blob: 912a0fb356ed4666e333897d90a021cfc0c3918e [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets. These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112 "# dynamic stack allocation",
113 [(X86WinAlloca)]>;
114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122 "# variable sized alloca for segmented stacks",
123 [(set GR32:$dst,
124 (X86SegAlloca GR32:$size))]>,
125 Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129 "# variable sized alloca for segmented stacks",
130 [(set GR64:$dst,
131 (X86SegAlloca GR64:$size))]>,
132 Requires<[In64BitMode]>;
133}
134
135// The MSVC runtime contains an _ftol2 routine for converting floating-point
136// to integer values. It has a strange calling convention: the input is
137// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
138// used as a temporary register. No other registers (aside from flags) are
139// touched.
140// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
141// variant is unnecessary.
142
143let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
144 def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
145 "# win32 fptoui",
146 [(X86WinFTOL RFP32:$src)]>,
147 Requires<[Not64BitMode]>;
148
149 def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
150 "# win32 fptoui",
151 [(X86WinFTOL RFP64:$src)]>,
152 Requires<[Not64BitMode]>;
153}
154
155//===----------------------------------------------------------------------===//
156// EH Pseudo Instructions
157//
158let SchedRW = [WriteSystem] in {
159let isTerminator = 1, isReturn = 1, isBarrier = 1,
160 hasCtrlDep = 1, isCodeGenOnly = 1 in {
161def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
162 "ret\t#eh_return, addr: $addr",
163 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
164
165}
166
167let isTerminator = 1, isReturn = 1, isBarrier = 1,
168 hasCtrlDep = 1, isCodeGenOnly = 1 in {
169def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
170 "ret\t#eh_return, addr: $addr",
171 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
172
173}
174
175let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
176 usesCustomInserter = 1 in {
177 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
178 "#EH_SJLJ_SETJMP32",
179 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
180 Requires<[Not64BitMode]>;
181 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
182 "#EH_SJLJ_SETJMP64",
183 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
184 Requires<[In64BitMode]>;
185 let isTerminator = 1 in {
186 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
187 "#EH_SJLJ_LONGJMP32",
188 [(X86eh_sjlj_longjmp addr:$buf)]>,
189 Requires<[Not64BitMode]>;
190 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
191 "#EH_SJLJ_LONGJMP64",
192 [(X86eh_sjlj_longjmp addr:$buf)]>,
193 Requires<[In64BitMode]>;
194 }
195}
196} // SchedRW
197
198let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
199 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
200 "#EH_SjLj_Setup\t$dst", []>;
201}
202
203//===----------------------------------------------------------------------===//
204// Pseudo instructions used by unwind info.
205//
206let isPseudo = 1 in {
207 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
208 "#SEH_PushReg $reg", []>;
209 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
210 "#SEH_SaveReg $reg, $dst", []>;
211 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
212 "#SEH_SaveXMM $reg, $dst", []>;
213 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
214 "#SEH_StackAlloc $size", []>;
215 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
216 "#SEH_SetFrame $reg, $offset", []>;
217 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
218 "#SEH_PushFrame $mode", []>;
219 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
220 "#SEH_EndPrologue", []>;
221 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
222 "#SEH_Epilogue", []>;
223}
224
225//===----------------------------------------------------------------------===//
226// Pseudo instructions used by segmented stacks.
227//
228
229// This is lowered into a RET instruction by MCInstLower. We need
230// this so that we don't have to have a MachineBasicBlock which ends
231// with a RET and also has successors.
232let isPseudo = 1 in {
233def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
234 "", []>;
235
236// This instruction is lowered to a RET followed by a MOV. The two
237// instructions are not generated on a higher level since then the
238// verifier sees a MachineBasicBlock ending with a non-terminator.
239def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
240 "", []>;
241}
242
243//===----------------------------------------------------------------------===//
244// Alias Instructions
245//===----------------------------------------------------------------------===//
246
247// Alias instruction mapping movr0 to xor.
248// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
249let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
250 isPseudo = 1 in
251def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
252 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
253
254// Other widths can also make use of the 32-bit xor, which may have a smaller
255// encoding and avoid partial register updates.
256def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
257def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
258def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
259 let AddedComplexity = 20;
260}
261
262// Materialize i64 constant where top 32-bits are zero. This could theoretically
263// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
264// that would make it more difficult to rematerialize.
265let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
266 isCodeGenOnly = 1, hasSideEffects = 0 in
267def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
268 "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
269
270// This 64-bit pseudo-move can be used for both a 64-bit constant that is
271// actually the zero-extension of a 32-bit constant, and for labels in the
272// x86-64 small code model.
273def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
274
275let AddedComplexity = 1 in
276def : Pat<(i64 mov64imm32:$src),
277 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
278
279// Use sbb to materialize carry bit.
280let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
281// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
282// However, Pat<> can't replicate the destination reg into the inputs of the
283// result.
284def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
285 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
286def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
287 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
288def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
289 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
290def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
291 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
292} // isCodeGenOnly
293
294
295def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
296 (SETB_C16r)>;
297def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
298 (SETB_C32r)>;
299def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
300 (SETB_C64r)>;
301
302def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
303 (SETB_C16r)>;
304def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
305 (SETB_C32r)>;
306def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
307 (SETB_C64r)>;
308
309// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
310// will be eliminated and that the sbb can be extended up to a wider type. When
311// this happens, it is great. However, if we are left with an 8-bit sbb and an
312// and, we might as well just match it as a setb.
