| 747 | // Find the set of all values affected by the shift cycles, i.e. all |
| 748 | // cycled values, and (recursively) all their users. |
| 749 | ValueSeq Users(Cycled.begin(), Cycled.end()); |
| 750 | for (unsigned i = 0; i < Users.size(); ++i) { |
| 751 | Value *V = Users[i]; |
| 752 | if (!isa<IntegerType>(V->getType())) |
| 753 | return false; |
| 754 | auto *R = cast<Instruction>(V); |
| 755 | // If the instruction does not commute with shifts, the loop cannot |
| 756 | // be unshifted. |
| 757 | if (!commutesWithShift(R)) |
| 758 | return false; |
| 759 | for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) { |
| 760 | auto *T = cast<Instruction>(*I); |
| 761 | // Skip users from outside of the loop. They will be handled later. |
| 762 | // Also, skip the right-shifts and phi nodes, since they mix early |
| 763 | // and late values. |
| 764 | if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T)) |
| 765 | continue; |
| 766 | |
| 767 | Users.insert(T); |
| 768 | if (!classifyInst(T, Early, Late)) |
| 769 | return false; |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | if (Users.size() == 0) |
| 774 | return false; |
| 775 | |
| 776 | // Verify that high bits remain zero. |
| 777 | ValueSeq Internal(Users.begin(), Users.end()); |
| 778 | ValueSeq Inputs; |
| 779 | for (unsigned i = 0; i < Internal.size(); ++i) { |
| 780 | auto *R = dyn_cast<Instruction>(Internal[i]); |
| 781 | if (!R) |
| 782 | continue; |
| 783 | for (Value *Op : R->operands()) { |
| 784 | auto *T = dyn_cast<Instruction>(Op); |
| 785 | if (T && T->getParent() != LoopB) |
| 786 | Inputs.insert(Op); |
| 787 | else |
| 788 | Internal.insert(Op); |
| 789 | } |
| 790 | } |
| 791 | for (Value *V : Inputs) |
| 792 | if (!highBitsAreZero(V, IterCount)) |
| 793 | return false; |
| 794 | for (Value *V : Internal) |
| 795 | if (!keepsHighBitsZero(V, IterCount)) |
| 796 | return false; |
| 797 | |
| 798 | // Finally, the work can be done. Unshift each user. |
| 799 | IRBuilder<> IRB(LoopB); |
| 800 | std::map<Value*,Value*> ShiftMap; |
| 801 | typedef std::map<std::pair<Value*,Type*>,Value*> CastMapType; |
| 802 | CastMapType CastMap; |
| 803 | |
| 804 | auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V, |
| 805 | IntegerType *Ty) -> Value* { |
| 806 | auto H = CM.find(std::make_pair(V, Ty)); |
| 807 | if (H != CM.end()) |
| 808 | return H->second; |
| 809 | Value *CV = IRB.CreateIntCast(V, Ty, false); |
| 810 | CM.insert(std::make_pair(std::make_pair(V, Ty), CV)); |
| 811 | return CV; |
| 812 | }; |
| 813 | |
| 814 | for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) { |
| 815 | if (isa<PHINode>(I) || !Users.count(&*I)) |
| 816 | continue; |
| 817 | using namespace PatternMatch; |
| 818 | // Match lshr x, 1. |
| 819 | Value *V = nullptr; |
| 820 | if (match(&*I, m_LShr(m_Value(V), m_One()))) { |
| 821 | replaceAllUsesOfWithIn(&*I, V, LoopB); |
| 822 | continue; |
| 823 | } |
| 824 | // For each non-cycled operand, replace it with the corresponding |
| 825 | // value shifted left. |
| 826 | for (auto &J : I->operands()) { |
| 827 | Value *Op = J.get(); |
| 828 | if (!isOperandShifted(&*I, Op)) |
| 829 | continue; |
| 830 | if (Users.count(Op)) |
| 831 | continue; |
| 832 | // Skip shifting zeros. |
| 833 | if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) |
| 834 | continue; |
| 835 | // Check if we have already generated a shift for this value. |
| 836 | auto F = ShiftMap.find(Op); |
| 837 | Value *W = (F != ShiftMap.end()) ? F->second : nullptr; |
| 838 | if (W == nullptr) { |
| 839 | IRB.SetInsertPoint(&*I); |
| 840 | // First, the shift amount will be CIV or CIV+1, depending on |
| 841 | // whether the value is early or late. Instead of creating CIV+1, |
| 842 | // do a single shift of the value. |
| 843 | Value *ShAmt = CIV, *ShVal = Op; |
| 844 | auto *VTy = cast<IntegerType>(ShVal->getType()); |
| 845 | auto *ATy = cast<IntegerType>(ShAmt->getType()); |
| 846 | if (Late.count(&*I)) |
| 847 | ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1)); |
| 848 | // Second, the types of the shifted value and the shift amount |
| 849 | // must match. |
| 850 | if (VTy != ATy) { |
| 851 | if (VTy->getBitWidth() < ATy->getBitWidth()) |
| 852 | ShVal = upcast(CastMap, IRB, ShVal, ATy); |
| 853 | else |
| 854 | ShAmt = upcast(CastMap, IRB, ShAmt, VTy); |
| 855 | } |
| 856 | // Ready to generate the shift and memoize it. |
| 857 | W = IRB.CreateShl(ShVal, ShAmt); |
| 858 | ShiftMap.insert(std::make_pair(Op, W)); |
| 859 | } |
| 860 | I->replaceUsesOfWith(Op, W); |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | // Update the users outside of the loop to account for having left |