313def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
314 (SETBr)>;
315
316// (add OP, SETB) -> (adc OP, 0)
317def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
318 (ADC8ri GR8:$op, 0)>;
319def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
320 (ADC32ri8 GR32:$op, 0)>;
321def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
322 (ADC64ri8 GR64:$op, 0)>;
323
324// (sub OP, SETB) -> (sbb OP, 0)
325def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
326 (SBB8ri GR8:$op, 0)>;
327def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
328 (SBB32ri8 GR32:$op, 0)>;
329def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
330 (SBB64ri8 GR64:$op, 0)>;
331
332// (sub OP, SETCC_CARRY) -> (adc OP, 0)
333def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
334 (ADC8ri GR8:$op, 0)>;
335def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
336 (ADC32ri8 GR32:$op, 0)>;
337def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
338 (ADC64ri8 GR64:$op, 0)>;
339
340//===----------------------------------------------------------------------===//
341// String Pseudo Instructions
342//
343let SchedRW = [WriteMicrocoded] in {
344let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
345def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
346 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
347 Requires<[Not64BitMode]>;
348def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
349 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
350 Requires<[Not64BitMode]>;
351def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
352 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
353 Requires<[Not64BitMode]>;
354}
355
356let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
357def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
358 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
359 Requires<[In64BitMode]>;
360def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
361 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
362 Requires<[In64BitMode]>;
363def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
364 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
365 Requires<[In64BitMode]>;
366def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
367 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
368 Requires<[In64BitMode]>;
369}
370
371// FIXME: Should use "(X86rep_stos AL)" as the pattern.
372let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
373 let Uses = [AL,ECX,EDI] in
374 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
375 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
376 Requires<[Not64BitMode]>;
377 let Uses = [AX,ECX,EDI] in
378 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
379 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
380 Requires<[Not64BitMode]>;
381 let Uses = [EAX,ECX,EDI] in
382 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
383 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
384 Requires<[Not64BitMode]>;
385}
386
387let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
388 let Uses = [AL,RCX,RDI] in
389 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
390 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
391 Requires<[In64BitMode]>;
392 let Uses = [AX,RCX,RDI] in
393 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
394 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
395 Requires<[In64BitMode]>;
396 let Uses = [RAX,RCX,RDI] in
397 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
398 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
399 Requires<[In64BitMode]>;
400
401 let Uses = [RAX,RCX,RDI] in
402 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
403 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
404 Requires<[In64BitMode]>;
405}
406} // SchedRW
407
408//===----------------------------------------------------------------------===//
409// Thread Local Storage Instructions
410//
411
412// ELF TLS Support
413// All calls clobber the non-callee saved registers. ESP is marked as
414// a use to prevent stack-pointer assignments that appear immediately
415// before calls from potentially appearing dead.
416let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
417 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
418 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
419 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
420 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
421 Uses = [ESP] in {
422def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
423 "# TLS_addr32",
424 [(X86tlsaddr tls32addr:$sym)]>,
425 Requires<[Not64BitMode]>;
426def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
427 "# TLS_base_addr32",
428 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
429 Requires<[Not64BitMode]>;
430}
431
432// All calls clobber the non-callee saved registers. RSP is marked as
433// a use to prevent stack-pointer assignments that appear immediately
434// before calls from potentially appearing dead.
435let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
436 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
437 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
438 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
439 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
440 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
441 Uses = [RSP] in {
442def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
443 "# TLS_addr64",
444 [(X86tlsaddr tls64addr:$sym)]>,
445 Requires<[In64BitMode]>;
446def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
447 "# TLS_base_addr64",
448 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
449 Requires<[In64BitMode]>;
450}
451
452// Darwin TLS Support
453// For i386, the address of the thunk is passed on the stack, on return the
454// address of the variable is in %eax. %ecx is trashed during the function
455// call. All other registers are preserved.
456let Defs = [EAX, ECX, EFLAGS],
457 Uses = [ESP],
458 usesCustomInserter = 1 in
459def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
460 "# TLSCall_32",
461 [(X86TLSCall addr:$sym)]>,
462 Requires<[Not64BitMode]>;
463
464// For x86_64, the address of the thunk is passed in %rdi, on return
465// the address of the variable is in %rax. All other registers are preserved.
466let Defs = [RAX, EFLAGS],
467 Uses = [RSP, RDI],
468 usesCustomInserter = 1 in
469def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
470 "# TLSCall_64",
471 [(X86TLSCall addr:$sym)]>,
472 Requires<[In64BitMode]>;
473
474
475//===----------------------------------------------------------------------===//
476// Conditional Move Pseudo Instructions
477
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000478// CMOV* - Used to implement the SELECT DAG operation. Expanded after
479// instruction selection into a branch sequence.
480multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
481 def CMOV#NAME : I<0, Pseudo,
482 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
483 "#CMOV_"#NAME#" PSEUDO!",
484 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
485 EFLAGS)))]>;
486}
487
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000488let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000489 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
490 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
491 // however that requires promoting the operands, and can induce additional
492 // i8 register pressure.
493 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000494
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000495 let Predicates = [NoCMov] in {
496 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
497 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
498 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000499
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000500 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
501 // SSE1/SSE2.
502 let Predicates = [FPStackf32] in
503 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000504
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000505 let Predicates = [FPStackf64] in
506 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
507
508 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
509
510 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
511 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
512 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
513 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
514 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
515 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
516 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
517 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
518 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
519 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
520 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000521 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
522 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
523 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
524 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000525} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000526
527//===----------------------------------------------------------------------===//
528// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
529//===----------------------------------------------------------------------===//
530
531// FIXME: Use normal instructions and add lock prefix dynamically.
532
533// Memory barriers
534
535// TODO: Get this to fold the constant into the instruction.
536let isCodeGenOnly = 1, Defs = [EFLAGS] in
537def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
538 "or{l}\t{$zero, $dst|$dst, $zero}",
539 [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
540 Sched<[WriteALULd, WriteRMW]>;
541
542let hasSideEffects = 1 in
543def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
544 "#MEMBARRIER",
545 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
546
547// RegOpc corresponds to the mr version of the instruction
548// ImmOpc corresponds to the mi version of the instruction
549// ImmOpc8 corresponds to the mi8 version of the instruction
550// ImmMod corresponds to the instruction format of the mi and mi8 versions
551multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
552 Format ImmMod, string mnemonic> {
553let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
554 SchedRW = [WriteALULd, WriteRMW] in {
555
556def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
557 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
558 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
559 !strconcat(mnemonic, "{b}\t",
560 "{$src2, $dst|$dst, $src2}"),
561 [], IIC_ALU_NONMEM>, LOCK;
562def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
563 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
564 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
565 !strconcat(mnemonic, "{w}\t",
566 "{$src2, $dst|$dst, $src2}"),
567 [], IIC_ALU_NONMEM>, OpSize16, LOCK;
568def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
569 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
570 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
571 !strconcat(mnemonic, "{l}\t",
572 "{$src2, $dst|$dst, $src2}"),
573 [], IIC_ALU_NONMEM>, OpSize32, LOCK;
574def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
575 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
576 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
577 !strconcat(mnemonic, "{q}\t",
578 "{$src2, $dst|$dst, $src2}"),
579 [], IIC_ALU_NONMEM>, LOCK;
580
581def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
582 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
583 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
584 !strconcat(mnemonic, "{b}\t",
585 "{$src2, $dst|$dst, $src2}"),
586 [], IIC_ALU_MEM>, LOCK;
587
588def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
589 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
590 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
591 !strconcat(mnemonic, "{w}\t",
592 "{$src2, $dst|$dst, $src2}"),
593 [], IIC_ALU_MEM>, OpSize16, LOCK;
594
595def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
596 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
597 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
598 !strconcat(mnemonic, "{l}\t",
599 "{$src2, $dst|$dst, $src2}"),
600 [], IIC_ALU_MEM>, OpSize32, LOCK;
601
602def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
603 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
604 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
605 !strconcat(mnemonic, "{q}\t",
606 "{$src2, $dst|$dst, $src2}"),
607 [], IIC_ALU_MEM>, LOCK;
608
609def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
610 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
611 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
612 !strconcat(mnemonic, "{w}\t",
613 "{$src2, $dst|$dst, $src2}"),
614 [], IIC_ALU_MEM>, OpSize16, LOCK;
615def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
616 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
617 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
618 !strconcat(mnemonic, "{l}\t",
619 "{$src2, $dst|$dst, $src2}"),
620 [], IIC_ALU_MEM>, OpSize32, LOCK;
621def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
622 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
623 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
624 !strconcat(mnemonic, "{q}\t",
625 "{$src2, $dst|$dst, $src2}"),
626 [], IIC_ALU_MEM>, LOCK;
627
628}
629
630}
631
632defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
633defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
634defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
635defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
636defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
637
638// Optimized codegen when the non-memory output is not used.
639multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
640 string mnemonic> {
641let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
642 SchedRW = [WriteALULd, WriteRMW] in {
643
644def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
645 !strconcat(mnemonic, "{b}\t$dst"),
646 [], IIC_UNARY_MEM>, LOCK;
647def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
648 !strconcat(mnemonic, "{w}\t$dst"),
649 [], IIC_UNARY_MEM>, OpSize16, LOCK;
650def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
651 !strconcat(mnemonic, "{l}\t$dst"),
652 [], IIC_UNARY_MEM>, OpSize32, LOCK;
653def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
654 !strconcat(mnemonic, "{q}\t$dst"),
655 [], IIC_UNARY_MEM>, LOCK;
656}
657}
658
659defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
660defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
661
662// Atomic compare and swap.
663multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
664 SDPatternOperator frag, X86MemOperand x86memop,
665 InstrItinClass itin> {
666let isCodeGenOnly = 1 in {
667 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
668 !strconcat(mnemonic, "\t$ptr"),
669 [(frag addr:$ptr)], itin>, TB, LOCK;
670}
671}
672
673multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
674 string mnemonic, SDPatternOperator frag,
675 InstrItinClass itin8, InstrItinClass itin> {
676let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
677 let Defs = [AL, EFLAGS], Uses = [AL] in
678 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
679 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
680 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
681 let Defs = [AX, EFLAGS], Uses = [AX] in
682 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
683 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
684 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
685 let Defs = [EAX, EFLAGS], Uses = [EAX] in
686 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
687 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
688 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
689 let Defs = [RAX, EFLAGS], Uses = [RAX] in
690 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
691 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
692 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
693}
694}
695
696let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
697 SchedRW = [WriteALULd, WriteRMW] in {
698defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
699 X86cas8, i64mem,
700 IIC_CMPX_LOCK_8B>;
701}
702
703let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
704 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
705defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
706 X86cas16, i128mem,
707 IIC_CMPX_LOCK_16B>, REX_W;
708}
709
710defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
711 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
712
713// Atomic exchange and add
714multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
715 string frag,
716 InstrItinClass itin8, InstrItinClass itin> {
717 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
718 SchedRW = [WriteALULd, WriteRMW] in {
719 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
720 (ins GR8:$val, i8mem:$ptr),
721 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
722 [(set GR8:$dst,
723 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
724 itin8>;
725 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
726 (ins GR16:$val, i16mem:$ptr),
727 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
728 [(set
729 GR16:$dst,
730 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
731 itin>, OpSize16;
732 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
733 (ins GR32:$val, i32mem:$ptr),
734 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
735 [(set
736 GR32:$dst,
737 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
738 itin>, OpSize32;
739 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
740 (ins GR64:$val, i64mem:$ptr),
741 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
742 [(set
743 GR64:$dst,
744 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
745 itin>;
746 }
747}
748
749defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
750 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
751 TB, LOCK;
752
753/* The following multiclass tries to make sure that in code like
754 * x.store (immediate op x.load(acquire), release)
755 * an operation directly on memory is generated instead of wasting a register.
756 * It is not automatic as atomic_store/load are only lowered to MOV instructions
757 * extremely late to prevent them from being accidentally reordered in the backend
758 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
759 */
760multiclass RELEASE_BINOP_MI<string op> {
761 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
762 "#RELEASE_BINOP PSEUDO!",
763 [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
764 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
765 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
766 // costly and avoided as far as possible by this backend anyway
767 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
768 "#RELEASE_BINOP PSEUDO!",
769 [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
770 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
771 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
772 "#RELEASE_BINOP PSEUDO!",
773 [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
774 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
775}
776defm RELEASE_ADD : RELEASE_BINOP_MI<"add">;
777defm RELEASE_AND : RELEASE_BINOP_MI<"and">;
778defm RELEASE_OR : RELEASE_BINOP_MI<"or">;
779defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">;
780// Note: we don't deal with sub, because substractions of constants are
781// optimized into additions before this code can run
782
783multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
784 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
785 "#RELEASE_UNOP PSEUDO!",
786 [(atomic_store_8 addr:$dst, dag8)]>;
787 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
788 "#RELEASE_UNOP PSEUDO!",
789 [(atomic_store_16 addr:$dst, dag16)]>;
790 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
791 "#RELEASE_UNOP PSEUDO!",
792 [(atomic_store_32 addr:$dst, dag32)]>;
793 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
794 "#RELEASE_UNOP PSEUDO!",
795 [(atomic_store_64 addr:$dst, dag64)]>;
796}
797
798defm RELEASE_INC : RELEASE_UNOP<
799 (add (atomic_load_8 addr:$dst), (i8 1)),
800 (add (atomic_load_16 addr:$dst), (i16 1)),
801 (add (atomic_load_32 addr:$dst), (i32 1)),
802 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
803defm RELEASE_DEC : RELEASE_UNOP<
804 (add (atomic_load_8 addr:$dst), (i8 -1)),
805 (add (atomic_load_16 addr:$dst), (i16 -1)),
806 (add (atomic_load_32 addr:$dst), (i32 -1)),
807 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
808/*
809TODO: These don't work because the type inference of TableGen fails.