| 865 | // shifts. They would normally be shifted right in the loop, so shift |
| 866 | // them right after the loop exit. |
| 867 | // Take advantage of the loop-closed SSA form, which has all the post- |
| 868 | // loop values in phi nodes. |
| 869 | IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt()); |
| 870 | for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) { |
| 871 | if (!isa<PHINode>(P)) |
| 872 | break; |
| 873 | auto *PN = cast<PHINode>(P); |
| 874 | Value *U = PN->getIncomingValueForBlock(LoopB); |
| 875 | if (!Users.count(U)) |
| 876 | continue; |
| 877 | Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount)); |
| 878 | PN->replaceAllUsesWith(S); |
| 879 | // The above RAUW will create |
| 880 | // S = lshr S, IterCount |
| 881 | // so we need to fix it back into |
| 882 | // S = lshr PN, IterCount |
| 883 | cast<User>(S)->replaceUsesOfWith(S, PN); |
| 884 | } |
| 885 | |
| 886 | return true; |
| 887 | } |
| 888 | |
| 889 | |
| 890 | void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) { |
| 891 | for (auto &I : *LoopB) |
| 892 | if (Value *SV = SimplifyInstruction(&I, DL, &TLI, &DT)) |
| 893 | I.replaceAllUsesWith(SV); |
| 894 | |
| 895 | for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) { |
| 896 | N = std::next(I); |
| 897 | RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI); |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | |
| 902 | unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) { |
| 903 | // Arrays of coefficients of Q and the inverse, C. |
| 904 | // Q[i] = coefficient at x^i. |
| 905 | std::array<char,32> Q, C; |
| 906 | |
| 907 | for (unsigned i = 0; i < 32; ++i) { |
| 908 | Q[i] = QP & 1; |
| 909 | QP >>= 1; |
| 910 | } |
| 911 | assert(Q[0] == 1); |
| 912 | |
| 913 | // Find C, such that |
| 914 | // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1 |
| 915 | // |
| 916 | // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the |
| 917 | // operations * and + are & and ^ respectively. |
| 918 | // |
| 919 | // Find C[i] recursively, by comparing i-th coefficient in the product |
| 920 | // with 0 (or 1 for i=0). |
| 921 | // |
| 922 | // C[0] = 1, since C[0] = Q[0], and Q[0] = 1. |
| 923 | C[0] = 1; |
| 924 | for (unsigned i = 1; i < 32; ++i) { |
| 925 | // Solve for C[i] in: |
| 926 | // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0 |
| 927 | // This is equivalent to |
| 928 | // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0 |
| 929 | // which is |
| 930 | // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i] |
| 931 | unsigned T = 0; |
| 932 | for (unsigned j = 0; j < i; ++j) |
| 933 | T = T ^ (C[j] & Q[i-j]); |
| 934 | C[i] = T; |
| 935 | } |
| 936 | |
| 937 | unsigned QV = 0; |
| 938 | for (unsigned i = 0; i < 32; ++i) |
| 939 | if (C[i]) |
| 940 | QV |= (1 << i); |
| 941 | |
| 942 | return QV; |
| 943 | } |
| 944 | |
| 945 | |
| 946 | Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At, |
| 947 | ParsedValues &PV) { |
| 948 | IRBuilder<> B(&*At); |
| 949 | Module *M = At->getParent()->getParent()->getParent(); |
| 950 | Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw); |
| 951 | |
| 952 | Value *P = PV.P, *Q = PV.Q, *P0 = P; |
| 953 | unsigned IC = PV.IterCount; |
| 954 | |
| 955 | if (PV.M != nullptr) |
| 956 | P0 = P = B.CreateXor(P, PV.M); |
| 957 | |
| 958 | // Create a bit mask to clear the high bits beyond IterCount. |
| 959 | auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC)); |
| 960 | |
| 961 | if (PV.IterCount != 32) |
| 962 | P = B.CreateAnd(P, BMI); |
| 963 | |
| 964 | if (PV.Inv) { |
| 965 | auto *QI = dyn_cast<ConstantInt>(PV.Q); |
| 966 | assert(QI && QI->getBitWidth() <= 32); |
| 967 | |
| 968 | // Again, clearing bits beyond IterCount. |
| 969 | unsigned M = (1 << PV.IterCount) - 1; |
| 970 | unsigned Tmp = (QI->getZExtValue() | 1) & M; |
| 971 | unsigned QV = getInverseMxN(Tmp) & M; |
| 972 | auto *QVI = ConstantInt::get(QI->getType(), QV); |
| 973 | P = B.CreateCall(PMF, {P, QVI}); |
| 974 | P = B.CreateTrunc(P, QI->getType()); |
| 975 | if (IC != 32) |
| 976 | P = B.CreateAnd(P, BMI); |
| 977 | } |
| 978 | |
| 979 | Value *R = B.CreateCall(PMF, {P, Q}); |
| 980 | |
| 981 | if (PV.M != nullptr) |
| 982 | R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false)); |
| 983 | |
| 984 | return R; |
| 985 | } |
| 986 | |
| 987 | |
| 988 | bool PolynomialMultiplyRecognize::recognize() { |
| 989 | // Restrictions: |
| 990 | // - The loop must consist of a single block. |
| 991 | // - The iteration count must be known at compile-time. |