810TODO: find a way to fix it.
811defm RELEASE_NEG : RELEASE_UNOP<
812 (ineg (atomic_load_8 addr:$dst)),
813 (ineg (atomic_load_16 addr:$dst)),
814 (ineg (atomic_load_32 addr:$dst)),
815 (ineg (atomic_load_64 addr:$dst))>;
816defm RELEASE_NOT : RELEASE_UNOP<
817 (not (atomic_load_8 addr:$dst)),
818 (not (atomic_load_16 addr:$dst)),
819 (not (atomic_load_32 addr:$dst)),
820 (not (atomic_load_64 addr:$dst))>;
821*/
822
823def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
824 "#RELEASE_MOV PSEUDO !",
825 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
826def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
827 "#RELEASE_MOV PSEUDO !",
828 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
829def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
830 "#RELEASE_MOV PSEUDO !",
831 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
832def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
833 "#RELEASE_MOV PSEUDO !",
834 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
835
836def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
837 "#RELEASE_MOV PSEUDO!",
838 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
839def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
840 "#RELEASE_MOV PSEUDO!",
841 [(atomic_store_16 addr:$dst, GR16:$src)]>;
842def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
843 "#RELEASE_MOV PSEUDO!",
844 [(atomic_store_32 addr:$dst, GR32:$src)]>;
845def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
846 "#RELEASE_MOV PSEUDO!",
847 [(atomic_store_64 addr:$dst, GR64:$src)]>;
848
849def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
850 "#ACQUIRE_MOV PSEUDO!",
851 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
852def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
853 "#ACQUIRE_MOV PSEUDO!",
854 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
855def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
856 "#ACQUIRE_MOV PSEUDO!",
857 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
858def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
859 "#ACQUIRE_MOV PSEUDO!",
860 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000861
862//===----------------------------------------------------------------------===//
863// DAG Pattern Matching Rules
864//===----------------------------------------------------------------------===//
865
866// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
867def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
868def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
869def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
870def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
871def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
872def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
873
874def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
875 (ADD32ri GR32:$src1, tconstpool:$src2)>;
876def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
877 (ADD32ri GR32:$src1, tjumptable:$src2)>;
878def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
879 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
880def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
881 (ADD32ri GR32:$src1, texternalsym:$src2)>;
882def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
883 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
884
885def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
886 (MOV32mi addr:$dst, tglobaladdr:$src)>;
887def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
888 (MOV32mi addr:$dst, texternalsym:$src)>;
889def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
890 (MOV32mi addr:$dst, tblockaddress:$src)>;
891
892// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
893// code model mode, should use 'movabs'. FIXME: This is really a hack, the
894// 'movabs' predicate should handle this sort of thing.
895def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
896 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
897def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
898 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
899def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
900 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
901def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
902 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
903def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
904 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
905
906// In kernel code model, we can get the address of a label
907// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
908// the MOV64ri32 should accept these.
909def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
910 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
911def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
912 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
913def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
914 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
915def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
916 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
917def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
918 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
919
920// If we have small model and -static mode, it is safe to store global addresses
921// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
922// for MOV64mi32 should handle this sort of thing.
923def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
924 (MOV64mi32 addr:$dst, tconstpool:$src)>,
925 Requires<[NearData, IsStatic]>;
926def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
927 (MOV64mi32 addr:$dst, tjumptable:$src)>,
928 Requires<[NearData, IsStatic]>;
929def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
930 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
931 Requires<[NearData, IsStatic]>;
932def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
933 (MOV64mi32 addr:$dst, texternalsym:$src)>,
934 Requires<[NearData, IsStatic]>;
935def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
936 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
937 Requires<[NearData, IsStatic]>;
938
939def : Pat<(i32 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
940def : Pat<(i64 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV64ri texternalsym:$dst)>;
941
942// Calls
943
944// tls has some funny stuff here...
945// This corresponds to movabs $foo@tpoff, %rax
946def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
947 (MOV64ri32 tglobaltlsaddr :$dst)>;
948// This corresponds to add $foo@tpoff, %rax
949def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
950 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
951
952
953// Direct PC relative function call for small code model. 32-bit displacement
954// sign extended to 64-bit.
955def : Pat<(X86call (i64 tglobaladdr:$dst)),
956 (CALL64pcrel32 tglobaladdr:$dst)>;
957def : Pat<(X86call (i64 texternalsym:$dst)),
958 (CALL64pcrel32 texternalsym:$dst)>;
959
960// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
961// can never use callee-saved registers. That is the purpose of the GR64_TC
962// register classes.
963//
964// The only volatile register that is never used by the calling convention is
965// %r11. This happens when calling a vararg function with 6 arguments.
966//
967// Match an X86tcret that uses less than 7 volatile registers.
968def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
969 (X86tcret node:$ptr, node:$off), [{
970 // X86tcret args: (*chain, ptr, imm, regs..., glue)
971 unsigned NumRegs = 0;
972 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
973 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
974 return false;
975 return true;
976}]>;
977
978def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
979 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
980 Requires<[Not64BitMode]>;
981
982// FIXME: This is disabled for 32-bit PIC mode because the global base
983// register which is part of the address mode may be assigned a
984// callee-saved register.
985def : Pat<(X86tcret (load addr:$dst), imm:$off),
986 (TCRETURNmi addr:$dst, imm:$off)>,
987 Requires<[Not64BitMode, IsNotPIC]>;
988
989def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
990 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
991 Requires<[NotLP64]>;
992
993def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
994 (TCRETURNdi texternalsym:$dst, imm:$off)>,
995 Requires<[NotLP64]>;
996
997def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
998 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
999 Requires<[In64BitMode]>;
1000
1001// Don't fold loads into X86tcret requiring more than 6 regs.
1002// There wouldn't be enough scratch registers for base+index.
1003def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1004 (TCRETURNmi64 addr:$dst, imm:$off)>,
1005 Requires<[In64BitMode]>;
1006
1007def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1008 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1009 Requires<[IsLP64]>;
1010
1011def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1012 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1013 Requires<[IsLP64]>;
1014
1015// Normal calls, with various flavors of addresses.
1016def : Pat<(X86call (i32 tglobaladdr:$dst)),
1017 (CALLpcrel32 tglobaladdr:$dst)>;
1018def : Pat<(X86call (i32 texternalsym:$dst)),
1019 (CALLpcrel32 texternalsym:$dst)>;
1020def : Pat<(X86call (i32 imm:$dst)),
1021 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1022
1023// Comparisons.
1024
1025// TEST R,R is smaller than CMP R,0
1026def : Pat<(X86cmp GR8:$src1, 0),
1027 (TEST8rr GR8:$src1, GR8:$src1)>;
1028def : Pat<(X86cmp GR16:$src1, 0),
1029 (TEST16rr GR16:$src1, GR16:$src1)>;
1030def : Pat<(X86cmp GR32:$src1, 0),
1031 (TEST32rr GR32:$src1, GR32:$src1)>;
1032def : Pat<(X86cmp GR64:$src1, 0),
1033 (TEST64rr GR64:$src1, GR64:$src1)>;
1034
1035// Conditional moves with folded loads with operands swapped and conditions
1036// inverted.
1037multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1038 Instruction Inst64> {
1039 let Predicates = [HasCMov] in {
1040 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1041 (Inst16 GR16:$src2, addr:$src1)>;
1042 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1043 (Inst32 GR32:$src2, addr:$src1)>;
1044 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1045 (Inst64 GR64:$src2, addr:$src1)>;
1046 }
1047}
1048
1049defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1050defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1051defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1052defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1053defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1054defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1055defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1056defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1057defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1058defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1059defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1060defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1061defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1062defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1063defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1064defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1065
1066// zextload bool -> zextload byte
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001067def : Pat<(zextloadi8i1 addr:$src), (AND8ri (MOV8rm addr:$src), (i8 1))>;
1068def : Pat<(zextloadi16i1 addr:$src), (AND16ri (MOVZX16rm8 addr:$src), (i16 1))>;
1069def : Pat<(zextloadi32i1 addr:$src), (AND32ri (MOVZX32rm8 addr:$src), (i32 1))>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001070def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001071 (SUBREG_TO_REG (i64 0),
1072 (AND32ri (MOVZX32rm8 addr:$src), (i32 1)), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001073
1074// extload bool -> extload byte
1075// When extloading from 16-bit and smaller memory locations into 64-bit
1076// registers, use zero-extending loads so that the entire 64-bit register is
1077// defined, avoiding partial-register updates.
1078
1079def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1080def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1081def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1082def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1083def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1084def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1085
1086// For other extloads, use subregs, since the high contents of the register are
1087// defined after an extload.
1088def : Pat<(extloadi64i1 addr:$src),
1089 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1090def : Pat<(extloadi64i8 addr:$src),
1091 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1092def : Pat<(extloadi64i16 addr:$src),
1093 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1094def : Pat<(extloadi64i32 addr:$src),
1095 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1096
1097// anyext. Define these to do an explicit zero-extend to
1098// avoid partial-register updates.
1099def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1100 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1101def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1102
1103// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1104def : Pat<(i32 (anyext GR16:$src)),
1105 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1106
1107def : Pat<(i64 (anyext GR8 :$src)),
1108 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1109def : Pat<(i64 (anyext GR16:$src)),
1110 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1111def : Pat<(i64 (anyext GR32:$src)),
1112 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1113
1114
1115// Any instruction that defines a 32-bit result leaves the high half of the
1116// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1117// be copying from a truncate. And x86's cmov doesn't do anything if the
1118// condition is false. But any other 32-bit operation will zero-extend
1119// up to 64 bits.
1120def def32 : PatLeaf<(i32 GR32:$src), [{
1121 return N->getOpcode() != ISD::TRUNCATE &&
1122 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1123 N->getOpcode() != ISD::CopyFromReg &&
1124 N->getOpcode() != ISD::AssertSext &&
1125 N->getOpcode() != X86ISD::CMOV;
1126}]>;
1127
1128// In the case of a 32-bit def that is known to implicitly zero-extend,
1129// we can use a SUBREG_TO_REG.
1130def : Pat<(i64 (zext def32:$src)),
1131 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1132
1133//===----------------------------------------------------------------------===//
1134// Pattern match OR as ADD
1135//===----------------------------------------------------------------------===//
1136
1137// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1138// 3-addressified into an LEA instruction to avoid copies. However, we also
1139// want to finally emit these instructions as an or at the end of the code
1140// generator to make the generated code easier to read. To do this, we select
1141// into "disjoint bits" pseudo ops.
1142
1143// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1144def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1145 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1146 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1147
1148 APInt KnownZero0, KnownOne0;
1149 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1150 APInt KnownZero1, KnownOne1;
1151 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1152 return (~KnownZero0 & ~KnownZero1) == 0;
1153}]>;
1154
1155
1156// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1157// Try this before the selecting to OR.
1158let AddedComplexity = 5, SchedRW = [WriteALU] in {
1159
1160let isConvertibleToThreeAddress = 1,
1161 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1162let isCommutable = 1 in {
1163def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1164 "", // orw/addw REG, REG
1165 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1166def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1167 "", // orl/addl REG, REG
1168 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1169def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1170 "", // orq/addq REG, REG
1171 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1172} // isCommutable
1173
1174// NOTE: These are order specific, we want the ri8 forms to be listed
1175// first so that they are slightly preferred to the ri forms.