| 992 | // - The loop must have an induction variable starting from 0, and |
| 993 | // incremented in each iteration of the loop. |
| 994 | BasicBlock *LoopB = CurLoop->getHeader(); |
| 995 | if (LoopB != CurLoop->getLoopLatch()) |
| 996 | return false; |
| 997 | BasicBlock *ExitB = CurLoop->getExitBlock(); |
| 998 | if (ExitB == nullptr) |
| 999 | return false; |
| 1000 | BasicBlock *EntryB = CurLoop->getLoopPreheader(); |
| 1001 | if (EntryB == nullptr) |
| 1002 | return false; |
| 1003 | |
| 1004 | unsigned IterCount = 0; |
| 1005 | const SCEV *CT = SE.getBackedgeTakenCount(CurLoop); |
| 1006 | if (isa<SCEVCouldNotCompute>(CT)) |
| 1007 | return false; |
| 1008 | if (auto *CV = dyn_cast<SCEVConstant>(CT)) |
| 1009 | IterCount = CV->getValue()->getZExtValue() + 1; |
| 1010 | |
| 1011 | Value *CIV = getCountIV(LoopB); |
| 1012 | ParsedValues PV; |
| 1013 | PV.IterCount = IterCount; |
| 1014 | |
| 1015 | // Test function to see if a given select instruction is a part of the |
| 1016 | // pmpy pattern. The argument PreScan set to "true" indicates that only |
| 1017 | // a preliminary scan is needed, "false" indicated an exact match. |
| 1018 | auto CouldBePmpy = [this, LoopB, EntryB, CIV, &PV] (bool PreScan) |
| 1019 | -> std::function<bool (Instruction &I)> { |
| 1020 | return [this, LoopB, EntryB, CIV, &PV, PreScan] (Instruction &I) -> bool { |
| 1021 | if (auto *SelI = dyn_cast<SelectInst>(&I)) |
| 1022 | return scanSelect(SelI, LoopB, EntryB, CIV, PV, PreScan); |
| 1023 | return false; |
| 1024 | }; |
| 1025 | }; |
| 1026 | auto PreF = std::find_if(LoopB->begin(), LoopB->end(), CouldBePmpy(true)); |
| 1027 | if (PreF == LoopB->end()) |
| 1028 | return false; |
| 1029 | |
| 1030 | if (!PV.Left) { |
| 1031 | convertShiftsToLeft(LoopB, ExitB, IterCount); |
| 1032 | cleanupLoopBody(LoopB); |
| 1033 | } |
| 1034 | |
| 1035 | auto PostF = std::find_if(LoopB->begin(), LoopB->end(), CouldBePmpy(false)); |
| 1036 | if (PostF == LoopB->end()) |
| 1037 | return false; |
| 1038 | |
| 1039 | DEBUG({ |
| 1040 | StringRef PP = (PV.M ? "(P+M)" : "P"); |
| 1041 | if (!PV.Inv) |
| 1042 | dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n"; |
| 1043 | else |
| 1044 | dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + " |
| 1045 | << PP << "\n"; |
| 1046 | dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n"; |
| 1047 | if (PV.M) |
| 1048 | dbgs() << " M:" << *PV.M << "\n"; |
| 1049 | dbgs() << " Q:" << *PV.Q << "\n"; |
| 1050 | dbgs() << " Iteration count:" << PV.IterCount << "\n"; |
| 1051 | }); |
| 1052 | |
| 1053 | BasicBlock::iterator At(EntryB->getTerminator()); |
| 1054 | Value *PM = generate(At, PV); |
| 1055 | if (PM == nullptr) |
| 1056 | return false; |
| 1057 | |
| 1058 | if (PM->getType() != PV.Res->getType()) |
| 1059 | PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false); |
| 1060 | |
| 1061 | PV.Res->replaceAllUsesWith(PM); |
| 1062 | PV.Res->eraseFromParent(); |
| 1063 | return true; |
| 1064 | } |
| 1065 | |
| 1066 | |
| 1067 | unsigned HexagonLoopIdiomRecognize::getStoreSizeInBytes(StoreInst *SI) { |
| 1068 | uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); |
| 1069 | assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) && |
| 1070 | "Don't overflow unsigned."); |
| 1071 | return (unsigned)SizeInBits >> 3; |
| 1072 | } |
| 1073 | |
| 1074 | |
| 1075 | int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) { |
| 1076 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) |
| 1077 | return SC->getAPInt().getSExtValue(); |
| 1078 | return 0; |
| 1079 | } |
| 1080 | |
| 1081 | |
| 1082 | bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) { |
Krzysztof Parzyszek | 35ce5da | 2017-01-27 20:40:14 +0000 | [diff] [blame^] | 1083 | // Allow volatile stores if HexagonVolatileMemcpy is enabled. |
| 1084 | if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple()) |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1085 | return false; |
| 1086 | |
| 1087 | Value *StoredVal = SI->getValueOperand(); |
| 1088 | Value *StorePtr = SI->getPointerOperand(); |
| 1089 | |
| 1090 | // Reject stores that are so large that they overflow an unsigned. |
| 1091 | uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); |
| 1092 | if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) |
| 1093 | return false; |
| 1094 | |
| 1095 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 1096 | // loop, which indicates a strided store. If we have something else, it's a |
| 1097 | // random store we can't handle. |
| 1098 | auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| 1099 | if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) |
| 1100 | return false; |
| 1101 | |
| 1102 | // Check to see if the stride matches the size of the store. If so, then we |
| 1103 | // know that every byte is touched in the loop. |
| 1104 | int Stride = getSCEVStride(StoreEv); |
| 1105 | if (Stride == 0) |
| 1106 | return false; |
| 1107 | unsigned StoreSize = getStoreSizeInBytes(SI); |
| 1108 | if (StoreSize != unsigned(std::abs(Stride))) |
| 1109 | return false; |
| 1110 | |
| 1111 | // The store must be feeding a non-volatile load. |
| 1112 | LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); |
| 1113 | if (!LI || !LI->isSimple()) |
| 1114 | return false; |
| 1115 | |
| 1116 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 1117 | // loop, which indicates a strided load. If we have something else, it's a |
| 1118 | // random load we can't handle. |
| 1119 | Value *LoadPtr = LI->getPointerOperand(); |
| 1120 | auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); |
| 1121 | if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) |
| 1122 | return false; |
| 1123 | |
| 1124 | // The store and load must share the same stride. |
| 1125 | if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) |
| 1126 | return false; |
| 1127 | |
| 1128 | // Success. This store can be converted into a memcpy. |
| 1129 | return true; |
| 1130 | } |
| 1131 | |
| 1132 | |
| 1133 | /// mayLoopAccessLocation - Return true if the specified loop might access the |
| 1134 | /// specified pointer location, which is a loop-strided access. The 'Access' |
| 1135 | /// argument specifies what the verboten forms of access are (read or write). |
| 1136 | static bool |
| 1137 | mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, |
| 1138 | const SCEV *BECount, unsigned StoreSize, |
| 1139 | AliasAnalysis &AA, |
| 1140 | SmallPtrSetImpl<Instruction *> &Ignored) { |
| 1141 | // Get the location that may be stored across the loop. Since the access |
| 1142 | // is strided positively through memory, we say that the modified location |
| 1143 | // starts at the pointer and has infinite size. |
| 1144 | uint64_t AccessSize = MemoryLocation::UnknownSize; |
| 1145 | |
| 1146 | // If the loop iterates a fixed number of times, we can refine the access |
| 1147 | // size to be exactly the size of the memset, which is (BECount+1)*StoreSize |
| 1148 | if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) |
| 1149 | AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; |
| 1150 | |
| 1151 | // TODO: For this to be really effective, we have to dive into the pointer |
| 1152 | // operand in the store. Store to &A[i] of 100 will always return may alias |
| 1153 | // with store of &A[100], we need to StoreLoc to be "A" with size of 100, |
| 1154 | // which will then no-alias a store to &A[100]. |
| 1155 | MemoryLocation StoreLoc(Ptr, AccessSize); |
| 1156 | |
| 1157 | for (auto *B : L->blocks()) |
| 1158 | for (auto &I : *B) |
| 1159 | if (Ignored.count(&I) == 0 && (AA.getModRefInfo(&I, StoreLoc) & Access)) |
| 1160 | return true; |
| 1161 | |
| 1162 | return false; |
| 1163 | } |
| 1164 | |
| 1165 | |
| 1166 | void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB, |
| 1167 | SmallVectorImpl<StoreInst*> &Stores) { |
| 1168 | Stores.clear(); |
| 1169 | for (Instruction &I : *BB) |
| 1170 | if (StoreInst *SI = dyn_cast<StoreInst>(&I)) |
| 1171 | if (isLegalStore(CurLoop, SI)) |
| 1172 | Stores.push_back(SI); |
| 1173 | } |
| 1174 | |
| 1175 | |
| 1176 | bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop, |
| 1177 | StoreInst *SI, const SCEV *BECount) { |
| 1178 | assert(SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy) && |
| 1179 | "Expected only non-volatile stores, or Hexagon-specific memcpy" |
| 1180 | "to volatile destination."); |
| 1181 | |
| 1182 | Value *StorePtr = SI->getPointerOperand(); |
| 1183 | auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| 1184 | unsigned Stride = getSCEVStride(StoreEv); |
| 1185 | unsigned StoreSize = getStoreSizeInBytes(SI); |
| 1186 | if (Stride != StoreSize) |
| 1187 | return false; |
| 1188 | |
| 1189 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 1190 | // loop, which indicates a strided load. If we have something else, it's a |
| 1191 | // random load we can't handle. |
| 1192 | LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); |
| 1193 | auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); |
| 1194 | |
| 1195 | // The trip count of the loop and the base pointer of the addrec SCEV is |
| 1196 | // guaranteed to be loop invariant, which means that it should dominate the |