1176
1177def ADD16ri8_DB : I<0, Pseudo,
1178 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1179 "", // orw/addw REG, imm8
1180 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1181def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1182 "", // orw/addw REG, imm
1183 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1184
1185def ADD32ri8_DB : I<0, Pseudo,
1186 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1187 "", // orl/addl REG, imm8
1188 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1189def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1190 "", // orl/addl REG, imm
1191 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1192
1193
1194def ADD64ri8_DB : I<0, Pseudo,
1195 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1196 "", // orq/addq REG, imm8
1197 [(set GR64:$dst, (or_is_add GR64:$src1,
1198 i64immSExt8:$src2))]>;
1199def ADD64ri32_DB : I<0, Pseudo,
1200 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1201 "", // orq/addq REG, imm
1202 [(set GR64:$dst, (or_is_add GR64:$src1,
1203 i64immSExt32:$src2))]>;
1204}
1205} // AddedComplexity, SchedRW
1206
1207
1208//===----------------------------------------------------------------------===//
1209// Some peepholes
1210//===----------------------------------------------------------------------===//
1211
1212// Odd encoding trick: -128 fits into an 8-bit immediate field while
1213// +128 doesn't, so in this special case use a sub instead of an add.
1214def : Pat<(add GR16:$src1, 128),
1215 (SUB16ri8 GR16:$src1, -128)>;
1216def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1217 (SUB16mi8 addr:$dst, -128)>;
1218
1219def : Pat<(add GR32:$src1, 128),
1220 (SUB32ri8 GR32:$src1, -128)>;
1221def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1222 (SUB32mi8 addr:$dst, -128)>;
1223
1224def : Pat<(add GR64:$src1, 128),
1225 (SUB64ri8 GR64:$src1, -128)>;
1226def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1227 (SUB64mi8 addr:$dst, -128)>;
1228
1229// The same trick applies for 32-bit immediate fields in 64-bit
1230// instructions.
1231def : Pat<(add GR64:$src1, 0x0000000080000000),
1232 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1233def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1234 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1235
1236// To avoid needing to materialize an immediate in a register, use a 32-bit and
1237// with implicit zero-extension instead of a 64-bit and if the immediate has at
1238// least 32 bits of leading zeros. If in addition the last 32 bits can be
1239// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001240// This can also reduce instruction size by eliminating the need for the REX
1241// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001242
Craig Topper7ea899a2015-04-04 04:22:12 +00001243// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1244let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001245def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1246 (SUBREG_TO_REG
1247 (i64 0),
1248 (AND32ri8
1249 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1250 (i32 (GetLo8XForm imm:$imm))),
1251 sub_32bit)>;
1252
1253def : Pat<(and GR64:$src, i64immZExt32:$imm),
1254 (SUBREG_TO_REG
1255 (i64 0),
1256 (AND32ri
1257 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1258 (i32 (GetLo32XForm imm:$imm))),
1259 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001260} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001261
1262
Craig Topper7ea899a2015-04-04 04:22:12 +00001263// AddedComplexity is needed due to the increased complexity on the
1264// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1265// the MOVZX patterns keeps thems together in DAGIsel tables.
1266let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001267// r & (2^16-1) ==> movz
1268def : Pat<(and GR32:$src1, 0xffff),
1269 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1270// r & (2^8-1) ==> movz
1271def : Pat<(and GR32:$src1, 0xff),
1272 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1273 GR32_ABCD)),
1274 sub_8bit))>,
1275 Requires<[Not64BitMode]>;
1276// r & (2^8-1) ==> movz
1277def : Pat<(and GR16:$src1, 0xff),
1278 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1279 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1280 sub_16bit)>,
1281 Requires<[Not64BitMode]>;
1282
1283// r & (2^32-1) ==> movz
1284def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1285 (SUBREG_TO_REG (i64 0),
1286 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1287 sub_32bit)>;
1288// r & (2^16-1) ==> movz
Craig Topper9012028732015-04-04 02:08:20 +00001289let AddedComplexity = 1 in // Give priority over i64immZExt32.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001290def : Pat<(and GR64:$src, 0xffff),
1291 (SUBREG_TO_REG (i64 0),
1292 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1293 sub_32bit)>;
1294// r & (2^8-1) ==> movz
1295def : Pat<(and GR64:$src, 0xff),
1296 (SUBREG_TO_REG (i64 0),
1297 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1298 sub_32bit)>;
1299// r & (2^8-1) ==> movz
1300def : Pat<(and GR32:$src1, 0xff),
1301 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1302 Requires<[In64BitMode]>;
1303// r & (2^8-1) ==> movz
1304def : Pat<(and GR16:$src1, 0xff),
1305 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1306 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1307 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001308} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001309
1310
1311// sext_inreg patterns
1312def : Pat<(sext_inreg GR32:$src, i16),
1313 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1314def : Pat<(sext_inreg GR32:$src, i8),
1315 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1316 GR32_ABCD)),
1317 sub_8bit))>,
1318 Requires<[Not64BitMode]>;
1319
1320def : Pat<(sext_inreg GR16:$src, i8),
1321 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1322 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1323 sub_16bit)>,
1324 Requires<[Not64BitMode]>;
1325
1326def : Pat<(sext_inreg GR64:$src, i32),
1327 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1328def : Pat<(sext_inreg GR64:$src, i16),
1329 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1330def : Pat<(sext_inreg GR64:$src, i8),
1331 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1332def : Pat<(sext_inreg GR32:$src, i8),
1333 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1334 Requires<[In64BitMode]>;
1335def : Pat<(sext_inreg GR16:$src, i8),
1336 (EXTRACT_SUBREG (MOVSX32rr8
1337 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1338 Requires<[In64BitMode]>;
1339
1340// sext, sext_load, zext, zext_load
1341def: Pat<(i16 (sext GR8:$src)),
1342 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1343def: Pat<(sextloadi16i8 addr:$src),
1344 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1345def: Pat<(i16 (zext GR8:$src)),
1346 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1347def: Pat<(zextloadi16i8 addr:$src),
1348 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1349
1350// trunc patterns
1351def : Pat<(i16 (trunc GR32:$src)),
1352 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1353def : Pat<(i8 (trunc GR32:$src)),
1354 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1355 sub_8bit)>,
1356 Requires<[Not64BitMode]>;
1357def : Pat<(i8 (trunc GR16:$src)),
1358 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1359 sub_8bit)>,
1360 Requires<[Not64BitMode]>;
1361def : Pat<(i32 (trunc GR64:$src)),
1362 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1363def : Pat<(i16 (trunc GR64:$src)),
1364 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1365def : Pat<(i8 (trunc GR64:$src)),
1366 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1367def : Pat<(i8 (trunc GR32:$src)),
1368 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1369 Requires<[In64BitMode]>;
1370def : Pat<(i8 (trunc GR16:$src)),
1371 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1372 Requires<[In64BitMode]>;
1373
1374// h-register tricks
1375def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1376 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1377 sub_8bit_hi)>,
1378 Requires<[Not64BitMode]>;
1379def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1380 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1381 sub_8bit_hi)>,
1382 Requires<[Not64BitMode]>;
1383def : Pat<(srl GR16:$src, (i8 8)),
1384 (EXTRACT_SUBREG
1385 (MOVZX32rr8
1386 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1387 sub_8bit_hi)),
1388 sub_16bit)>,
1389 Requires<[Not64BitMode]>;
1390def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1391 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1392 GR16_ABCD)),
1393 sub_8bit_hi))>,
1394 Requires<[Not64BitMode]>;
1395def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1396 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1397 GR16_ABCD)),
1398 sub_8bit_hi))>,
1399 Requires<[Not64BitMode]>;
1400def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1401 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1402 GR32_ABCD)),
1403 sub_8bit_hi))>,
1404 Requires<[Not64BitMode]>;
1405def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1406 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1407 GR32_ABCD)),
1408 sub_8bit_hi))>,
1409 Requires<[Not64BitMode]>;
1410
1411// h-register tricks.