| 1197 | // header. This allows us to insert code for it in the preheader. |
| 1198 | BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| 1199 | Instruction *ExpPt = Preheader->getTerminator(); |
| 1200 | IRBuilder<> Builder(ExpPt); |
| 1201 | SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom"); |
| 1202 | |
| 1203 | Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace()); |
| 1204 | |
| 1205 | // Okay, we have a strided store "p[i]" of a loaded value. We can turn |
| 1206 | // this into a memcpy/memmove in the loop preheader now if we want. However, |
| 1207 | // this would be unsafe to do if there is anything else in the loop that may |
| 1208 | // read or write the memory region we're storing to. For memcpy, this |
| 1209 | // includes the load that feeds the stores. Check for an alias by generating |
| 1210 | // the base address and checking everything. |
| 1211 | Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(), |
| 1212 | Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt); |
| 1213 | Value *LoadBasePtr = nullptr; |
| 1214 | |
| 1215 | bool Overlap = false; |
| 1216 | bool DestVolatile = SI->isVolatile(); |
| 1217 | Type *BECountTy = BECount->getType(); |
| 1218 | |
| 1219 | if (DestVolatile) { |
| 1220 | // The trip count must fit in i32, since it is the type of the "num_words" |
| 1221 | // argument to hexagon_memcpy_forward_vp4cp4n2. |
| 1222 | if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) { |
| 1223 | CleanupAndExit: |
| 1224 | // If we generated new code for the base pointer, clean up. |
| 1225 | Expander.clear(); |
| 1226 | if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) { |
| 1227 | RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); |
| 1228 | StoreBasePtr = nullptr; |
| 1229 | } |
| 1230 | if (LoadBasePtr) { |
| 1231 | RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); |
| 1232 | LoadBasePtr = nullptr; |
| 1233 | } |
| 1234 | return false; |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | SmallPtrSet<Instruction*, 2> Ignore1; |
| 1239 | Ignore1.insert(SI); |
| 1240 | if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount, |
| 1241 | StoreSize, *AA, Ignore1)) { |
| 1242 | // Check if the load is the offending instruction. |
| 1243 | Ignore1.insert(LI); |
| 1244 | if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount, |
| 1245 | StoreSize, *AA, Ignore1)) { |
| 1246 | // Still bad. Nothing we can do. |
| 1247 | goto CleanupAndExit; |
| 1248 | } |
| 1249 | // It worked with the load ignored. |
| 1250 | Overlap = true; |
| 1251 | } |
| 1252 | |
| 1253 | if (!Overlap) { |
| 1254 | if (DisableMemcpyIdiom || !HasMemcpy) |
| 1255 | goto CleanupAndExit; |
| 1256 | } else { |
| 1257 | // Don't generate memmove if this function will be inlined. This is |
| 1258 | // because the caller will undergo this transformation after inlining. |
| 1259 | Function *Func = CurLoop->getHeader()->getParent(); |
| 1260 | if (Func->hasFnAttribute(Attribute::AlwaysInline)) |
| 1261 | goto CleanupAndExit; |
| 1262 | |
| 1263 | // In case of a memmove, the call to memmove will be executed instead |
| 1264 | // of the loop, so we need to make sure that there is nothing else in |
| 1265 | // the loop than the load, store and instructions that these two depend |
| 1266 | // on. |
| 1267 | SmallVector<Instruction*,2> Insts; |
| 1268 | Insts.push_back(SI); |
| 1269 | Insts.push_back(LI); |
| 1270 | if (!coverLoop(CurLoop, Insts)) |
| 1271 | goto CleanupAndExit; |
| 1272 | |
| 1273 | if (DisableMemmoveIdiom || !HasMemmove) |
| 1274 | goto CleanupAndExit; |
| 1275 | bool IsNested = CurLoop->getParentLoop() != 0; |
| 1276 | if (IsNested && OnlyNonNestedMemmove) |
| 1277 | goto CleanupAndExit; |
| 1278 | } |
| 1279 | |
| 1280 | // For a memcpy, we have to make sure that the input array is not being |
| 1281 | // mutated by the loop. |
| 1282 | LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(), |
| 1283 | Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt); |
| 1284 | |
| 1285 | SmallPtrSet<Instruction*, 2> Ignore2; |
| 1286 | Ignore2.insert(SI); |
| 1287 | if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize, |
| 1288 | *AA, Ignore2)) |
| 1289 | goto CleanupAndExit; |
| 1290 | |
| 1291 | // Check the stride. |
| 1292 | bool StridePos = getSCEVStride(LoadEv) >= 0; |
| 1293 | |
| 1294 | // Currently, the volatile memcpy only emulates traversing memory forward. |
| 1295 | if (!StridePos && DestVolatile) |
| 1296 | goto CleanupAndExit; |
| 1297 | |
| 1298 | bool RuntimeCheck = (Overlap || DestVolatile); |
| 1299 | |
| 1300 | BasicBlock *ExitB; |
| 1301 | if (RuntimeCheck) { |
| 1302 | // The runtime check needs a single exit block. |
| 1303 | SmallVector<BasicBlock*, 8> ExitBlocks; |
| 1304 | CurLoop->getUniqueExitBlocks(ExitBlocks); |
| 1305 | if (ExitBlocks.size() != 1) |
| 1306 | goto CleanupAndExit; |
| 1307 | ExitB = ExitBlocks[0]; |
| 1308 | } |
| 1309 | |
| 1310 | // The # stored bytes is (BECount+1)*Size. Expand the trip count out to |
| 1311 | // pointer size if it isn't already. |
| 1312 | LLVMContext &Ctx = SI->getContext(); |
| 1313 | BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); |
| 1314 | unsigned Alignment = std::min(SI->getAlignment(), LI->getAlignment()); |
| 1315 | DebugLoc DLoc = SI->getDebugLoc(); |
| 1316 | |
| 1317 | const SCEV *NumBytesS = |
| 1318 | SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW); |
| 1319 | if (StoreSize != 1) |
| 1320 | NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), |
| 1321 | SCEV::FlagNUW); |
| 1322 | Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt); |
| 1323 | if (Instruction *In = dyn_cast<Instruction>(NumBytes)) |
| 1324 | if (Value *Simp = SimplifyInstruction(In, *DL, TLI, DT)) |
| 1325 | NumBytes = Simp; |
| 1326 | |
| 1327 | CallInst *NewCall; |
| 1328 | |
| 1329 | if (RuntimeCheck) { |
| 1330 | unsigned Threshold = RuntimeMemSizeThreshold; |
| 1331 | if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) { |
| 1332 | uint64_t C = CI->getZExtValue(); |
| 1333 | if (Threshold != 0 && C < Threshold) |
| 1334 | goto CleanupAndExit; |
| 1335 | if (C < CompileTimeMemSizeThreshold) |
| 1336 | goto CleanupAndExit; |
| 1337 | } |
| 1338 | |
| 1339 | BasicBlock *Header = CurLoop->getHeader(); |
| 1340 | Function *Func = Header->getParent(); |
| 1341 | Loop *ParentL = LF->getLoopFor(Preheader); |
| 1342 | StringRef HeaderName = Header->getName(); |
| 1343 | |
| 1344 | // Create a new (empty) preheader, and update the PHI nodes in the |
| 1345 | // header to use the new preheader. |
| 1346 | BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph", |
| 1347 | Func, Header); |
| 1348 | if (ParentL) |
| 1349 | ParentL->addBasicBlockToLoop(NewPreheader, *LF); |
| 1350 | IRBuilder<>(NewPreheader).CreateBr(Header); |
| 1351 | for (auto &In : *Header) { |
| 1352 | PHINode *PN = dyn_cast<PHINode>(&In); |
| 1353 | if (!PN) |
| 1354 | break; |
| 1355 | int bx = PN->getBasicBlockIndex(Preheader); |
| 1356 | if (bx >= 0) |
| 1357 | PN->setIncomingBlock(bx, NewPreheader); |
| 1358 | } |
| 1359 | DT->addNewBlock(NewPreheader, Preheader); |
| 1360 | DT->changeImmediateDominator(Header, NewPreheader); |
| 1361 | |
| 1362 | // Check for safe conditions to execute memmove. |
| 1363 | // If stride is positive, copying things from higher to lower addresses |
| 1364 | // is equivalent to memmove. For negative stride, it's the other way |
| 1365 | // around. Copying forward in memory with positive stride may not be |
| 1366 | // same as memmove since we may be copying values that we just stored |
| 1367 | // in some previous iteration. |
| 1368 | Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy); |
| 1369 | Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy); |
| 1370 | Value *LowA = StridePos ? SA : LA; |
| 1371 | Value *HighA = StridePos ? LA : SA; |
| 1372 | Value *CmpA = Builder.CreateICmpULT(LowA, HighA); |
| 1373 | Value *Cond = CmpA; |
| 1374 | |
| 1375 | // Check for distance between pointers. |
| 1376 | Value *Dist = Builder.CreateSub(HighA, LowA); |
| 1377 | Value *CmpD = Builder.CreateICmpSLT(NumBytes, Dist); |
| 1378 | Value *CmpEither = Builder.CreateOr(Cond, CmpD); |
| 1379 | Cond = CmpEither; |
| 1380 | |
| 1381 | if (Threshold != 0) { |
| 1382 | Type *Ty = NumBytes->getType(); |
| 1383 | Value *Thr = ConstantInt::get(Ty, Threshold); |
| 1384 | Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes); |
| 1385 | Value *CmpBoth = Builder.CreateAnd(Cond, CmpB); |
| 1386 | Cond = CmpBoth; |
| 1387 | } |
| 1388 | BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli", |
| 1389 | Func, NewPreheader); |
| 1390 | if (ParentL) |
| 1391 | ParentL->addBasicBlockToLoop(MemmoveB, *LF); |
| 1392 | Instruction *OldT = Preheader->getTerminator(); |
| 1393 | Builder.CreateCondBr(Cond, MemmoveB, NewPreheader); |
| 1394 | OldT->eraseFromParent(); |
| 1395 | Preheader->setName(Preheader->getName()+".old"); |
| 1396 | DT->addNewBlock(MemmoveB, Preheader); |
| 1397 | // Find the new immediate dominator of the exit block. |
| 1398 | BasicBlock *ExitD = Preheader; |
| 1399 | for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) { |
| 1400 | BasicBlock *PB = *PI; |
| 1401 | ExitD = DT->findNearestCommonDominator(ExitD, PB); |