1412// For now, be conservative on x86-64 and use an h-register extract only if the
1413// value is immediately zero-extended or stored, which are somewhat common
1414// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1415// from being allocated in the same instruction as the h register, as there's
1416// currently no way to describe this requirement to the register allocator.
1417
1418// h-register extract and zero-extend.
1419def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1420 (SUBREG_TO_REG
1421 (i64 0),
1422 (MOVZX32_NOREXrr8
1423 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1424 sub_8bit_hi)),
1425 sub_32bit)>;
1426def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1427 (MOVZX32_NOREXrr8
1428 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1429 sub_8bit_hi))>,
1430 Requires<[In64BitMode]>;
1431def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1432 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1433 GR32_ABCD)),
1434 sub_8bit_hi))>,
1435 Requires<[In64BitMode]>;
1436def : Pat<(srl GR16:$src, (i8 8)),
1437 (EXTRACT_SUBREG
1438 (MOVZX32_NOREXrr8
1439 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1440 sub_8bit_hi)),
1441 sub_16bit)>,
1442 Requires<[In64BitMode]>;
1443def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1444 (MOVZX32_NOREXrr8
1445 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1446 sub_8bit_hi))>,
1447 Requires<[In64BitMode]>;
1448def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1449 (MOVZX32_NOREXrr8
1450 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1451 sub_8bit_hi))>,
1452 Requires<[In64BitMode]>;
1453def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1454 (SUBREG_TO_REG
1455 (i64 0),
1456 (MOVZX32_NOREXrr8
1457 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1458 sub_8bit_hi)),
1459 sub_32bit)>;
1460def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1461 (SUBREG_TO_REG
1462 (i64 0),
1463 (MOVZX32_NOREXrr8
1464 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1465 sub_8bit_hi)),
1466 sub_32bit)>;
1467
1468// h-register extract and store.
1469def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1470 (MOV8mr_NOREX
1471 addr:$dst,
1472 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1473 sub_8bit_hi))>;
1474def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1475 (MOV8mr_NOREX
1476 addr:$dst,
1477 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1478 sub_8bit_hi))>,
1479 Requires<[In64BitMode]>;
1480def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1481 (MOV8mr_NOREX
1482 addr:$dst,
1483 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1484 sub_8bit_hi))>,
1485 Requires<[In64BitMode]>;
1486
1487
1488// (shl x, 1) ==> (add x, x)
1489// Note that if x is undef (immediate or otherwise), we could theoretically
1490// end up with the two uses of x getting different values, producing a result
1491// where the least significant bit is not 0. However, the probability of this
1492// happening is considered low enough that this is officially not a
1493// "real problem".
1494def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1495def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1496def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1497def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1498
1499// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001500def immShift32 : ImmLeaf<i8, [{
1501 return countTrailingOnes<uint64_t>(Imm) >= 5;
1502}]>;
1503def immShift64 : ImmLeaf<i8, [{
1504 return countTrailingOnes<uint64_t>(Imm) >= 6;
1505}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001506
1507// Shift amount is implicitly masked.