| 1402 | if (!ExitD) |
| 1403 | break; |
| 1404 | } |
| 1405 | // If the prior immediate dominator of ExitB was dominated by the |
| 1406 | // old preheader, then the old preheader becomes the new immediate |
| 1407 | // dominator. Otherwise don't change anything (because the newly |
| 1408 | // added blocks are dominated by the old preheader). |
| 1409 | if (ExitD && DT->dominates(Preheader, ExitD)) { |
| 1410 | DomTreeNode *BN = DT->getNode(ExitB); |
| 1411 | DomTreeNode *DN = DT->getNode(ExitD); |
| 1412 | BN->setIDom(DN); |
| 1413 | } |
| 1414 | |
| 1415 | // Add a call to memmove to the conditional block. |
| 1416 | IRBuilder<> CondBuilder(MemmoveB); |
| 1417 | CondBuilder.CreateBr(ExitB); |
| 1418 | CondBuilder.SetInsertPoint(MemmoveB->getTerminator()); |
| 1419 | |
| 1420 | if (DestVolatile) { |
| 1421 | Type *Int32Ty = Type::getInt32Ty(Ctx); |
| 1422 | Type *Int32PtrTy = Type::getInt32PtrTy(Ctx); |
| 1423 | Type *VoidTy = Type::getVoidTy(Ctx); |
| 1424 | Module *M = Func->getParent(); |
| 1425 | Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy, |
| 1426 | Int32PtrTy, Int32PtrTy, Int32Ty, |
| 1427 | nullptr); |
| 1428 | Function *Fn = cast<Function>(CF); |
| 1429 | Fn->setLinkage(Function::ExternalLinkage); |
| 1430 | |
| 1431 | const SCEV *OneS = SE->getConstant(Int32Ty, 1); |
| 1432 | const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty); |
| 1433 | const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW); |
| 1434 | Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty, |
| 1435 | MemmoveB->getTerminator()); |
| 1436 | if (Instruction *In = dyn_cast<Instruction>(NumWords)) |
| 1437 | if (Value *Simp = SimplifyInstruction(In, *DL, TLI, DT)) |
| 1438 | NumWords = Simp; |
| 1439 | |
| 1440 | Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy) |
| 1441 | ? StoreBasePtr |
| 1442 | : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy); |
| 1443 | Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy) |
| 1444 | ? LoadBasePtr |
| 1445 | : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy); |
| 1446 | NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords}); |
| 1447 | } else { |
| 1448 | NewCall = CondBuilder.CreateMemMove(StoreBasePtr, LoadBasePtr, |
| 1449 | NumBytes, Alignment); |
| 1450 | } |
| 1451 | } else { |
| 1452 | NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, |
| 1453 | NumBytes, Alignment); |
| 1454 | // Okay, the memcpy has been formed. Zap the original store and |
| 1455 | // anything that feeds into it. |
| 1456 | RecursivelyDeleteTriviallyDeadInstructions(SI, TLI); |
| 1457 | } |
| 1458 | |
| 1459 | NewCall->setDebugLoc(DLoc); |
| 1460 | |
| 1461 | DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ") |
| 1462 | << *NewCall << "\n" |
| 1463 | << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" |
| 1464 | << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); |
| 1465 | |
| 1466 | return true; |
| 1467 | } |
| 1468 | |
| 1469 | |
| 1470 | // \brief Check if the instructions in Insts, together with their dependencies |
| 1471 | // cover the loop in the sense that the loop could be safely eliminated once |
| 1472 | // the instructions in Insts are removed. |
| 1473 | bool HexagonLoopIdiomRecognize::coverLoop(Loop *L, |
| 1474 | SmallVectorImpl<Instruction*> &Insts) const { |
| 1475 | SmallSet<BasicBlock*,8> LoopBlocks; |
| 1476 | for (auto *B : L->blocks()) |
| 1477 | LoopBlocks.insert(B); |
| 1478 | |
| 1479 | SetVector<Instruction*> Worklist(Insts.begin(), Insts.end()); |
| 1480 | |
| 1481 | // Collect all instructions from the loop that the instructions in Insts |
| 1482 | // depend on (plus their dependencies, etc.). These instructions will |
| 1483 | // constitute the expression trees that feed those in Insts, but the trees |
| 1484 | // will be limited only to instructions contained in the loop. |
| 1485 | for (unsigned i = 0; i < Worklist.size(); ++i) { |
| 1486 | Instruction *In = Worklist[i]; |
| 1487 | for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) { |
| 1488 | Instruction *OpI = dyn_cast<Instruction>(I); |
| 1489 | if (!OpI) |
| 1490 | continue; |
| 1491 | BasicBlock *PB = OpI->getParent(); |
| 1492 | if (!LoopBlocks.count(PB)) |
| 1493 | continue; |
| 1494 | Worklist.insert(OpI); |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | // Scan all instructions in the loop, if any of them have a user outside |
| 1499 | // of the loop, or outside of the expressions collected above, then either |
| 1500 | // the loop has a side-effect visible outside of it, or there are |
| 1501 | // instructions in it that are not involved in the original set Insts. |
| 1502 | for (auto *B : L->blocks()) { |
| 1503 | for (auto &In : *B) { |
| 1504 | if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In)) |
| 1505 | continue; |
| 1506 | if (!Worklist.count(&In) && In.mayHaveSideEffects()) |
| 1507 | return false; |
| 1508 | for (const auto &K : In.users()) { |
| 1509 | Instruction *UseI = dyn_cast<Instruction>(K); |
| 1510 | if (!UseI) |
| 1511 | continue; |
| 1512 | BasicBlock *UseB = UseI->getParent(); |
| 1513 | if (LF->getLoopFor(UseB) != L) |
| 1514 | return false; |
| 1515 | } |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | return true; |
| 1520 | } |
| 1521 | |
| 1522 | /// runOnLoopBlock - Process the specified block, which lives in a counted loop |
| 1523 | /// with the specified backedge count. This block is known to be in the current |
| 1524 | /// loop and not in any subloops. |
| 1525 | bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, |
| 1526 | const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) { |
| 1527 | // We can only promote stores in this block if they are unconditionally |
| 1528 | // executed in the loop. For a block to be unconditionally executed, it has |
| 1529 | // to dominate all the exit blocks of the loop. Verify this now. |
| 1530 | auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool { |
| 1531 | return DT->dominates(BB, EB); |
| 1532 | }; |
| 1533 | if (!std::all_of(ExitBlocks.begin(), ExitBlocks.end(), DominatedByBB)) |
| 1534 | return false; |
| 1535 | |
| 1536 | bool MadeChange = false; |
| 1537 | // Look for store instructions, which may be optimized to memset/memcpy. |
| 1538 | SmallVector<StoreInst*,8> Stores; |
| 1539 | collectStores(CurLoop, BB, Stores); |
| 1540 | |
| 1541 | // Optimize the store into a memcpy, if it feeds an similarly strided load. |
| 1542 | for (auto &SI : Stores) |
| 1543 | MadeChange |= processCopyingStore(CurLoop, SI, BECount); |
| 1544 | |
| 1545 | return MadeChange; |
| 1546 | } |
| 1547 | |
| 1548 | |
| 1549 | bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) { |
| 1550 | PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE); |
| 1551 | if (PMR.recognize()) |
| 1552 | return true; |
| 1553 | |
| 1554 | if (!HasMemcpy && !HasMemmove) |
| 1555 | return false; |
| 1556 | |
| 1557 | const SCEV *BECount = SE->getBackedgeTakenCount(L); |
| 1558 | assert(!isa<SCEVCouldNotCompute>(BECount) && |
| 1559 | "runOnCountableLoop() called on a loop without a predictable" |
| 1560 | "backedge-taken count"); |
| 1561 | |
| 1562 | SmallVector<BasicBlock *, 8> ExitBlocks; |
| 1563 | L->getUniqueExitBlocks(ExitBlocks); |
| 1564 | |
| 1565 | bool Changed = false; |
| 1566 | |
| 1567 | // Scan all the blocks in the loop that are not in subloops. |
| 1568 | for (auto *BB : L->getBlocks()) { |
| 1569 | // Ignore blocks in subloops. |
| 1570 | if (LF->getLoopFor(BB) != L) |
| 1571 | continue; |
| 1572 | Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks); |
| 1573 | } |
| 1574 | |
| 1575 | return Changed; |
| 1576 | } |
| 1577 | |
| 1578 | |
| 1579 | bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { |
| 1580 | const Module &M = *L->getHeader()->getParent()->getParent(); |
| 1581 | if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon) |
| 1582 | return false; |
| 1583 | |
| 1584 | if (skipLoop(L)) |
| 1585 | return false; |
| 1586 | |
| 1587 | // If the loop could not be converted to canonical form, it must have an |
| 1588 | // indirectbr in it, just give up. |
| 1589 | if (!L->getLoopPreheader()) |
| 1590 | return false; |
| 1591 | |
| 1592 | // Disable loop idiom recognition if the function's name is a common idiom. |
| 1593 | StringRef Name = L->getHeader()->getParent()->getName(); |
| 1594 | if (Name == "memset" || Name == "memcpy" || Name == "memmove") |
| 1595 | return false; |
| 1596 | |
| 1597 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 1598 | DL = &L->getHeader()->getModule()->getDataLayout(); |
| 1599 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 1600 | LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 1601 | TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| 1602 | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 1603 | |
| 1604 | HasMemcpy = TLI->has(LibFunc_memcpy); |
| 1605 | HasMemmove = TLI->has(LibFunc_memmove); |
| 1606 | |
| 1607 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) |
| 1608 | return runOnCountableLoop(L); |
| 1609 | return false; |
| 1610 | } |
| 1611 | |
| 1612 | |
| 1613 | Pass *llvm::createHexagonLoopIdiomPass() { |
| 1614 | return new HexagonLoopIdiomRecognize(); |
| 1615 | } |
| 1616 | |