1508multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1509 // (shift x (and y, 31)) ==> (shift x, y)
1510 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1511 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1512 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1513 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1514 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1515 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1516 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1517 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1518 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1519 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1520 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1521 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1522
1523 // (shift x (and y, 63)) ==> (shift x, y)
1524 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1525 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1526 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1527 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1528}
1529
1530defm : MaskedShiftAmountPats<shl, "SHL">;
1531defm : MaskedShiftAmountPats<srl, "SHR">;
1532defm : MaskedShiftAmountPats<sra, "SAR">;
1533defm : MaskedShiftAmountPats<rotl, "ROL">;
1534defm : MaskedShiftAmountPats<rotr, "ROR">;
1535
1536// (anyext (setcc_carry)) -> (setcc_carry)
1537def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1538 (SETB_C16r)>;
1539def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1540 (SETB_C32r)>;
1541def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1542 (SETB_C32r)>;
1543
1544
1545
1546
1547//===----------------------------------------------------------------------===//
1548// EFLAGS-defining Patterns
1549//===----------------------------------------------------------------------===//
1550
1551// add reg, reg
1552def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1553def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1554def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1555
1556// add reg, mem
1557def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1558 (ADD8rm GR8:$src1, addr:$src2)>;
1559def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1560 (ADD16rm GR16:$src1, addr:$src2)>;
1561def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1562 (ADD32rm GR32:$src1, addr:$src2)>;
1563
1564// add reg, imm
1565def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1566def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1567def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1568def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1569 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1570def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1571 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1572
1573// sub reg, reg
1574def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1575def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1576def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1577
1578// sub reg, mem
1579def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1580 (SUB8rm GR8:$src1, addr:$src2)>;
1581def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1582 (SUB16rm GR16:$src1, addr:$src2)>;
1583def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1584 (SUB32rm GR32:$src1, addr:$src2)>;
1585
1586// sub reg, imm
1587def : Pat<(sub GR8:$src1, imm:$src2),
1588 (SUB8ri GR8:$src1, imm:$src2)>;
1589def : Pat<(sub GR16:$src1, imm:$src2),
1590 (SUB16ri GR16:$src1, imm:$src2)>;
1591def : Pat<(sub GR32:$src1, imm:$src2),
1592 (SUB32ri GR32:$src1, imm:$src2)>;
1593def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1594 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1595def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1596 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1597
1598// sub 0, reg
1599def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1600def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1601def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1602def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1603
1604// mul reg, reg
1605def : Pat<(mul GR16:$src1, GR16:$src2),
1606 (IMUL16rr GR16:$src1, GR16:$src2)>;
1607def : Pat<(mul GR32:$src1, GR32:$src2),
1608 (IMUL32rr GR32:$src1, GR32:$src2)>;
1609
1610// mul reg, mem
1611def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1612 (IMUL16rm GR16:$src1, addr:$src2)>;
1613def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1614 (IMUL32rm GR32:$src1, addr:$src2)>;
1615
1616// mul reg, imm
1617def : Pat<(mul GR16:$src1, imm:$src2),
1618 (IMUL16rri GR16:$src1, imm:$src2)>;
1619def : Pat<(mul GR32:$src1, imm:$src2),
1620 (IMUL32rri GR32:$src1, imm:$src2)>;
1621def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1622 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1623def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1624 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1625
1626// reg = mul mem, imm
1627def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1628 (IMUL16rmi addr:$src1, imm:$src2)>;
1629def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1630 (IMUL32rmi addr:$src1, imm:$src2)>;
1631def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1632 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1633def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1634 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1635
1636// Patterns for nodes that do not produce flags, for instructions that do.
1637
1638// addition
1639def : Pat<(add GR64:$src1, GR64:$src2),
1640 (ADD64rr GR64:$src1, GR64:$src2)>;
1641def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1642 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1643def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1644 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1645def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1646 (ADD64rm GR64:$src1, addr:$src2)>;
1647
1648// subtraction
1649def : Pat<(sub GR64:$src1, GR64:$src2),
1650 (SUB64rr GR64:$src1, GR64:$src2)>;
1651def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1652 (SUB64rm GR64:$src1, addr:$src2)>;
1653def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1654 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1655def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1656 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1657
1658// Multiply
1659def : Pat<(mul GR64:$src1, GR64:$src2),
1660 (IMUL64rr GR64:$src1, GR64:$src2)>;
1661def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1662 (IMUL64rm GR64:$src1, addr:$src2)>;
1663def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1664 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1665def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1666 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1667def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1668 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1669def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1670 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1671
1672// Increment/Decrement reg.
1673// Do not make INC/DEC if it is slow
1674let Predicates = [NotSlowIncDec] in {
1675 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1676 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1677 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1678 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1679 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1680 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1681 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1682 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1683}
1684
1685// or reg/reg.
1686def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1687def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1688def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1689def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1690
1691// or reg/mem
1692def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1693 (OR8rm GR8:$src1, addr:$src2)>;
1694def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1695 (OR16rm GR16:$src1, addr:$src2)>;
1696def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1697 (OR32rm GR32:$src1, addr:$src2)>;
1698def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1699 (OR64rm GR64:$src1, addr:$src2)>;
1700
1701// or reg/imm
1702def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1703def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1704def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1705def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1706 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1707def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1708 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1709def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1710 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1711def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1712 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1713
1714// xor reg/reg
1715def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1716def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1717def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1718def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1719
1720// xor reg/mem
1721def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1722 (XOR8rm GR8:$src1, addr:$src2)>;
1723def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1724 (XOR16rm GR16:$src1, addr:$src2)>;
1725def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1726 (XOR32rm GR32:$src1, addr:$src2)>;
1727def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1728 (XOR64rm GR64:$src1, addr:$src2)>;
1729
1730// xor reg/imm
1731def : Pat<(xor GR8:$src1, imm:$src2),
1732 (XOR8ri GR8:$src1, imm:$src2)>;
1733def : Pat<(xor GR16:$src1, imm:$src2),
1734 (XOR16ri GR16:$src1, imm:$src2)>;
1735def : Pat<(xor GR32:$src1, imm:$src2),
1736 (XOR32ri GR32:$src1, imm:$src2)>;
1737def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1738 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1739def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1740 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1741def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1742 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1743def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1744 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1745
1746// and reg/reg
1747def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1748def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1749def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1750def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1751
1752// and reg/mem
1753def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1754 (AND8rm GR8:$src1, addr:$src2)>;
1755def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1756 (AND16rm GR16:$src1, addr:$src2)>;
1757def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1758 (AND32rm GR32:$src1, addr:$src2)>;
1759def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1760 (AND64rm GR64:$src1, addr:$src2)>;
1761
1762// and reg/imm
1763def : Pat<(and GR8:$src1, imm:$src2),
1764 (AND8ri GR8:$src1, imm:$src2)>;
1765def : Pat<(and GR16:$src1, imm:$src2),
1766 (AND16ri GR16:$src1, imm:$src2)>;
1767def : Pat<(and GR32:$src1, imm:$src2),
1768 (AND32ri GR32:$src1, imm:$src2)>;
1769def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1770 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1771def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1772 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1773def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1774 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1775def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1776 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1777
1778// Bit scan instruction patterns to match explicit zero-undef behavior.
1779def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1780def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1781def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1782def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1783def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1784def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1785
1786// When HasMOVBE is enabled it is possible to get a non-legalized
1787// register-register 16 bit bswap. This maps it to a ROL instruction.
1788let Predicates = [HasMOVBE] in {
1789 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1790}